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Abstract The game problems between seller and buyer of an American
contingent claim relate to large scale problems because a number of buyer’s
strategies grows overexponentially. Therefore, decomposition of such games
turns out to be a fundamental problem. In this paper we prove the exis-
tence of a minimax monotonous (in time) strategy of the seller in a loss
minimization problem considering value-at-risk measure of loss. The given
result allows to substantially decrease a number of constraints in the origi-
nal problem and lets us turn to an equivalent mixed integer problem with
admissible dimension.
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1. Introduction

A seminal series of papers (Merton, 1973; Black and Scholes, 1973; Shiryaev, 1999)
initiated an extensive number of studies on financial asset pricing and minimization
of risk associated with failure of contingent claim hedging (building a portfolio of
assets to exceed the claim value). The authors assumed that trades occur contin-
uously in time. Consideration of discrete models of a financial market for solving
investment problems allowed to apply new methods, particularly ones of mathe-
matical programming and game theory. This is due to the fact that the number of
market scenarios is finite.

The first discrete models of contingent claims valuation were examined in (Har-
rison and Kreps, 1979). This paper proposed a new concept of a discrete market
applying stochastic programming approach. The novel idea was to describe a finan-
cial market with a scenario tree. They formulated the notions of arbitrage (market
condition which permits investment strategies with a guaranteed profit), a self-
financing strategy, hedging (implementing the contingent claim) basing on scenario
tree framework. The fundamental theorem of asset pricing was presented as well.
The problem of maximizing the expected value of terminal portfolio was formu-
lated in (Pliska, 1997). The author derived analytically the amount of initial capi-
tal needed for perfect hedging of various contingent claims. In paper (King, 2002)
the existence of arbitrage opportunities was analyzed using the duality theory. He
stated the linear and nonlinear programming problems to determine optimal buyer
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and seller’s strategies. In addition, the author proved a criterion for the existence
of an optimal solution in the utility maximization problem.

SPAN system (Standard Portfolio Analysis of Risk) is a good example which il-
lustrates practical use of the discrete models of a financial market. It was introduced
at the Chicago Mercantile Exchange in 1988 (Chicago Mercantile Exchange, 1999).
This is the portfolio risk assessment methodology which determines the minimum
margin requirements to cover losses for one trading period. 16 market scenarios are
simulated in the system representing possible ranges of percentage changes in price
and volatility of the underlying asset.

The main feature of an American contingent claim is an uncertain moment
of exercise (using the right to oblige a seller to make a transaction). So, American
claims may be exercised by its buyer at any time t = {0, ..., T } up to expiration date.
Exercise time is usually considered as an uncertain factor in investment problems.
As a result a zero-sum game between the seller and the buyer arises in this scope.
Perfect hedging (with probability one) of an American contingent claim generally
requires considerable initial endowment from the seller.

There are several common ways to assess the risk of imperfect hedging. The au-
thors of (Föllmer and Leukert, 1999) suggested to use strategies of two types. The
first one is quantile hedging. It allows to hedge the contingent claim with the high-
est probability. This approach does not take the investor’s attitude towards the risk
into account in contrast to the second type of strategies that minimize a linear func-
tion of losses associated with imperfect hedging. The authors proved existence of
the optimal solutions for a continuous model of the market using Neyman-Pearson
lemma. Perez-Hernandez formulated optimization problems of the described two
types of imperfect hedging for financial markets with discrete time and an infi-
nite number of states (Perez-Hernandez, 2007). In this paper he also stated new
problems and proved the existence of their optimal solutions under minimizing the
initial portfolio endowment and the fixed losses. The paper (Novikov, 1999) con-
siders the analogous problem of minimizing the initial endowment. However, the
constraints are more complicated to deal with. The probability of full hedging is
bounded from below. There are two tradable assets: risky and riskless ones. It was
assumed that the contingent claim can not be exercised until the specific time mo-
ment which is optimal for the buyer. Then, the optimal hedging strategies were
found in (Lindberg, 2012) for a slightly more general model of the market but a
set of exercise times was restricted in a foregoing way. The problem of imperfect
hedging from the buyer’s perspective was proposed in (Pinar, 2011). An alterna-
tive description of the decision making process connected with exercising the claim
allowed to formulate the mixed-integer problem which is equivalent to the origi-
nal one. The paper (Camci and Pinar, 2009) stated a theorem which leads to even
more reduction and equivalently turns to finding the optimal solution to the relaxed
problem. Pinar (2011) also provides numerical results using real data.

In a present paper we propose value-at-risk (VaR) as a risk measure to estimate
the losses from imperfect hedging. It is equal to the minimum value such that
the expected losses do not exceed it with a specified probability. In other words,
VaR corresponds to the amount of uninsured risk which the seller can take, see
first (Rockafellar and Uryasev, 2000) for the details. Nowadays VaR method meets
the standards of banking regulation approved by the Basel Committee on Banking
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Supervision. This measure is recommended primarily for monitoring market risks
and effectiveness of hedging strategies.

VaR approach of risk estimation was widely studied in (Rockafellar and Uryasev,
2000). The authors proved that minimization of VaR, CVaR (conditional value-at-
risk that is roughly interpreted as expected losses which exceed VaR value) and
Markowitz problem have the same optimum under some conditions. The analytic
formula of a CVaR value was obtained in (Rockafellar and Uryasev, 2002) for a
discrete model of a financial market. The distribution of future losses was assumed
to be known. The paper (Sarykalin et al., 2008) provided detailed comparison of
VaR and CVaR. In short, advantages of VaR measure include the fact that it is not
subject to errors in the measurement of the biggest losses, assessment of which is
rather difficult. The disadvantage of VaR is its non-convexity (in contrast to CVaR)
which complicates problem solving in practice.

The rest of the paper is organized as follows. We describe the discrete model
of securities market and define the basic notions of subject area in Sect. 2. Sect. 3
formally defines a zero-sum game (strategies of players and a loss function) and
introduces a problem of VaR minimization consisted in finding of minimax for the
game. We state and prove the main result in Sect. 4. Then, we apply it showing
how to substantially reduce a number of constraints in the original problem.

2. The Model of a Financial Market

The market consists of d + 1 tradable securities, whose prices are denoted at each
state n by a non-negative vector Sn = (S0

n, ..., S
d
n). We assume the security indexed

by 0 to be riskless (a bank deposit or a bond), it has strictly positive prices at
each state. We choose this asset to be the numeraire and introduce the discounts
1/S0

n. Let a vector Xn = Sn/S
0
n denote the discounted security prices relative to

the numeraire. Its zero entry X0
n equals 1 in any state n.

The set of states N of the market has a tree structure; see examples of it in
Fig. 1 and in (Harrison and Kreps, 1979, p. 393; Pliska, 1997, p. 79). It is divided
into pairwise disjoint subsets of states Nt which may occur at specific time moments
t = 0, ..., T. The set N0 contains the only element – a root of the tree denoted by
0. Every node n ∈ Nt, where t = 1, ..., T , has a unique parent a(n) ∈ Nt−1. We put
a(0) = 0, a0(n) = n, as+1(n) = as(a(n)), s = 1, ..., t, for all n ∈ Nt, t = 1, ..., T.
Next, each node n ∈ Nt, where t = 0, ..., T−1, has a set of child nodes C(n) ⊂ Nt+1.
Let D(n) be a set of all the nodes which may occur after n, i.e. child nodes, their
children and so on (D (0) = N\{0}, D(n) = C(n) for all n ∈ NT−1).
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Fig. 1. A scenario tree (T = 2, N1 = C(0) = {l,m, r}, C(l) = {1, 2} ⊂ NT = {1, 2, ..., 9}).
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A unique path ω = (n0, n1, ..., nT ) leads from the root to a leaf node n ∈ NT ,
where n0 = 0, nt−1 = a(nt) ∈ Nt−1 for all t = 1, ..., T, nT = n. These paths
are interpreted as scenarios of market movement. They form atoms of probabil-
ity space Ω. The set Nt partitions Ω into subsets (events). Each of them is de-
fined by a node n ∈ Nt and consists of all the paths containing n. The partition
generates an algebra Ft (algebra of events observed up to time moment t). Here,
F0 = {∅, Ω} ⊂ F1 ⊂ ... ⊂ FT . The family of sets {Ft} is a filtration. Throughout
the paper we will consider {Ft}-adapted stochastic processes b = {b(t)}, where a
random variable b(t) takes values bn, n ∈ Nt, and, thus, is Ft-measurable.

The probability measure p = (pn, n ∈ N ) defined on Ω attaches values pn > 0,
∑

n∈NT
pn = 1 to all the terminal states. The probabilities of other states can be

defined consecutively: pn =
∑

m∈C(n) pm for all n ∈ Nt, t = T − 1, ..., 0. Note that

p0 = 1. Suppose that measure p defines true (statistical) probabilities of events. It
can be uniquely determined by a probability distribution pT = (pn, n ∈ NT ). To
define values of p it is convenient to set conditional measures at first:

p(·|n) = (p(m|n) = pm/pn, m ∈ C(n)) .

They indicate the probabilities of turning from states n ∈ Nt, t = 0, ..., T − 1, to
the next states m ∈ C(n). Then, values of pn can be derived using the following
formula:

pn =

t−1
∏

s=0

p(as(n)| as+1(n)).

3. Game Description

Let us consider a zero-sum game with two players: a seller of the contingent claim
and its buyer. The seller is an investor in wide sense, he builds a trading strategy to
hedge the American contingent claim. The buyer exercises the claim in some moment
of time (i.e. obliges the seller to pay the claim value using his right specified in a
contract). Next, we define strategies of players.

Seller’s Strategy

We denote amount of security j held by the investor in state n ∈ N by θjn. We
will consider a portfolio process θ = {θ(t)}, where the portfolios θn = (θ0n, ..., θ

d
n),

n ∈ Nt, formed at stage t are the values of a random variable θ(t). So, the investor
has an initial portfolio θ0 at stage t = 0, then he forms a portfolio θn in state n ∈ N1

(buying some securities and selling others) and so on.

Portfolio process θ is called an investor strategy if a self-financing condition is
satisfied:

Xn · θn = Xn · θa(n), ∀n ∈ Nt, t = 1, ..., T.

Self-financing means that an investor does not spend money and does not get any
revenue from outside. Let

Yn = Xn −Xa(n), ∀n ∈ Nt, t = 1, ..., T,

be the vector of increments of securities prices. Then, Yn · θa(n) means a discounted
profit of investor from portfolio θa(n) in state n.
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Portfolio value process V = {V (t)} corresponds to a trading strategy θ. A ran-
dom variable V (t) takes values Vn equal to scalar products of price and portfolio
vectors:

Vn = Xn · θn =

d
∑

j=0

Xj
nθ

j
n, ∀n ∈ N .

It is easy to see (Föllmer and Schied, 2011, Prop. 5.7; Pliska, 1997, Prop. 3.2) that
V (t) can be represented in the following form for any strategy θ

V (t) = V0 +

t
∑

s=1

Y (s) · θ(s− 1), ∀ t = 1, ..., T.

Since each child node of the scenario tree has a unique parent, we may specify all
the preceding nodes for each n ∈ Nt, t = 1, ..., T. They are at(n), at−1(n), ..., a(n).
Hence, the portfolio values Vn, n ∈ Nt, are equal to

Vn = V0 +

t
∑

s=1

Yas−1(n) · θas(n), ∀n ∈ Nt, t = 1, ..., T.

It also follows from (Föllmer and Schied, 2011, Prop. 5.7). We will use these equa-
tions later to describe the relationship between trading strategy and portfolio values.
To make the dependance more convenient we denote the amount of portfolio value
increment up to state n by

(Y θ)n =

t
∑

s=1

Yas−1(n) · θas(n), ∀n ∈ Nt, t = 1, ..., T,

and let (Y θ)0 = 0.
It is said that the market has an arbitrage opportunity if there is a trading

strategy θ such that V0 ≤ 0 and Vn ≥ 0 for each n ∈ N\{0} and at least one
of these inequalities meets strictly. Following trading strategy θ, the investor loses
nothing and yields a positive profit with a positive probability. Suppose further that
there are no arbitrage opportunities in the market.

Strategy θ is called admissible if Vn ≥ 0 for all n ∈ N . We will consider only
admissible trading strategies because they prevent the investor from ruin.

Remark 1. It is easy to show (King, 2002, p. 546) that strategy θ is admissible for
arbitrage-free markets if Vn ≥ 0 for all terminal states n ∈ NT . Indeed, otherwise
suppose that portfolio value is negative in some state m ∈ N\NT and Vn ≥ 0 for all
terminal states which follow m (n ∈ NT ∩D(m)). Then, the investor may guarantee
a positive profit for all future market scenarios.

Buyer’s Strategy

Buyer’s strategy is a moment of time when the contingent claim is exercised – a
stopping time. Let us describe it with a random variable

τ : Ω → {0, ..., T}

for which {τ = t} ∈ Ft. We use T to denote a finite set of all buyer’s strategies.
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Exercise time τ produces the only state nτ(ω) ∈ N , where stopping occurs for
each simple event ω = (n0, ..., nT ) ∈ Ω. Let us denote the set of such states as Nτ .
It can be seen that a set Ñ ⊂ N conforms to some exercise time τ (in the sense
that Ñ = Nτ ) if there exists exactly one element of this set in each sequence of
consecutive states (n0, ..., nT ) .

A set of buyer’s strategies grows very quickly while a number of trading periods
T increases. A number of exercise times can be determined recursively. Let Kn

denote it for the subtree with node n and other nodes D(n). Then

Kn = 1, ∀n ∈ NT , Kn = 1 +
∏

m∈C(n)

Km, ∀n ∈ Nt, t = T − 1, ..., 0.

There is an exact formula for the value of T for specific cases when a number of
child nodes C(n) is constant for all n ∈ N\NT and equals 2 or 3. It is the following:

| T | =
[

kc
T
]

, (1)

where [x] is an integral part of x, k ≈ 1,5028 when c = | C(n)| = 2 (Aho and Sloane,
1973), and k ≈ 1,2766 when c = | C(n)| = 3 (McGarvey, 2007). A number of buyer’s
strategies (exercise times) is shown in Table 1 for different values of T.

Table 1: A number of exercise times under different numbers of trading periods T.

T 0 1 2 3 4 5

| T |, where c = 2 1 2 5 26 677 458330
| T |, where c = 3 1 2 9 730 389017001 ≈ 5,9× 1025

American contingent claim

We describe an American contingent claim with a non-negative stochastic process
F = {F (t)}, where a random variable F (t) takes discounted values Fn with prob-
ability pn, n ∈ Nt, t = 0, ..., T. The simple example of a contingent claim is an
option payment. Portfolio strategy θ hedges an American contingent claim F exer-
cised in time τ if the corresponding portfolio value process V satisfies Vn ≥ Fn for
all n ∈ Nτ .

Suppose that the seller does not have a necessary sum for perfect hedging and
decides to manage with less initial endowment taking the risk of future losses. So,
if the claim is exercised in state n ∈ N of the market, then seller’s losses are equal
to (Fn − Vn)

+ = max{Fn − Vn; 0}. Let us evaluate seller’s losses in exercise time τ
using the value-at-risk function:

VaRα

(

(F (τ)− V (τ))+
)

= min{B ∈ R |P
(

(F (τ) − V (τ))+ ≤ B
)

≥ α},

where α is a preset level of significance which is usually not less than 95%.
Therefore, we defined a zero-sum game between a seller of the claim and its

buyer. Let us state the optimization problem from the seller’s side to find an op-
timal investment strategy (V, θ) which imperfectly hedges contingent claim F and
minimizes a loss function VaRα under uncertain exercise time τ. The given prob-
lem consists in finding a minimax value of the game and can be formulated in the



282 Alexey I. Soloviev

following way:
min
(V, θ)

max
τ∈T

VaRα((F (τ) − V (τ))+)

Vn = v + (Y θ)n ≥ 0, ∀n ∈ N .
(2)

4. Conversion of an Original Problem

Let us introduce an auxiliary variable u to bound the maximum of (2) from above.
Then, we may rewrite the problem (2)

min
(V, θ, u)

u
{

u ≥ VaRα((F (τ) − V (τ))+) , ∀ τ ∈ T

Vn = v + (Y θ)n ≥ 0, ∀n ∈ N .

Next, we use the definition of VaR and introduce variables Bτ for all τ ∈ T . Hence:

min
(V, θ, u)

u






u ≥ min
Bτ∈X(V,τ)

Bτ , ∀ τ ∈ T

Vn = v + (Y θ)n ≥ 0, ∀n ∈ N ,

(3)

where X(V, τ) = {Bτ ∈ R |P((F (τ) − V (τ))+ ≤ Bτ ) ≥ α} for any fixed V and τ.
Now we show that problem (3) can be equivalently reduced to the following one:

min
(V, θ, u)

u
{

P((F (τ) − V (τ))+ ≤ u) ≥ α, ∀ τ ∈ T

Vn = v + (Y θ)n ≥ 0, ∀n ∈ N .

(4)

Indeed, for any Bτ ∈ X(V, τ) and u ≥ Bτ

α ≤ P
(

(F (τ) − V (τ))+ ≤ Bτ

)

≤ P
(

(F (τ) − V (τ))+ ≤ u
)

.

Conversely, for optimal solution (V ∗, θ∗, u∗) of (4) we may put

B∗
τ = Arg min

Bτ∈X(V ∗,τ)
Bτ = max

n∈Nτ

(Fn − V ∗
n )

+ ≤ u∗.

The first group of constraints in (4) shows that losses do not exceed u with
probability not less than α for all the exercise times. So, when the seller deter-
mines his investment strategy, he separates all the states of the market into two
groups whether planned losses exceed u or not. Let us incorporate binary variables
xn ∈ {0, 1} for all n ∈ N which represent the seller’s choice of states. Then, the
problem (4) has the following reformulation:

min
(x, V, θ, u)

u


































∑

n∈Nτ

pnxn ≥ α, ∀ τ ∈ T

Vn ≥ xnFn − u, ∀n ∈ N

Vn = v + (Y θ)n ≥ 0, ∀n ∈ N

u ≥ 0,

xn ∈ {0, 1} , ∀n ∈ N .

(5)
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Indeed, u ≥ (Fn−Vn)
+ if xn = 1. The constraint Vn ≥ xnFn−u becomes redundant

if xn = 0.
Direct solving of (5) is complicated by a huge number of coupling constraints

which correspond to all possible exercise times τ ∈ T . A lot of binary variables
remains an issue to deal with as well. Next theorem proves the main outcome of
this study – the existence of optimal solution for problem (5) such that x∗ has a
monotonic nature over time. Namely, we will show that

x∗
n ≥ x∗

m, ∀m ∈ C(n), n ∈ N\NT . (6)

It can be interpreted in the following way. For each scenario ω = (n0, ..., nT ) , i.e.
for each sequence of consecutive nodes of the scenario tree, leading from the root to
a leaf node, the following is true: if x∗

nt
= 0, then x∗

ns
= 0 for each s = t+ 1, ..., T,

hence we only want the portfolio value to be non-negative from a state nt up to the
terminal moment of time.

Theorem 1. There will always be an optimal solution (x∗, V ∗, θ∗, u∗) of (5) such

that x∗ satisfies the monotone condition (6).

Proof. Let us fix an optimal solution (x∗, V ∗, θ∗, u∗) and define a process x̃ = {x̃(t)}
recursively for t = T, ..., 0:

x̃n = x∗
n, ∀n ∈ NT , x̃n = min

{

x∗
n,

∑

m∈C(n)

p(m|n)x̃m

}

, ∀n ∈ Nt, t = T − 1, ..., 0.

A stochastic process x̃ is analogous to Snell envelope (Föllmer and Schied, 2011,
p. 285) and turns out to be a submartingale, i.e.

x̃n ≤
∑

m∈C(n)

p(m|n)x̃m, ∀n ∈ Nt, t = 0, ..., T − 1.

Besides, we conclude the following from the definition of process x̃ :

min
τ∈T

∑

n∈Nτ

pnx
∗
n = min

τ∈T

∑

n∈Nτ

pnx̃n = x̃0.

Next, we define the stopping rule τ̃ ∈ T for each scenario ω = (n0, ..., nT ) ∈ Ω,
where nt ∈ Nt :

τ̃ (ω) =



















T, if x∗
nt

≥
∑

m∈C(nt)

p(m|nt)x̃m, ∀nt ∈ ω, t = 0, ..., T − 1,

min

{

t

∣

∣

∣

∣

x̃nt
= x∗

nt
<

∑

m∈C(nt)

p(m|nt)x̃m

}

, otherwise.
(7)

According to definition of τ̃ the buyer stops and exercises the contingent claim until
T if x̃nt

= x∗
nt

= 0. Therefore, (7) is equivalent to

τ̃(ω) =

{

T, if x∗
nt

= 1, ∀nt ∈ ω, t = 0, ..., T − 1,

min
{

t|x∗
nt

= 0
}

, otherwise.



284 Alexey I. Soloviev

In other words, we stop in the first possible state where x∗
n = 0 or in the final state

if there was no stopping before that. Let us note that

τ̃ ∈ Argmin
τ∈T

∑

n∈Nτ

pnx
∗
n.

For all states m ∈ D(n) which occur after n ∈ Nτ̃ we may put x∗
m = 0. Indeed,

V ∗
m ≥ Fmx∗

m−u∗ and a value minτ∈T

∑

n∈Nτ
pnx

∗
n does not change. Minimum value

of the objective function u remains unchanged too. Therefore, the optimal process
x∗ satisfies the monotone condition (6). ⊓⊔

We use this theorem to reduce the problem (5) excluding the exercise times:

min
(x, V, θ, u)

u














































∑

n∈NT

pnxn ≥ α,

xn ≥ xm, ∀m ∈ C(n), n ∈ N\NT

Vn ≥ xnFn − u, ∀n ∈ N

Vn = v + (Y θ)n ≥ 0, ∀n ∈ N

u ≥ 0,

xn ∈ {0, 1} , ∀n ∈ NT .

(8)

Corollary 1. Any optimal solution of (8) is optimal for (5) too.

Proof. A set of feasible solutions of (5) can be reduced by Theorem 1 incorporating
the monotone condition. First, we show that a minimum value of the objective
function does not change if we remove the constraint xn ∈ {0, 1} for all n ∈ N\NT .
Non-negativity xn ≥ 0 for all n ∈ N follows from this system of inequalities

xaT (n) ≥ . . . ≥ xa(n) ≥ xn ≥ 0, ∀n ∈ NT .

If there is a state ñ ∈ N\NT such that xñ > maxm∈C(ñ) xm, then we may put
xñ = maxm∈C(ñ) xm decreasing xñ. Indeed,

Vñ ≥ Fñxñ − u > Fñ max
m∈C(ñ)

xm − u, xa(ñ) ≥ xñ > max
m∈C(ñ)

xm.

So, xn = maxm∈C(n) xm for each n ∈ N\NT , that is why xn ∈ {0, 1} for all n ∈ N .
Decreasing of x does not change the values of xT . Using monotone condition (6),
we conclude that

∑

n∈Nτ

pnxn ≥
∑

n∈NT

pnxn

for all exercise times τ ∈ T . Thus,

∑

n∈NT

pnxn = min
τ∈T

∑

n∈Nτ

pnxn ≥ α.

Therefore, turning to (8) is equivalent in the sense that the objectives achieve the
same minimum values and any optimal solution of (8) remains optimal for (5). ⊓⊔
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Equivalent reduction to problem (8) allows to change |T | linear coupling con-
straints into |N | monotone conditions and one constraint which couples terminal
values xT . We remark here that a number of nodes |N | in the scenario tree grows
exponentially with increasing number of trading periods T. For a constant number
of child nodes (|C(n)| = c for all n ∈ N\{0}) it equals a sum of geometric series:

|N | =
cT+1 − 1

c− 1
. (9)

To estimate a number of monotone conditions if a number of child nodes is non-
constant and does not exceed c we may bound |N | above with the fraction of (9).
One should compare this formula with (1) to see clearly the effect of Theorem 1.

5. Conclusion

In this study we suppose that security trading in financial market occurs in deter-
ministic time moments and a market has a finite number of scenarios. If there are
a lot of trading periods and market scenarios, we deal with large-scale problems.
There are no transaction costs during the trading and the market has no arbitrage
opportunities.

Here for the first time we state the problem of finding the investment strategy
which produces the minimal losses associated with imperfect hedging of American
contingent claim using VaR measure. The main problem has a game form and con-
sists in finding a minimax value of a specific zero-sum game. The main result of this
study states that the seller always has a minimax strategy which is monotonous
over time. It allows us to not only reduce the dimension of the original optimiza-
tion problem, but also actually exclude the uncertainty associated with the time of
exercising the contingent claim. The outcome can be used to create the software sys-
tems for financial institutions which deal with valuation and hedging of contingent
claims, building trading strategies and so on.

In future research we are planning to investigate the formulations of the main
game problem in which the seller may use mixed strategies and the buyer may use
behavioral ones.

Acknowledgments. The author is grateful to Prof. Vladimir V. Morozov for valu-
able remarks.
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Föllmer, H. and P. Leukert (1999). Quantile hedging. Financ. Stoch., 3(3), 251–273.
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