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Abstract In this work we consider the games where P can terminate pur-
suit at will on any of two terminal manifolds. If the optimal feedback strate-
gies for every variant of termination are known, an obvious pursuit strategy
assigns the control that corresponds to the alternative with less value at ev-
ery state. On the manifold with equal alternative values, this strategy may
become discontinuous even when the value functions themselves are smooth.
We describe smooth approximations for the minimum functions that allow
to construct smooth alternative strategies and to deal with generalized solu-
tions for differential equations with discontinuous right-hand sides. However,
as shown by an example, the state may stay on a equivalued manifold and
the game never terminates.

Keywords: approximations of minimum and maximum functions, alterna-
tive pursuit, generalized solutions for differential equations with discontinu-
ous right-hand sides.

1. Introduction

Differential games advanced far beyond the initial findings of their founders. How-
ever, finding solutions for concrete games still involves more art than craft. In this
paper, we study a method for generating pursuit strategies and evaluation of their
guaranteed results when the goal functions represent the minimum of two value
functions.

2. Smooth approximations for minimum functions and their derivatives

Certain values between v1 and v2 that described, e.g., as

Fα(v1, v2) = αv1 + (1− α)v2, 0 < α < 1

may be considered as “rough“ approximations for min(v1, v2) from above or for
max(v1, v2) from below. In “more accurate“ approximations, α depends on v1 and
v2, and α(v1, v2) takes the value close to 1 for min(v1, v2) and to 0 for max(v1, v2)
if vi < v3−i, i = 1, 2. Thus,
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and
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which correspond to Fα with

α(v1, v2) =
λ2v

ξ
2

λ1v
ξ
1 + λ2v

ξ
2

and
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approximate min(v1, v2) from above and max(v1, v2) from below, 0 < λi < 1,
∑2

i=1 λi =
1, i = 1, 2, respectively; see, e.g., (Stipanović et al., 2009). Moreover, their partial
derivatives approximate the corresponding partial derivatives of the minimum and
maximum functions where they exist; see, e.g., (Shevchenko, 2009, 2012).

Since, e.g.,

min(v1, v2, . . . , vn) = min(v1,min(v2, . . . , vn)), n > 2, (3)

approximations for the arbitrary number of arguments minimum functions may be
easily constructed with use of approximations for min(v1, v2) and max(v1, v2).

A more general approach is based on using monotonic functions; see, e.g., (Sti-
panović, 2012, 2014). Let g be a strictly decreasing non-negative differentiable func-
tion R

+ → R
+ and vi0 = min(v1, . . . , vn). Then,

vi0 ≤ vi,

g(vi0 ) ≥ g(vi),

λig(vi0) ≥ λig(vi), 0 < λi < 1,

n
∑

i=1

λi = 1,

n
∑

i=1

λig(vi0) ≥

n
∑

i=1

λig(vi),

g(vi0) ≥

n
∑

i=1

λig(vi),

n
∑

i=1

λig(vi0) ≥

n
∑

i=1

λig(vi).

Since g is an invertible function,

vi0 = g−1(g(vi0)) ≤ g−1(

n
∑

i=1

λig(vi)).

Let Gg
λ be the following symmetric function (R+)n → R

+

Gg
λ(v1, . . . , vn) = g−1(

n
∑

i=1

λig(vi)). (4)



268 Igor Shevchenko, Dušan M. Stipanović

If 0 < λi < 1 and
∑n

i=1 λi = 1, (4) approximates min(v1, . . . , vn) from above since

min(v1, . . . , vn) < Gg
λ(v1, . . . , vn), if vi 6= vj , i 6= j, (5)

In addition,
min(v, . . . , v) = Gg

λ(v, . . . , v) = v. (6)

Similarly,

g(vi0 ) ≤

n
∑

i=1

λig(vi), λi ≥ 1,

vi0 = g−1(g(vi0)) ≥ g−1(

n
∑

i=1

λig(vi)).

If λi ≥ 1, (4) approximates min(v1, . . . , vn) from below since

min(v1, . . . , vn) > Gg
λ(v1, . . . , vn), if v1 6= v2, (7)

min(v, . . . , v) > Gg
λ(v, . . . , v) = g−1(

n
∑

i=1

λig(v)). (8)

Fig. 1: Approximations for the minimum function; ξ = 5; µ1 = 0.5, µ2 = 0.5 (upper);
ν1 = 1, ν2 = 1 (lower)

Certain upper (M ξ
µ) and lower (mξ

ν) approximations for min(v1, v2) may be

generated, e.g., with use of the family {v−ξ}ξ>0,

M ξ
µ(v1, v2) =

(

µ1v
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−ξ
2

)− 1

ξ

, 0 < µi < 1,

2
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)− 1

ξ

, νi > 1, (10)

see Figs. 1–2.
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(a) (b)

Fig. 2: Approximations for the minimum function; ξ = 5; µ1 = 0.3, µ2 = 0.7 (upper);
ν1 = 3, ν2 = 1 (lower)

The derivatives of Gg
λ are described as

∂Gg
λ

∂vj
(v1, . . . , vn) = λj

g′(vj)

g′ (g−1 (
∑n

i=1 λig(vi)))
, (11)

and
∂Gg

λ

∂vj
(v, . . . , v) = λj ,

if 0 < λi < 1 and
∑n

i=1 λi = 1.

For example, the derivatives of min(v1, v2) (where they exist) are approximated
by the derivatives of M ξ

µ since

lim
ξ→+∞

∂M ξ
µ

∂vj
(v1, v2) =











1 if vj < v3−j ,

0 if vj > v3−j

µj if vj = v3−j .

Now, let g be a strictly increasing non-negative differentiable function R
+ → R

+.
Obviously, if 0 < λi < 1 and

∑n
i=1 λi = 1, (4) approximates max(v1, . . . , vn) from

below and if λi ≥ 1 from above. All other mentioned formerly results related to the
use of (4) for approximations of the minimum function may be easily reproduced
for approximations of the maximum function.

3. Alternative pursuit

Let Z ⊆ R
m be an open set, Z be a playing space and ∂Z = Z\Z be its boundary.

Let zP (t) ∈ R
nP and zE(t) ∈ R

nE meet

żP (t) = fP (zP (t), uP (t)), zP (0) = z0P , (12)

żE(t) = fE(zE(t), uE(t)), zE(0) = z0E, (13)



270 Igor Shevchenko, Dušan M. Stipanović

where t ≥ 0, uP (t) ∈ UP ⊂ R
mP , uE(t) ∈ UE ⊂ R

mE , UP and UE are compact sets,
fP : RnP × UP → R

nP fE : RnE × UE → RnE , z0P ∈ R
nP z0E ∈ RnE are initial

states. Let z(t) = (zP (t), zE(t)) ∈ Z ⊆ R
n, n = nP + nE ,

ż(t) = f(z(t), uP (t), uE(t)), z(0) = z0, (14)

where z(0) = z0 = (z0P , z
0
E) ∈ Z, f(z, uP , uE) = (fP (zP , uP ), fE(zE , uE)). We

assume that f is jointly continuous and locally Lipschitz with respect to z for all
uP ∈ UP and uE ∈ UE .

A strategy is a rule to determine the control depending on available information
at any instant of the game. For a given strategy, the equation (14) is used to gen-
erate a pencil of all potential motions and evaluate the guaranteed payoff over all
admissible countering actions.

For z0 ∈ Z, ∆ = {t0, t1, . . ., ti, ti+1, . . .} and a strategy SP , let ZP (z
0, SP , ∆)

be a pencil of piecewise constant solutions of the inclusion

ż(t) ∈ co{f(z(ti), uP (ti), uE) : uE ∈ UE}, (15)

where t ∈ [ti, ti+1), i ∈ N, t0 = 0, ti →i→∞ ∞, z : R+ → Z is a continuous function
that has an absolutely continuous restriction to [0, θ] for any θ > 0 and meets (15)
for almost all t ∈ [0, θ].

A pursuit game is called alternative if

– from any internal state z ∈ Z, it can be terminated by P at will on any of two
given terminal manifolds Ma ⊂ ∂Z or M b ⊂ ∂Z,

– for every alternative termination, the payoffs of Boltza type differ only in their
terminal parts,

– for every alternative termination, the optimal feedback pursuit (Sa
P (·), S

b
P (·))

and evasion (Sa
E(·), S

b
E(·)) strategies and the value functions (V a(·), V b(·)) are

known.

Among the games that may be considered as alternative are the obstacle tag
(Isbell, 1967) and successive pursuit (Breakwell and Hagedorn, 1979) games.

For a given alternative terminal manifoldMl, let the payoff functional be defined
as

Pε
l (z(·)) =

{

τεl +Kl(z(τ
ε
l )), if τ

ε
l = τεl (z(·)) <∞,

∞ otherwise,
(16)

where

τεl (z(·)) =

{

min{ti ∈ ∆ : z(ti) ∈M ε
l }, if ∃ti ∈ ∆ : z(ti) ∈M ε

l ,

∞ otherwise,
(17)

M ε
l is the ε neighbourhood of Ml, M

ε
l = {z : z ∈ Z,minz′∈Ml

||z − z′|| ≤ ε},
Kl : Z → R

+, l ∈ L = {a, b}. Then the guaranteed result may be evaluated as

P̌l(z
0) = lim

ε→0+
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0), (18)

where P̌ε
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0) = infSP
P̌ε
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(ti+1 − ti),

P̌ε
l (z

0, SP , ∆) = sup
z(·)∈ZP (z0,SP ,∆)

Pε
l (z(·)).
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Let P̂l : Z → R be a similar index for E and V l(z0) = P̌l(z
0) = P̂l(z

0), ∀z0 ∈ Z.
Then the value function V l : Z → R

+ represents a joint guaranteed result for both
players.

If V a(·) and V b(·) are continuous in Z, satisfy the terminal conditions

V l(z) = Kl(z), z ∈M l, (19)

and are continuously differentiable in Z, then the Isaacs’ main equation

H l(z,DV l(z)) + 1 = 0 (20)

is satisfied, where

H l(z,DV l(z)) = min
uP∈UP

max
uE∈UE

λlf(z, uP , uE) = max
uE∈UE

min
uP∈UP

λlf(z, uP , uE) l ∈ L.

If there are bounded u∗P : Z × Λ→ UP and u∗E : Z × Λ→ UE such that

u∗P (z
l, λl) ∈ Arg min

uP∈UP

(

max
uE∈UE

λlf(z, uP , uE)

)

, (21)

u∗E(z
l, λl) ∈ Arg max

uE∈UE

(

min
uP∈UP

λlf(z, uP , uE)

)

, (22)

the optimal feedback strategies are designed as follows

Sl
P (z) = u∗P (z,DV

l(z)), Sl
E(z) = u∗E(z,DV

l(z)). (23)

When solving such kind of games, a standard problem is to combine Sa
P and Sb

P

into a pursuit strategy that guarantees a result less or equal to min(V a(z), V b(z))
for every state z ∈ Z (Shevchenko, 2009).1 An obvious candidate strategy for
alternative pursuit is

S
a|b
P (z) =



















Sa
P (z) if V

a(z) < V b(z),

Sb
P (z) if V

b(z) < V a(z),

uP ∈ [Sa
P (z), S

b
P (z)] or

uP ∈ {Sa
P (z), S

b
P (z)} if V b(z) = V a(z),

(24)

or

Sl
P (z) =











u∗P (z,Dmin(V a(z), V b(z))) if V b(z) 6= V a(z)

uP ∈ [u∗P (z,DV
a(z)), u∗P (z,DV

a(z))] or

uP ∈ {u∗P (z,DV
a(z)), u∗P (z,DV

a(z))} if V b(z) = V a(z),

(25)

where [v1, v2] = {v : κv1 + (1 − κ)v2, κ ∈ [0, 1]}. To evaluate the guaranteed payoff

for S
a|b
P , one needs to determine pencils of solutions for differential equations with

discontinuous right-hand sides. The generalized solutions (Krasovskii and Subbotin,
1988) include all possible absolutely continuous motions for all values of the con-
trol at a discontinuity point (as, e.g., the Filippov’s solutions (Filippov, 1988)).

1 A similar problem arises when optimal feedbacks are constructed with the use of a
synthesis procedure based on the main equation and its smooth characteristics within
the Isaacs’ approach (Isaacs, 1967).
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The constructive motions (Krasovskii and Subbotin, 1988) are absolutely continu-
ous limits of motions along the Euler broken lines. The constructive motions are
usually included into the generalized solutions and provide better guaranteed re-
sults. However, they are less stable (Krasovskii and Subbotin, 1988).

One way to avoid discontinuous controls at the regular states is to use smooth
upper approximations of min(V a(z), V b(z)) in (23) as, e.g., (9). Then with

Sl
P (z) = u∗P (z,DM

ξ
µ(z)), S

l
E(z) = u∗E(z,DM

ξ
µ(z)) (26)

some subsets of the generalized motions are obtained.
Practically in all games solved with use of the Isaacs’ approach, the value func-

tions are not smooth globally (Isaacs, 1967). Call a state z ∈ Z regular with re-
spect to known value functions V a and V b if Sl

P and Sl
E meet (20)–(23) with

V l, H l ∈ C2, u∗P ∈ C, l ∈ L, in some neighbourhood of z. A set of such states
is also called regular. Let Ea|b = {z ∈ Z : V a(z) = V b(z)} be a two-sided regu-
lar smooth hypersurface separating two regular sets. Moving along any direction η
from z ∈ Ea|b for a small enough time, the state shifts to a regular state z′ on Ea|b

(V a(z′) = V b(z′)) or in Z (V a(z′) < V b(z′)) or in Z (V a(z′) > V b(z′)).
If

∂

∂z
(V a(z)− V b(z))f(z, Sa

P (z), S
a
E(z)) > 0, (27)

∂

∂z
(V b(z)− V a(z))f(z, Sb

P (z), S
b
E(z)) > 0, (28)

on Ea|b and P uses (25) or (26) in its close neighbourhood, the state may stay there
for some time (Shevchenko, 2014).

4. Constructing strategies in a simple alternative pursuit game

Three points P , E1, and E2, E = (E1, E2), with bounded velocities move on the
plane as

ż = (uP , ue), z = z0,

zP , z1, z2 ∈ R
2, ze = (z1, z2) ∈ R

4, z = (zP , ze) ∈ R
6,

z0 = (z0P , z
0
e), z

0
e = (z01 , z

0
2),

uP ∈ UP , ue = (u1, u2) ∈ Ue,

UP = {uP : ||uP || ≤ 1}, Ue = {ue : ||u1|| ≤ β1 < 1, ||u2|| ≤ β2 < 1}

It’s required to determine the minimal guaranteed time τ1|2 for P to approach one
of E’s by a given distance r > 0 and the corresponding strategy.

The value of the game at the initial state z0 ∈ Z may be evaluated as

V (z0) = min(V 1(z0), V 2(z0)), (29)

where

V i(z0) =
||z0i − z0P || − r

1− βi
, (30)

the optimal feedback pursuit strategy is

S
i(z0)
P (z) = −

∂V i(z0)

∂zi(z0)
(z)/||

∂V i(z0)

∂zi(z0)
(z)||, z, z0 ∈ Z, (31)
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and i(z0)(= 1 ∨ 2) satisfies the condition

V i(z0)(z0) = min(V 1(z0), V 2(z0)). (32)

It was noted in (Krasovskii and Subbotin, 1988) that in this game with β1 = β2
and r = 0 there is a dispersal line where both pursuers are equidistant and it may
become a singular line with the payoff equal to +∞ due to the measurement errors.

Look at an alternative version of the game with the pursuit strategy

S
1|2
P (z) = −

∂V i∗(z)

∂zi∗(z)
(z)/||

∂V i∗(z)

∂zi∗(z)
(z)||, z ∈ Z, (33)

where i∗(z)(= 1 ∨ 2) meets the condition

V i∗(z)(z) = V 1|2(z) = min(V 1(z), V 2(z)). (34)

This strategy is discontinuous in z on

E1|2 = {z : V 1(z) = V 2(z), z ∈ Z}.

To construct smooth in z approximations for S
1|2
P , M ξ

µ may be used as follows

Sξ
P (z) = −

∂M ξ
µ

∂zP
(V 1(z), V 2(z))/||

∂M ξ
µ

∂zP
(V 1(z), V 2(z))||, z ∈ Z, (35)

where
∂M ξ

µ

∂zP
(V 1(z), V 2(z)) =

∑

i=1,2

∂M ξ
µ

∂vi
(V 1(z), V 2(z))

∂V i

∂zP
(z),

∂V i

∂zP
(z) = −

1

1− βi

zi − zP
||zi − zP ||

, z ∈ Z, i = 1, 2.

Note that the time derivatives of V 1|2 and M ξ
µ along a trajectory that corre-

sponds to the strategies SP , S1, S2 are described by the following expressions (where
exist)

dV 1|2

dt
=

∑

i=1,2

∂min

∂vi
(V 1(z), V 2(z))

∂V i

∂z
(z)

dz

dt
,
∂min

∂vi
∈ {0, 1},

dM ξ
µ

dt
=

∑

i=1,2

∂M ξ
µ

∂vi
(V 1(z), V 2(z))

∂V i

∂z
(z)

dz

dt
,
∂M ξ

µ

∂vi
∈ [0, 1]

where
dz

dt
= (SP , (S1, S2)), z

0 = (z0P , (z
0
1 , z

0
2)).

A locally optimizing strategy corresponds to the case when instant controls
minimize/maximize the time derivative of a goal function for any z ∈ Z. Obviously,

S
1|2
P (see (33)) is locally optimizing for V 1|2 as well as

Smax
i = βi

zi − zP
||zi − zP ||

, z ∈ Z, i = 1, 2, (36)
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for V i. Sξ
P , ξ > 0, (see (35)) may be considered as an approximation for S

1|2
P .

Let Ei use S
max
i (z) = βie(ψ

max
i ) and P use SE

P = e(ϕE). The state moves along
E1|2 if ϕE meets the condition

β1
1− β1

−
β2

1− β2
−

(

e(ψmax
1 )

1− β1
−
e(ψmax

2 )

1− β2

)

e(ϕE) = 0. (37)

If Ei uses S
max
i , i = 1, 2, and β1 = β2 = β, then Sξ

P = e(ϕξ) keeps the state on
E1|2 with the corresponding payoff

τ1|2(z, Sξ
P , (S

max
1 , Smax

2 )) = +∞, z ∈ E1|2, ξ > 0,

see Fig. 3.

(a) (b)

Fig. 3: Instant velocities on E
1|2 (a) and trajectories in vicinity of a point of attraction (b)

The inequality
dM ξ

µ

dt
< 0, (38)

holds on E1|2 only if 0 ≤ γ < 2 arccosβ. Whereas, for S
i(z0)
P , Smax

1 and Smax
2 ,

dV i(z0)

dt
= −1, z ∈ Z. (39)

5. Conclusions

In this paper, we provide an analysis on smooth approximations of the minimum
function thus allowing construction of the corresponding strategies for a pursuer
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in an alternative pursuit game with two evaders. As a drawback of the procedure
we show through an example how the state may never leave a manifold where two
value functions are equal and thus the game never ends if the pursuit strategy is
applied.
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Stipanović, D.M., C. Valicka and A.E. Abbas (2014). Control Strategies For Players

In Pursuit-Evasion Games Based On Their Preferences. International Game Theory
Review, 16(02), 1440008.




