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Abstract We consider the cooperative behavior in stochastic games. We as-
sume that players cooperate in the game and agree on realizing the Shapley
value as an imputation of their total payoff. The problem of subgame (time)
consistency of the Shapley value is examined. The imputation distribution
procedure is constructed to make the Shapley value subgame consistent. We
redefine the payoffs in stochastic game applying the imputation distribution
procedure. The problem of strategic support of the Shapley value is exam-
ined. We prove that the cooperative strategy profile is the Nash equilibrium
in the stochastic game with re-defined payoff functions when some condi-
tions are satisfied. The theoretical results are demonstrated on the example
of a data transmission game for a wireless network of a specific topology.

Keywords: cooperative stochastic game, time consistency, subgame consis-
tency, imputation distribution procedure, strategic support

1. Introduction

We consider the class of stochastic games with discounted payoffs when players
use stationary strategies. This class of games for two players was introduced by
(Shapley, 1953a). Most papers devoted to stochastic games examine the non-coope-
rative behavior of the players, e. g. see (Herings and Peeters, 2004), (Jáskiewicz
and Nowak, 2015), (Rosenberg et al., 2003). The cooperative model of a stochas-
tic game was initially proposed by (Petrosjan, 2006). He investigated the problem
of subgame consistency of cooperative solutions in a stochastic game played over
a finite tree. The same problem was examined for discounted stochastic games
when the set of states is finite and players use stationary strategies in (Petros-
jan and Baranova, 2006). In this paper the method of finding a cooperative solu-
tion and verifying if the solution satisfies the principle of subgame (time) consis-
tency. The problem of time consistency of the cooperative solution was proposed
by Petrosyan in (Petrosyan, 1977). He proposed to modify the payment mecha-
nism along cooperative trajectory of the initial game and introduced the IDP (im-
putation distribution procedure) to make the cooperative solution time-consistent
(Petrosyan and Danilov, 1979). This idea was realised for the class of differential
games but it is actual for stochastic games as well.

Two other principles of stable cooperation in dynamic games were formulated
in (Petrosyan and Zenkevich, 2009) including the principle of strategic support of
a cooperative solution. If the cooperative solution is strategically supported, then
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there exists the Nash equilibrium in trigger strategies with the players’ payoffs equal
to their payoffs in cooperation. The trigger strategy punishes the deviating player
by allowing him to obtain the maxmin value in a subgame starting from the stage
following the stage when the deviation has been observed (Petrosyan, 2008). The
problem of strategic support is considered in (Parilina and Zaccour, 2015b) where
the subgame perfect ε-equilibrium is constructed for the dynamic games played
over event trees1 . Another principle of stable cooperation is irrational-behaviour-
proof (Yeung, 2006). It allows players to guarantee that their payoffs in cooperation
will be not less than the payoffs when the cooperation breaks down at some stage
and then players proceed playing the game as singletons. These three principles of
stable cooperation were adopted to the discounted stochastic games (Parilina, 2015).
Recently, the existence of cooperative solutions (Harsanyi, Shapley, Nash solutions)
for discounted stochastic games was proved in (Kohlberg and Neyman, 2015).

In our paper we focus on two problems of cooperation in stochastic games:
subgame consistency and strategic support. We prove the theorem which allows to
construct the imputation distribution procedure to make the Shapley value subgame
consistent. Then we define the behavior strategy profile in trigger strategies to
support cooperation in case when some player deviates from the cooperative strategy
profile. We need to mention here that initially we find the cooperative solution
assuming that players use stationary strategies, but the construction of the trigger
strategies requires considering the class of behavior strategies. Behavior strategies
allow to observe the player’s deviation and switch to a trigger mode of the trigger
strategy.

As an example of a stochastic game we examine the problem of data transmission
in the simple wireless network. The simple network of data transmission consisting of
three nodes is taken as a basis of network topology. Two of the nodes generate data
packages in each time slot with the corresponding probabilities. The third node is the
destination one. The first two nodes are connected by a channel, the connection is
one-way, i.e. the first node (first player) can transmit a package directly to node 3 or
to node 2. For the transmission of a package to node 2 node 1 receives a nonnegative
reward. The system of rewards and costs makes it possible to support cooperation
between nodes 1 and 2 which are players 1 and 2 in the game, respectively. The
described situation can be solved as a cooperative stochastic game.

Modeling data transmission as a stochastic game was introduced in
(Altman et al., 2003, Parilina, 2010, Sagduyu and Ephremides, 2006). The game
theory models of the behaviour in ad hoc wireless networks with emphasis on
the development of cooperation mechanisms to stimulate package forwarding are
considered in (Michiardi and Molva, 2003). Game theoretical models are useful for
modeling the data transmission not only in ad hoc but also in CSMA networks
(Benslama et al., 2013). The problem of constructing and analyzing the simple
mechanism to stimulate the nodes for package forwarding is investigated in
(Buttyan and Hubaux, 2003).

The rest of the paper is organized as follows: Section 2 describes the model of
non-cooperative stochastic game, and Section 3 deals with the construction of the
cooperative version of the stochastic game. Section 4 contains the description of
the subgame consistency problem and the method to make the cooperative solu-

1 The details of the specification of a game played over event trees may be found in
(Haurie et al., 2012)
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tion subgame-consistent. The idea of strategic support of a cooperative solution is
investigated in Section 5. We provide an illustrative example of data transmission
in wireless network in Section 6, and briefly conclude in Section 7.

2. Non-cooperative stochastic game

We consider a stochastic game with finite number of states when player’s payoff is
a discounted sum of the stage payoffs which players obtain along the realized tra-
jectory (sequence of the realized action profiles). The game begins with the chance
turn, i.e. with the choice of the initial state of the game which the game process be-
gins with. The state of the stochastic game is determined as a normal form game of
n players. One of the finite number of states is realized at each stage of the stochas-
tic game. In the state some action profile is realized depending on the transition
probabilities.

Definition 1. Let stochastic game G be determined by the set
(

N,
{

Γ j
}t

j=1
, δ, π0,

{

p(j, k;xj)
}

j=1,t,k=1,t,xj∈
n∏

i=1

X
j
i

)

, (1)

where

– N = {1, . . . , n} is the set of players.
– Γ j = 〈N,Xj

1 , . . . , X
j
n,K

j
1 , . . . ,K

j
n〉 is a non-cooperative normal form game which

defines the state j, j = 1, . . . , t, Xj
i is the finite set of pure actions of player i

in Γ j , Kj
i

(

xj
1, . . . , x

j
n

)

= Kj
i (x

j) is a payoff function of player i in state Γ j ,

j = 1, . . . , t.
– p(j, k;xj) is the probability that state Γ k is realized if at the previous stage (in

state Γ j) action profile xj = (xj
1, . . . , x

j
n) has been realized, p(j, k;xj) > 0 and

∑t

k=1 p(j, k;x
j) = 1 for each xj ∈ Xj =

∏

i∈N

Xj
i and for any j, k = 1, . . . , t.

– δ ∈ (0, 1) is the discount factor.
– π0 = (π0

1 , . . . , π
0
t ) is the vector of the initial distribution on states Γ 1, . . . , Γ t

where π0
j is the probability that state Γ j is realized at the first stage of the

game,
∑t

j=1 π
0
j = 1.

For constructing the cooperative model of a stochastic game we need to define its
subgame and the class of strategies which players use in the game.

Definition 2. Stochastic game (1) with vector π0 = (0, . . . , 0, 1, 0, . . . , 0) (the j-th
component is equal to 1), i.e. game beginning from state Γ j , is called a stochastic
subgame Gj , j = 1, . . . , t.

We assume that players realise stationary strategies in the game. Let Ξi = {ηi}
be the set of stationary strategies of player i ∈ N in game G. Using stationary
strategies a player chooses an action in each state from

{

Γ 1, . . . , Γ t
}

depending

only on which state is realized at this stage, i.e. ηi : Γ
j 7−→ xj

i ∈ Xj
i , j = 1, . . . , t.

Considering stochastic game in stationary strategies, and taking into account that
the set of states is finite and the game has an infinite horizon, there are a finite
number of subgames of game G. The number of subgames equals the number of the
states.
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Remark 1. Obviously, the stationary strategy of player i in game G is also a
stationary strategy of the player in subgames G1, . . . , Gt.

The payoff to the player in game G is a random variable. Consider the mathe-
matical expectation of the player’s payoff as his payoff in game G. Let Ēi(η) be the
expected payoff of player i in game G and Ej

i (η) be the expected payoff of player
i in subgame Gj when strategy profile η is realised in game G (subgame Gj). Let
Ei(η) be the vector (E1

i (η), . . . , E
t
i (η))

′.
The expected payoff to player i in subgame Gj satisfies the following recurrent

equation:

Ej
i (η) = Kj

i (x
j) + δ

t
∑

k=1

p(j, k;xj)Ek
i (η) (2)

s. t. η(Γ j) = xj , i. e. η(·) = (η1(·), . . . , ηn(·)) where ηi(Γ
j) = xj

i ∈ Xj
i , xj =

(xj
1, . . . , x

j
n) for any j = 1, . . . , t, i ∈ N . Hereinafter, let η(·) = (η1(·), . . . , ηn(·)) be

the stationary strategy profile such as ηi(Γ
j) = xj

i ∈ Xj
i where j = 1, . . . , t, i ∈ N .

The transition matrix of stochastic game G when stationary strategy profile η(·)
is realised is:

Π(η) =









p(1, 1;x1) . . . p(1, t;x1)
p(2, 1;x2) . . . p(2, t;x2)

. . . . . . . . .
p(t, 1;xt) . . . p(t, t;xt)









. (3)

We can rewrite equation (2) in a matrix form using matrix (3) in the following
way:

Ei(η) = Ki(x) + δΠ(η)Ei(η), (4)

where Ki(x) = (K1
i (x

1), . . . ,Kt
i (x

t)), and Kj
i (x

j) is the payoff to player i in state
Γ j when action profile xj ∈ Xj is realized in this state.

Equation (4) is equivalent to the equation2 :

Ei(η) = (It − δΠ(η))
−1

Ki(x), (5)

where It is an identity t× t matrix.
The expected payoff to player i in game G is calculated by formula:

Ēi(η) = π0Ei(η). (6)

3. Cooperative stochastic game

Suppose that the players from the grand coalition N decide to cooperate and receive
the maximal total payoff. Denote the strategy profile maximizing the sum of the
expected players’ payoffs in game G as η̄(·) = (η̄1(·), . . . , η̄n(·)):

max
η∈

∏

i∈N

Ξi

∑

i∈N

Ēi(η) =
∑

i∈N

Ēi(η̄). (7)

2 Matrix (It − δΠ(η))−1 always exists for δ ∈ (0, 1). The proof follows. It is known that
all the eigenvalues of stochastic matrix Π(η) are in the interval [−1, 1]. For the existence
of matrix (It − δΠ(η))−1 it is necessary and sufficient that the determinant of matrix
(Π(η)− 1

δ
It) be not equal to zero. Thus matrix (Π(η)− 1

δ
It) must not have the eigenvalue

to be equal to 1

δ
. The last condition takes place because 1

δ
> 1, so this number cannot

be the eigenvalue of stochastic matrix Π(η).
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Call the strategy profile η̄(·) cooperative strategy profile.
The cooperative model of a non-cooperative game G is given by set (N, v), where

N is the set of players and v is a real-valued function, called the characteristic
function of the game, defined on the set 2N (the set of all subsets of N), and
satisfying the property: v(∅) = 0. The value v(S) is a real number which is assigned
to coalition S ⊂ N , and may be interpreted as the worth or power of coalition S.
The members of coalition S play together as a unit.

Define the characteristic function v̄(S) in stochastic game G using characteristic
functions vj(S) of stochastic subgames Gj , j = 1, . . . , t, as follows:

v̄(S) = π0v(S) (8)

for any coalition S ⊂ N where v(S) = (v1(S), . . . , vt(S))′. And vj(S) is the value
of the characteristic function for subgame Gj calculated for coalition S. Now the
problem is to define the characteristic function vj(S) for any coalition S. We use
α-approach to define the characteristic function. According to this approach the
value of characteristic function for coalition S is equal to the maximal total payoff
of coalition S which this coalition can guarantee when the left-out players cooperate
and minimize total payoff of coalition S.

First, consider coalition S = N . Bellman equation for v(N) is:

v(N) = max
η∈

∏

i∈N

Ξi

[

∑

i∈N

Ki(x) + δΠ(η)v(N)

]

=
∑

i∈N

Ki(x̄) + δΠ(η̄)v(N),

where η̄(·) is the cooperative strategy profile.
Therefore, the value v(N) is:

v(N) = (It − δΠ(η̄))
−1
∑

i∈N

Ki(x̄). (9)

Second, consider coalition S ⊂ N , S 6= ∅. To define the value of characteristic
function vj(S), j = 1, . . . , t, for each subgame Gj , we consider a zero-sum stochastic
game Gj

S with two players (coalitions S and N\S) where coalition S ⊂ N plays
as a maximizing player and coalition N\S plays as a minimizing player. Define the
value vj(S) for subgame Gj as a maxmin of the payoff of coalition S in stochastic
game Gj

S (in fact, the lower value of matrix game):

vj(S) = max
ηS

min
ηN\S

∑

i∈S

Ej
i (ηS , ηN\S), (10)

where (ηS(·), ηN\S(·)) is a stationary strategy profile such that ηS(·) = (ηi1(·), . . .,
ηik(·)) is a vector of stationary strategies of players i1, . . . , ik ∈ S, i1 ∪ . . .∪ ik = S,

ηS(·) ∈
∏k

j=1 Ξij , the set of stationary strategies of coalition S ⊂ N , and ηN\S(·) is
a vector of stationary strategies of players ik+1, . . . , in ∈ N\S, ik+1∪. . .∪in = N\S,
∏n

j=k+1 Ξij , the set of stationary strategies of coalition N\S.
Third, consider S = ∅. Let the value of characteristic function be:

vj(∅) = 0. (11)

Remark 2. Characteristic functions v̄(S) determined by (8) and vj(S) determined
by (9)–(11) are superadditive.
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Definition 3. Cooperative stochastic subgame Gj
co is a set (N, vj), where N is the

set of players and vj : 2N −→ R is the characteristic function calculated by (9)–(11).

Definition 4. Cooperative stochastic game Gco is a set (N, v̄), where N is the set
of players and v̄ : 2N −→ R is the characteristic function calculated by (8).

Definition 5. Vector αj = (αj
1, . . . , α

j
n) satisfying the two following conditions:

1.
∑

i∈N αj
i = vj(N),

2. αj
i > vj({i}) for any i ∈ N ,

is called an imputation in subgame Gj
co (j = 1, . . . , t). Denote the imputation set

in cooperative subgame Gj
co as Aj .

Definition 6. The vector ᾱ = (ᾱ1, . . . , ᾱn), where ᾱi = π0αi, αi = (α1
i , . . . , α

t
i),

and (αj
1, . . . , α

j
n) = αj ∈ Aj is called an imputation in game Gco. Denote the

imputation set in cooperative stochastic game Gco as Ā.

Suppose that the imputation set in any subgame Gj
co, is nonempty, j = 1, . . . , t.

Therefore, the imputation set in cooperative stochastic game Gco is also nonempty.

4. Subgame consistency of the Shapley value

Suppose that players decide to cooperate in stochastic game and for every subgame
Gj

co they agree to choose an imputation αj = (αj
1, . . . , α

j
n) ∈ Aj . The problem is to

realize payments to the players at each stage of the stochastic game to guarantee
the expected payoff αj

i for player i in stochastic subgame Gj . If players receive stage
payoffs according to their payoff functions they hardly ever obtain the components
of the chosen imputation in mathematical expectation sense. To solve this problem
we should suggest the method of redistribution of the total players’ payoff in every
state which may be realized during the game. Initially, the method was proposed
by (Petrosyan and Danilov, 1979), for differential games.

There are two principles of constructing the payment scheme in a dynamic game
which can be applied to the theory of stochastic games:

1. The sum of the payments to the players in every state is equal to the sum
of the players’ payoffs in action profile realized in this state according to the
cooperative strategy profile η̄(·).

2. The expected sum of the payments to player i in the game G is equal to the ith
component ᾱi of the imputation ᾱ.

Taking into account that in stochastic game (1) with stationary strategies the num-
ber of subgames is equal to the number of possible states, we need to define the vec-
tor βi = (β1

i , . . . , β
t
i ) for every i ∈ N , where βj

i is a payment to player i in state Γ j ,
j = 1, . . . , t. If these payments satisfy the two mentioned principles, they are called
imputation distribution procedure (IDP) (see (Petrosyan and Danilov, 1979)). We
are interested in constructing the subgame-consistent (time-consistent) IDP.

Definition 7. We call the IDP subgame-consistent in stochastic game G if for any
subgame of game G the vector of the expected discounted sums of the payments to
the players 1, . . . , n belong to the same cooperative solution3 .

3 Let the cooperative solution be a singleton like the Shapley value. Then in any subgame
we consider the Shapley value as a cooperative solution. The case where the cooperative
solution is the set (e.g., the core) is considered in details by Parilina and Zaccour, 2015a
for the games played over event trees.
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In the paper we examine the Shapley value as a cooperative solution. Therefore,
the subgame-consistent IDP guarantees any player to obtain the corresponding com-
ponent of the Shapley value in any subgame.

Theorem 1. Let the components of the IDP be calculated by equation:

βi = (It − δΠ(η̄))αi, (12)

where αi = (α1
i , . . . , α

t
i), and (αj

1, . . . , α
j
n) = αj is the Shapley value in the co-

operative game Gj
co with characteristic function vj(S). Then the IDP is subgame-

consistent.

Proof. First, prove that βi, i ∈ N , calculated by equation (12) is the IDP. Taking
into account equation (9) we obtain

∑

i∈N

βi = (It − δΠ(η̄))
∑

i∈N

αi = (It − δΠ(η̄))v(N) =
∑

i∈N

Ki(x̄).

Second, we calculate the expected sum of the payments to player i in the game G
according to equation (12). Denote this sum for player i by B̄i and it satisfies the
equation:

B̄i = π0Bi = π0(B1
i , . . . , B

t
i)

′,

where Bj
i can be found from equation:

Bj
i = βj

i + δ

t
∑

k=1

p(j, k;xj)Bk
i ,

or in a vector form:
Bi = βi + δΠ(η)Bi. (13)

Equation (13) is equivalent to the following one:

Bi = (It − δΠ(η))
−1

βi. (14)

Taking into account equation (12), we prove that Bi = αi and then B̄i = ᾱi. The
equity Bi = αi proves the subgame consistency of the IDP determined by equation
(12).

Remark 3. Equation (12) is equivalent to the following one:

αi = βi + δΠ(η̄)αi. (15)

The second summand at the right-hand side of the equation (15) is the expected
value of the component of the Shapley value in subgame starting from the next
stage. Therefore, any player will receive his component of the Shapley value in any
subgame if the payments to the players are the IDP satisfying equation (12).

Obviously, if players realise the cooperative strategy profile η̄(·), the expected
payoff of player i in stochastic game G with new payments in cooperative action
profiles is equal to the expected value of the correspondent component of the Shapley
value in cooperative stochastic game Gco.

Now for the imputation ᾱ = (ᾱ1, . . . , ᾱn), where ᾱi = π0αi, αi = (α1
i , . . . , α

t
i),

(αj
1, . . . , α

j
n) = αj ∈ Aj , we determine the regularization of game G in the following

way.
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Definition 8. Noncooperative stochastic game Gα (subgame Gj
α, j = 1, . . . , t) is

called α-regularization of stochastic game G (subgame Gj), if for any player i ∈ N
in state Γ j payoff function Kα,j

i (xj) is defined as follows:

Kα,j
i (xj) =

{

βj
i , if xj = x̄j ;

Kj
i (x

j), if xj 6= x̄j ,
(16)

where IDP β = (β1, . . . , βn) satisfies equation (12)4 .

We suggests a method of construction of the new payoff function in the game G
(subgame Gj) in every state when the action profile is cooperative. Here we may ask
a question: “Do the players agree to redefine the payoff function in the game?” Our
answer is “Yes”, if they want to make the payoff functions in the states subgame-
consistent in the sense of Definition 7. Redistributing the payoffs using the IDP
β1
i , . . . , β

t
i in the states Γ 1, . . . , Γ t respectively, player i receives the same sum (in

terms of mathematical expectation) in gameGα (Gj
α) as he has planned to receive in

the cooperative stochastic game Gco (Gj
co). Moreover, in any subgame his expected

payoff will be the corresponding component of the Shapley value. In this case, we
can state the subgame consistency (time consistency) of the chosen cooperative
solution.

5. Strategic support of the Shapley value

In this section we need to consider the additional notations. Let Γ (k) ∈ {Γ 1, . . . , Γ t}
be the state realized at stage k of game Gα. Let x(k) be the action profile realized

in state Γ (k). Denote the subgame of game Gα starting from state Γ (k) as G
Γ (k)
α .

Call the sequence ((Γ (1), x(1)),(Γ (2), x(2)),. . .,(Γ (k − 1), x(k − 1))) the history of
stage k and denote it as h(k). Let T be the set {(Γ 1, x̄1), (Γ 2, x̄2), . . . , (Γ t, x̄t)}.

In this section we consider stochastic game Gα as the game with perfect infor-
mation in the sense that at each stage k (k = 1, 2, . . .) all players know state Γ (k)
and the history of stage k. We would like to prove that the cooperative strategy
profile in the game Gα is the Nash equilibrium in trigger strategies. To construct
the Nash equilibrium we need to consider the sets of behavior strategies Φi, i ∈ N .

Definition 9. We call the behavior strategy profile ϕ∗ = (ϕ∗
1,. . .,ϕ

∗
n) the Nash

equilibrium in game Gα if for any player i ∈ N the inequality

Ēα
i (ϕ

∗) > Ēα
i (ϕ

∗ ‖ ϕi) (17)

is true for any behavior strategy ϕi ∈ Φi of player i, and Ēα
i (·) is the expected

payoff of player i in α-regularization Gα.

The following theorem gives the condition when the cooperative strategy profile
in the game Gα is the Nash equilibrium in the α-regularization Gα of game G.

Theorem 2. If in the α-regularization Gα the following inequality is true for any

coalition player i ∈ N :

βi > (It − δΠ(η̄))F ({i}), (18)

4 The IDP for stochastic games was initially proposed in (Petrosjan, 2006) when the game
process is realised on a graph and in (Petrosjan and Baranova, 2006) when the number
of states in stochastic game is finite and players use stationary strategies.
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where F ({i}) = (F 1({i}), . . . , F t({i})),

F j({i}) = max
x
j
i
∈X

j
i

x
j
i
6=x̄

j
i

{

Kj
i (x̄

j ‖ xj
i ) + δ

t
∑

l=1

p(j, l; x̄j ‖ xj
i )v

l ({i})

}

, then in the game Gα

there exists the Nash equilibrium with payoffs (ᾱ1,. . .,ᾱn).

Proof. Consider the behavior strategy profile ϕ̂(·) = (ϕ̂1(·), . . . , ϕ̂n(·)) in game Gα:

ϕ̂i(h(k)) =







































x̄j
i , if Γ (k) = Γ j , j = 1, t, h(k) ⊂ T ;

x̂j
i (p), if Γ (k) = Γ j , j = 1, t, ∃ l ∈ [1, k − 1]

and p ∈ N , p 6= i: h(l) ⊂ T ,

and (Γ (l), x(l)) /∈ T ,

but (Γ (l), (x(l) ‖ x̄p(l))) ∈ T ,

anyone in other cases,

(19)

where x̂j
i (p) is an action of player i in state Γ j which with actions xj

k, k 6= i, k 6= p
forms the strategy of coalition {N\p} in zero-sum game against player p in subgame

GΓ j

.
The proof of the theorem is based on the proof of any folk theorem (for example,

see (Dutta, 1995)) using the structure of the trigger strategy (19). We prove that
ϕ̂(·) = (ϕ̂1(·), . . . , ϕ̂n(·)) determined in (19) is a Nash equilibrium in stochastic game
Gα.

If the player p does not deviate from the cooperative strategy profile η̄, then
taking into account the definition of the strategy (19), the expected payoff of player
p in the subgame Gj

α, j = 1, . . . , t, is

Ej
p(ϕ̂(·)) = Ej

p(η̄(·)).

Let Ep(ϕ̂(·)) be equal to the vector (E1
p(ϕ̂(·)), . . . , E

t
p(ϕ̂(·))), then for any player

p ∈ N the equation is true:

Ep(ϕ̂) = (It − δΠ(η̄))−1βp. (20)

Consider the strategy profile (ϕ̂(·) ‖ ϕp(·)), p ∈ N , when player p ∈ N deviates from
strategy ϕ̂p(·). Let stage k be such that there exists number l ∈ [1, k− 1] such that
history h(l) ⊂ T and state (Γ (l), x(l)) /∈ T but (Γ (l), (x(l) ‖ x̄p(l))) ∈ T . Without
loss of generality, we suggest that Γ (k) = Γ j. Calculate the payoff of player p in
game Gα in strategy profile (ϕ̂(·) ‖ ϕp(·)) as

Ēα
p (ϕ̂ ‖ ϕp) = π0Eα

p (ϕ̂ ‖ ϕp),

where

Eα
p (ϕ̂ ‖ ϕp) = Eα,[1,k−1]

p (ϕ̂ ‖ ϕp) + δk−1Πk−1(ϕ̂ ‖ ϕp)E
α,[k,∞)
p (ϕ̂ ‖ ϕp), (21)

where E
α,[1,k−1]
p (ϕ̂ ‖ ϕp) is the expected payoff of player p at the first k − 1 stages

of game Gα, and E
α,[k,∞)
p (ϕ̂ ‖ ϕp) is the expected payoff of player p in the subgame

of game Gα starting from stage k. Since there were no deviations of any players
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from the cooperative strategy profile η̄(·) up to stage k−1 inclusive as it was shown
before, the following equalities holds for the elements of the right side of (21):

Eα,[1,k−1]
p (ϕ̂ ‖ ϕp) = Eα,[1,k−1]

p (η̄),

Πk−1(ϕ̂ ‖ ϕp) = Πk−1(η̄).

In the second term of the right side of (21) by E
α,[k,∞)
p (ϕ̂ ‖ ϕp) we mean vector

(Eα,1
p (ϕ̂ ‖ ϕp), . . . , E

α,t
p (ϕ̂ ‖ ϕp)) where Eα,j

p (ϕ̂ ‖ ϕp) is the expected payoff of

player p in regularized subgame Gj
α starting from the state Γ j .

Now we calculate the expected payoff of player p in subgame Gj
α starting from

stage k when the state Γ (k) is Γ j :

Eα,j
p (ϕ̂ ‖ ϕp) = Kj

p(x̄
j ‖ xj

p) + δ

t
∑

l=1

p(j, l; x̄j ‖ xj
p)v

l ({p}) , (22)

because players from coalition N \ p will punish player p playing in zero-sum game
against player p beginning from stage k + 1 according to the definition of strategy
profile ϕ̂(·).

Since the expected payoffs of player p in strategy profiles ϕ̂(·) and (ϕ̂(·) ‖ ϕp(·))
equal until stage k − 1, then as a result of the deviation, player p can guarantee
the increase of his payoff only at the sacrifice of the part of game Gα beginning
with stage k, i.e. at the sacrifice of the expected payoff in subgame Gj

α, j = 1, . . . , t.
Player p in strategy profile (ϕ̂(·) ‖ ϕp(·)) can guarantee the following expected
payoff from stage k:

max
xj
p∈Xj

p

xj
p 6=x̄j

p

{

Kj
p(x̄

j ‖ xj
p) + δ

t
∑

l=1

p(j, l; x̄j ‖ xj
p)v

l ({p})

}

. (23)

According to the definition of IDP, the expected payoff of player p in the subgame
Gj

α in strategy profile ϕ̂(·) can be calculated by the equation:

Eα
p (ϕ̂) = (It − δΠ(η̄))−1βp, (24)

where Eα
p (ϕ̂) = (Eα,1

p (ϕ̂(·)), . . . , Eα,t
p (ϕ̂(·)). Taking into account the inequality (18)

and (23), (24) and we prove the inequality

Eα
p (ϕ̂(·)) > Eα

p (ϕ̂(·) ‖ ϕp(·)).

Therefore, the behavior strategy profile (19) is the Nash equilibrium in α-regulari-
zation of game G. The expected payoff of player p in game Gα in strategy profile
ϕ̂(·) is equal to ᾱp where ᾱp = π0αp and vector αp = (α1

p, . . . , α
t
p) consists of p-th

components of the Shapley value α1, . . ., αt calculated for the cooperative subgames
G1, . . ., Gt accordingly. This completes the proof.

6. Data transmission game

6.1. Model

In this section we introduce an example of a stochastic game application in telecom-
munication systems. We consider a slotted synchronous system in which nodes 1
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and 2 independently generate packages in each time slot with probabilities a1 and
a2, respectively, provided that their individual queues were empty at the end of
the previous time slot. The graph of wireless network is depicted in Fig. 1. Some
assumptions about this system are as follows:

1. Nodes 1 and 2 (players 1 and 2, respectively) are going to send their packages
to a common destination (node 3).

2. The maximum buffer capacity of any node equals one. The destination node
can accept only one transmitted package in one time slot. We do not assume
multiple package transmissions or simultaneous transmissions and reception by
any node in any time slot.

3. If players simultaneously transmit packages to the destination node, the last
one rejects these packages and they return to their initial nodes, i.e. at the next
time slot no new packages can be generated in nodes 1 and 2.

4. All transmitted packages have the same length, and it requires one time slot
to transmit a package from one node to the other which has the direct channel
with the first one.

5. Player 1 chooses between sending a package directly to node 3 or relying on
node 2 to forward the package to the final destination (node 3).

6. If player 1 (node 1) transmits a package to player 2 (node 2) which has already
had a package in its queue, player 2 rejects this package. Otherwise, player 2
decides on whether to accept or reject the package from player 1.

Fig. 1: Topology of a wireless network.

We suggest the following system of rewards and costs:

– f > 0 is a reward to player 1 or player 2 for each successful transmission to the
destination node.

– Player 1 receives a reward c > 0 from player 2 for delivering a package to
player 2 which can obtain the value f only after successful transmission of that
particular package to the final destination in a subsequent time slot.

– Each time slot of package delay results in an additional cost d > 0 for the node
that has that particular package in its queue (regardless of that package source).

– Dij is an energy cost of one package transmission from node i to node j.

We suppose that the game ends in any time slot with the probability 0 < q < 1.
The probability 1−q can be interpreted as a discount rate. The transmission problem
in a wireless network can be solved as a stochastic game. Denote the pair (Q1, Q2)
as the state of the stochastic game where Qi is a queue content of node i, i = 1, 2.
The queue content Qi can be equal to 0 or 1 if no or one package is present at the
queue of node i, respectively.
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The set of states in stochastic game is

Q = {(0, 0); (0, 1); (1, 0); (1, 1)}.

Consider the game in a cooperative setting meaning that the players’ actions are
coordinated by one center to improve the work of the network. The coordination of
the device actions are useful to increase the speed of data transmission. For solving
the cooperative version of the stochastic game, we assume players have information
not only on their own queues but also on the other player’s queue.

Now we need to describe the states, i. e., the games in normal form corresponding
to the states:

1. State (0, 0): Player 1 has a unique action W (waiting), player 2 has the same
action W (waiting). The payoffs to the players are (0, 0).

2. State (0, 1): Player 1 has a unique action W (waiting), player 2 also has a unique
action T 3 (transmission to node 3). The payoffs to the players are (0, f −D23).

3. State (1, 0): Player 1 has two actions: i) T 3 (transmission to node 3), ii) T 2
(transmission to node 2). Player 2 has two actions: i) Ac (accepting a package
from node 1), ii) Rej (rejecting a package from node 1).
The payoffs to the players are represented in the matrix:

(

(f −D13, 0) (f −D13, 0)
(c−D12,−c) (−d−D12, 0)

)

4. State Γ (1, 1): Player 1 has two actions: i) T 3 (transmission to node 3), ii)
W (waiting). Player 2 has two actions: i) T 3 (transmission to node 3), ii) W
(waiting). The payoffs to the players are as follows:

(

(−d−D13,−d−D23) (f −D13,−d)
(−d, f −D23) (−d,−d)

)

6.2. Transition matrix

Assume the players use the stationary strategies. In the game defined in stationary
strategies the players’ choice of an action in the states depends neither on the
history, nor on the time slot, in which the game is at present, but depends only on
the state. In applications of stochastic games it is important to use a simple set of
strategies for decreasing the number of calculations of players’ expected payoffs.

Denote the set of mixed stationary strategies of player i as Ξ̄i, i = 1, 2. According
to the game structure the player 1’s mixed stationary strategy assigns him to choose
action W with probability one in the states (0, 0), (0, 1), action T 3 with probability
p11 in the state (1, 0), and action T 3 with probability p12 in the state (1, 1). The
player 2’s mixed stationary strategy assigns him to choose actionW with probability
one in the state (0, 0), action T 3 in the state (0, 1), action Ac with probability p21
in the state (1, 0), and action T 3 with probability p22 in the state (1, 1). Denote a
player i’s mixed stationary strategy as ηi = (pi1, pi2). A stationary strategy profile
is η = (η1, η2) = (p11, p12, p21, p22).

The transition matrix when players realise stationary strategy profile η is

Π(η) = {p(k, l;xk)}k=1,...,t;l=1,...,t, (25)

where
p(1, 1;x1) = (1− a1)(1− a2),
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p(1, 2;x1) = (1− a1)a2,
p(1, 3;x1) = a1(1 − a2),
p(1, 4;x1) = a1a2,
p(2, 1;x2) = (1− a1)(1− a2),
p(2, 2;x2) = (1− a1)a2,
p(2, 3;x2) = a1(1 − a2),
p(2, 4;x2) = a1a2,
p(3, 1;x3) = p11(1 − a1)(1− a2),
p(3, 2;x3) = p11(1 − a1)a2 + (1− p11)p21(1 − a1),
p(3, 3;x3) = p11a1(1 − a2) + (1− p11)(1− p21)(1− a2),
p(3, 4;x3) = p11a1a2 + (1− p11)p21a1 + (1 − p11)(1− p21)a2,
p(4, 1;x4) = 0,
p(4, 2;x4) = p12(1 − p22)(1− a1),
p(4, 3;x4) = (1− p12)p22(1− a2),
p(4, 4;x4) = p12p22 + (1− p12)(1 − p22) + p12(1− p22)a1 + (1− p12)p22a2.

6.3. Payoff functions

If the stationary strategy profile η is realized, the payoff to player 1 in the stochastic
game is

K1(x) = (K1
1 (x

1),K2
1 (x

2),K3
1 (x

3),K4
1 (x

4))′,

where
K1

1(x
1) = K2

1 (x
2) = 0,

K3
1(x

3) = p11(f −D13) + (1− p11)p21(c−D12) + (1− p11)(1 − p21)(−d−D12),
K4

1(x
4) = p12p22(−d−D13) + p12(1− p22)(f −D13) + (1− p12)(−d).

If the stationary strategy profile η is realized, the payoff to player 2 in the
stochastic game is

K2(x) = (K1
2 (x

1),K2
2 (x

2),K3
2 (x

3),K4
2 (x

4))′,

where
K1

2(x
1) = 0,

K2
2(x

2) = f −D23,
K3

2(x
3) = (1 − p11)p21(−c),

K4
2(x

4) = p12p22(−d−D23) + (1− p12)p22(f −D23) + (1− p22)(−d).
We consider the set of pure stationary strategies which is denoted as Ξi, i = 1, 2.

For example, player 1’s pure stationary strategy η1 = (1, 0) assigns player 1 to choose
action T 3 in the state (1, 0) and action W in the state (1, 1). Each player has 4 pure
stationary strategies in the stochastic game, therefore, there are 16 pure stationary
strategy profiles. For each pure stationary strategy profile η = (η1, η2) the transition
matrix Π(η) is determined by (25).

For example, for the pure stationary strategy profile η1 = (1, 1, 1, 1) the transi-
tion matrix is

Π(η1) =









(1− a1)(1 − a2) (1− a1)a2 a1(1− a2) a1a2
(1− a1)(1 − a2) (1− a1)a2 a1(1− a2) a1a2
(1− a1)(1 − a2) (1− a1)a2 a1(1− a2) a1a2

0 0 0 1









.

For each strategy profile η ∈ Ξ =
∏2

i=1 Ξi we can calculate the expected players’

payoffs for subgames which are denoted as: Ei(η) = (E
(0,0)
i (η), E

(0,1)
i (η), E

(1,0)
i (η),
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E
(1,1)
i (η))′, and

Ei(η) = (It − (1 − q)Π(η))−1Ki(x), (26)

where Ki(x), Π(η) are determined above.

The expected payoff to player i in the whole game including the chance move is

Ēi(η) = π0Ei(η), (27)

where π0 = (π0
(0,0), π

0
(0,1), π

0
(1,0), π

0
(1,1)) is a vector of the initial probabilities, and π0

k

is the probability that the first state in the stochastic game will be k ∈ Q. Vector
π0 is given.

6.4. Algorithm of solving cooperative stochastic game

In this section we describe the steps of solving cooperative stochastic game of data
transmission in a wireless network of topology represented in Fig. 1.

1. For any state k ∈ Q and any pure strategy profile η = (η1, η2), ηi ∈ Ξi, i = 1, 2,
calculate the expected players’ payoffs Ek

i (η) in subgame Gk by equation (5)
and their expected payoffs in the whole game Ēi(η) by equation (6).

2. Find the cooperative strategy profile η̄ by equation (7).

3. Calculate the values of the characteristic functions vk(S) for any state k ∈ Q
and any coalition S ⊂ N using equations (9), (10), (11). Then calculate the
values of the characteristic function v̄(S) for any S ⊂ N by (8).

4. Calculate the Shapley values αk = (αk
1 , . . . , α

k
n) for any subgame Gk starting

from state k ∈ Q using formula (Shapley, 1953b):

αk
i =

∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

(

vk(S ∪ {i})− vk(S)
)

. (28)

Then calculate the Shapley value for the whole game ᾱ = (ᾱ1, ᾱ2) using equation
ᾱi = π0αi.

5. Calculate the components of the IDP βk
i , i = 1, 2 and k ∈ Q by equation (12).
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6. To construct the subgame-consistent Shapley value we determine the α-regula-
rization Gα re-defining the payoff functions by equation (16).

7. Verify if there exists the Nash equilibrium in behavior strategies with payoffs
(ᾱ1, ᾱ2) using inequality (18).

6.5. Numerical illustration

We introduce the numerical example of the data transmission game for wireless
network. We identify the parameters of the simulation. The probability of package
appearance at node 1 is higher than in node 2: a1 = 0.4, a2 = 0.1. The probability
of a game end is q = 0.01 which is equivalent to the discount rate 0.99. The rewards
and costs are f = 1, d = 0.1, c = 0.3, D12 = 0.1, D13 = 0.6, D23 = 0.2. We may
notice that the cost of package transmission from node 1 to node 3 is three times
more than the cost of package transmission from node 2 to node 3. Therefore, the
cooperation of nodes 1 and 2 may be profitable. Let the game begin from any state
with equal probability, i. e., π0 = (0.25, 0.25, 0.25, 0.25).

Table 1 represents the expected players’ payoffs

Ei(η) =
(

E
(0,0)
i (η), E

(0,1)
i (η), E

(1,0)
i (η), E

(1,1)
i (η)

)′

for any pure stationary strategy profile η for any player i = 1, 2, and the sum of
the expected payoffs. The last column in Table 1 is Ē1 + Ē2 which is the total
expected players’ payoff in the whole game taking into account the vector of initial
probabilities π0.

The cooperative strategy profile maximizing the total players’ payoff is

η̄ = η11 = (0, 0, 1, 1),

in which the player 1’s strategy η111 = (0, 0) assigns him “not to transmit to
node 3, but transmit to node 2” in state (1,0) when there is a package at node 1
and there is no package at node 2. In this state the player 2’s strategy η112 = (1, 1)
assigns her “to accept the package” from player 1 in state (1, 0). When the game in
state (1, 1), player 1 “waits” and player 2 “transmits” to node 3.

The maximum of the total expected players’ payoff in the whole game is

max
η∈Ξ

∑

i∈N

Ēi(η) =
∑

i∈N

Ēi(η̄) = 26.9472.
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Table 1: Expected payoffs in the stochastic game.

η E1(η) E2(η) Ē1 + Ē2

η1 = (1, 1, 1, 1)

−53.0129
−53.0129
−52.6129
−70.1000

−22.9935
−22.1935
−22.9935
−30.0000

−81.7048

η2 = (1, 1, 1, 0)

15.8400
15.8400
16.2400
16.2400

6.76818
7.56818
6.76818
7.27732

23.1355

η3 = (1, 0, 1, 1)

14.7353
14.7353
15.1353
14.8563

7.9200
8.7200
7.9200
8.7200

23.1855

η4 = (1, 0, 1, 0)

−5.10968
−5.10968
−4.70968
−10.0000

−7.02581
−6.22581
−7.02581
−10.0000

−13.8016

η5 = (1, 1, 0, 1)

−53.0129
−53.0129
−52.6129
−70.0000

−22.9935
−22.1935
−22.9935
−30.0000

−81.7048

η6 = (1, 1, 0, 0)

15.8400
15.8400
16.2400
16.2400

6.76818
7.56818
6.76818
7.27732

23.1355

η7 = (1, 0, 0, 1)

14.7353
14.7353
15.1353
14.8563

7.9200
8.7200
7.9200
8.7200

23.1855

η8 = (1, 0, 0, 0)

−5.10968
−5.10968
−4.70968
−10.0000

−7.02581
−6.22581
−7.02581
−10.0000

−13.8016

η9 = (0, 1, 1, 1)

−64.7464
−64.7464
−65.9794
−70.0000

−27.3398
−26.5398
−27.9446
−30.0000

−94.3241
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η E1(η) E2(η) Ē1 + Ē2

η10 = (0, 1, 1, 0)

11.5347
11.5347
11.8060
12.0060

13.4228
14.2228
13.6218
13.8218

25.4926

η11 = (0, 0, 1, 1)

4.90248
4.90248
5.04298
4.87602

21.4759
22.2759
21.8337
22.4792

26.9472

η12 = (0, 0, 1, 0)

−8.93504
−8.93504
−9.06741
−10.0000

−8.73596
−7.93596
−8.97396
−10.0000

−18.1458

η13 = (0, 1, 0, 1)

−64.2491
−64.2491
−65.4128
−70.0000

−26.728
−25.928
−27.248
−30.000

−93.4537

η14 = (0, 1, 0, 0)

−8.4855
−8.4855
−8.8128
−7.6828

5.60847
6.40847
5.57380
6.13680

−2.43475

η15 = (0, 0, 0, 1)

−18.532
−18.532
−19.010
−18.910

7.9200
8.7200
7.9200
8.7200

−10.426

η16 = (0, 0, 0, 0)

−10.559
−10.559
−10.917
−10.000

−8.8313
−8.0313
−9.0826
−10.000

−19.49526

We calculate the values of the characteristic functions for subgames by equations
(9), (10), (11):

v({1}) = (−5.10968,−5.10968,−4.70968,−10.0)′,

v({2}) = (−8.735960,−7.93596,−8.97396,−10.0)′,

v({1, 2}) = (26.3784, 27.1784, 26.8766, 27.3553)′,

The characteristic function of the whole game is found by equation (8):

v̄({1}) = −6.23226,

v̄({2}) = −8.91147,

v̄({1, 2}) = 26.9472.

Then we may calculate the Shapley Values for the subgames and the whole game
using equation (28):

– for subgames:
• α1 = (15.0023, 15.0023, 15.5705, 13.6776)′,
• α2 = (11.376, 12.176, 11.3062, 13.6776)′,
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– for the whole game:
• ᾱ1 = 14.8132,
• ᾱ2 = 12.134.

The cooperative payoff distribution procedure β1 for player 1 and β2 for player 2
are found by equations (12) using the Shapley values:

– β1 = (0, 0, 1.24274,−1.54974)′,
– β2 = (0, 0.8,−1.34274, 2.24974)′,

where βk
i is a payment to player i in the state k. Remind that the payoffs of the

players in the states defined in the matrix forms are as follows:

– K1 = (0, 0, 0.2,−0.1)′,
– K2 = (0, 0.8,−0.3, 0.8)′,

We may notice that in states (0, 0) and (0, 1) the components of IDP coincide with
the payoffs according to the payoff functions K1 and K2. But in states (1, 0) and
(1, 1) there is a redistribution of the total payoffs among the players. In state (1, 0)
players obtain −0.1 together and according to the IDP player 1 receives 1.24274
instead of 0.2, and player 2 receives −1.34274 instead of −0.3. Therefore, player 2
gives 1.04274 to player 1 to make IDP subgame-consistent. In state (1, 1) players
obtain 0.7 together and according to the IDP player 1 receives −1.54974 instead of
−0.1, and player 2 receives 2.24974 instead of 0.8. Therefore, player 1 gives 1.44974
to player 2 to make IDP subgame-consistent.

Thus, the Shapley Value ᾱ = (14.8132, 12.134)′ is subgame consistent if the
payoffs to the players in the states are made according to the IDP β1 = (0, 0, 1.24274,
−1.54974)′, and β2 = (0, 0.8,−1.34274, 2.24974)′.

Now we need to examine the problem of strategic support of the cooperative
strategy profile. First, calculate values F k({i}) for i = 1, 2 and k ∈ Q determined
in Theorem 2:

1. F ({1}) = (−5.10968,−5.10968,−4.70968,−5.28632)′,
2. F ({2}) = (−8.73596,−7.93596,−8.97396,−8.1858)′.

Second, verify if the inequalities (18) are true. For player 1 the inequality (18) takes
the form:









0
0

1.24274
−1.54974









>









−0.186662
−0.186662
0.418853
−0.566649









We notice that the inequality is not true. In state (1, 1) there is an intense for
deviation of player 1 as his payoff according to IDP in this state −1.54974 is less
than his payoff in case of deviation −0.566649. This means that the cooperation
cannot be supported strategically by the behavior strategy profile (19).

For player 2 the inequality (18) takes the form:









0
0.8

−1.34274
2.24974









>









−0.0718427
0.728157
−1.01842
0.620393








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Again, we notice that the inequality is not true. In state (1, 0) there is an intense for
deviation of player 2 as her payoff according to IDP in this state −1.34274 is lower
than her payoff in case of deviation −1.01842. We state that the behavior strategy
profile determined by (19) cannot strategically support the cooperative payoffs.

7. Conclusion

We have examined the problem of cooperation in a dynamic game having a stochas-
tic structure. First, we construct the subgame consistent cooperative solution of the
game by redefining players’ state payoff functions using the imputation distribution
procedure. Second, we provide the conditions to verify if the cooperative solution
can be supported strategically. All theoretical results are demonstrated by the exam-
ple of a stochastic game modeling data transmission in an ad hoc wireless network
with a simple topology. Numerical simulations show the actuality of an application
of a game-theoretical model to telecommunication problems because it proposes the
method of cost reduction.
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