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Abstract This paper is devoted to overview of the previously available and
the author’s own results of cooperative behavior analysis in dynamic games
related to bioresource management problems. The methodological schemes
to maintain the cooperation are considered and modified. The incentive con-
dition for rational behavior and characteristic function construction method
are presented. The question of coalition stability is revised and extended.
The cooperative behavior determination schemes for games with asymmet-
ric players are obtained. Some analytical and numerical modelling results
for particular dynamic bioresource management problems are presented.
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1. Introduction

This paper is dedicated to overview of the results of rational behavior analysis
in dynamic bioresource management problems. The primary aim of rational re-
source exploitation consists in sustainable development of a population. Therefore,
studying the difference between cooperative and egoistic (individual) behavior in
optimal bioresource management problems represents an important issue (e.g., see
(Kaitala and Lindroos, 2007; Lindroos et al., 2007)).

Optimal control problems for biological objects are very popular among re-
searches. Many papers have been dedicated to these problems. Classical biore-
source dynamic models were investigated in (Gimelfarb et al., 1974; Clark, 1985;
Goh, 1980). The papers (Baturin et al., 1984; Puh, 1983; Selutin et al., 1999) are
dedicated to models with migration processes. Optimal control models of interact-
ing biological species are considered in (Bazikin, 1985; Chaudhuri, 1986; Silvert and
Smith, 1977). Discrete-time bioresource optimal control problems were considered in
the papers (Abakumov, 1993; Il’ichev et al., 2000; Shapiro, 1979). Models with age-
distributed populations are investigated in (Abakumov, 1994; Baturin et al., 1984;
Gurman, 1978; Svirezhev and Elizarov, 1972).

The game-theoretic approach for bioresource management problems was pio-
neered by Smith M.J. (Smith, 1968). Haurie A. (Haurie and Tolwinski, 1984),
Petrosyan L.A. (Petrosyan and Zakharov, 1981; Petrosyan and Zakharov, 1997),
Tolwinski B. (Tolwinski et al., 1986), Levhari D. (Levhari and Mirman, 1980), Mir-
man L.J. (Fisher and Mirman, 1992), Vislie J. (Vislie, 1987) and many others ap-
plied the game-theoretic approach to resource management problems. The optimal
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noncooperative and cooperative players’ behavior in harvesting problems were ob-
tained in (Ehtamo and Hamalainen, 1993; Hamalainen et al., 1984; Lindroos et al.,
2007; De Zeeuw, 2008; Kulmala et al., 2009; Lindroos et al., 2007). Levhari D. and
Mirman L.J. (Levhari and Mirman, 1980) presented the ”fish war” model which is
convenient for analyzing bioresource exploitation processes in the discrete-time set-
ting. This framework proceeds from the power function of population evolvement
and the logarithmical functions of “instantaneous” payoffs. Then the total payoff of
a player forms a finite or infinite sum of discounted instantaneous payments. Here,
Nash equilibrium strategies and cooperative strategies are defined analytically.

As is well-known, cooperation leads to a sparing mode of bioresource exploita-
tion. The special importance of cooperative behavior for ”common resource” ex-
ploitation was stressed by Nobelist E. Ostrom (Ostrom, 1990). This review will focus
on the results by Ehtamo H., Fisher R.D., Hamalainen R.P., Haurie A., Kaitala V.,
Leitmann G., Lindroos M., Mirman L.J., Tolwinski B. (Fisher and Mirman, 1992;
Ehtamo and Hamalainen, 1993; Kaitala and Lindroos, 2007; Tolwinski et al., 1986);
Haurie and Tolwinski, 1984; Fisher and Mirman, 1996; Hamalainen et al., 1984) in
this regard.

There are several methodological schemes to maintain a cooperation. Here we
focus on two of them: incentive equilibrium and time-consistent imputation distri-
bution procedure.

The concept of cooperative incentive equilibrium was introduced by Ehtamo H.
and Hamalainen R.P. (Ehtamo and Hamalainen, 1993), as a natural extension of
D.K. Osborn’s work (Osborn, 1976) about cartel stability. In this concept play-
ers punish each other for a deviation from cooperative behavior by changing their
optimal cooperative strategies.

The question of dynamic stability in differential games has been investigated
in the past three decades. Haurie A. (Haurie, 1976) raised the problem of insta-
bility of the Nash bargaining solution. The concept of time-consistency (dynamic
stability) was introduced by Petrosyan L.A. (Petrosyan, 1977). Time-consistency
involves the property that, as the cooperation develops, participants are guided by
the same optimality principle at each time moment and hence do not have incen-
tives to deviate from cooperation. Petrosyan L.A. (Petrosyan and Danilov, 1979)
has developed the notion of time-consistent imputation distribution procedure.
Petrosyan L.A. (Petrosjan, 1993; Petrosjan and Zenkevich, 1996) offered
a method of regularization to construct time-consistent solutions. Petrosyan L.A.
and Zaccour G. (Petrosjan and Zaccour, 2003) presented time-consistent Shapley
value allocation in a differential game of pollution cost reduction. Yeung D.W.K.
(Yeung, 2006) introduced the ”irrational-behavior-proofness” condition that guar-
anties the stability of cooperative agreement against unpredictable collapse of the
coalition.

The analysis of stable international environmental agreements (IEA) in game
theory was pioneered by Barrett S. (Barrett, 1994), Carraro C. and Siniscalco D.
(Carraro and Siniscalco, 1992), and was surveyed in (Ioannidis et al., 2000) and
(Finus, 2008). IEAs typically use the concept of internal and external stability
(D’Aspremont et al., 1983). In classical works (Barrett, 1994; Barrett, 1994) it is
assumed that only one coalition can be formed.

The ”new coalition theory” (Bloch, 1995; Yi, 1997; Carraro, 2000; Finus, 2008)
does not restrict coalition formation to a single coalition but allows for the exis-
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tence of multiple coalitions. Studies in this direction were published in (Ray and
Vohra, 1997; Yi and Shin, 1995; Bloch, 1996; Osmani and Tol, 2010; Eyckmans and
Finus, 2003). The main questions investigated were the rules of coalition formation.
They can be Open Membership Game (Yi and Shin, 1995), Exclusive Membership
Game (Eyckmans and Finus, 2003; Finus and Rundshage, 2003), Coalition Una-
nimity Game (Bloch, 1996) and Equilibrium Binding Agreements (Ray and Vohra,
1997).

Most of the papers on coalition stability concern the agreement on emission
reduction, and only few of them apply these concepts to fisheries (De Zeeuw, 2008;
Kulmala et al., 2009; Pintassilgo and Lindroos, 2008; Lindroos, 2008).

Traditionally, cooperative behavior analysis in bioresource management prob-
lems rests on the assumption of identical discount factors for all players. If these
factors differ (players are asymmetric), standard techniques do not assist in evaluat-
ing players’ payoffs under cooperation. As a matter of fact, the cooperative behavior
design problem is underinvestigated in this case, even though asymmetry appears
widespread in real ecological problems. For instance, countries concluding a cooper-
ative agreement can have different rates of inflation, environmental conditions, and
so on. The papers (Munro, 1979) and (Vislie, 1987) demonstrated that bioresource
management conflicts often occur due to the existing difference in discount factors
(time preferences). Consequently, a substantial role in cooperative behavior analysis
of bioresource management problems belongs to seeking an optimal compromise in
the case of heterogeneous goals pursued by players (different discount factors and
fishing costs).

The publication (Breton and Keoula, 2014) suggested constructing cooperative
payoff as the weighted sum of individual payoffs (in the continuous-time setting, see
(Plourde and Yeung, 1989)). This approach draws criticism: a player with a higher
discount factor leaves the bioresource exploitation process quite soon, but has to
obtain its share of the total payoff of a coalition. The cited work demonstrated
that all utility from a cooperative agreement goes to participant 1 if the weight
coefficients are defined by the Nash bargaining solution. Note that this infringes
upon the interests of player 2, which is inadmissible in a cooperative agreement. An
alternative approach was introduced in (Sorger, 2006) via a bargaining scheme.

Cooperative and noncooperative behavior analysis in bioresource management
problems with random planning horizons is an important problem, both theo-
retically and practically. The authors (Marin-Solano and Shevkoplyas, 2011) and
(Shevkoplyas, 2011) constructed cooperative strategies and time-consistent solu-
tions in the case of a random planning horizon obeying a given distribution.

The Nash bargaining solution was adopted in (Mazalov and Rettieva, 2014)
to calculate a common discount factor; subsequently, the problem was reduced
to determination of a time-consistent distribution of the total cooperative payoff.
Munro G.R. (Munro, 2000) obtained cooperative strategies through maximization
of the weighted sum of individual payoffs; moreover, it was noted that such solution
satisfies the Nash product maximization problem. A well-known result of this paper
is that cooperative payoff is equally shared in the case of side payments.

Another meaningful applied problem is to find cooperative payoffs in the case
of different planning horizons. When one player exploits a bioresource for a shorter
period than the other, the former joins the exploitation process (in our case, fishing)
for a fixed time and is willing to enter cooperation (owing to obvious profitability).
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But this player has a smaller planning horizon than its partner; and so, the player
under consideration is interested in gaining more from cooperation than the player
that continues harvesting individually.

The model with random planning horizons in the bioresource exploitation pro-
cess is the most adequate to reality: external random factors can cause cooperative
agreement breach and the participants know nothing about them in advance. For
instance, fishing firms can go bankrupt, their fleet can be damaged, etc. In the case
of countries, negative factors include an economic crisis, abrupt variations in the
rate of inflation, international or national economic and political situations, and
so on. All these processes possibly break a cooperative agreement, and cooperative
behavior of participants in this case has not yet been examined.

According to the aforesaid, cooperative behavior design is very important. Here
we present our results in this regard. Almost all the results are derived analyti-
cally, which allows their direct application to concrete biological populations with
appropriate parameters.

Further exposition has the following structure. The types of the main investi-
gated problems are shown in Section 2. Section 3 describes the obtained cooper-
ation maintenance and cooperative behavior determination schemas. In Section 4
the problem of cooperative behavior determination for games with asymmetric play-
ers is considered. Different types of bioresource management problems are treated
in Section 5, with cooperative behavior design, cooperation maintenance schemes
and the results of numerical experiments. And finally, Section 6 provides the basic
results and their discussion.

2. Main problems

2.1. Continuous-time models

The dynamics of the renewable resource is described by the equation

x′(t) = f(x(t), u1(t), . . . , un(t)) , x(0) = x0 , (1)

where x(t) ≥ 0 denotes the resource size at time t, ui(t) ≥ 0 represents the strategy
(exploitation intensity) of player i at time t, i = 1, . . . , n, f(x(t), u1(t), . . . , un(t))
indicates the natural growth function.

Denote u(t) = (u1(t), . . . , un(t)). We consider players’ payoffs over the finite
[0, T ] or infinite time horizon in the forms:

Ji =

∫ T

0

e−ρtgi(x(t), u(t))dt +Gi(x(T )) (2)

and

Ji =

∫ ∞

0

e−ρtgi(x(t), u(t))dt , (3)

where gi(x(t), u(t)) denotes the ”instantaneous” utility of player i at time t, ρ means
the discount factor, 0 < ρ < 1.

Let uN(t) = (uN
1 (t), . . . , uN

n (t)) be the Nash equilibrium in problem (1), (2) (or
(1), (3)). Under cooperation players wish to maximize the sum of their profits:

Jc =

n
∑

i=1

Ji =

∫ T

0

e−ρt

n
∑

i=1

gi(x(t), u(t))dt +

n
∑

i=1

Gi(x(T )) → max
u(t)

(4)
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or

Jc =

∫ ∞

0

e−ρt

n
∑

i=1

gi(x(t), u(t))dt → max
u(t)

. (5)

Let the set of strategies uc(t) = (uc
1(t), . . . , u

c
n(t)) be the solution of the prob-

lem (1), (4) (or (1), (5)) and xc(t) be the cooperative trajectory derived from the
equation (1) applying the strategies uc(t).

2.2. Discrete-time models

The renewable resource evolves according to the equation

xt+1 = f(xt, ut) , x0 = x , (6)

where ut = (u1t, . . . , unt), xt denotes the resource size at time t, uit represents the
strategy (exploitation intensity) of player i at time t, i = 1, . . . , n.

The players’ payoffs take the forms:

Ji =

n
∑

t=0

δtgi(xt, ut) (7)

and

Ji =

∞
∑

t=0

δtgi(xt, ut) , (8)

where gi(xt, ut) denotes the ”instantaneous” utility of player i at time t, δ means
the discount factor, 0 < δ < 1.

Let uN
t = (uN

1t, . . . , u
N
2t) be the Nash equilibrium of the game (6), (7) (or (6),

(8)). Under cooperation the discounted sum of players’ total utilities over the finite
[0,m] or infinite time horizon is maximized:

Jc =

m
∑

t=0

δt
n
∑

i=1

gi(xt, ut) (9)

or

Jc =

∞
∑

t=0

δt
n
∑

i=1

gi(xt, ut) . (10)

Let the set of strategies uc
t = (uc

1t, . . . , u
c
nt) be the solution of the problem (6),

(9) (or (6), (10)) and xc
t be the cooperative trajectory derived from the equation

(6) applying the strategies uc
t .

3. Cooperation maintenance

3.1. Incentive equilibrium

One of the methodological schemes to maintain the cooperation is the cooperative
incentive equilibrium. This concept was introduced in the paper
(Ehtamo and Hamalainen, 1993) as a natural extension of Osborn’s work
(Osborn, 1976) about cartel stability. The incentive equilibrium is applied for main-
taining the cooperation and punishing the player who deviates. This concept is
presented for the problem with two players.
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Following (Ehtamo and Hamalainen, 1993) we assume that the strategy of player
i is a causal mapping γi : Uj → Ui (uj ∈ Uj), i, j = 1, 2, i 6= j, where Ui denotes
the set of admissible strategies of player i, i = 1, 2. In order to give the definitions
for both the continuous and the discrete cases we will omit the time parameter in
the following definitions.

Definition 1. (Ehtamo and Hamalainen, 1993). A strategy pair (γ1, γ2) is called
the cooperative incentive equilibrium if

uc
1 = γ1(u

c
2) , uc

2 = γ2(u
c
1) ,

J1(u
c
1, u

c
2) ≥ J1(u1, γ2(u1)) ∀u1 ∈ U1 ,

J2(u
c
1, u

c
2) ≥ J2(γ1(u2), u2) ∀u2 ∈ U2 .

Thus, when players use incentive equilibrium strategies it is not advantageous
for them to deviate from the initial cooperative agreement. The player’s profit under
deviation is less than under cooperation. In the traditional statement players control
their behavior, punishing for deviation by changing the cooperative strategies (see
Fig. 1). In (Ehtamo and Hamalainen, 1993) players use punishment strategies which
are proportional to the difference between the cooperative and deviating strategies.

Player 1

resource 1 resource n

Player 2

...

J (u , (u ))1 1 2 1g

u (t)11 u (t)21u (t)1n u (t)2n

(u (t),1i 1g (u (t))2i

(u (t),2i 2g (u (t))1i

...

...

J ( (u ) u )2 1 2g ,2

ecological system

Fig. 1. Traditional cooperative incentive equilibrium

In the papers (Mazalov and Rettieva, 2007; Mazalov and Rettieva, 2008; Mazalov
and Rettieva, 2010) we presented a new scheme where the center controls the co-
operation agreement by changing the harvesting territory.

Let us divide the water area into two parts, s(t) and 1 − s(t) (st and 1 − st in
discrete-time models), where two players exploit the fish stock. The dynamics of
the fishery and the players’ payoffs have the same forms (1)–(10), but the strategies
also depend on the territory sharing

ui(t) = ui(t, s(t)) , i = 1, 2

or
uit = uitst , i = 1, 2 .

Denote by sc the territory sharing under cooperation. Assume that players de-
viating from the cooperative equilibrium point are punished by the center propor-
tionally to the value of deviation. So if the first player deviates the center increases
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sc, and if the second player deviates – decreases sc proportionally to the difference
between cooperative and deviating strategies. The proposed concept is given in the
following definition (the time parameter is omitted)

Definition 2. A strategy pair (γ1, γ2) is called the cooperative incentive equilib-
rium if

uc
1(s

c) = γ1(u
c
2(s

c)) , uc
2(s

c) = γ2(u
c
1(s

c)) ,
J1(u

c
1(s

c), uc
2(s

c)) ≥ J1(u1(s), γ2(u1(s))) ∀u1 ∈ U1 , 0 ≤ s ≤ 1 ,
J2(u

c
1(s

c), uc
2(s

c)) ≥ J2(γ1(u2(s)), u2(s)) ∀u2 ∈ U2 , 0 ≤ s ≤ 1 .

The application of this scheme for cooperation maintenance is presented in
Fig. 2. In Section 5.1 we present the results obtained for different game-theoretic
models.

Center

Player 1 ...

1resource resource n

Player n

s(t) s(t)

u (t,s)11
u (t,s)nn...

J (t,s)1 J (t,s)n

I(t,s,u ,...,u )1 n

u (t,s)1n u (t,s)n1

ecological system

...

Fig. 2. New cooperative incentive equilibrium

3.2. Dynamic stability and conditions for rational behavior

Let us consider the infinite time horizon problem (1), (5) or (6), (10). For finite
horizon problems the following definitions are similar.

Denote the profit of coalition S ∈ N as JS(u) =
∑

i∈S

gi(x(t), u(t)) (or JS(u) =
∑

i∈S

gi(xt, ut)).

For the cooperative variant of the game it is required to determine the character-
istic function. There are several approaches to constructing the characteristic func-
tion (Gromova and Petrosyan, 2015). The classical one is to determine the profit
of coalition S assuming that the outside players form the coalition N \ S and play
against the coalition S (zero-sum game, see (Neumann and Morgenstern, 1953)).

Characteristic function construction

In the papers (Mazalov and Rettieva, 2010; Mazalov and Rettieva, 2014) we con-
structed the characteristic function in two unusual forms. In the first model players
outside coalition K switch to their Nash strategies, which were determined for the
initial noncooperative game. This approach was presented by Petrosyan L.A. and
Zaccour G. (Petrosjan and Zaccour, 2003). It is the case where players have no in-
formation about the fact that the coalition was formed. In the second model we
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present a new approach where players outside coalition K determine new Nash
strategies in the game with N\K players. This case corresponds to the situation
when players know that coalition K is formed.

Model without information (Petrosjan and Zaccour, 2003). In this case players
forming coalition K don’t inform others. Therefore, players outside coalition K use
their Nash strategies determined for the noncooperative case.

The following definitions are given for the game (6), (8). Denote by
uN
t = (uN

1t, . . . , u
N
nt) the Nash equilibrium.

To determine the cooperative payoff of coalition K it is required to solve the
next problem:

JK =

∞
∑

t=0

δt
[

∑

i∈K

gi(ũt)
]

−→ max
ui, i∈K

,

where

ũi =

{

ui, i ∈ K ,

uN
i , i ∈ N\K .

Model with informed players. Let’s consider the case where players outside the
coalition K determine new Nash strategies in the game with N\K players. This
case corresponds to the situation where players know that coalition K is formed.

To determine the cooperative payoff of coalition K it is required to solve the
next problem:

JK =

∞
∑

t=0

δt
[

∑

i∈K

gi(ũt)
]

−→ max
ui, i∈K

,

where

ũi =

{

ui, i ∈ K ,

ũN
i , i ∈ N\K ,

and the individual players’ strategies ũN
i , i ∈ N\K are defined from the maximiza-

tion problems:

Ji =

∞
∑

t=0

δtgi(ut) −→ max
ui, i∈N\K

, i ∈ N\K .

In (Mazalov and Rettieva, 2010) these approaches were applied for the fish war
model with many players and we present some results in Section 5.3.

Using classical or new approaches we determine the characteristic function V (S, 0)
as the profit of coalition S, S ⊂ N . When the characteristic function is determined,
the imputation set can be defined as

ξ = {ξ(0) = (ξ1(0), . . . , ξn(0)) :
n
∑

i=1

ξi(0) = V (N, 0), ξi(0) ≥ V (i, 0), i = 1, . . . , n}.

Similarly we determine the characteristic function V (S, t) and the imputation
set ξ(t) = (ξ1(t), . . . , ξn(t)) for every subgame started from the state xc

t (or x
c(t)) at

time t. Further assume that one of the cooperative optimality principles is chosen;
it can be proportional solution, C–core, n–core, the Shapley value or another.

The concept of time-consistency (dynamic stability) was introduced by
Petrosyan L.A. (Petrosyan, 1977). Time-consistency involves the property that, as
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the cooperation develops participants are guided by the same optimality principle at
each time moment and hence don’t have incentives to deviate from cooperation. In
the paper (Petrosyan and Danilov, 1979) the notion of time-consistent imputation
distribution procedure was developed.

Definition 3. The vector β(t) = (β1(t), . . . , βn(t)) is an imputation distribution
procedure (Petrosyan and Danilov, 1979; Petrosyan and Danilov, 1985) if

ξi(0) =

∫ ∞

0

e−ρtβi(t) dt , i = 1, . . . , n ,

or, for a discrete-time problem

ξi(0) =

∞
∑

t=0

δtβi(t) , i = 1, . . . , n .

The main idea of this scheme is to distribute the cooperation gain along the game
path. Then βi(t) can be interpreted as the payment to player i at time moment t.

Definition 4. The vector β(t) = (β1(t), . . . , βn(t)) is a time-consistent imputation
distribution procedure (Petrosyan, 1977; Petrosyan and Danilov, 1979) if for all t ≥
0

ξi(0) =

∫ t

0

e−ρτβi(τ) dτ + e−ρtξi(t) , i = 1, . . . , n ,

or, for a discrete-time problem

ξi(0) =

t−1
∑

τ=0

δτβi(τ) + δtξi(t) , i = 1, . . . , n ,

where ξi(t) is the imputation for player i at time t.

Here, players following the cooperative trajectory are guided by the same opti-
mality principle at each current time and hence do not have any reasonable moti-
vation to deviate from the cooperation agreement.

The application of these concepts to bioresource management problems are given
in Sections 5.2, 5.3.

Nonetheless, some irrational player can break out of the cooperation. To indem-
nify players against the loss of profits in this case Yeung D.W.K. (Yeung, 2006)
introduced the following condition.

Definition 5. The imputation ξ = (ξ1, . . . , ξn) satisfies the irrational-behavior-
proofness condition (Yeung, 2006) if

∫ t

0

e−ρτβi(τ) dτ + e−ρtV (i, t) ≥ V (i, 0) , i = 1, . . . , n ,

or, for a discrete-time problem

t
∑

τ=0

δτβi(τ) + δt+1V (i, t+ 1) ≥ V (i, 0) , i = 1, . . . , n (11)

for all t ≥ 0, where β(t) = (β1(t), . . . , βn(t)) is the time-consistent imputation
distribution procedure.
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If this condition is satisfied, then player i is irrational-behavior-proof because
irrational actions that break the cooperative agreement will not bring her payoff
below initial noncooperative payoff.

In the papers (Rettieva, 2009; Mazalov and Rettieva, 2010;
Mazalov and Rettieva, 2012) we introduced a new condition for discrete-time prob-
lems which is stronger than Yeung’s condition and is easier to verify.

Definition 6. The imputation ξ = (ξ1, . . . , ξn) satisfies the each step rational be-
havior condition if

βi(t) + δV (i, t+ 1) ≥ V (i, t) , i = 1, . . . , n (12)

for all t ≥ 0, where β(t) = (β1(t), . . . , βn(t)) is the time-consistent imputation
distribution procedure.

The proposed condition offers an incentive to player i to maintain cooperation
because at every step she gains more from cooperation than from noncooperative
behavior.

In the series of papers (Rettieva, 2010; Mazalov and Rettieva, 2010;
Mazalov and Rettieva, 2011; Rettieva, 2011) we verify these conditions for differ-
ent models (see Sections 5.2, 5.3).

3.3. Coalition stability

For the coalition structure not only external and internal stability
(D’Aspremont et al., 1983) should be examined but also the possible moves of play-
ers from one coalition to the other. Carraro (Carraro, 1997) presented the notion
of intercoalition stability for such analysis.

In the papers (Rettieva, 2011; Rettieva, 2012) we extend the intercoalition sta-
bility concept to the situation where not only one player but a set of coalition
members can join the other coalition (coalitional stability). This concept is close to
the strong Nash equilibrium coalition structure (Finus and Rundshage, 2003), α-
and β- core concepts (Bloch, 1996).

We consider the bioresource management problem with two types of players:
N = {1, . . . , n} and M = {1, . . . ,m}. The coalition structure where players of each
type form a coalition is investigated. Hence, there can be two coalitions (K ⊂ N

and L ⊂ M) and single players of each type (N\K and M\L) in the game. The
sizes of the coalitions are the subject of investigation.

The most popular stability concept that is applied in game-theoretical literature
on IEAs is external and internal stability (D’Aspremont et al., 1983).

Definition 7. Coalition K is internally stable if

V k
i (K,L) =

1

k
V k(K,L) ≥ V N

i (K\{i}, L) , ∀i ∈ K . (13)

Definition 8. Coalition K is externally stable if

V N
i (K,L) ≥ V k

i (K ∪ {i}, L) =
1

k + 1
V k+1(K ∪ {i}, L) , ∀i ∈ N\K . (14)

Internal stability means that no coalition member wishes to leave the coalition
and become a singleton. External stability means that no singleton wishes to join
the coalition.
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The paper (Rettieva, 2012) extends the intercoalition stability concept to the
situation where not only one player but a set of coalition members can join the other
coalition. The intercoalition stability is now a special case of coalitional stability.

Coalition K is coalitionally internally stable if

V k
i (K,L) ≥ V

l+p
i (K\P,L ∪ P ) , ∀i ∈ P ⊂ K , |P | = p . (15)

Coalition K is coalitionally externally stable if

V l
j (K,L) =

1

l
V l(K,L) ≥ V

k+q
j (K ∪Q,L\Q) , ∀j ∈ Q ⊂ L, |Q| = q . (16)

Here internal stability means that no set of members of coalition K wishes to
leave it and join coalition L. External stability means that no set of members of
coalition L wishes to leave it and join coalition K.

For coalition L conditions take the forms

V l
j (K,L) ≥ V

k+q
j (K ∪Q,L\Q) , ∀j ∈ Q ⊂ L ,

V k
i (K,L) ≥ V

l+p
i (K\P,L ∪ P ) , ∀i ∈ P ⊂ K ,

which coincides with (15), (16).
The presented concept is given in the next definition.

Definition 9. Coalition structure (K,L) is stable if conditions (15), (16) are ful-
filled.

For P = {i} andQ = {j} this definition coincides with the intercoalition stability
(Carraro, 1997; Osmani and Tol, 2010).

The presented stability concept enlarges the intercoalition stability for the mod-
els with two or more coalitions and possible moves of a set of coalition members.
Moreover, as it will be shown below, the coalitions with a large number of members
are stable under this concept.

In Section 5.4 we give the results for the great fish war model
(Fisher and Mirman, 1996) with coalition structure.

4. Cooperation for asymmetric players

Our papers (Rettieva, 2012; Rettieva, 2014; Mazalov and Rettieva, 2015)
suggest designing and stimulating cooperative behavior applying
the Nash bargaining solution. The presented approach removes the need for sum-
ming up the payoffs of asymmetric players (Breton and Keoula, 2014). The bargain-
ing scheme yields an absolutely different solution (e.g., see a classical example in
(Owen, 1968)). Cooperative behavior design based on maximization of the weighted
sum of players’ payoffs may lead to the existence of parameter domains where the
cooperative payoffs of players are smaller than their noncooperative counterparts
(Breton and Keoula, 2014). This is impossible in the suggested scheme with cooper-
ative behavior defined by the bargaining solution: under some parameters, players’
payoffs are greater or equal to Nash equilibrium payoffs (Section 5.5 provides nu-
merical experiments illustrating this fact).

Another meaningful applied problem is to find cooperative payoffs in the case
of different planning horizons. The model with random planning horizons in the
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bioresource exploitation process is the most adequate to reality: external random
factors can cause cooperative agreement breach and the participants know nothing
about them in advance.

In what follows, we explored a discrete-time game-theoretic bioresource manage-
ment problem. Players apply different discount factors which can be interpreted as
their heterogeneous time preferences. A generalization of this model is when play-
ers’ planning horizons differ due to cooperative agreement breach or other reasons.
Although conclusion of an agreement implies fixed exploitation periods, external
factors can force a player to leave the game. Therefore, it seems natural to consider
planning horizons as random variables.

4.1. Models with different discount factors

We consider discrete-time bioresource management problems (6), (7) and (6), (8)
with two players. Denote by uN = (uN

1 , uN
2 ) the Nash equilibrium of the problem (6),

(8), Vi(x, δi), i = 1, 2 denotes noncooperative payoffs, respectively. uN
t = (uN

1t, u
N
2t)

and V n
i (x, δi) , i = 1, 2 give the Nash equilibrium strategies and payoffs in n-step

game (6), (7).

The papers (Rettieva, 2012; Rettieva, 2013) demonstrate how to determine the
total discount factor in the case where the cooperative payoff is distributed propor-
tionally for infinite-time problems. The schemes for determining the total discount
factor in order to construct cooperative payoff are offered. Assume that players use
the joint discount factor δ, which should be determined. So, the players solve the
following problem

J =

∞
∑

t=0

δt
[

g1(u1t, u2t) + g2(u1t, u2t)
]

→ max
u1t,u2t≥0

,

where 0 < δ < 1 denotes the unknown total discount factor.

V (x, δ) denotes the cooperative payoff in this case. We suppose that the co-
operative payoff is distributed in the portions γV (x, δ) and (1 − γ)V (x, δ) among
players.

In the paper (Rettieva, 2012) for the fish war model it was shown that the joint
discount factor for the case where cooperative payoff is distributed proportionally
among players exists. As a result we get the set of admissible parameters δ and γ.
To construct the solution we propose to adopt the Nash bargaining scheme. It is
necessary to solve the problem

(γV (x, δ)− V1(x, δ1))((1 − γ)V (x, δ)− V2(x, δ2)) → max
0<δ,γ<1

.

In the papers (Rettieva, 2014; Mazalov and Rettieva, 2015) for the game (6),
(7) we withdraw from total discounting factor design and determine cooperative
strategies applying the Nash arbitration procedure. Two bargaining schemes are
introduced, viz. the one for the whole duration of the game and the recursive arbi-
tration procedure which applies the arbitration scheme at each shot of the game. In
the first case cooperative strategies and payoffs are defined by resolving the Nash
product maximization problem for the whole duration of the game

(V nc
1 (x, δ1)− V n

1 (x, δ1))(V
nc
2 (x, δ2)− V n

2 (x, δ2)) −→ max
u1,u2≥0

,
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and in the second case the Nash arbitration scheme gets activated at each shot of
the game.

It has been established that, within the framework of the proposed scheme, the
cooperative payoffs of the players are greater or equal to (under some parameters)
their payoffs gained by egoistic behavior (Section 5.5 provides numerical experiments
illustrating this fact).

In Section 5.5 we present the cooperative behavior determination adopting the
Nash bargaining solution for the fish war model.

4.2. Models with different planning horizons

4.2.1. Fixed planning horizons

Cooperative behavior has not yet been analyzed in the statement of differ-
ent planning horizons. In this context, we mention the papers (Shevkoplyas, 2011;
Marin-Solano and Shevkoplyas, 2011) where the planning horizon is a random vari-
able with a given distribution. When the harvesting time of a player is smaller than
that of another, the former harvests the fish stock for a fixed time and is willing
to enter cooperation (owing to obvious profitability). But this player has a smaller
planning horizon than its partner; and so, the player under consideration is inter-
ested in gaining more from cooperation than the player which continues harvesting
individually. The cited authors designed a dynamically stable allocation procedure
for this model, but with identical discount factors and harvesting times.

The papers (Rettieva, 2015; Mazalov and Rettieva, 2015) introduced the Nash
bargaining solution to construct cooperative strategies in the case of different plan-
ning horizons.

Consider the harvesting process with the dynamics (6) and different planning
horizons. Players 1 and 2 harvest the fish stock during n1 and n2 steps, respec-
tively. For the sake of definiteness, suppose that n1 < n2. Therefore, in this model
the players enter cooperation on the time period [0, n1] and we have to find their
cooperative strategies. After step n1 till step n2 player 2 continues the harvesting
process individually. Hence, the players’ payoffs are defined by

J1 =

n1
∑

t=0

δt1 ln(u
c
1t), J2 =

n1
∑

t=0

δt2 ln(u
c
2t) +

n2
∑

t=n1+1

δt2 ln(u
a
2t) , (17)

where uc
i (i = 1, 2) denote the cooperative strategies and ua

2 indicates the strategy
of player 2 during individual catch.

To construct the cooperative strategies and payoffs of the players, apply the
Nash bargaining solution for the whole duration of the game. Thus, it is required
to solve the following optimization problem:

(

V c
1 (x, δ1)[0, n1]− V N

1 (x, δ1)[0, n1]
)

× (V c
2 (x, δ2)[0, n1]+V ac

2 (xcn1 , δ2)[n1, n2]

−V N
2 (x, δ2)[0, n1]−V aN

2 (xNn1 , δ2)[n1, n2])→max , (18)

where V N
i (x, δi)[0, n1] represent the Nash equilibrium payoffs, V ac

2 (xcn1 , δ2)[n1, n2]
gives the payoff of player 2 owing to its individual harvesting after n1 steps of
cooperative behavior, and V aN

2 (xNn1 , δ2)[n1, n2] is the payoff of player 2 owing to
its individual harvesting after n1 steps of noncooperative behavior.

In Section 5.6 we present the cooperative behavior determination adopting the
Nash bargaining solution for the fish war model with different harvesting times.
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4.2.2. Random planning horizons

The model with random planning horizons in the bioresource exploitation pro-
cess is the most adequate to reality: external random factors can cause cooperative
agreement breach and the participants know nothing about them in advance. There-
fore, it seems natural to consider planning horizons as random variables.

In the paper (Mazalov and Rettieva, 2015) we explore the model where players
possess heterogeneous discount factors and, moreover, heterogeneous planning hori-
zons. By assumption, players stop cooperation at a random step: external stochastic
processes can cause cooperative agreement breach.

Suppose that players 1 and 2 harvest the fish stock during n1 and n2 steps, re-
spectively. Here, n1 represents a discrete random variable taking values {1, . . . , n}
with the corresponding probabilities {θ1, . . . , θn}. Similarly, n2 is a discrete ran-
dom variable with the value set and the probabilities {ω1, . . . , ωn}. We believe that
the planning horizons are independent. Therefore, during the time period [0, n1]
or [0, n2] players enter cooperation, and the problem consists in evaluating their
strategies.

The players’ payoffs are determined via the expectation operator:

J1 = E
{

n1
∑

t=1

δt1g1(u1t, u2t)I{n1≤n2} +

+
(

n2
∑

t=1

δt1g1(u1t, u2t) +

n1
∑

t=n2+1

δt1g1(u
a
1t)

)

I{n1>n2}

}

,

J2 = E
{

n2
∑

t=1

δt2g2(u1t, u2t)I{n2≤n1} +

+
(

n1
∑

t=1

δt2g2(u1t, u2t) +

n2
∑

t=n1+1

δt2g2(u
a
2t)

)

I{n2>n1}

}

,

where ua
it specifies the strategy of player i when its partner leaves the game, i = 1, 2.

To define cooperative behavior, we employ the Nash bargaining solution; the
role of status quo points belongs to the noncooperative payoffs of the players.

In Section 5.7 we present the cooperative behavior determination applying the
Nash bargaining solution for the fish war model with random harvesting times.

An obvious advantage of the Nash bargaining solution consists in the feasibil-
ity of treating players individually. According to the conventional approach, the
joint cooperative payoff function represents the sum of players’ individual payoffs,
which has little to do with real systems. For instance, if the players are neighboring
countries, this becomes even impossible (especially in the case of different plan-
ning horizons). Other drawbacks of the traditional cooperative design are described
in the Introduction and Section 4. In a certain sense, the Nash bargaining solu-
tion resembles a Nash equilibrium (see (Mo and Walrand, 2000)). The players act
individually as before, but within the boundaries of a cooperative agreement.

5. Some results

Here some results of our investigations in the fields of cooperation maintenance and
asymmetric players’ problems are presented.



Cooperation in Bioresource Management Problems 259

5.1. Incentive equilibrium

Continuous-time model

A dynamic game model of bioresource management problem is considered in
(Mazalov and Rettieva, 2007; Mazalov and Rettieva, 2008). The center (referee) who
shares a reservoir, and the players (countries or fishing firms) that harvest the fish
stock on their territory are the participants of this game. The equilibria are con-
structed in the case where the players punish each other for a deviation from the
cooperative equilibrium (Ehtamo and Hamalainen, 1993) and in the case where the
center punishes them for the deviations.

Let us divide the water area into two parts, s and 1−s, where two players exploit
the fish stock during T time periods. The center (referee) shares the reservoir.

The dynamics of the fishery is described by the equation

x′(t) = F (x(t)) − q1E1(t)(1− s)x(t) − q2E2(t)sx(t) , 0 ≤ t ≤ T, x(0) = x0 , (19)

where x(t) ≥ 0 is the population size at time t ≥ 0, F denotes natural growth
function of the population, E1(t), E2(t) ≥ 0 give players’ fishing efforts measured as
the number of vessels involved in fishing at time t and q1, q2 > 0 denote catchability
coefficients related to the unit fishing effort of the player.

We assume that E1, E2 belong to decision setsD1, D2. LetD1 = D2 ⊆ C([0,∞)).
Assume that fish population evolves according to Verhulst (Gurman, 1978) model

F (x) = rx
(

1−
x

K

)

,

where r > 0 represents the intrinsic growth rate, and K > 0 denotes maximal
natural object capacity.

The players’ net revenues over the fixed time period [0, T ] are defined by

J1 = g1(x(T )) +

T
∫

0

e−ρ1t[q1E1(t)(1 − s)x(t)(p1 − k1q1E1(t)(1 − s)x(t))]dt ,

J2 = g2(x(T )) +

T
∫

0

e−ρ2t[q2E2(t)sx(t)(p2 − k2q2E2(t)sx(t))]dt , (20)

where pi is the price, ki gives catching cost, ρi denotes the discount factor, i = 1, 2.
Functions gi(x) describe the salvage value of the stock at time T . Following usual

assumptions on utility function we suppose that g′i(x) ≥ 0, g′′i (x) ≤ 0 , i = 1, 2.
The player’s profit is presented as an income over the time period [0, T ] that

depends on the difference between the price and the catching costs with discounting.
Here, catching costs have quadratic forms.

Assume that players punish each other for a deviation from the cooperative equi-
librium by increasing the control on the value which is proportional to the difference
between cooperative and deviating strategies (Ehtamo and Hamalainen, 1993).

Proposition 1. The cooperative incentive equilibrium in the problem (19), (20)
has the form

γ1(E2(t)) = Ec
1(t)+η1(t)(E2(t)−Ec

2(t)) , γ2(E1(t)) = Ec
2(t)+η2(t)(E1(t)−Ec

1(t)) ,
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where

η1(t) =
q2µ1λ1(t)s

q1µ2λ2(t)(1 − s)
, η2(t) =

1

η1(t)
,

cooperative strategies Ec
1(t), E

c
2(t) and conjugate variables λi(t), i = 1, 2 are defined

in (Mazalov and Rettieva, 2010).

Denote by sc the territory sharing under cooperation. We assume that players
deviating from the cooperative equilibrium point are punished by the center rather
than by themselves, as was in (Ehtamo and Hamalainen, 1993).

Theorem 1. The cooperative incentive equilibrium in the problem (19), (20) takes
the form

γ1(E2(t)) =
b1 − µ−1

1 q1λ(t)

a1(1− s∗2(t))x(t)
, γ2(E1(t)) =

b2 − µ−1
2 q2λ(t)

a2s
∗
1(t)x(t)

,

where

s∗2(t) = sc −
sc

Ec
2(t)

(E2(t)− Ec
2(t)) , s∗1(t) = sc +

1− sc

Ec
1(t)

(E1(t)− Ec
1(t)) ,

and Ec
1(t), E

c
2(t), x(t), λ(t) are defined in (Mazalov and Rettieva, 2010).

We give an example where after the second player’s deviation at time instant
t = 20 there is no return to cooperative behavior.

Traditional scheme. Fig. 3–5 present the parameters of the model in the cases
of cooperation and deviation (dotted line). Fig. 3 shows the population dynamics.
Fig. 4 presents the players’ controls (in this model parameters η1 and η2 and the
controls E1 and E2, respectively, are almost equal). Fig. 5 shows the players’ catch
(v1(t) = q1E1(t)(1 − s(t))x(t), v2(t) = q2E2(t)s(t)x(t)), respectively.
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Fig. 5. Players’ catch

Our scheme of incentive equilibrium. Fig. 6–11 present the difference between
the parameters in the cases of cooperation and deviation (dotted line). Fig. 6 shows
the population dynamics. Fig. 7 and 8 present the players’ controls. Notice, the sec-
ond player increases his fishing efforts and the first player decreases it. Fig. 9 shows
water area sharing (s). One can see that s decreases from 0.5 to 0.1. Fig. 10 and 11
present the players’ catch (v1(t) = q1E1(t)(1−s(t))x(t), v2(t) = q2E2(t)s(t)x(t)), re-
spectively. Notice, the first player’s catch increases slightly, while the second player’s
catch decreases quickly (from 1420 to 900 individuals per time instant).

According to the results of numerical modelling the center’s participation in op-
timal resource exploitation regulation has several interesting features. If the center’s
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strategy is to punish defaulter player until the end of the planning period, the hon-
est player has visible advantages even in comparison with cooperative equilibrium,
and his opponent incurs remarkable losses. The center’s strategy here is the terri-
tory sharing. The player who breaks the agreement achieved at the beginning of the
game is punished by gradually decreasing the harvesting territory. This scheme can
be easily realized in practice.

The economic feasibility of cooperation maintenance by the center is an ad-
vantage for players who keep agreement achieved at the beginning of the game.
Therefore, there is no need for monitoring the opponent’s actions that incur addi-
tional costs, and players completely rely on the center. In the case where players
control each other’s behavior, when the second player deviates the first player is
compelled to increase his fishing efforts too, i.e. to incur additional cost on large
number of ships’ operation. In the case where the center punishes deviating players,
the honest player reduces his fishing efforts conversely, but his catch increases that
is connected with catch territory change. Thus, he gets larger profit with smaller
expenses for ships’ operation.

Discrete-time model

A discrete-time dynamic game model of bioresource management problem is
considered in (Mazalov and Rettieva, 2008; Mazalov and Rettieva, 2009; Mazalov
and Rettieva, 2011). Let us divide the water area into two parts: s and 1− s, where
two players exploit the fish stock. The center (referee) shares the reservoir. The
players (countries or fishing firms) that exploit the fish stock during infinite time
on their territory are the participants of this game.

The fish population evolves according to the equation (the modified fish war
model (Levhari and Mirman, 1980)):

xt+1 = (εxt)
α , x0 = x , (21)

where xt ≥ 0 is the population size at time t ≥ 0, 0 < ε < 1 gives natural death
rate, 0 < α < 1 denotes natural birth rate.
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Suppose that the players’ utility functions are logarithmic. We consider the
problem of maximizing the infinite sum of discounted utilities for two players:

J1 =
∞
∑

t=0

δt1 ln((1 − s)xtu
1
t ) , J2 =

∞
∑

t=0

δt2 ln(sxtu
2
t ) , (22)

where 0 ≤ ui
t ≤ 1 gives player i’s fishing efforts at time t, 0 < βi < 1 denotes the

discount factor for player i, i = 1, 2.
To determine the cooperative equilibrium strategies uc

1, u
c
2 an approach of trans-

fering from finite to infinite resource management problem is applied (see
(Mazalov and Rettieva, 2011)).

Denote by sc the territory sharing under cooperation. Assume that the center
punishes players for a deviation from the cooperative equilibrium. If the first player
deviates the center increases sc, but if the second player deviates – decreases sc.

Theorem 2. The cooperative incentive equilibrium in the problem (21), (22) takes
the form

γ1(u2) =
ε(1− αδ)

2(1− s∗2)
, γ2(u1) =

ε(1− αδ)

2s∗1
,

where

s∗2 = sc −
sc

uc
2

(u2 − uc
2) , s∗1 = sc +

1− sc

uc
1

(u1 − uc
1) .

In (Mazalov and Rettieva, 2011) it was shown that in the case of a short-time
second player’s deviation on step k

uk
2 = uck

2 +∆k

and his returning to cooperation after, the next properties are satisfied:

1 The steady-state population size under deviation is equal to cooperative one
when the number of steps tends to infinity:

xotk
n → (εαδ)

α
1−α .

2 The conditions of the incentive equilibrium are satisfied

Jotk
1 ≥ Jc

1 , Jotk
2 ≤ Jc

2 ,

where Jc
i denotes the player i’s profit when both players apply cooperative

strategies, Jotk
i gives the player i’s profit when the second player deviates and

the center punishes her (i = 1, 2).
3 The player who deviates losses less when the number of steps grows

Dn+1 < Dn ,

where Dn = Jcn
2 − Jotk n

2 .

The developed approach can be applied for different population dynamics. In
particular, the cases where the growth rate depends on nature-conservative measures
of one of the players (Mazalov and Rettieva, 2011) were investigated. Namely, the
growth rule has the forms:

xt+1 = (εsxt)
α , 0 < α < 1

and
xt+1 = (εxt)

αs , 0 < α < 1 .
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5.2. Dynamic stability and conditions for rational behavior

Here, we don’t focus on time consistent IDP construction. Our aim is to under-
line that the each step rational behavior condition (12) is much easier to verify
than Yeung’s condition (11). To show it we check both conditions for a bioresource
management problem with two players (Mazalov and Rettieva, 2010).

Assume that the fish population evolves according to the equation (the fish war
model (Levhari and Mirman, 1980)):

xt+1 = (xt − u1
t − u2

t )
α , x0 = x , (23)

where xt ≥ 0 is the population size at time t ≥ 0, α denotes natural birth rate,
0 < α < 1, u1

t , u
2
t ≥ 0 give players’ catch at time t.

The players’ net revenues over the infinite time horizon take the forms

Ji =
∞
∑

t=0

δt ln(ui
t) , i = 1, 2 , (24)

where δ denotes the discount factor, 0 < δ < 1.
The cooperative payoff has the form

µ1J1 + µ2J2 , (25)

where µ1, µ2 denote the weighting coefficients, 0 ≤ µ1, µ2 ≤ 1, µ1 + µ2 = 1.
First, we determine the Nash equilibrium. The solution of the Bellman equation

Vi(x) = max
ui≥0

{lnui + δVi(x− u1 − u2)
α}, i = 1, 2, (26)

is sought in the next form

Vi(x) = Ai ln x+Bi, i = 1, 2,

and we suppose that the optimal strategies are linear ui = γix, i = 1, 2. Hence, from

equation (26) we get the optimal catch uN
1 = uN

2 =
1− a

2− a
x and the payoffs

V1(x) = V2(x) =
1

1− a
lnx+

1

1− δ
B,

where a = αδ, and

B = ln(1 − a) +
a

1− a
ln a−

1

1− a
ln(2− a).

To determine the cooperative payoff (25) we apply the Bellman principle again.
Similar reasoning leads to the total payoff under cooperation

V1, 2(x) =
1

1− a
lnx+

1

1− δ
B1, 2,

where

B1, 2 = µ1 lnµ1 + µ2 lnµ2 + ln(1− a) +
a

1− a
ln a.
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The dynamics under cooperation is

xt = xαt

0 a

t∑

j=1

αj

. (27)

The criterion of equal partition is considered as a solution of the cooperative
game (23)–(25). This solution coincides with the Shapley value in two-person game
and can be extended to the principle of cooperative gains’ proportional division.
The imputation in the problem (23)–(25) takes the form

ξ1(t)=ξ2(t)=
1

2
V1, 2=

1

2(1− a)
lnxt +

1

2(1− δ)
B1, 2,

where xt is obtained in (27).

Theorem 3. The incentive conditions for rational behavior are fulfilled in the prob-
lem (23)–(25).

Proof. First, verify the each step rational behavior condition (12). Rewrite it in the
form

−
1

2
lnxt +

1

2

[

µ1 lnµ1 + (1 − µ1) ln(1− µ1)−

− ln(1− a) +
2

1− a
ln(2− a)

]

≥ 0 .

It is easy to show that the expression in square brackets is greater than
2

1−a
ln(2− a)− 1 > 0. This inequality follows from

((1 +
1

b
)b)2 > e ,

where b = 1
1−a

.
Now, verify Yeung’s condition (11). For presented model it takes the form

at−1
2(1−a) lnx0 +

1
2(1−a) ln a{δ

t
t
∑

j=1

αj − αδ(1−δt)
1−δ

}+

+ 1−δt

2(1−δ) [µ1 lnµ1 + (1− µ1) ln(1− µ1)−

− ln(1− a) + 2
1−a

ln(2− a)] ≥ 0 .

The first expression and the expression in square brackets as was already proved
are positive. Now, we need to show that

f(t) = δt
t

∑

j=1

αj −
αδ(1 − δt)

1− δ
< 0 , ∀t ≥ 1 .

Notice that f(1) = 0. Therefore, it is sufficient to prove that f(t) is decreasing.

f ′(t) = δtα
ln δ(1− αδ) − αt ln(αδ)(1 − δ)

(1 − α)(1− δ)
< 0 .

Denote f1(t) = ln δ(1 − αδ) − αt ln(αδ)(1 − δ). This function is decreasing
f ′
1(t) < 0. To check that f1(1) < 0 consider

f2(α, δ)=f1(1)=ln δ(1 − αδ)− α ln(αδ)(1 − δ)=
= ln(αδ)(1 − α) + (αδ − 1) lnα .
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Function f2(α, δ) is increasing with respect to δ and α since
∂f2(α, δ)

∂δ
=

1− α

δ
+

α ln(α) > 1−α+α ln(α) > 0 and
∂f2(α, δ)

∂α
= δ−1−ln(αδ)+δ lnα > ln(α)(δ−1) > 0.

Finally, f2(1, δ) = f2(α, 1) = 0, therefore f2(α, δ) ≤ 0.

As one can see in this simple case, the each step rational behavior condition (12)
is easier to verify than the irrational behavior proofness condition (11).

5.3. Characteristic function construction

In the paper (Mazalov and Rettieva, 2010) we investigate the model with many
players and infinite planning horizon in contrast to the traditional fish war model
with two players (Levhari and Mirman, 1980). The characteristic function for co-
operative game is constructed in two unusual forms.

Let n players (countries or fishing firms) exploit the fish stock during infinite
time horizon. The dynamics of the fishery is described by the equation

xt+1 = (εxt −
n
∑

i=1

uit)
α , x0 = x , (28)

where xt ≥ 0 is the population size at time t ≥ 0, ε ∈ (0, 1) denotes natural death
rate, α ∈ (0, 1) represents natural birth rate, uit ≥ 0 gives the catch of player i,
i = 1, . . . , n.

Suppose that the player i’s utility function is logarithmic. Then the players’ net
revenues over infinite time horizon are defined by

Ji =
∞
∑

t=0

δt ln(uit) , i = 1, . . . , n , (29)

where 0 < δ < 1 denotes the common discount factor.
To construct characteristic function in the first model we suppose that the play-

ers outside coalition K switch to their Nash strategies, which were determined for
the initial noncooperative game (Petrosjan and Zaccour, 2003). It is the case where
players have no information about the fact that coalition was formed. In the sec-
ond model players outside coalition K determine new Nash strategies in the game
with N\K players. This case corresponds to the situation where players know that
coalition K is formed.

Model without information. First, we determine the Nash equilibrium and get
the optimal catch

uN
i =

1− a

n− a(n− 1)
εx (30)

and the payoffs

Vi(x) =
1

1− a
lnx+

1

1− δ
Bi , i = 1, . . . , n , (31)

where

Bi =
1

1− a
ln
( ε

n− a(n− 1)

)

+ ln(1− a) +
a

1− a
ln a , a = αδ .
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Now, we determine the payoff of any coalition K with k players. Suppose that
players outside coalition K apply their Nash strategies determined in (11). Hence,
we get the optimal catch

uK
i =

(1− a)(k − a(k − 1))

k(n− a(n− 1))
εx , i ∈ K (32)

and the payoff of coalition K

VK(x) =
k

1− a
lnx+

1

1− δ
BK , (33)

where

BK =
k

1− a
ln
(ε(k − a(k − 1))

n− a(n− 1)

)

+ k(ln(1 − a)− ln k) +
ka

1− a
ln a .

Last, we determine the payoff and optimal strategies in the case of full cooper-
ation (grand coalition). From (15) and (16) we get

uI
i =

(1− a)

n
εx , i = 1, . . . , n ,

VI(x) =
n

1− a
lnx+

1

1− δ
BI , (34)

where

BI = nBi + n(
1

1− a
ln(n− a(n− 1))− lnn) .

Finally, we have determined the characteristic function for the game starting at
time t from the state x

V (L, x, t) =















0, L = 0 ,
V ({i}, x, t) = Vi(x), L = {i} ,
V (K,x, t) = VK(x), L = K ,

V (I, x, t) = VI(x), L = I ,

(35)

where Vi(x), VK(x), VI(x) are of the forms (12), (16) and (20).
In (Mazalov and Rettieva, 2010) it was proved that the characteristic function

(22) is superadditive function.
Next, the imputation set should be determined. In (Mazalov and Rettieva, 2010)

it was proved that the vector β(t) = (β1(t), . . . , βn(t)), where

βi(t) = ξi(t)− δξi(t+ 1) , i = 1, . . . , n (36)

is time-consistent imputation distribution procedure.
Here, the Shapley value is adopted as the cooperative optimality principle. It

takes the form

ξi(t) =
1

1− a
lnxt +

1

1− δ
(Bi +Bξ) , i = 1, . . . , n , (37)

where

Bξ =
1

1− a
ln(1 + (n− 1)(1 − a))− lnn ≥ 0 .
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Theorem 4. The Shapley value (23) is time-consistent and both conditions for
rational behavior ((11) and (12)) are satisfied.

Proof. From (4) we get

βi(t) =
1

1− a
(lnxt − δ lnxt+1) +Bi +Bξ , i = 1, . . . , n .

Yeung’s condition (11) takes the form

1

1− a
(ln x0 − δt lnxt) +

1− δt

1− δ
(Bi +Bξ) ≥

1

1− a
(lnx0 − δt ln xt) +

1− δt

1− δ
Bi

and is fulfilled as Bξ ≥ 0.
The each step rational behavior condition (12) takes the form

1

1− a
(lnxt − δ lnxt+1) +Bi +Bξ ≥

1

1− a
(lnxt − δ lnxt+1) +Bi

and is also valid as Bξ ≥ 0.

Model with informed players. Consider the case where players outside coali-
tion K determine new Nash strategies in the game with N\K players. This case
corresponds to the situation where players know that coalition K is formed.

Hence, the difference from the previous case is only in determining VK .
For players from coalition K we solve the Bellman equation

ṼK(x) = max
ui∈K

{
∑

i∈K

lnui + δṼK(εx−
∑

i∈K

ui −
∑

i∈N\K

ũN
i )α},

where ũN
i , i ∈ N\K, corresponds to the solution of the Bellman equation for players

outside the coalition K

Ṽi(x) = max
ũi∈N\K

{ln ũi + δṼi(εx−
∑

i∈K

ui −
∑

i∈N\K

ũi)
α} , i ∈ N\K .

Now, we get the optimal catch of coalition K members

ũK
i =

1− a

k(1 + (n− k)(1− a))
εx , i ∈ K

and the payoff of coalition K

ṼK(x) =
k

1− a
lnx+

1

1− δ
B̃K , (38)

where

B̃K = k(
1

1− a
ln
( ε

1 + (n− k)(1− a)

)

+ ln(1− a) +
a

1− a
ln a− ln k) .

Hence, the characteristic function for the game starting at time t from the state
x will be of the form

V (L, x, t) =















0, L = 0 ,
V ({i}, x, t) = Vi(x), L = {i} ,

V (K,x, t) = ṼK(x), L = K ,

V (I, x, t) = VI(x), L = I ,

(39)

where Vi(x), ṼK(x), VI(x) are of the forms (12), (27) and (20).
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Theorem 5. The characteristic function (39) has a superadditive property if k, l ≥
n+1
3 .

This result shows that it is profitable to merge two coalitions when both of them
have sufficiently large number of participants.

Similarly to the first model we determine the Shapley value and time-consistent
imputation distribution procedure.

From (27) we get

ξi(t) =
1

1− a
lnxt +

1

1− δ
(Bi +Bξ) , i = 1, . . . , n , (40)

where

Bξ =
∑

K∈N

(n− k)!(k − 1)!

n!

[

k(
1

1− a
ln(

1 + (n− 1)(1− a)

1 + (n− k)(1− a)
)− ln k)−

−(k − 1)(
1

1− a
ln(

1 + (n− 1)(1− a)

1 + (n− k + 1)(1− a)
)− ln(k − 1))

]

=

=

n
∑

k=1

1

n

[

k(
1

1− a
ln(

1 + (n− 1)(1− a)

1 + (n− k)(1− a)
)− ln k)−

−(k − 1)(
1

1− a
ln(

1 + (n− 1)(1− a)

1 + (n− k + 1)(1− a)
)− ln(k − 1))

]

=

=
1

1− a
ln(1 + (n− 1)(1− a))− lnn .

The proof that the Shapley value is time-consistent and both conditions for
rational behavior are satisfied is similar to Theorem 4.

Some properties of the characteristic function construction’s variants were proved
in (Mazalov and Rettieva, 2010):

1 The second model is better for free-riding.
2 The profit of coalition K in the first model is greater than in the second model.
3 The first model in the case of coalition K formation is better for population
size.

Fig. 12 presents time-consistent imputation distribution procedure (βi(t)) for
player i (dark line), player i’s Nash profit V{i} (bright line) and her Shapley value
ξi(0) (dotted line), i = 1, . . . , n.

Notice that the distribution procedure is greater than the profit in noncoopera-
tive case at every time instant. Hence, figure shows how to distribute the cooperative
gain (the Shapley value) along the game path.

Now, we show the difference between the two approaches of coalition K forma-
tion.

Fig. 13 presents the population dynamics in the case of non-informed players
(dark line) and in the case of informed players (bright line). As one can notice the
population size in the first case is larger. This result shows that for ecological systems
the situation where coalition is formed and other players don’t have information
about it is preferable.
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Fig. 14 presents the difference between the coalitionK’s profits in two considered
cases. Clearly, it is profitable for coalition to be formed insensibly.

Fig. 15 illustrates the difference between the profits of player i outside the coali-
tion K in two considered cases. Notice, the second model is better for free-riding.
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Fig. 15. Profit of player i outside K

5.4. Coalition stability

In (Rettieva, 2011; Rettieva, 2012) we consider a discrete-time game model re-
lated to a bioresource management problem (fish catching). The reservoir is di-
vided into regions where players (countries or fishing firms) of two types harvest
the fish stock. We assume that there are migratory exchanges between the regions
(Fisher and Mirman, 1992; Fisher and Mirman, 1996). So the stock in one region
(where players of type 1 exploit the fish) depends not only on the previous stock
and catch in the region, but also on the stock and catch in the other region (where
players of type 2 exploit the fish).

Here, in contrast to the grand coalition formation, we consider the coalition
structure where players of each type can form a coalition. Therefore, there can
be two coalitions and single players of each type in the game. The sizes of stable
coalitions are the subjects of investigation.

Two ways to construct the players’ optimal strategies are considered: all play-
ers decide simultaneously (Nash-Cournot strategies) or members of coalitions are
assumed to be the leaders and players decide sequentially (Stackelberg strategies).
Furthermore, the characteristic function is constructed in an unusual form: players
outside the coalition K determine new Nash strategies in the game with N\K play-
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ers. This case corresponds to the situation when players know that coalition K is
formed (see Section 5.3).

We divide a fishery into regions, which are exploited by two types of players:
i ∈ N = {1, . . . , n} and j ∈ M = {1, . . . ,m}. The players (countries or fishing
firms) that harvest the fish stock are the participants of the game.

The fish populations evolve according to the system of equations (the great fish
war model (Fisher and Mirman, 1996)):

{

xt+1 = xα1

t y
β1

t , x0 = x ,

yt+1 = yα2

t x
β2

t , y0 = y ,

where xt ≥ 0 is the population size in the first region at time t ≥ 0, yt ≥ 0 denotes
the population size in the second region at time t ≥ 0, 0 < αi < 1 gives natural
birth rate, 0 < βi < 1 denotes coefficients of migration between the regions, i = 1, 2.

Here, αi represents the direct effect of the stock on the stock in this territory
in the next period. βi represents the effect of migration between two parts of the
reservoir.

Let N = {1, . . . , n} players exploit the stock xt and M = {1, . . . ,m} players
harvest the stock yt.

Suppose that the utility function of players are logarithmic. Then the players’
net revenues over the infinite time horizon are defined by

Ji =

∞
∑

t=0

δt ln(uit) , i ∈ N , Jj =

∞
∑

t=0

δt ln(vjt) , j ∈ M , (41)

where uit ≥ 0, vjt ≥ 0 give players’ catch at time t ≥ 0 (i ∈ N , j ∈ M), 0 < δ < 1
denotes the common discount factor.

Each player is interested in maximizing the sum of her discounted utility. And
the dynamics become















xt+1 =
(

xt −
n
∑

i=1

uit

)α1
(

yt −
m
∑

j=1

vjt

)β1

, x0 = x ,

yt+1 =
(

yt −
m
∑

j=1

vjt

)α2
(

xt −
n
∑

i=1

uit

)β2

, y0 = y .
(42)

Nash-Cournot strategies. Players outside coalition K(L) determine new Nash
strategies in the game with N\K (M\L) players.

Players wish to maximize the following functionals

Jk =

∞
∑

t=0

δt
[

∑

i∈K

ln(uk
it)

]

, J l =

∞
∑

t=0

δt
[

∑

j∈L

ln(vljt)
]

,

JN
i =

∞
∑

t=0

δt ln(uN
it ) , i ∈ N\K, JN

j =

∞
∑

t=0

δt ln(vNjt ) , j ∈ M\L .

Stackelberg strategies. Assume that members of coalitions are the leaders and
players decide sequentially. Hence, at first, singletons determine the Nash optimal
strategies under the assumption that cooperative strategies are known. Then, the
coalition members obtain their optimal catch.
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I) Coalition members’ strategies uk
i , i ∈ K and vlj , j ∈ L are fixed. Singletons

wish to maximize their net revenues

JN
i =

∞
∑

t=0

δt ln(uit) , i ∈ N\K, JN
j =

∞
∑

t=0

δt ln(vjt) , j ∈ M\L

under the dynamics















xt+1 =
(

xt −
∑

i∈K

uk
it −

∑

i∈N\K

uit

)α1
(

yt −
∑

j∈L

vljt −
∑

j∈M\L

vjt

)β1

, x0 = x ,

yt+1 =
(

yt −
∑

j∈L

vljt −
∑

j∈M\L

vjt

)α2
(

xt −
∑

i∈K

uk
it −

∑

i∈N\K

uit

)β2

, y0 = y .

Denote by ũN
i , i ∈ N\K and ṽNj , j ∈ M\L, the obtained strategies.

II) Coalition members maximize the joint payoff

Jk =

∞
∑

t=0

δt
[

∑

i∈K

ln(uit)
]

, J l =

∞
∑

t=0

δt
[

∑

j∈L

ln(vjt)
]

under the dynamics















xt+1 =
(

xt −
∑

i∈K

uit −
∑

i∈N\K

ũN
it

)α1
(

yt −
∑

j∈L

vjt −
∑

j∈M\L

ṽNjt

)β1

, x0 = x ,

yt+1 =
(

yt −
∑

j∈L

vjt −
∑

j∈M\L

ṽNjt

)α2
(

xt −
∑

i∈K

uit −
∑

i∈N\K

ũN
it

)β2

, y0 = y .

Denote by ũk
i , i ∈ K and ṽlj , j ∈ L, the obtained coalition members’ strategies.

In (Rettieva, 2012) it was proved that the payoff of a singleton is greater un-
der Nash-Cournot strategies than under Stackelberg strategies and for a coalition
member the opposite result is valid.

The fact that the payoff of a coalition member is greater in the case were two
coalitions K and L form than in the case were players join into one mixed coalition
K + L also was proved.

Then we checked the internal and external stability of our coalitions
(D’Aspremont et al., 1983). Unfortunately, in our model, just like in the classical
papers (Barrett, 1994; Carraro and Siniscalco, 1992), only small-size coalitions are
internally stable (for Nash-Cournot strategies). For Stackelberg strategies, on the
other hand, coalitions are internally, but not externally stable.

We adopt a new coalition stability approach (15), (16) for presented model (41),
(42) and get the coalition stability conditions in the forms

Ck

k
−

l
∑

h=0

p
∑

s=1

(p+ l − h− s)!(h+ s− 1)!(p− 1)!l!

(p+ l)!(p− s)!(s− 1)!(l − h)!h!
[Cs+h − Cs−1+h] ≥ 0 , (43)

Cl

l
−

k
∑

s=0

q
∑

h=1

(k + q − h− s)!(h+ s− 1)!(q − 1)!k!

(k + q)!(q − h)!(h− 1)!(k − s)!s!
[Cs+h − Cs+h−1] ≥ 0 , (44)

where the parameters are given in (Rettieva, 2012).
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We consider this model for the set of parameters which are typical for the fish
species in Karelian lakes and obtain the next results:

For Nash-Cournot strategies only the coalitions of size 1 (k = 1 or l = 1) are
internally stable. External stability is valid for all k if n > 2 (for all l if m > 2).

For Stackelberg strategies internal stability is valid for all k if n < 35 (for all l
if m < 51). Unfortunately, there are no externally stable coalitions.

Tables 1 and 2 present the coalition structures which are stable in the sense of
coalitional stability (43), (44). We use the notation + for the coalitions that are
stable for all p ∈ [1, k] and q ∈ [1, l]. Double numbers (first for p and second for q)
represent the coalitions that are stable for p and q larger or equal these parameters.

k/l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + 1,3 1,4 1,5 1,6 1,7 1,8 1,8 1,9 1,9 1,8 1,7
2 + + + + + + 1,3 1,4 1,5 1,6 1,7 1,7 1,7 1,7 1,5
3 + + + + + + + + + 1,4 1,5 1,5 1,6 1,6 1,4
4 + + + + + + + + + + + 1,3 1,4 1,4 1,3
5 3,1 + + + + + + + + + + + + + +
6 4,1 + + + + + + + + + + + + + +
7 4,1 + + + + + + + + + + + + + +
8 5,1 + + + + + + + + + + + + + +
9 5,1 + + + + + + + + + + + + + +
10 4,1 + + + + + + + + + + + + + +

Table 1. Nash-Cournot strategies

k/l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + 1,2 1,2 1,3 1,3 1,4 1,4 1,5 1,5 1,6 1,6 1,7 1,7 1,7
2 + + 2,2 2,2 2,2 2,3 2,3 2,4 2,4 2,5 2,5 2,6 2,5 2,7 2,7
3 2,1 + 2,2 2,2 2,2 2,3 2,3 2,4 2,4 2,4 2,5 2,5 2,5 2,6 2,7
4 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,4 2,4 2,5 2,5 2,5 2,6 2,6
5 3,1 2,2 2,2 2,2 2,2 2,2 2,3 2,3 2,4 2,4 2,4 2,5 2,5 2,6 2,5
6 3,1 3,3 3,2 2,2 2,2 2,2 2,3 2,3 2,3 2,4 2,4 2,5 2,5 2,5 2,5
7 4,1 3,2 3,2 3,2 3,2 2,2 2,3 2,3 2,3 2,4 2,4 2,4 2,5 2,5 2,5
8 5,1 4,2 4,2 3,2 3,2 3,2 3,3 3,3 2,3 2,4 2,4 2,4 2,5 2,5 2,4
9 5,1 5,2 4,2 4,2 4,2 4,2 3,3 3,3 3,3 3,3 2,4 2,4 2,4 2,5 2,4
10 6,1 5,2 5,2 5,2 4,2 4,2 4,2 4,3 3,3 3,3 3,3 3,4 2,4 2,4 2,3

Table 2. Stackelberg strategies

For intercoalition stability (p = 1 and q = 1) even the coalition structure con-
sisting of all players (k = 10, l = 15) is stable for Nash-Cournot strategies. For
Stackelberg strategies the maximal stable coalition structure is (k = 3, l = 2).

For the situations where a set of coalition’s members can move to other coalition,
one can notice that the stability concept is valid for different coalitions’ sizes (as
coalition size is larger the set of it’s members who have an incentive to move is
larger too). For example, the coalition structure k = 3, l = 12 is protected against
the possible moves of more than 5 coalition L’s members and it is unstable for q < 5
(Nash-Cournot strategies). For Stackelberg strategies this coalition structure is also
unstable (p ≥ 2) since it is profitable for any coalition K’s member to move to
coalition L.

From the results of numerical modelling it can be noticed the load on the stock
is minimal when players join into one coalition (cooperative case). However, the
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formation of grand coalition is not natural for asymmetric players. Furthermore, we
proved that it is less profitable for players to join into one mixed coalition that to
form two coalitions.

Hence, to minimize the load on the stock the coalition structure should consist of
large number of players and be stable. We give some advices for ecological managers
to improve populations’ growth in the case of asymmetric explores.

For Nash-Cournot strategies the internal stability can’t be guaranteed, but it is
protected from individual moves form one coalition to another (intercoalition stabil-
ity). For Stackelberg strategies the coalitions are internally stable, but intercoalition
stability condition is not valid.

Therefore, the manager first should determine the coalition formation process
and then:

if it is Nash-Cournot, then one should use some mechanisms to internally stabi-
lize the coalitions: it can be fines for breaking off the cooperative agreement, punish-
ment schemas like incentive equilibrium (Mazalov and Rettieva, 2010) or transfers
schemes. If it is successfully done then it is unnecessary to worry about the possible
players’ moves for one coalition to another because the coalitions are intercoalition-
ally stable almost for all the parameters.

if it is Stackelberg, then one should prohibit individual moves from one coalition
to another (it can be done by the government laws or punishment schemes, again).
Then the coalition structure will be stable for most of the parameters in the sense of
internal and coalition stability. The manager should not worry about the external
stability because the more players decide to enter coalitions the larger population
size will be.

5.5. Different discount factors

Traditionally, cooperative behavior analysis in bioresource management problems
rests on the assumption of identical discount factors for all players. In the papers
(Rettieva, 2014; Mazalov and Rettieva, 2014; Mazalov and Rettieva, 2015) we seek
an optimal compromise in the case of heterogeneous goals pursued by players (dif-
ferent discount factors).

Consider a discrete-time game-theoretic bioresource management model with an
identical planning horizon of both players and their different discount factors.

Suppose that two players (countries or fishing firms) harvest a fish stock on a
finite planning horizon [0, n]. The fish population evolves according to the equation

xt+1 = (εxt − u1t − u2t)
α , x0 = x , (45)

where xt ≥ 0 is the population size at time t ≥ 0, ε ∈ (0, 1) denotes the natural
survival rate, α ∈ (0, 1) indicates the growth rate, and uit ≥ 0 gives the catch of
player i, i = 1, 2.

By assumption, the players possess the logarithmical payoff functions and differ-
ent discount factors. In other words, the payoff functions of the players are defined
by

Ji =

n
∑

t=0

δti ln(uit) , (46)

where δi ∈ (0, 1) denotes the discount factor of player i, i = 1, 2.
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Theorem 6. The Nash equilibrium strategies in the problem (45), (46) have the
form

uN
1t =

εa2
t−1
∑

j=0

a
j
1

t
∑

j=0

a
j
1

t
∑

j=0

a
j
2 − 1

x , uN
2t =

εa1
t−1
∑

j=0

a
j
2

t
∑

j=0

a
j
1

t
∑

j=0

a
j
2 − 1

x ,

where ai = αδi , i = 1, 2 , t = 1, . . . , n.
The individual payoffs of the players make up

V N
i (x, δi) =

n
∑

j=0

(ai)
j lnx+

n
∑

j=1

(δi)
n−jAij − (δi)

n ln k , i = 1, 2 , (47)

Alj=ln
[(

ε
j
∑

k=1

akp

j
∑

k=0

ak1

j
∑

k=0

ak2−1

)

j∑

k=0

ak
l

(

j
∑

k=1

akl )

j∑

k=1

ak
l
]

, l, p = 1, 2, l 6= p , j = 1, . . . , n. (48)

Multi-step game and recursive Nash bargaining solution. Define cooperative be-
havior in this model by a recursive bargaining procedure (Rettieva, 2014). At each
step, cooperative strategies are found via a bargaining solution, where noncooper-
ative payoffs play the role of status quo points.

Theorem 7. The cooperative payoffs in the problem (45), (46) possess the form

Hc
1n(γ

c
11, . . . , γ

c
1n, γ

c
21, . . . , γ

c
2n;x) =

n
∑

j=0

a
j
1 ln(x)− δn1 ln(k) +

+
n−1
∑

j=0

δ
n−j
1

[

ln(γc
1n−j) +

n−j
∑

i=1

ai1 ln(ε− γc
1n−j − γc

2n−j)
]

,

Hc
2n(γ

c
11, . . . , γ

c
1n, γ

c
21, . . . , γ

c
2n;x) =

n
∑

j=0

a
j
2 ln(x)− δn2 ln(1− k) +

+
n−1
∑

j=0

δ
n−j
2

[

ln(γc
2n−j) +

n−j
∑

i=1

ai2 ln(ε− γc
1n−j − γc

2n−j)
]

.

The cooperative strategies can be evaluated recursively using the equations

γc
2n

n−1
∑

j=0

(

δ
n−j
2

[

ln(γc
2n−j)+

n−j
∑

i=1

ai2 ln(ε−γc
1n−j−γc

2n−j)
]

−δ
j
2A2n−j

)

=

=γc
1n

n−1
∑

j=0

(

δ
n−j
1

[

ln(γc
1n−j)+

n−j
∑

i=1

ai1 ln(ε−γc
1n−j−γc

2n−j)
]

−δ
j
1A1n−j

)

subject to the constraint

γc
2n =

ε− γc
1n

n
∑

i=0

ai1

n
∑

i=0

ai2

,
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where Aij are defined by (48).

In (Rettieva, 2014; Mazalov and Rettieva, 2014) we have performed numerical
simulation for a 20-step game. In Fig. 16-18 the black line corresponds to cooperative
behavior and grey line to the Nash equilibrium.
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Fig. 16. Population size Fig. 17. Player 1’s catch Fig. 18. Player 2’s catch

Fig. 16 demonstrates the dynamics of the population size, whereas Figs. 17
and 18 show the catch of each player. Note that cooperation appears beneficial
to both players and, moreover, improves the ecological situation owing to sparing
bioresource exploitation.

Fig. 19. The cooperative payoffs Fig. 20. Player 2’s payoffs

Compare players’ payoffs under different discount factors. Fig. 19 illustrates the
payoffs V nc

1 (x, δ1) and V nc
2 (x, δ2) for δ1 = 0.1, . . . , 0.9 and δ2 = 0.1, . . . , 0.9. Clearly,

a player with a higher discount factor gains more utility from cooperation. And the
players obtain identical payoffs in the case of coinciding discount factors.

The cooperative behavior design approach suggested in this paper leads to a
player’s cooperative payoff which is above or equal to (under some parameters)
its Nash equilibrium counterpart. The payoffs of player 2 under cooperative and
egoistic behavior are presented in Fig. 20. Hence, the introduced approach stimulates
cooperation, which is not always the case within other design methods of cooperative
strategies and payoffs (Breton and Keoula, 2014).
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5.6. Different fixed planning horizons

The harvesting process with the dynamics (45) and different planning horizons was
considered in (Mazalov and Rettieva, 2014; Rettieva, 2015). Players 1 and 2 harvest
the fish stock during n1 and n2 steps, respectively. For the sake of definiteness,
suppose that n1 < n2. Therefore, in this model players enter cooperation on the
time period [0, n1] and we have to find their cooperative strategies. After step n1 till
step n2 player 2 continues the harvesting process individually. Hence, the players’
payoffs are defined by

J1 =

n1
∑

t=0

δt1 ln(u
c
1t), J2 =

n1
∑

t=0

δt2 ln(u
c
2t) +

n2
∑

t=n1+1

δt2 ln(u
a
2t) , (49)

where uc
i (i = 1, 2) denote the cooperative strategies and ua

2 indicates the strategy
of player 2 during individual catch.

To construct the cooperative strategies and payoffs of the players, we apply the
Nash bargaining solution for the whole duration of the game. Thus, it is required
to solve the following optimization problem:

(V c
1 (x, δ1)[0, n1]− V N

1 (x, δ1)[0, n1]) ·

·(V c
2 (x, δ2)[0, n1]+V ac

2 (xcn1 , δ2)[n1, n2]−

−V N
2 (x, δ2)[0, n1]−V aN

2 (xNn1 , δ2)[n1, n2]) =

= (

n1
∑

t=0

δt1 ln(u
c
1t)− V N

1 (x, δ1)[0, n1])(

n1
∑

t=0

δt2 ln(u
c
2t) +

n2
∑

t=n1+1

δt2 ln(u
a
2t)−

−V N
2 (x, δ2)[0, n1]−V aN

2 (xNn1 , δ2)[n1, n2])→ max
uc
1t,u

c
2t≥0

,

where V N
i (x, δi)[0, n1] represent the Nash equilibrium payoffs defined by (47) (with

n = n1), V
ac
2 (xcn1 , δ2)[n1, n2] gives the payoff of player 2 owing to its individual

harvesting after n1 steps of cooperative behavior, and V aN
2 (xNn1 , δ2)[n1, n2] is the

payoff of player 2 owing to its individual harvesting after n1 steps of noncooperative
behavior.
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Theorem 8. The cooperative payoffs in the problem (45), (49) make up

Hc
1n1

(γc
11, . . . , γ

c
1n1

, γc
21, . . . , γ

c
2n1

;x) =

=
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∑
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∑
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1
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1 ln k =

=
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1 ln k ,
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c
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c
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;x) =

=
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∑
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a
j
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δ
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1 ln(γc
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∑
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2j) +

+

n
∑
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δ
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2 Bj + δn1

2

n
∑
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a
j
2 ln(1− k) =

=
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2

1− a2
lnx+
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∑

j=1

δ
n1−j
2 ln(γc

2j) +

n1
∑
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δ
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2
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+
n
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δ
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2 Bj + δn1

2

1− an+1
2
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where

Bj =

j
∑

l=0

al2 ln
( ε

j
∑

p=0
a
p
2

)

+

j
∑

l=1

al2 ln
(

j
∑

p=1

a
p
2

)

, j = 1, . . . , n, n = n2 − n1 .

The cooperative strategies of the players are related via

γc
1t=

εγc
11

n+t
∑

j=t−1

a
j
2

εat−11

n+t
∑

j=0

a
j
2+γc

11(
n+t
∑

j=t−1

a
j
2

t
∑

j=0

a
j
1−(at−11 +at1)

n+t
∑

j=0

a
j
2)

, γc
2t=

ε− γc
1t

t
∑

j=0

a
j
1

n+t
∑

j=0

a
j
2

.

The strategy of player 1 at the last step (the quantity γc
11) follows from one of

the first-order optimality conditions.

We present the simulation results for the planning horizons n1 = 10 and n2 = 20.
In Fig. 21-23 the black line corresponds to cooperative behavior and grey line to
the Nash equilibrium.

The dynamics of the population size on the whole planning horizon [0, n2] can
be observed in Fig. 21. Clearly, cooperation improves the ecological situation.

Figs. 22 and 23 show the catch of player 1 on the time period [0, n1] and the
catch of player 2 on the time periods [0, n1] and [n1, n2], respectively. Interestingly,
player 2 has a smaller catch in cooperation than in the Nash equilibrium, but this
is compensated by its individual harvesting at subsequent steps.

And now, compare the players’ payoffs for different planning horizons in the case
when player 1 leaves the game earlier. Fig. 24 illustrates the payoffs V c

1 (n1, x) and



278 Anna N. Rettieva

0.4

0.5

0.6

0.7

0.8

xc

2 4 6 8 10 12 14 16 18 20

Time t

Fig. 21. Population size Fig. 22. Player 1’s payoff Fig. 23. Player 2’s payoff

Fig. 24. The cooperative payoffs Fig. 25. Player 2’s payoffs

V c
2 (n2, x) for n2 = 2, . . . , 10 and n1 = 1, . . . , n2 − 1. Obviously, the closer is n1 to

n2, the smaller is the difference between the payoffs.

Finally, we underline that the suggested cooperative behavior design guarantees
that the cooperative payoff of a player is greater or equal to (under some parameters)
its payoff in the Nash equilibrium. Fig. 25 shows the payoffs of player 2 under
cooperative and noncooperative behavior for different planning horizons. This also
manifests that the suggested approach stimulates cooperative behavior.

5.7. Random planning horizons

In (Mazalov and Rettieva, 2015) we explore the model (45), (49), where players
possess heterogeneous discount factors and, moreover, heterogeneous planning hori-
zons. By assumption, players stop cooperation at random steps: external stochastic
processes can cause cooperative agreement breach.

Suppose that players 1 and 2 harvest the fish stock during n1 and n2 steps,
respectively. Here n1 represents a discrete random variable taking values {1, . . . , n}
with the corresponding probabilities {θ1, . . . , θn}. Similarly, n2 is a discrete random
variable with the value set and the probabilities {ω1, . . . , ωn}. We believe that the
planning horizons are independent. Therefore, during the time period [0, n1] or
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[0, n2] the players enter cooperation, and the problem consists in evaluating their
strategies.

The players’ payoffs are determined via the expectation operator:

H1=E
{

n1
∑

t=1

δt1 ln(u1t)I{n1≤n2} +
(

n2
∑

t=1

δt1 ln(u1t)+
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∑
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a
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}

=

=
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∑
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[
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(
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δt1 ln(u1t)+
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∑
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δt1 ln(u
a
1t)

)]

,(50)

H2=E
{
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∑
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(
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δt2 ln(u2t)+
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∑
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)
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}
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n
∑
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[
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∑
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∑

n1=1

θn1

(
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a
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)]

,(51)

where ua
it specifies the strategy of player i when its partner leaves the game, i = 1, 2.

To define cooperative behavior, we employ the Nash bargaining solution; the role
of status quo points belongs to the noncooperative payoffs of players. Therefore, we
begin with construction of Nash equilibrium strategies.

As step τ occurs in the game, the Bellman functions V N
i (τ, x), i = 1, 2 of players

acquire the form

V N
1 (τ, x) = max

uN
1τ ,...,u

N
1n

{

n
∑
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∑
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∑
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1 (τ, n1)
]}

,
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N
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[

n
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θn1
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∑
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∑
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δt2 ln(u
N
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t=τ

δt2 ln(u
N
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]}

,

where

V a
i (τ, ni)=

ni
∑

t=τ

δti ln(u
a
it)=

ni−τ
∑

j=0

a
j
i lnx+

ni−τ
∑

j=1

δ
ni−τ−j
i D

j
i , i=1, 2,

D
j
i =

j
∑

l=0

ali ln
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+

j
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ali ln(

j
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p=1

a
p
i ) , i = 1, 2.

are the players’ payoffs provided that player i, i = 1, 2 harvests the fish stock
individually.
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We get a relationship between V N
i (τ, x) and V N

i (τ + 1, x) of the form

V N
1 (τ, x) = δτ1 ln(u

N
1τ ) + P τ+1

τ V N
1 (τ + 1, x) + C1τ

n
∑

n1=τ+1

θn1

n1
∑

t=τ

δt1 ln(u
a
1t) ,

V N
2 (τ, x) = δτ2 ln(u

N
2τ ) + P τ+1

τ V N
2 (τ + 1, x) + C2τ

n
∑
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ωn2

n2
∑
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δt2 ln(u
a
2t) ,

where

P τ+1
τ =

n
∑
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ωl

n
∑

l=τ
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n
∑
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θl

n
∑
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ωτ
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∑
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1
n
∑

l=τ

θl

, C2τ =
θτ
n
∑
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1
n
∑

l=τ

ωl

.

Following the standard approach in fish war models, we search for the payoff
functions V N

i (τ, x) = Aτ
i lnx+Bτ

i and linear players’ strategies uN
iτ = γN

iτ x, i = 1, 2.

Theorem 9. The Nash equilibrium strategies in the problem (45), (50), (51) with
random planning horizons take the form

γN
1τ =

εδτ1A
τ
2

δτ1A
τ
2 + δτ2A

τ
1 + αAτ

1A
τ
2P

τ+1
τ

, γN
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εδτ2A
τ
1

δτ1A
τ
2 + δτ2A

τ
1 + αAτ

1A
τ
2P

τ+1
τ

,

noncooperative payoffs make up

V N
i (τ, x) = Aτ

i lnx+Bτ
i , i = 1, 2 , (52)

where
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1 =

δτ1 + C1τ
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.

To construct the cooperative strategies and payoffs of the players, we adopt the
Nash bargaining solution for the whole duration of the game. Consequently, it is
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required to solve the problem

(V c
1 (1, x)− V N

1 (1, x))(V c
2 (1, x)− V N

2 (1, x)) =

= (
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θn1

[

n
∑

n2=n1

ωn2

n1
∑

t=1

δt1 ln(u
c
1t) +

+

n1−1
∑
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∑
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a
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∑
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c
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+
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∑
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c
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a
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− V N
2 (1, x)) → max

uc
1t,u

c
2t≥0

,

where V N
i (1, x) = AN

i lnx + BN
i , i = 1, 2 indicate the Nash equilibrium payoffs

defined by (52).

Theorem 10. The cooperative payoffs in the problem (45), (50), (51) with random
planning horizons have the form

V c
i (n− k, x) = δn−k

i ln(uc
in−k) +

+αPn−k+1
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n−k+1 ln(εx− uc
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+

k−1
∑

l=2

Pn−l
n−k[δ

n−l
i ln(γc

in−l) + αPn−l+1
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n−kP
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1n−1 − γc
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+Pn−1
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i ln(γc
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k
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i (ni) , (53)

where
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∑
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The cooperative strategies are related by

γc
2n−k =

δn−k
1 δn−k

2 ε− δn−k
2 γc

1n−kG
1
k

δn−k
1 G2

k

, γc
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2
1

δn−1
1 εG2
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1
kG

2
1 −G1

1G
2
k)

.

The strategy of player 1 at the last step (the quantity γc
1n−1) is evaluated through

one of the first-order optimality conditions.

Our simulation has employed the Monte Carlo method, n = 10 and the following
probabilities θi = 0.1, ωi = 0.005i+ 0.0725, i = 1, . . . , n.

Figs. 26 and 27 demonstrate the results of numerical simulation with 50 trials
under egoistic and cooperative behavior, respectively. Here points indicate the sim-
ulation results and circles correspond to the expected payoffs obtained in (52) and
(53).
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Fig. 26. Nash equilibrium
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Fig. 27. Cooperative equilibrium

6. Conclusions

Cooperation plays an important role in bioresource management problems. It leads
to a sparing mode of bioresource exploitation and improves the ecological situation.
The paper overviews the results in the fields of cooperation maintenance and co-
operative behavior determination. Namely, the author’s new schemes to obtain and
maintain the cooperative exploitation are presented. We extend the idea of incen-
tive equilibrium to the case with territory sharing and control from the center. We
present the incentive condition for rational behavior that is easier to verify than
the existing ones. We extend the internal and external condition to the models with
coalition structure and offered the coalition stability concept. It is proposed to apply
the Nash bargaining approach to obtain cooperative profits and strategies in the
case where players possess different discount factors. Moreover, the models where
players harvesting times are different (fixed and random) were investigated and the
possible cooperative behavior determination concepts were obtained. Analytical and
numerical results for particular resource dynamic rules and the players’ payoff func-
tions are given. The author continues to work in this direction and the latest results
were obtained in the field of multicriteria dynamic games (Rettieva, 2017).
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