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Abstract In this paper we consider a dynamic traveling salesman problem
(DTSP) in which n objects (the salesman and m customers) move on a
plane with constant velocities. Each customer aims to meet the salesman as
soon as possible. In turn, the salesman aspires to meet all customers for the
minimal time. We formalize this problem as non-zero sum game of pursuit
and find its solution as a Nash equilibrium. Finally, we give some examples
to illustrate the obtained results.

Keywords: dynamic traveling salesman problem, non-zero sum game, Nash
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1. Introduction

We consider the classical traveling salesman problem (TSP). The idea of the TSP
is to find a route of a given number of cities, visiting each city exactly once and
returning to the starting city where the length of this tour is minimized. The first
instance of the traveling salesman problem was from Euler in 1759 whose problem
was to move a knight to every position on a chess board exactly once. The traveling
salesman first gained fame in a book written by German salesman B.F. Voigt in
1832 (Michalewicz, 1994) on how to be a successful traveling salesman. He mentions
the TSP, although not by that name, by suggesting that to cover as many locations
as possible without visiting any location twice is the most important aspect of the
scheduling of a tour. The origins of the TSP in mathematics are not really known
- all we know for certain is that it happened around 1931 (Michalewicz, 1994).

Currently the only known method guaranteed to optimally solve the traveling
salesman problem of any size, is by enumerating each possible route and searching
for the tour with the shortest length. When n gets large, it becomes impossible to
find the cost of every tour in polynomial time. Many different methods of optimiza-
tion have been used to try to solve the TSP.

The traveling salesman problem has many different real world applications, mak-
ing it a very popular problem to solve. For example, some instances of the vehicle
routing problem can be modeled as a traveling salesman problem. Here the problem
is to find which customers should be served by which vehicles and the minimum
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number of vehicles needed to serve each customer. There are different variations of
this problem including finding the minimum time to serve all customers.

The TSP: given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once and returns to
the origin city?

For the classical traveling salesman problem there are the following difficulties:

• The rule that one first should go from the starting point to the closest point,
then to the point closest to this, etc., in general does not yield the shortest
route.

• It is an NP-hard problem in combinatorial optimization, important in oper-
ations research and theoretical computer science.

• Algorithms for finding exact solutions work reasonably fast only for small
problem sizes.

In this paper we consider a dynamic traveling salesman problem (DTSP) allow-
ing all considered objects (the salesman and customers) to move on a plane with
constant velocities. We apply a game theoretical approach to solving the DTSP.
In fact, we propose to use some methods of pursuit game theory (Isaaks, 1965)
for this purpose (Petrosjan and Shirjaev, 1981; Petrosjan, 1983; Kleimenov, 1993;
Tarashnina, 1998; Pankratova and Tarashnina, 2004; Pankratova, 2007). This me-
ans that each agent is considered as a player that has his own aim and his profit is
described by a payoff function. The players may use admissible strategies and inter-
act with each other. Here we find a solution of the DTSP as a Nash equilibrium in
a non-zero sum game of pursuit. In other words, we define strategies of all players
that provide the minimal length of the salesman route.

2. The game

We have m customers C1, . . . , Cm who are initially located in different cities and
move on a plane with constant velocities, and a salesman S who wants to meet all
of them. The players start their motion at the moment t = 0 at initial positions
z01 , . . . , z

0
m, z0. At each instant t they may choose directions of their motion. Let

α be the velocity of salesman S, βj be the velocity of customer Cj , j = 1, . . . ,m,
α < βj .

Suppose that the salesman never meets the same customer twice and does not
return to the starting point (he she stays in the last meeting point). Thus, the
salesman tries to find the shortest route that passes through the customers’ cur-
rent positions once and each customer also wants to meet the salesman as soon as
possible.

In contrast to the classical problem, where customers are located at fixed points
and may not move, here they move with constant velocities.

A strategy of salesmen S

uS(t, z
t
1, . . . , z

t
m, zt) = uS.

The salesman uses piecewise open-loop strategies.
A strategy of customer Cj is a function of time, players’ positions and a velocity-

vector of the salesman at a current time moment, i.e.

uCj
(t, zt1, . . . , z

t
m, zt,ut

S) = uCj
,
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where zt1, . . . , z
t
m, zt are current positions of the players and ut

S is a vector-velocity
of S at time instant t. In this game we suppose that the customers use the parallel
pursuit strategy (Π-strategy) (Petrosjan, 1965). Denote by US and UCj

the sets of
admissible strategies of the players, j = 1, . . . ,m.

The game is played as follows: at the initial moment of time the salesman informs
customers C1, . . . , Cm about a chosen direction of his motion. After that, S meets
the customers on his route if they cross it. The game is finished when the salesman
meets the last customer. S aspires to minimize the total meeting time, i.e. to meet all
customers for the minimal time. At the same time each customer wants to minimize
his own meeting time.

The payoff function of customer Cj is

KCj
(z01 , . . . , z

0
m, z0, uC1

, . . . , uCm
, uS) = −Tj, (1)

where Tj is a meeting time of S and customer Cj .
The payoff function of salesman S is

KS(z
0
1 , . . . , z

0
m, z0, uC1

, . . . , uCm
, uS) = −max{T1, . . . , Tm}. (2)

The objective of each player in the game is to maximize his own payoff function.
So, we define this problem in a normal form

Γ (z01 , . . . , z
0
m, z0) = 〈N, {Ui}i∈N , {Ki}i∈N 〉, (3)

where N = {C1, . . . , Cm, S} is the set of players, Ui is the set of admissible strategies
of player i, and Ki is a payoff function of player i defined by (1) and (2), i ∈ N .
The constructed game depends on initial positions of the players. Let us fix players’
initial positions and consider the game Γ (z01 , . . . , z

0
m, z0).

3. Basic notions and definitions

Give some notions of pursuit game theory that help to find a solution of the DTSP.

Definition 1. The parallel pursuit strategy (Π-strategy) is a kind of motion of
a customer C regard the motion of salesman S which provides a segment CtSt

connecting current players’ positions Ct and St at each time moment t > 0 to be
parallel to the initial segment C0S0 and its length strictly decreases.

Since we suppose that all customers use the parallel pursuit strategy, the follow-
ing definition of the Apollonius circle is needed.

Definition 2. The Apollonius circle A(z0j , z
0) for initial positions C0

j = z0j and

S0 = z0 of customer Cj and salesman S, respectively, is the set of points M such
that

|S0M |

α
=

|C0
jM |

βj

,

where βj > α > 0 (see Fig. 1).

First let us consider a three person game: with salesman S and two customers
C1, C2. We have two intersection points of the Apollonius circles. The set of all inter-
section points of the Apollonius circles is denoted by Z. In this game Z = {z12, z21}
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Fig. 1. The Apollonius circle for game Γ (z0j , z
0)

Fig. 2. The Apollonius circles for game Γ (z01 , z
0

2 , z
0)

(Fig. 2). In Pankratova, Tarashnina, Kuzyutin, 2016 the analytical formulas for
finding coordinates of the intersection points of the Apollonius circles are given.
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In Fig. 3 there are the Apollonius circles for all pairs of S and Cj , j = 1, . . . ,m.
Denote by Aj the Apollonius disk corresponding to the Apollonius circle A(z0j , z

0).
It is known that if customer Cj uses the parallel pursuit strategy and salesman S

uses any admissible strategy from US , then all possible meeting points of the sales-
man and customer Cj cover the Apollonius disk (Petrosjan, 1983). In particular, if
the salesman moves along a straight line, then a meeting point of S and Cj lies on
the Apollonius circle.

The union of all Apollonius disks is denoted by A, i.e. A = A1 ∪ . . . ∪ Am and
∂A = ∂(A1 ∪ . . . ∪ Am) is a boundary of the set A.

In addition, we introduce a notion of the level of the boundary. The boundary
∂A = ∂1A is called the boundary of the first level. If we remove the boundary of
the first level, then the remaining Apollonius disks form a new boundary, we call it
the boundary of the second-level and denote by ∂2A, etc.

Fig. 3. The Apollonius circles for game Γ (z01 , . . . , z
0

m, z0)

4. Nash equilibria

Introduce the following types of behavior of salesman S.

Behavior u1
S: Salesman S uses the type of behavior u1

S , according to which he
moves along a straight line towards customer Cj , that is, to the nearest point
on the boundary of the union of all Apollonius disks Aj , j = 1, . . . ,m (Fig. 4).

Behavior u2
S: Salesman S uses the type of behavior u2

S , according to which he
moves along a straight line to the nearest intersection point of the Apollonius
circles A(z0j , z

0) and A(z0k, z
0) (j 6= k) that belongs to the boundary ∂A (Fig. 5).

Behavior u3
S: Salesman S uses the type of behavior u3

S , according to which he
moves along a straight line to the nearest intersection point of the Apollonius
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Fig. 4. Behavior u1

S

Fig. 5. Behavior u2

S
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circles A(z0j , z
0) and A(z0k, z

0) (j 6= k) that belongs to the boundary ∂2A (Fig. 6)
and then changes his direction and moves along a straight line towards the last
customer Cl, l 6= j 6= k.

Fig. 6. Behavior u3

S

Theorem 1. In the dynamic traveling salesman problem Γ (z1, z2, z3, z4, z) there

exists a Nash equilibrium. It is constructed as follows:

• The salesman chooses strategy u∗

S that prescribes to him one type of behavior

u1
S, u

2
S or u3

S and gives the minimal meeting time.

• The customers use Π-strategy.

Remark 1. If there exists behavior u1
S, then it provides the salesman the minimum

meeting time and there is no sense to consider the other types of behavior: u2
S and

u3
S.

Example 1. Consider a game Γ (z01 , . . . , z
0
4 , z

0) with salesman S and four customers
C1, C2, C3, C4 with initial conditions:

S0 = (8; 8), C0
1 = (7; 1), C0

2 = (3; 5), C0
3 = (9; 2), C0

4 = (12; 4)

and velocities
α = 2, β1 = 3, 5, β2 = 4, β3 = 4, β4 = 4,

respectively.
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Fig. 7. Nash equilibrium in Γ (z01 , z
0

2 , z
0

3 , z
0

4 , z
0): behavior u1

S

In this game there exists Nash equilibrium in which salesman S uses behavior
u1
S . In other words, S moves along a straight line towards customer C1 to point

(7,636; 5,454). The corresponding trajectory of his motion is shown in Fig. 7 (the
thick line). The customers move to the following points using Π-strategy:

• C1 moves to point (7,636; 5,454),

• C2 moves to point (7,666; 5,666),

• C3 moves to point (7,706; 5,945),

• C4 moves to point (7,671; 5,698).

In fact, the salesman meets the customers in the order C3, C4, C2, C1. That is,
customer C1 meets with S last.

The players’ payoffs in the Nash equilibrium are equal to:

KC1
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,285649,

KC2
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,178511,

KC3
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC2
, uC2

, uC3
, uC4

, uS) = −1,037922,

KC4
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,162512,

KS(z
0
1 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,285649.

Example 2. Consider game Γ (z01 , . . . , z
0
4 , z

0) with salesman S and four customers
C1, C2, C3, C4 with initial conditions:

S0 = (7; 8), C0
1 = (2; 11), C0

2 = (3; 6), C0
3 = (4; 14), C0

4 = (5; 3)

and velocities
α = 2, β1 = 4, β2 = 4, β3 = 4, β4 = 4,
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Fig. 8. Nash equilibrium in Γ (z01 , z
0

2 , z
0

3 , z
0

4 , z
0): behavior u2

S

respectively.
In this game there exists a Nash equilibrium in which salesman S uses behavior

u2
S. In other words, S moves along a straight line to the nearest intersection point

of the Apollonius circles A(z03 , z
0) and A(z04 , z

0) with coordinates (4,278; 8,479).
The corresponding trajectory of the salesman’s motion is shown in Fig. 8 (the

thick line). By the bold dot we mark the end of the route, and the dashed lines cor-
respond to trajectories of the customers’ motions C1, C2, C3 and C4. The customers
move to the following points using Π-strategy:

• C1 moves to point (5,02, 8,348),

• C2 moves to point (5,376; 8,286),

• C3 and C4 move to point (4,278; 8,479).

In this case the salesman meets the customers in the order C2, C1, C3&C4. Note
that two customers C3 and C4 meet the salesman simultaneously.

The players’ payoffs in the Nash equilibrium are equal to:

KC1
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,004803,

KC2
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −0,824385,

KC3
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC2
, uC2

, uC3
, uC4

, uS) = −1,381790,

KC4
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,381790,

KS(z
0
1 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,381790.
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Example 3. Consider a game with one salesman and four customers C1, C2, C3, C4

with initial conditions:

S0 = (7; 8), C0
1 = (2; 11), C0

2 = (13; 6), C0
3 = (4; 14), C0

4 = (5; 3)

and velocities
α = 2, β1 = 4, β2 = 4, β3 = 4, β4 = 4,

respectively.

Fig. 9. Nash equilibrium in Γ (z01 , z
0

2 , z
0

3 , z
0

4 , z
0): behavior u3

S

In this game there exists a Nash equilibrium in which salesman S uses behavior
u3
S . In other word, S moves along a straight line to the nearest intersection point of

the Apollonius circles A(z03 , z
0) and A(z04 , z

0) with coordinates (4,278; 8,479), and
then changes his direction and moves along a straight line towards last customer
C2 to point (5,399; 8,106).

The corresponding trajectory of the salesman’s motion is shown in Fig. 9 (the
thick line). In Fig. 9, besides the Apollonius circles at the initial time moment one
can see the Apollonius circle of the last customer C2 at the moment of meeting the
salesman with customers C3 and C4. The position of customer C2 at this moment
is marked by point C′

2.
The customers move to the following points using Π-strategy:

• C1 moves to point (4,830; 8,382),

• C2 moves to point (5,399; 8,106),

• C3 and C4 move to point (4,278; 8,479).
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In this case the salesman meets the customers in the order C1, C3&C4, C2. This
means that at first the salesman meets only one customer C1, then C3 and C4 at
the same time, and the last he meets C2.

The players’ payoffs in the Nash equilibrium are equal to:

KC1
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,004803,

KC2
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,972784,

KC3
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC2
, uC2

, uC3
, uC4

, uS) = −1,381790,

KC4
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,381790,

KS(z
0
1 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,972784.

Example 4. Now we consider a case in which the customers are symmetrically po-
sitioned relatively to salesman S. In this game there exist several Nash equilibria.
Consider a game with one salesman and four customers C1, C2, C3, C4 with initial
conditions:

S0 = (7; 8), C0
1 = (11; 12), C0

2 = (3; 4), C0
3 = (3; 12), C0

4 = (11; 4)

and velocities
α = 2, β1 = 3,5, β2 = 4, β3 = 3,5, β4 = 4,

respectively.
Here we have the symmetrically located Apollonius circles and, therefore, we get

two Nash equilibria in this game. In both equilibrium situations salesman S uses
behavior u3

S:

1 Starting at the initial time moment salesman S moves along a straight line
to the intersection point of the Apollonius circles A(z03 , z

0) and A(z04 , z
0) with

coordinates (9,116; 10,857), and then changes his direction and moves along
a straight line towards customer C2 to point (8,625; 10,366). In this case the
salesman meets the customers in the order C1, C3&C4, C2.

KC1
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,034963,

KC2
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −2,124748,

KC3
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC2
, uC2

, uC3
, uC4

, uS) = −1,777778,

KC4
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −1,777778,

KS(z
0
1 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −2,124748.

2 Starting at the initial time moment salesman S moves along a straight line
to the intersection point of the Apollonius circles A(z01 , z

0) and A(z02 , z
0) with

coordinates (4,883; 10,857), and then and then changes his direction and moves
along a straight line towards customer C4 to point (5,374; 10,366). In this case
the salesman meets the customers in the order C3, C1&C2, C4.

KC1
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,777778,

KC2
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC1
, uC2

, uC3
, uC4

, uS) = −1,777778,

KC3
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC2
, uC2

, uC3
, uC4

, uS) = −1,034963,

KC4
(z01 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −2,124748

KS(z
0
1 , z

0
2 , z

4
3 , z

0
4 , z

0, uC3
, uC2

, uC3
, uC4

, uS) = −2,124748.
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So, the route of the salesman can be finished at points (8,625; 10,366) or (5,374; 10,366).
The corresponding trajectories of the salesman’s motion is shown in Fig. 10 (the
thick line).

Fig. 10. Nash equilibria in Γ (z01 , z
0

2 , z
0

3 , z
0

4 , z
0): behavior u3

S in a symmetric case

5. Conclusion

In the considered dynamic traveling salesman problem we propose a new approach
to finding a solution of this task. Applying methods and solution concepts of pursuit
game theory we describe motion of the salesman and customers in a form of differ-
ential equations and assign them goals to meet the salesman as soon as possible.
We find Nash equilibria and consider different examples which illustrate all possible
cases of behavior. Further research could be deal with a cooptative version of this
dynamic traveling salesman problem taking into account some companies which
have many branches interacting with each other and the main office. In cooperative
dynamic games the core is often considered as a main solution concept. However, it
is important for a solution being time-consistent (Petrosjan, 1977). This property
and also strong time-consistency of the core are investigated in (Tarashnina, 2002;
Pankratova, 2010; Sedakov, 2015).
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