
Contributions to Game Theory and Management, X, 226–232

Blotto Games with Costly Winnings

Irit Nowik1 and Tahl Nowik2

1 Department of Industrial Engineering and Management,

Lev Academic Center, P.O.B 16031, Jerusalem 9116001, Israel

E-mail: nowik@@jct.ac.il
2 Department of Mathematics, Bar-Ilan University,

Ramat-Gan 5290002, Israel

E-mail: tahl@@math.biu.ac.il

URL: www.math.biu.ac.il/ tahl

Abstract We introduce a new variation of the stochastic asymmetric Colo-
nel Blotto game, where the n battles occur as sequential stages of the game,
and the winner of each stage needs to spend resources for maintaining his
win. The limited resources of the players are thus needed both for increasing
the probability of winning and for the maintenance costs. We show that if
the initial resources of the players are not too small, then the game has a
unique Nash equilibrium, and the given equilibrium strategies guarantee the
given expected payoff for each player.

1. Introduction

We present a new n-stage game, which is a variation of the Colonel Blotto game.
Each player starts the game with some given resource, and at the beginning of each
stage he must decide how much resource to invest in that stage. A player wins
the given stage with probability corresponding to the relative investments of the
players, and if both players invest 0 then no player wins that stage. The winner of
the stage receives a payoff which may differ from stage to stage. Since it is possible
that certain stages will not be won by any player, this is not a fixed sum game.

The players’ resources from which the investments are taken can be thought of
as money, whereas the payoffs should be thought of as a quantity of different nature,
such as political gain. The two quantities cannot be interchanged, that is, the payoff
cannot be converted into resources for further investment.

The new feature of our game is the following. The winner of each stage is required
to spend additional resources on the maintenance of his winning. This is a real life
situation, where the winnings are some assets, and resources are required for their
maintenance, as in wars, territorial contests among organisms, or in the political
arena. The winner of a given stage must put aside all resources that will be required
for future maintenance costs of the won asset. Thus, a fixed amount will be deducted
from the resources of the winner immediately after winning, which should be thought
of as the sum of all future maintenance costs for the given acquired asset.

At each stage the player thus needs to decide how much to invest in the given
stage, where winning that stage on one hand leads to the payoff of the given stage,
but on the other hand the maintenance cost for the given winning negatively af-
fects the probabilities for future winnings. In the present work we show that if
the initial resources of the players are not too small then the game has a unique
Nash equilibrium, and each player guarantees the payoff of this Nash equilibrium
(Theorem 2.)
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As mentioned, our game presents a variation of the well known Colonel Blotto
game (Borel, 1921). In Blotto games two players simultaneously distribute forces
across several battlefields. At each battlefield, the player that allocates the largest
force wins. The Blotto game has been developed and generalized in many directions
(see e.g., Borel, 1921; Friedman, 1958; Lake, 1979; Roberson,2006; Hart, 2008; Duf-
fy and Matros, 2015). Two main developments are the “asymmetric” and the
“stochastic” models. The asymmetric version allows the payoffs of the battlefields
to differ from each other, and in the stochastic model the deterministic rule deciding
on the winner is replaced by a probabilistic one, by which the chances of winning a
battlefield depends on the size of investment.

The present work adds a new feature which changes the nature of the game, in
making the winnings costly. The players thus do not know before hand how much of
their resources will be available for investing in winning rather than on maintenance,
and so the game cannot be formulated with simultaneous investments, as in the
usual Blotto games, but rather must be formulated with sequential stages. At each
stage the players need to decide how much to invest in the given stage, based on
their remaining available resources and on the future fees and payoffs.

This work was inspired by previous work of the first author with S. Zamir
and I. Segev ( Nowik, 2009; Nowik et al., 2012) on a developmental competition
that occurs in the nervous system, which we now describe. A muscle is composed
of many muscle-fibers. At birth each muscle-fiber is innervated by several motor-
neurons (MNs) that “compete” to singly innervate it. It has been found that MNs
with higher activation-threshold win in more competitions than MNs with lower
activation thresholds. In Nowik, 2009 this competitive process is modeled as a
multi-stage game between two groups of players: those with lower and those with
higher thresholds. At each stage a competition at the most active muscle-fiber is
resolved. The strategy of a group is defined as the average activity level of its
members and the payoff is defined as the sum of their wins. If a MN wins (i.e.,
singly innervates) a muscle-fiber, then from that stage on, it must continually devote
resources for maintaining this muscle-fiber. Hence the MNs use their resources both
for winning competitions and for maintaining previously acquired muscle-fibers. It is
proved in Nowik, 2009 that in such circumstances it is advantageous to win in later
competitions rather than in earlier ones, since winning at a late stage will encounter
less maintenance and thus will negatively affect only the few competitions that were
not yet resolved. If µ is the cost of maintaining a win at each subsequent stage, then
in the terminology of the present work, the fee payed by the MNs for winning the
kth stage of an n stage game is (n− k)µ.

2. The game

The initial data for our game is the following.

1 The number n of stages of the game.
2 Fixed payoffs wk > 0, 1 ≤ k ≤ n, to be received by the winner of the kth stage.
3 The initial resources A,B ≥ 0 of players I,II respectively.
4 Fixed fees ck ≥ 0, 1 ≤ k ≤ n − 1, to be deducted from the resources of the
winner after the kth stage.

The rules of the game are as follows. At the kth stage of the game, the two
players, which we name PI,PII, each has some remaining resource Ak, Bk, where
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A1 = A,B1 = B. PI,PII each needs to decide his investment xk, yk for that stage,
respectively, with 0 ≤ xk ≤ Ak−ck, 0 ≤ yk ≤ Bk−ck, and where if Ak < ck then PI
may only invest 0, and similarly for PII. These rules ensure that the winner of the
given stage will have the resources for paying the given fee ck. The probability for
PI,PII of winning this stage is respectively xk

xk+yk

and yk

xk+yk

, where if xk = yk = 0
then no player wins. The resource of the winner of the kth stage is then reduced by
an additional ck, that is, if PI wins the kth stage then Ak+1 = Ak − xk − ck and
Bk+1 = Bk − yk, and if PII wins then Ak+1 = Ak − xk and Bk+1 = Bk − yk − ck.
The role of ck is in determining Ak+1, Bk+1, thus there is no cn. It will however
be convenient in the sequel to formally define cn = 0. The payoff received by the
winner of the kth stage is wk. Since it is possible that no player wins certain stages,
this game is not a fixed sum game.

As already mentioned, the resource quantities Ak, Bk, xk, yk, ck used for the
investments and fees are of different nature than that of the payoffs wk. The two
quantities cannot be interchanged and should be thought of as having different
“units”. Note that all expressions below are unit consistent, that is, if say we divide
resources by payoff, then such expression has units of resources

payoff , and may only be
added or equated to expressions of the same units.

If A and B are too small in comparison to c1, . . . , cn−1 then the players’ strategies
are strongly influenced by the possibility of running out of resources before the end
of the game. In the present work we analyze the game when A,B are not too small.
Namely, we introduce a quantity M depending on c1, . . . , cn−1 and w1, . . . , wn, and
prove that if A,B > M then there is a unique Nash equilibrium for the game, and
each player guarantees the value of this Nash equilibrium.

For k = 1, . . . , n let Wk =
∑n

i=k wi and W = W1. We now show that if A > M ,
then if PI always chooses to invest xk ≤ wk

Wk

Ak (as holds for our strategy σn,A,B

presented in Definition 1 below), then whatever the random outcomes of the game
are, his resources will not run out before the end of the game. We in fact give a
specific lower bound on Ak for every k, which will be used repeatedly in the sequel.

Proposition 1. Let

M = W · max
1≤k≤n

(
ck

wk

+

k−1∑

i=1

ci

Wi+1

)
.

If A > M , and if PI plays xk ≤ wkAk

Wk

for all k, then Ak > Wkck
wk

for all 1 ≤ k ≤ n.

In particular Ak > 0 for all 1 ≤ k ≤ n. And similarly for PII.

Proof. For every 1 ≤ k ≤ n we have A
W

> M
W

≥ ck
wk

+
∑k−1

i=1
ci

Wi+1
, so

A

W
−

k−1∑

i=1

ci

Wi+1
>

ck

wk

.

Thus it is enough to show that Ak

Wk

≥ A
W

−
∑k−1

i=1
ci

Wi+1
for all 1 ≤ k ≤ n. We show

this by induction on k. For k = 1 the sum is empty and we get equality. Assuming

Ak

Wk

≥
A

W
−

k−1∑

i=1

ci

Wi+1
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we get

Ak+1

Wk+1
≥

1

Wk+1

(
Ak −

wkAk

Wk

− ck

)
=

1

Wk+1

(Wk+1Ak

Wk

− ck

)

=
Ak

Wk

−
ck

Wk+1
≥

A

W
−

k−1∑

i=1

ci

Wi+1
−

ck

Wk+1
=

A

W
−

k∑

i=1

ci

Wi+1
.

3. Nash equilibrium

We define the following two strategies σn,A,B and τn,A,B for PI,PII respectively. We
prove that for A,B > M as given in Proposition 1, this pair of strategies is a unique
Nash equilibrium, and these strategies guarantee the given payoffs.

Definition 1. At the kth stage of the game, let

ak =
wkAk

Wk

−
Akck

Ak +Bk

and bk =
wkBk

Wk

−
Bkck

Ak +Bk

.

where as mentioned, we formally define cn = 0. The strategy σn,A,B for PI is the
following: At the kth stage PI invests ak if it is allowed by the rules of the game.
Otherwise he invest 0. The strategy τn,A,B for PII is similarly defined with bk.

Recall that ak 6= 0 is allowed by the rules of the game if 0 ≤ ak ≤ Ak−ck, whereas
ak = 0 is always allowed, even when Ak − ck < 0. We interpret the quantities ak, bk
as follows. PI first divides his remaining resource Ak to the remaining stages in
proportion to the payoff for each remaining stage, which gives wk

Wk

Ak. From this

he subtracts Ak

Ak+Bk

ck which is the expected fee he will pay for this stage, since
ak

ak+bk
= Ak

Ak+Bk

. Note that Wn = wn and formally cn = 0, so an = An, bn = Bn,
i.e. at the last stage the two players invest all their remaining resources.

Depending on A and B and on the random outcomes of the game, it may be
that PI indeed reaches a stage where ak is not allowed. In this regard we make the
following definition.

Definition 2. The triple (n,A,B) is PI-effective if when PI and PII use σn,A,B

and τn,A,B, then it is impossible that they reach a stage where ak is not allowed for
PI. Similarly PII-effectiveness is defined for PII with bk.

Proposition 2. Let M be as in Proposition 1. If A > M and B is arbitrary, then

(n,A,B) is PI-effective. Furthermore, ak > 0 for all k. And similarly for PII when

B > M .

Proof. We need to show that necessarily 0 < ak ≤ Ak − ck for all 1 ≤ k ≤ n. We
have ak = wkAk

Wk

− Akck
Ak+Bk

≤ wkAk

Wk

, so by Proposition 1, wk

Wk

> ck
Ak

≥ ck
Ak+Bk

and

Ak > 0, so wkAk

Wk

> Akck
Ak+Bk

giving ak > 0.
For the inequality ak ≤ Ak − ck we first consider k ≤ n − 1. We have from

the proof of Proposition 1 that Ak

Wk

− ck
Wk+1

≥ A
W

−
∑k

i=1
ci

Wi+1
>

ck+1

wk+1
≥ 0, so

Ak

Wk

> ck
Wk+1

, and so

(1−
Ak

Ak +Bk

)ck ≤ ck <
Wk+1Ak

Wk

= (1 −
wk

Wk

)Ak.

This gives ck −
Akck

Ak+Bk

< Ak −
wkAk

Wk

, so ak = wkAk

Wk

− Akck
Ak+Bk

< Ak − ck. For k = n

we note that cn = 0 by definition, and Wn = wn, so an = An = An − cn.
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In general, an inductive characterization of PI-effectiveness will also involve in-
duction regarding PII. But if we assume that B > M , and so by Proposition 2 all
bk are known to be allowed and positive, then the notion of PI-effectiveness be-
comes simpler, and may be characterized inductively as follows. When saying that
a triple (n − 1, A′, B′) is PI-effective, we refer to the n − 1 stage game with fees
c2, . . . , cn−1 and payoffs w2, . . . , wn. Starting with n = 1, (1, A,B) is always PI-
effective. For n ≥ 2, if a1 is not allowed then (n,A,B) is not PI-effective. If a1 = 0
then it is allowed, and PI surely loses the first stage, and so (n,A,B) is PI-effective
iff (n − 1, A,B − b1 − c1) is PI-effective. Finally if a1 > 0 and it is allowed then
(n,A,B) is PI-effective iff both (n−1, A−a1−c1, B−b1) and (n−1, A−a1, B−b1−c1)
are PI-effective.

The crucial step in proving Theorem 2 below, on the unique Nash equilibrium
and the guaranteed payoffs, is the following Theorem 1. We point out that in The-
orem 2 we will assume that A > M , in which case (n,A,B) is PI-effective, by
Proposition 2. But here in Theorem 1 we must consider arbitrary A ≥ 0 in order
for an induction argument to carry through.

Theorem 1. Given c1, . . . , cn−1 and w1, . . . , wn let M be as in Proposition 1, and

assume that B > M and PII plays the strategy τn,A,B. For A ≥ 0, if (n,A,B) is

PI-effective, and PI plays according to σn,A,B, then his expected payoff is AW
A+B

. On

the other hand, if (n,A,B) is not PI-effective, or if PI uses a different strategy,

then his expected payoff is strictly less than AW
A+B

.

Proof. By induction on n. We note that throughout the present proof we do not use
the condition B > M directly, but rather only through the statements of Proposi-
tions 2 and 1 saying that (n,A,B) is PII-effective, bk > 0 and ck < wkBk

Wk

for all
1 ≤ k ≤ n, which indeed continue to hold along the induction process.

If A = 0 then ak = 0 for all k, which is the only possible investment, and its
payoff is 0 = AW

A+B
, so the statement holds. We thus assume from now on that

A > 0. For n = 1 we have b1 = B. The allowed investment for PI is 0 ≤ s ≤ A with
expected payoff s

s+B
w1 = s

s+B
W which indeed attains a strict maximum A

A+B
W

at s = A = a1.
For n ≥ 2, let s be the investment of PI in the first stage. Assume first that

s = 0. In this case PII surely wins the first stage and so following this stage we have
A2 = A and B2 = B−b1−c1. The moves for PII dictated by τn,A,B for the remaining
n − 1 stages of the game are τn−1,A,B−b1−c1 , and so by the induction hypothesis
the expected total payoff of PI is at most AW2

A+B−b1−c1
. Since Proposition 1 holds for

PII, we have c1 < w1B
W

≤
w1(A+B)

W
, that is, w1

W
− c1

A+B
> 0, and since A > 0 we get

a1 = A(w1

W
− c1

A+B
) > 0. This means that s = 0 6= a1, so we must verify the strict

inequality AW2

A+B−b1−c1
< AW

A+B
. This is readily verified, using A > 0, c1 < w1B

W
,

W2 = W − w1, and b1 + c1 = w1B
W

− Bc1
A+B

+ c1 = w1B
W

+ Ac1
A+B

.
We now assume s > 0. This is allowed only if A > c1 and 0 < s ≤ A− c1. The

moves for PII dictated by τn,A,B for the remaining n − 1 stages of the game are
τn−1,A2,B2

. By the induction hypothesis, if PI wins the first stage, which happens
with probability s

s+b1
> 0, then his expected payoff in the remaining n − 1 stages

of the game is at most (A−s−c1)W2

A+B−s−b1−c1
. Similarly, if he loses the first stage, which

happens with probability b1
s+b1

> 0, then his expected payoff in the remaining n− 1

stages is at most (A−s)W2

A+B−s−b1−c1
. Thus, the expected payoff of PI for the whole n
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stage game is at most F (s), where

F (s) =
s

s+ b1

(
w1 +

(A− s− c1)W2

A+B − s− b1 − c1

)
+

b1

s+ b1
·

(A− s)W2

A+B − s− b1 − c1

with b1 = w1B
W

− Bc1
A+B

.
By the induction hypothesis we know furthermore, that in case PI wins the first

stage, he will attain the maximal expected payoff (A−s−c1)W2

A+B−s−b1−c1
in the remaining

stages of the game only if (n − 1, A − s − c1, B − b1) is PI-effective, and he uses
σn−1,A−s−c1,B−b1 . Similarly, if he loses the first stage, he will attain the maximal

expected payoff (A−s)W2

A+B−s−b1−c1
only if (n− 1, A− s,B − b1 − c1) is PI-effective and

he uses σn−1,A−s,B−b1−c1 . If not, then since both alternatives occur with positive
probability, his expected total payoff for the whole n stage game will be strictly less
than F (s).

To analyze F (s), we make a change of variable s = a1 + x, that is, we define

F̂ (x) = F (a1 + x) = F (w1A
W

− Ac1
A+B

+ x). After some manipulations we get:

F̂ (x) =
AW

A+B
−

BW 3x2

(A+B)
(
W2(A+B)−Wx

)(
Wx−Wc1 + w1(A+B)

) .

Under this substitution, s = a1 corresponds to x = 0, and the allowed domain
0 < s ≤ A− c1 corresponds to

Ac1

A+B
−

w1A

W
< x ≤

W2A

W
−

Bc1

A+B
.

Using c1 < w1B
W

, one may verify that in the above expression for F̂ the two linear
factors appearing in the denominator of the second term are both strictly positive
in this domain. It follows that F̂ in the given domain is at most AW

A+B
, and this

maximal value is attained only for x = 0 (if it is in the domain), which corresponds
to s = a1 for the original F . Finally, as mentioned, unless (n − 1, A2, B2) is PI-
effective and PI plays σn−1,A2,B2

, his expected payoff will be strictly less than F (s),
and so strictly less than AW

A+B
.

We may now prove our main result.

Theorem 2. Given c1, . . . , cn−1 and w1, . . . , wn, let M be as in Proposition 1, and

assume A,B > M . Then the pair of strategies σn,A,B, τn,A,B is a unique Nash

equilibrium for the game, with expected total payoffs AW
A+B

, BW
A+B

. Furthermore,

σn,A,B and σn,A,B guarantee the expected payoffs AW
A+B

and BW
A+B

.

Proof. Denote σ0 = σn,A,B and τ0 = τn,A,B, and for any pair of strategies σ, τ let
S1(σ, τ), S2(σ, τ) be the expected payoffs of PI, PII respectively. We first prove the
second statement of the theorem. Recall that if both players invest 0 in a given
stage then there is no winner to that stage. However, if B > M and PII plays τ0,
then by Proposition 2 we have bk > 0 for all k, and so indeed there is a winner
to each stage of the game, and thus the total combined payoff of PI and PII is
necessarily W . It thus follows from Theorem 1 that for any strategy σ of PI we have
S2(σ, τ0) = W −S1(σ, τ0) ≥

BW
A+B

. Similarly, if A > M then S1(σ0, τ) ≥
AW
A+B

for all
τ , establishing the second statement of the theorem.
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As to the first statement, Theorem 1 applied to both PI and PII implies that
the pair σ0, τ0 is a Nash equilibrium with the given expected payoffs. To show it is
unique we argue as follows. Let σ, τ be any other Nash equilibrium and assume that
σ 6= σ0. By Theorem 1 we have S1(σ, τ0) < S1(σ0, τ0) and since playing τ0 guarantees
a combined total payoff of W , we have S2(σ, τ0) = W−S1(σ, τ0) > W−S1(σ0, τ0) =
S2(σ0, τ0). Since the pair σ, τ is a Nash equilibrium we also have S2(σ, τ) ≥ S2(σ, τ0),
and together we get S2(σ, τ) > S2(σ0, τ0). Since S1(σ, τ) + S2(σ, τ) ≤ W and
S1(σ0, τ0)+S2(σ0, τ0) = W , we must have S1(σ, τ) < S1(σ0, τ0). Again since σ, τ is a
Nash equilibrium we have S1(σ0, τ) ≤ S1(σ, τ) so together S1(σ0, τ) < S1(σ0, τ0) =
AW
A+B

, contradicting the conclusion of the previous paragraph.
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