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Abstract The problem of the existence and determining stationary Nash
equilibria in two-player average stochastic games with finite state and ac-
tion spaces is considered. We show that an arbitrary two-player average
stochastic game can be formulated in the terms of stationary strategies
where each payoff is graph-continuous and quasimonotonic with respect to
player’s strategies. Based on this result we ground an approach for determin-
ing the optimal stationary strategies of the players in the considered games.
Moreover, based on the proposed approach a new proof of the existence of
stationary Nash equilibria in two-player average stochastic games is derived
and the known methods for determining the optimal strategies for the games
with quasimonotonic payoffs can be applied.
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1. Introduction

The aim of this paper is to propose a new approach for determining stationary
Nash equilibria in two-player average stochastic games with finite state and action
spaces. We ground such an approach by using a new model in stationary strategies
for the considered class of average stochastic games. We show that the payoffs of
the players in the proposed model are quasimonotonic (i.e quasiconvex and qua-
siconcave) with respect to the corresponding strategies of the players and satisfy
the graph-continuity property in the sense of Dasgupta and Maskin, 1986. Based
on these results a new proof of the existence of stationary Nash equilibria in the
considered two-player average stochastic games is obtained and a new approach for
determining the optimal stationary strategies of the players is proposed.

Note that two-player stochastic games with average and discounted payoffs have
been studied by Mertens and Neyman, 1981, Vielle, 2000, Solan and Vieille, 2010,
who proved the existence of stationary Nash equilibria and proposed computing
procedures for determining the optimal stationary strategies of the players in two-
player stochastic games. The approach we propose for two-player average stochastic
games differ from the mentioned ones and it can be extended for n-player average
stochastic games if the mentioned graph-continuous property for the payoffs holds.
However the graph-continuous property for the average stochastic games with n ≥ 3
players may not take place. It is well known that for an n-player average stochastic
game (n ≥ 3) a stationary Nash equilibrium may not exist. This fact has been
shown by Flesch, Thuijman and Vrieze, 1997, who constructed an example of 3-
player average stochastic game with fixed starting state for which a stationary Nash
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equilibrium does not exist. Tijs and Vrieze, 1986, have shown that for an arbitrary
average stochastic game with a finite set of states always exists a non empty subset
of starting states for which a stationary Nash equilibrium exists. In the general
case the problem of determining the states in average stochastic games for which
stationary Nash equilibria exist is an open problem.

2. A Two-Player Average Stochastic Game in Stationary Strategies

We first present the framework of a two-person stochastic game and then specify
the formulation of stochastic games with average payoffs when players use pure and
mixed stationary strategies.

2.1. The Framework of a Two-Person Stochastic Game

A stochastic game with two players consists of the following elements:

- a state space X (which we assume to be finite);

- a finite set A1(x) of actions of player 1 for an arbitrary state x ∈ X ;

- a finite set A2(x) of actions of player 2 for an arbitrary state x ∈ X ;

- a payoff f1(x, a) with respect to player 1 for each state x ∈ X and
for an arbitrary action vector a = (a1, a2) ∈ A1(x) ×A2(x);

- a payoff f2(x, a) with respect to player 2 for each state x ∈ X and
for an arbitrary action vector a = (a1, a2) ∈ A1(x) ×A2(x);

- a transition probability function p : X ×
∏

x∈X

(A1(x)×A2(x)) ×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X to an
arbitrary y ∈ Y for every action vector a = (a1, a2) ∈ A1(x)×A2(x),
where

∑

y∈X

pax,y = 1, ∀x ∈ X, a ∈ A1(x)×A2(x);

- a starting state x0 ∈ X .

The game starts in the state x0 and the play proceeds in a sequence of stages.
At stage t players observe state xt and simultaneously and independently choose
actions ait ∈ Ai(xt), i = 1, 2. Then nature selects a state y = xt+1 according to
probability transitions pat

xt,y
for the given action vector at = (a1t , a

2
t ). Such a play

of the game produces a sequence of states and actions x0, a0, x1, a1, . . . , xt, at, . . .

that defines a stream of stage payoffs f1
t = f1(xt, at), f

2
t = f2(xt, at), . . . , f

n
t =

fn(xt, at), t = 0, 1, 2, . . . . The infinite average stochastic game is the game with
payoffs of the players

ωi
x0

= lim
t→∞

inf E

(

1

t

t−1
∑

τ=0

f i
τ

)

, i = 1, 2,

where ωi
xo

expresses the average payoff per transition of player i in an infinite game.
Each players has the aim to maximize his average payoff per transition. In the

case i = 1 this game becomes the average Markov decision problem with a transition
probability function p : X×

∏

x∈X

A(x)×X → [0, 1] and immediate rewards f(x, a) =

f1(x, a) in the states x ∈ X for given actions a ∈ A(x) = A1(x).
In the paper we will study the stochastic games when players use pure and mixed

stationary strategies of selection of the actions in the states.
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2.2. Pure and mixed stationary strategies of the players

A strategy of player i ∈ {1, 2} in a stochastic game is a mapping si that for every
state xt ∈ X provides a probability distribution over the set of actions Ai(xt).
If these probabilities take only values 0 and 1, then si is called a pure strategy,
otherwise si is called a mixed strategy. If these probabilities depend only on the
state xt = x ∈ X (i. e. si does not depend on t), then si is called a stationary
strategy, otherwise si is called a non-stationary strategy. This means that a pure
stationary strategy of player i ∈ {1, 2} can be regarded as a map

si : x→ ai ∈ Ai(x) for x ∈ X

that determines for each state x an action ai ∈ Ai(x), i.e. si(x) = ai. Obviously,
the corresponding sets of pure stationary strategies S1, S2, . . . , Sn of the players in
the game with finite state and action spaces are finite sets.

In the following we will identify a pure stationary strategy si(x) of player i with
the set of boolean variables si

x,ai ∈ {0, 1}, where for a given x ∈ X si
x,ai = 1 if

and only if player i fixes the action ai ∈ Ai(x). So, we can represent the set of pure
stationary strategies Si of player i as the set of solutions of the following system:







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X ;

si
x,ai ∈ {0, 1}, ∀x ∈ X, ∀ai ∈ Ai(x).

If in this system we change the restriction si
x,ai ∈ {0, 1} for x ∈ X, ai ∈ Ai(x)

by the condition 0 ≤ si
x,ai ≤ 1 then we obtain the set of stationary strategies in

the sense of Shapley, 1953, where si
x,ai is treated as the probability of choices of

the action ai by player i every time when the state x is reached by any route
in the dynamic stochastic game. Thus, we can identify the set of mixed stationary
strategies of the players with the set of solutions of the system







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X ;

si
x,ai ≥ 0, ∀x ∈ X, ∀ai ∈ Ai(x)

(1)

and for a given profile s = (s1, s2) of mixed strategies s1, s2, of the players the
probability transition psx,y from a state x to a state y can be calculated as follows

psx,y =
∑

(a1,a2)∈A(x)

s1x,a1s
2
x,a2p

(a1,a2)
x,y . (2)

In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies.

2.3. Average stochastic games in pure stationary strategies

Let s = (s1, s2) be a profile of pure stationary strategies of the players and denote by
a(s) = (a1(s), a2(s)) ∈ A1(x)×A2(x) the action vector that corresponds to s and

determines the probability distributions psx,y = p
a(s)
x,y in the states x ∈ X . Then

the average payoffs per transition ω1
x0
(s), ω2

x0
(s) for the players are determined

as follows
ωi
x0
(s) =

∑

y∈X

qsx0,y
f i(y, a(s)), i = 1, 2
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where qsx0,y
represent the limiting probabilities in the states y ∈ X for the

Markov process with probability transition matrix P s = (psx,y) when the transi-
tions start in x0. So, if for the Markov process with probability matrix P s the
corresponding limiting probability matrix Qs = (qsx,y) is known then ω1

x, ω
2
x can

be determined for an arbitrary starting state x ∈ X of the game. The func-
tions ω1

x0
(s), ω2

x0
(s) on S = S1 × S2 define a game in normal form that we

denote 〈{Si}i=1,2, {ω
i
x0
(s)}i=1,2〉. This game corresponds to an average stochastic

game in pure stationary strategies that in extended form is determined by the tuple
(X, {Ai(x)}i=1,2, {f

i(x, a}i=1,2, p, x0).
If an arbitrary profile s = (s1, s2) of pure stationary strategies in a stochastic

game induces a probability matrix P s that corresponds to a Markov unichain then
we say that the game possesses the unichain property and shortly we call it unichain
stochastic game; otherwise we call it multichain stochastic game.

2.4. Average stochastic games in mixed stationary strategies

Let s = (s1, s2) be a profile of mixed stationary strategies of the players. Then
elements of the probability transition matrix P s = (psx,y) in the Markov process
induced by s can be calculated according to (3). Therefore if Qs = (qsx,y) is the lim-
iting probability matrix of P s then the average payoffs per transition ω1

x0
(s), ω2

x0
(s)

for the players are determined as follows

ωi
x0
(s) =

∑

y∈X

qsx0,y
f i(y, s), i = 1, 2, (3)

where
f i(y, s) =

∑

(a1,a2)∈A(y)

s1y,a1 s
2
y,a2f

i(y, (a1, a2)) (4)

expresses the average payoff (immediate reward) in the state y ∈ X of player i

when the corresponding stationary strategies s1, s2 have been applied by players 1
and 2 in y.

Let S
1
, S

2
be the corresponding sets of mixed stationary strategies for the players

1, 2, i.e. each S
i

for i ∈ {1, 2} represents the set of solutions of system (2). The

functions ω1
x0
(s), ω2

x0
(s) on S = S

1
× S

2
, defined according to (3),(4), determine

a game in normal form that we denote by 〈{S
i
}i=1,2, {ωi

x0
(s)}i=1,2〉. This game

corresponds to an average stochastic game in mixed stationary strategies that in
extended form is determined by the tuple (X, {Ai(x)}i=1,2, {f

i(x, a}i=1,2, p, x0).

2.5. Average stochastic games with random starting state

In the paper we will consider also average stochastic games in which the starting
state is chosen randomly according to a given distribution {θx} on X . So, for
a given stochastic game we will assume that the play starts in the states x ∈ X

with probabilities θx > 0 where
∑

x∈X

θx = 1. If the players use mixed stationary

strategies of selection the actions in the states then the payoff functions

ψi
θ(s

1, s2) =
∑

x∈X

θxω
i
x(s

1, s2), i = 1, 2

on S = S
1
× S

2
define a game in normal form 〈{S

i
}i=1,2, {ψ

i
θ(s)}i=1,2〉 that in

extended form is determined by (X, {Ai(x)}i=1,2, {f
i(x, a}i=1,2, p, {θx}). In the
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case θx = 0, ∀x ∈ X \ {x0}, θx0
= 1 the considered game becomes a stochastic

game with fixed starting state x0.

3. Some Auxiliary Results

In this section we present some auxiliary results for the average Markov decision
problem in the terms of stationary strategies and some auxiliary results related to
the existence of pure-strategy Nash equilibria in n-person games.

3.1. Optimal Stationary Policies in the Average Markov Decision

Problem

It is well-known that an optimal stationary policy (strategy) for the average Markov
decision problem can be found by using the following linear programming model
(see Puterman, 2005):
Maximize

ψ(α, β) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (5)

subject to























∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pax,y αx,a = 0, ∀y ∈ X ;

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pax,yβx,a = θy, ∀y ∈ X ;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(6)

where θy for y ∈ X represent arbitrary positive values that satisfy the condition
∑

y∈X

θy = 1, where θy for y ∈ Y are treated as the probabilities of choosing the

starting state y ∈ Y . In the case θy = 1 for y = x0 and θy = 0 for y ∈ X \ {x0} we
obtain the linear programming model for an average Markov decision problem with
fixed starting state x0.

This linear programming model corresponds to a multichain case of an average
Markov decision problem. If each stationary strategy in the decision problem induces
an ergodic Markov chain then the restrictions (6) can be replaced by the restrictions



















∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pax,y αx,a = 0, ∀y ∈ X ;

∑

y∈X

∑

a∈A(y)

αy,a = 1;

αy,a ≥ 0, ∀y ∈ X, a ∈ A(y).

(7)

In the linear programming model (5),(6) the restrictions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pax,yβx,a = θy, ∀y ∈ X

with the condition
∑

y∈X

θy = 1 generalize the constraint

∑

x∈X

∑

a∈A(y)

αy,a = 1
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in linear programming model (5),(7) for the ergodic case.

The relationship between feasible solutions of problem (5),(6) and stationary
strategies in the average Markov decision problem is the following: Let (α, β) be a
feasible solution of the linear programming problem (5), (6) and denote Xα = {x ∈
X |

∑

a∈X

αx,a > 0}. Then (α, β) possesses the properties that
∑

a∈A(x)

βx,a > 0 for

x ∈ X \Xα and a stationary strategy sx,a that correspond to (α, β) is determined
as

sx,a =































αx,a
∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a
∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(8)

where sx,a expresses the probability of choosing the actions a ∈ A(x) in the states
x ∈ X . Thus, s can be regarded as a mapping that for every state x ∈ X provides
a probability distribution over the set of actions A(x); if these probabilities take
only values 0 and 1, then s corresponds to a pure stationary strategy, otherwise it
corresponds to a mixed stationary strategy.

Using the linear programming problem (5),(7) Lozovanu, 2016, showed that an
average Markov decision problem in terms of stationary strategies can be formulates
as follows:
Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (9)

subject to






















































qy −
∑

x∈X

∑

a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑

x∈X

∑

a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X ;

∑

a∈A(y)

sy,a = 1, ∀y ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(10)

where θy are the same values as in problem (5), (6) and sx,a, qx, wx for x ∈ X ,
a ∈ A(x) represent the variables that must be found, where qx for x ∈ X express
the limiting probabilities in the states for the corresponding strategy s.

The main property that we shall use for the average stochastic game is repre-
sented by the theorem that has been proven by Lozovanu, 2016.

Theorem 1. Let an average Markov decision problem be given and consider the
function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (11)
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where qx for x ∈ X satisfy the condition














qy −
∑

x∈X

∑

a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑

x∈X

∑

a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X.
(12)

Then on the set S of solutions of the system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

(13)

the function ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and ψ(s) is
quasimonotone on S ( i.e. ψ(s) is quasiconvex and quasiconcave on S).

Remark 1. The function (1) on S depends only on sx,a for x ∈ X, a ∈ A(x)
because system (12) uniquely determines qx, ∀x ∈ X for a given s ∈ S.

3.2. Existence of Pure Nash equilibria in n-Player Games with

Quasimonotonic Payoffs

Let 〈S
i

i=1,n, f
i(s)i=1,n〉 be an n-player game in normal form, where S

i
, i = 1, n rep-

resent the corresponding sets of strategies (pure strategies) of the players 1, 2, . . . , n

and f i :
n
∏

j=1

S
i
→ R1, i = 1, n represent the corresponding payoffs of these players.

Let s = (s1, s2, . . . , sn) be a profile of strategies of the players, s ∈ S =
n
∏

j=1

S
i
,

and define s−i =(s1, s2, . . . , si−1, si+1, . . . , sn), S
−i

=
n
∏

j=1(j 6=i)

S
i
where s−i ∈ S

−i
.

Thus, for an arbitrary s ∈ S we can write s = (si, s−i).
Fan, 1966 extended the well-known equilibrium result of Nash, 1951 to the games

with quasiconcave payoffs. He proved the following theorem:

Theorem 2. Let S
i
, i = 1, n be non-empty, convex and compact sets. If each

payoff f i : S → R1, i ∈ {1, 2, . . . , n}, is continuous on S and quasiconcave with

respect to si on S
i
, then the game 〈S

i

i=1,n, f
i(s)i=1,n〉 possesses a pure-strategy

Nash equilibrium.

Dasgupta and Maskin, 1986 considered a class of games with discontinuous pay-
offs and proved a pure Nash equilibria existence result for the case when the payoffs
are upper semi-continuous and graph-continuous.

The payoff f i :
n
∏

j=1

S
i
→ R1 is upper semi-continuous if for any sequence

{sk} ⊆ S such that {sk} → s holds lim sup
k→∞

f i(sk) ≤ f i(s).

The payoff f i :
n
∏

j=1

S
i
→ R1 is graph-continuous if for all s ∈ S there exists a

function F i : S
−i

→ S
i

with F i(s−i) such that f i(F i(s−i), s−i) is continuous
at s−i = s−i.

Dasgupta and Maskin proved the following theorem.
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Theorem 3. Let S
i
, i = 1, n be non-empty, convex and compact sets. If each pay-

off f i : S → R1, i ∈ {1, 2, . . . , n}, is upper semi-continuous on S, graph-continuous

and quasiconcave with respect to si on S
i
, then the game 〈S

i

i=1,n, f
i(s)i=1,n〉 pos-

sesses a pure-strategy Nash equilibrium.

In the following we need to extend this theorem for the case when each payoff
f i(si, s−i), i = 1, 2, . . . , n is quasimonotonic with respect to si on S, i.e. f i(si, s−i)

is quasiconvex and quasiconcave with respect to si on S
i
. We can observe that in

this case the reaction correspondences of the players

φi(s−i) = {si ∈ Si|f i(si, s−i) = max
si∈S

i

f i(si, s−i)}, i = 1, 2, . . . , n

are compact and convex valued and therefore the upper semi-continuous condition
can be released. So, in this case the theorem can be formulated as follows.

Theorem 4. Let S
i
, i = 1, n be non-empty, convex and compact sets. If each

payoff f i : S → R1, i ∈ {1, 2, . . . , n}, is graph-continuous and quasimonotonic with

respect to si on S
i
, then the game 〈S

i

i=1,n, f
i(s)i=1,n〉 possesses a pure-strategy

Nash equilibrium.

4. The Main Results

In this section we present the results concerned with the existence and determining
stationary Nah equilibria for a two-player average stochastic game in stationary
strategies. For this case we formulate this game in normal form.

4.1. The Game Model in Normal Form

The game model in normal form for the considered two-player average stochastic
game is the following:

Let S
i
, i ∈ {1, 2} be the set of solutions of the system







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X ;

si
x,ai ≥ 0, ∀x ∈ X, ai ∈ Ai(x).

(14)

that determines the set of stationary strategies of player i. Each S
i

is a convex
compact set and an arbitrary extreme point corresponds to a basic solution si

of system (14), where si
x,ai ∈ {0, 1}, ∀x ∈ X, ai ∈ A(x), i.e such a solution

corresponds to a pure stationary strategy of player i. On the set S = S
1
× S

2
we

define the payoff functions

ψi
θ(s

1, s2) =
∑

x∈X

∑

(a1,a2)∈A1(x)×A2(x)

s1x,a1s
2
x,a2f

i(x, (a1, a2))qx, i = 1, 2 (15)

where qx for x ∈ X are determined uniquely from the following system of linear
equations


















qy −
∑

x∈X

∑

(a1,a2)∈A1(x)×A2(x)

s1x,a1s
2
x,a2p

(a1,a2)
x,y qx = 0, ∀y ∈ X ;

qy + wy −
∑

x∈X

∑

(a1,a2)∈A1(x)×A2(x)

s1
x,a1s

2
x,a2p

(a1,a2)
x,y wx = θy, ∀y ∈ X,

(16)
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for an arbitrary fixed profile s = (s1, s2) ∈ S. The functions ψi
θ(s

1, s2), i = 1, 2
represent the payoff functions for the average stochastic game in normal form that

we denote by 〈{S
i
}i=1,2, {ψ

i
θ(s)}i=1,2 〉. This game is determined by the tuple

(X, {Ai(x)}i=1,2, {f
i(x, a}i=1,2, p, {θy}) where θy for y ∈ X are given nonnegative

values such that
∑

y∈X θy = 1.
If θy = 0, ∀y ∈ X \ {x0} and θx0

= 1 then we obtain an average stochastic

game in normal form 〈{S
i
}i=1,2, {ω

i
x0
(s)}i=1,2 〉 when the starting state x0 is fixed,

i.e. ψi
θ(s

1, s2) = ωi
x0
(s1, s2), i = 1, 2. So, in this case the game is determined by

(X, {Ai(x)}i=1,n, {f
i(x, a}i=1,n, p, x0).

If θy > 0, ∀y ∈ X and
∑

y∈X θy = 1 then we obtain an average stochastic game
when the play starts in the states y ∈ X with probabilities θy. In this case for the
payoffs of the players in the game in normal form we have

ψi
θ(s

1, s2, . . . , sn) =
∑

y∈X

θyω
i
y(s

1, s2, . . . , sn), i = 1, 2. (17)

4.2. Stationary Nash Equilibria Existence Results

As we have noted the existence of stationary Nah equilibria in two-player average
stochastic games has been shown by Vielle, 2000. Here we show that this result can
be derived also from the following theorem.

Theorem 5. The game 〈{S
i
}i=1,2, {ψ

i
θ(s)}i=1,2 〉 possesses a pure-strategy Nash

equilibrium s∗ = (s1
∗
, s2

∗
) which is a stationary Nash equilibrium for the two-player

average stochastic game determined by (X, {Ai(x)}i=1,2, {f i(x, a}i=1,2, p, {θy}).
Moreover, if s∗ = (s1

∗
, s2

∗
) is a pure-strategy Nash equilibrium for the game

〈{S
i
}i=1,2, {ψ

i
θ(s)}i=1,2 〉, where θy > 0, ∀y ∈ X then s∗ ia a stationary Nash equi-

librium for the two-player average stochastic game (X, {Ai(x)}i=1,2, {f
i(x, a}i=1,2, p, y)

with an arbitrary starting state y ∈ Y .

Proof. The proof of the existence of a pure-strategy Nash equilibrium for the game

〈{S
i
}i=1,2, {ψi

θ(s)}i=1,2 〉 follows from Theorems 4. Indeed, according to

Theorem 1 the payoff ψ1
θ(s

1, s2) is quasimontonic with respect to s1 on S
1
for

a fixed s2 ∈ S
2
and the payoff ψ2

θ(s
1, s2) is quasimontonic with respect to s2 on

S
2
for a fixed s1 ∈ S

1
. The graph-continuous property of payoffs functions also

follows from Theorem 1 (see the proof of theorem in Lozovanu, 2016). Note that
the graph-continuous property for payoffs holds only for two-players games.

Now let us prove the second part of the theorem. Let s∗ = (s1
∗
, s2

∗
) be a pure-

strategy Nash equilibrium for the game 〈{S
i
}i=1,n, {ψi

θ(s)}i=1,n 〉 determined

by (X, {Ai(x)}i=1,n, {f
i(x, a}i=1,n, p, {θy}), where θy > 0, ∀y ∈ X,

∑

y∈X θy = 1.

Then s∗ = (s1
∗
, s2

∗
) is a Nash equilibrium for the average stochastic game

〈{S
i
}i=1,n, {ψ

i
θ′(s)}i=1,n 〉 with an arbitrary distribution {θ′y} on X, where θ′y > 0,

∀y ∈ X,
∑

y∈X θ′y = 1, i.e

ψi
θ′(si

∗
, s−i∗) ≥ ψi

θ′(si, s−i∗), ∀si ∈ S
i
, i = 1, 2.

If here we express ψi
θ′ via ωi

y using (17) then we obtain

∑

y∈X

θ′y(ω
i
y(s

i∗, s−i∗)− ωi
y(s

i, s−i∗)) ≥ 0, ∀si ∈ S
i
, i = 1, 2.
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This property holds for arbitrary θ′y > 0, ∀y ∈ X such that
∑

y∈Y θy = 1 and
therefore for an arbitrary y ∈ X we have

ωi
y(s

i∗, s−i∗)− ωi
y(s

i, s−i∗) ≥ 0, ∀si ∈ S
i
, i = 1, 2.

So, s∗ = (s1
∗
, s2

∗
) is a Nash equilibrium for an arbitrary average stochastic game

〈{S
i
}i=1,n, {ω

i
y(s)}i=1,n 〉 with an arbitrary starting state y ∈ X.

Remark 2. The graph-continuous property of the payoffs in the case n > 2 players
may fail to holds and therefore Theorem 5 couldn’t be extended to general n-player
games.

So, the problem of determining the optimal stationary strategies in a two-player
average stochastic game determined by (X, {Ai(x)}i=1,2, {f i(x, a}i=1,2, p, {θy})

can be found if we find the optimal strategies of the game 〈{S
i
}i=1,2, {ψ

i
θ(s)}i=1,2 〉,

where the strategy sets S
1
, S

2
and the payoff functions ψ1

θ(s), ψ
2
θ(s) are determined

according to (14)-(16).

5. Conclusion

For a two-player average stochastic game a stationary Nash equilibrium exists and
the optimal stationary strategies of the players can be found by determining the
the optimal pure strategies for the game in normal form presented in this paper.
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