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Abstract The development of methodological tools for modeling of traffic
flow assignment is crucial issue since traffic conditions influence significantly
on quality of life nowadays. Herewith no secret that the development of in-
vehicle route guidance and information systems could impact significantly
on route choice as soon as it is highly believed that they are able to reduce
congestion in an urban traffic area. Networks’ users join groups of drivers
who rely on the same route guidance system. Therefore, present paper is
devoted to discussing approaches for modeling selfish and group routing.
Network performance is deeply associated with competition between users
of networks. So, the emphasis in our discussion is placed on game-theoretic
approaches for appropriate modeling.
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1. Introduction

J.G. Wardrop published in 1952 two principles for traffis flow assignment (Wardrop,
1952). The first principle of Wardrop associated with user equilibrium assignment
states:

• The journey time on all routes actually used are equal, and less than those
which would be experienced by a single vehicle on any unused route.

Clear, that it is still relevant and useful for evaluation of traffic flow assignment. It
means, that traffic engineers and decision makers at the different levels of manage-
ment rely on first principle to identify used routes in the network and the appropriate
flows. The second principle of Wardrop associated with system optimum:

• The average journey time is a minimum.

The second principle could not be used for evaluation of traffic flow assignment since
no one driver seeks to minimize average time. Any driver tries to minimize its own
travel time and, hence, the first principle of Wardrop is more appropriate for purpose
of such evaluation. Nevertheless, the relationships between user equilibrium and
system optimum define important economical conclusions in transportation about
toll pricing on the links of network (Gartner, 1980). Eventually, due to the second
Wardrop’s principle it is possible to evaluate toll prices that could be charged from
users of a road network.

There exist a number of researches that dealt with these two principles of
Wardrop. The extensive review of existing models and methods implemented for
traffic assignment evaluation is made by M. Patriksson in 1994 (Patriksson, 1994).
This outstanding book was republished in the beginning of 2015 without loss of
its relevance (Patriksson, 2015). In spite of various results already obtained in this
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branch of applied mathematics, new investigations are still appearing to contribute
namely practically expanding numerical techniques. For instance, the past decade
much attention has been paid to a class of bush-based algorithms (Zheng and Peeta,
2014). According to (Xie et al., 2013), it is the ability of such algorithms to solve
large-scale traffic assignment problems at a high level of precision that attracts many
researchers. On the other hand, there have been a relatively weak development of
theoretical principles concerning traffic assignment problem since the early 1950s.

The important substantive insights on the first Wardrop’s principle were made
by T. Roughgarden in his book (Roughgarden, 2005). He deeply investigated user
equilibrium concept as selfish behaviour of network’s users. However, the certain
relationships between selfish routing and group behavior in a network (system opti-
mum) were not established. Nevertheless, it was clearly shown, how selfish routing
could be inefficient from system perspective. In other words, when each driver tries
to minimize its own travel time (selfish routing), then the average traffic conditions
deteriorate. Much attention was payed to Braess’s paradox and its extension on sec-
ond and third Braess graphs. The task to avoid this paradox seems unsolvable for
large road networks. From practical perspective, any topology of real road network
is really exposed to the manifestation of Braess’s paradox. Therefore, selfish routing
in real road network lead to the loss of efficiency of network performance. The only
way to increase network performance is developing of the group routing principle
(Krylatov et al., 2016).

A number of theoretical results that establish relationships between user equilib-
rium of Wardrop, Nash equilibrium (competition between several groups of users)
and system optimum of Wardrop were obtained in (Krylatov et al., 2016). Investi-
gation was based on assumption that the impact of in-vehicle route guidance and
information (IVRGI) systems on route choice in daily trips of people increases nowa-
days. Such systems are result of the rapid development of information technologies
in the past three decades leads by the way to the emergence of different special-
ized telecommunication systems, which nowadays are introduced almost in every
field of human activity. The influence of these systems on decision making seems to
be significant. Moreover, the permanent innovative development of such systems is
noticeably related to the creation of intelligent vehicles. Indeed, from a consumer
perspective one of the main attributes of any intelligent vehicle is an automatic
drive regime that is associated with an automatic in-vehicle route guidance system.
Therefore, guidance systems are seemed to be an integral part of the concept of
intelligent vehicle.

Actually, an automatic guidance system is a great advantage of intelligent ve-
hicles not only from a consumer perspective. The traffic flow of intelligent vehicles
could be automatically assigned by the central guidance system in such a way to
minimize overall travel time of all road network users. In other words, a system op-
timum (Wardrop, 1952) could be reached on the network by imposing the optimal
route choices on the users (Patriksson, 2015; Sheffi, 1985; Wardrop, 1952). Such
an assignment of traffic flow is often called involuntary system optimum, unlike
voluntary system optimum (Gartner, 1980). In a voluntary system optimum case,
after paying special charging tolls users reached system optimum, although initially
they were tending to user equilibrium assignment (Patriksson, 2015; Sheffi, 1985;
Wardrop, 1952). Here, it should be mentioned that user equilibrium assignment is
supposed to take place when all drivers tries to minimize their own travel time with-
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out support of any guidance system. As a result, the overall travel time spending
by all users assigned according to interest of each atomic user is more than overall
travel time in system optimum case. Therefore, central guidance system is capable
to reduce congestions by imposing system optimum assignment on the intelligent
vehicles.

Moreover, according to (Bonsall, 1992) there is considerable government interest
in the development of in-vehicle guidance systems. This interest reflects a belief that
such systems could produce benefits in four ways (Bonsall, 1992):

• to improve people’s knowledge of the network and assist them to find efficient
routes;

• to reduce unnecessary mileage, traffic volumes, and hence congestion;

• to link in-vehicle guidance system with traffic control and, perhaps, road
pricing systems;

• to obtain more globally efficient routing patterns (system optimum).

Therefore governments feel possible positive effects from implementation of in-
vehicle guidance systems and try to formalize them. From the mathematical side
all these advantages could be expressed by system optimum principle. Hence, all
mentioned ways of producing benefits to the traffic systems are already discussed
in the previous paragraph in a short form of the ”optimizational vocabulary”.

Despite the interest of government, as a rule the major contribution in devel-
opment of guidance systems are produced by different private business companies.
By the virtue of competitive structure of economics these companies are forced to
compete with each other offering their own users better service. First of all, ”better
service” means the less travel time from origin to destination point. Thus, each
company seeks to route the flows of its own users so to minimize their average
travel time. At the same time others try to minimize average travel time of their
users routing in the same road network. Due to described circumstances the com-
petitive traffic assignment problem is appeared. Non-cooperative nature of relations
between the companies leads to the set of such optimization programs that the un-
known variables of any of these programs are independent parameters in all others.
Therefore, competitive traffic assignment problem should be formulated in a game
theoretic form with Nash equilibrium search (Nash, 1951).

System optimum assignment obtained by in-vehicle guidance systems with one
provider is assumed to differ from assignment imposed by Nash equilibrium strate-
gies of the competitive companies offered their consumers route guidance. Thus,
investigation of relationships between Wardrop’s system optimum associated with
traffic assignment problem and Nash equilibrium associated with competitive traf-
fic assignment problem seems quite important. Indeed, when flows of intelligent
vehicles are large enough then competitive guidance systems could deviate traf-
fic assignment from system optimum significantly. This fact should be taken into
consideration by traffic engineers, transportation planners, network designers and
etc. in transportation modeling. This paper is completely focused on mentioned
relationships and moreover, some common aspects of Nash equilibrium and user
equilibrium of Wardrop assignments will be also illuminated.
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2. State-of-The-Art

We give here an overview of the results, obtained in sphere of traffic behavior mod-
eling by virtue of game-theoretical approach. This is quite a standard overview of
the results on the topic (one could see (Krylatov et al., 2016; Patriksson, 2015)).

The first attempt to define traffic equilibria in forms of network games was
made in the late 1950s by Charnes and Cooper (Charnes and Cooper, 1958). They
described the user equilibrium flow as a non-cooperative Nash equilibrium in a game
where the players are pairs of origin–destination (OD pairs), competing to minimize
travel time of their respective commodity flows. Further discussion along this line
is developed by Dafermos in (Dafermos, 1971; Dafermos and Sparrow, 1969). How-
ever, these first investigations of the relationships between a Wardrop equilibrium
and a network games have not driven to any formal expressions.

Rosenthal studied a discrete version of the user equilibrium traffic assignment
problem in 1973 (Rosenthal, 1973). It should be stressed that the players are defined
as the individual travelers, with strategy spaces equal to their respective sets of
routes available. Travelers seeking to minimize their individual travel time, i.e. their
payoff functions. The game is shown to be equivalent to a non-cooperative, pure-
strategy Nash game in the traffic network. Therefore, he was the first one who
formulated special case of competitive traffic assignment problem as we defined it
above. This is the special case since each UG consist of solely one user.

Devarajan in 1981 extended discrete version to the continuous case, however,
as do Charnes and Cooper, defines OD pairs as the players (Devarajan, 1981) and
consider the payoff functions:

ϕw(y) =
∑

a∈Aw

∫ ya

0

ta(s)ds, ∀w ∈ W,

where W is a set of UGs, w ∈ W ; Aw is a set of links included in routes between
OD pair w; ya is a traffic flow on a congested link a; ta is a travel time through
a congested link a. Hence his formulation is not correspond to competitive traffic
assignment principle. Nevertheless, it was proved that the Nash game thus defined
is equivalent to a Wardrop equilibrium.

In the middle of 1980s more general game formulations of traffic equilibria were
given by Fisk (Fisk, 1984) and Haurie and Marcotte (Haurie and Marcotte, 1985).
The travel made in an OD pair is divided into a number of players and, hence, a
player, as defined, may use several routes simultaneously; in equilibrium, all players
divide their flow on all routes used in the OD pair. Therefore, such formulation has
the certain common features with competitive traffic assignment problem. However,
it is shown that only in the limiting case, when the number of players in each OD
pair tends to infinity, while sharing the same strategy, the Nash game is equivalent
to a Wardrop equilibrium.

In the 1990 the development of computer networks motivated researchers to
begin investigation of competitive routing in multiuser communication networks
(Orda et al., 1993). According to Orda et al., a single administrative domain was
no longer a valid assumption in networking. Then communication networks shared
by selfish users with their own given flow demands were considered and mod-
eled as noncooperative games by several research groups (Korilis and Lazar, 1995;
Korilis et al., 1995; La and Anantharam, 1997) and (Altman et al., 2002). Due to
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these researches different properties of such systems are established, and the condi-
tions of existence and uniqueness of Nash equilibrium in multiuser communication
networks are widely studied.

During the 2000s Altman et al. have extended results, obtained for multiuser
communication networks, and then implemented them to road networks (Altman
et al., 2002; Altman et al., 2011; Altman and Kameda, 2005). Unlike Haurie and
Marcotte, Altman et al. established the convergence of the Nash equilibrium in
network games to the Wardrop equilibrium as the number of players grows under
weaker convexity assumptions (Altman et al., 2011). Therefore, they raised again
the question of relationships between Nash equilibrium in noncooperative n-person
network games and Wardrop equilibrium in the traffic assignment problem.

3. Traffic assignment problem

This section is devoted to the basic description of the modern traffic assignment
problem.

Consider a transportation network presented by oriented graph G = (N,A). We
assume, that there is a set of OD pairs W and the sets of routes Rw between each
OD pair w ∈ W . Moreover, introduce following notation: Fw is the demand between
w; fw

r is the flow of UG j through r ∈ Rw; xa is the flow through the arc a ∈ A,
x = (. . . , xa, . . .); ta(x) = ta(xa) is the travel time of flow xa through congested arc
a ∈ A; δwa,r is an indicator:

δwa,r =

{

1, if route r ∈ Rw includes arc a ∈ A,

0, otherwise.

According to (Beckmann et al, 1956; Patriksson, 1994; Sheffi, 1985), the equal
travel time on all actually used routes, that is less than travel time on any un-
used route, could be reached by assignment strategy obtained from the following
optimization program:

xue = argmin
x

∑

a∈A

∫ xa

0

ta(u)du, (1)

subject to
∑

r∈Rw

fw
r = Fw ∀w ∈ W, (2)

fw
r ≥ 0 ∀r ∈ Rw, w ∈ W, (3)

with definitional constraints

xa =
∑

w∈W

∑

r∈Rw

fw
r δwa,r ∀a ∈ A. (4)

Let us offer the basic theorem and its proof for user equilibrium of Wardrop
(Patriksson, 2015; Sheffi, 1985). The proof of the following theorem has an impor-
tant meaningful sense.

Theorem 1. Solution x∗ of optimization problem (1)–(4) is user equilibrium of
Wardrop.
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Proof. Lagrangian of (1)–(4) is

L =
∑

a∈A

∫ xa

0

ta(u)du+ tw

(

Fw −
∑

r∈Rrs

fw
r

)

+
∑

r∈Rw

(−fw
r ) ηwr ,

where tw and ηwr ≥ 0, r ∈ Rw, w ∈ W are multipliers of Lagrange. According to
Kuhn–Tucker conditions, partial derivatives of L in x∗ are equal to zero:

∂L

∂fw
r

=
∑

a∈A

ta(xa) ·
∂xa

∂fw
r

− tw − fw
r = 0 ∀r ∈ Rw, w ∈ W. (5)

Due to (4):
∂xa

∂fw
r

= δwa,r ∀a ∈ A, r ∈ Rw, w ∈ W.,

that leads from (5) to

∂L

∂fw
r

=
∑

a∈A

ta(xa) · δ
w
a,r − tw − fw

r = 0 ∀r ∈ Rw, w ∈ W. (6)

Complementary slackness require fw
r · ηwr = 0. If fw

r > 0, then ηwr = 0, and, if
fw
r = 0, then ηwr ≥ 0. Than we obtain:

∑

a∈A

ta(xa) · δ
w
a,r

{

= tw, if fw
r > 0

≥ tw, if fw
r = 0

∀ r ∈ Rw. (7)

Therefore, solution of (1)–(4) fulfills (7). Consequently, it is user equilibrium of
Wardrop by definition.

Note, that since goal function (1) has no any physical or economical scence,
expression (5) is crucial for selfish routing. It confirms that problem (1)–(4) is the
behavioral model of selfish routing when each user tries to minimize its own travel
time.

According to (Beckmann et al, 1956; Patriksson, 1994; Sheffi, 1985), the mini-
mum average travel time could be reached by assignment strategy obtained from
the following optimization program:

T (xso) = min
x

∑

a∈A

ta(xa)xa, (8)

subject to
∑

r∈Rw

fw
r = Fw ∀w ∈ W, (9)

fw
r ≥ 0 ∀r ∈ Rw, w ∈ W, (10)

with definitional constraints

xa =
∑

w∈W

∑

r∈Rw

fw
r δwa,r ∀a ∈ A. (11)

Unlike user equilibrium model, problem (8)–(11) is quite clear as soon as goal func-
tion (8) has an accurate economical scence (total time costs).
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4. Game of OD-pairs

This section is devoted to the alternative game-theoretic formulation of user-equilib-
rium assignment. All discussed here results are obtained by S. Devarajan (Devara-
jan, 1981).

Assume that OD-pairs are players. Then we define Aw ⊂ A as subset of arcs that
are used by traffic flows between pair w ∈ W : Aw = {a : a ∈ r, for some r ∈ Rw}.
Each player w tries to minimize its payoff function

Pw(x) = Pw(x
w , x−w) =

∑

a∈Aw

∫ xa

0

ta(u)du, (12)

subject to
∑

r∈Rw

fw
r = Fw, (13)

fw
r ≥ 0, ∀r ∈ Rw, (14)

with definitional constraint

xa =
∑

w∈W

∑

r∈Rw

fw
r δwa,r, ∀r ∈ Rw, a ∈ Aw. (15)

Let us formulate the problem (12)–(15) in a form of noncooperative network game
with penalty functions: Ω

(

W, {Fw}w∈W , {Pw}w∈W

)

, where Fw = {fw|fw
r ≥ 0 ∀r ∈

Rw,
∑

r∈Rw fw
r = Fw, ∀w ∈ W}, when

xa =
∑

w∈W

∑

r∈Rw

fw
r δwa,r, ∀r ∈ Rw, a ∈ Aw.

Nash equilibrium in game Ω is reached by such x∗ that

Pw (x∗) ≤ Pw

(

xw, x−w∗
)

∀w ∈ W,

where x−w = (. . . , xw−1, xw+1, . . .).
Let us offer the following theorem. Proof of the theorem is highly important

from meaningful perspective.

Theorem 2. User-equilibrium flow pattern (with continuous flows) is a pure strat-
egy Nash equilibrium in game Ω.

Proof. Assume
∑

a∈p

∫ xa

0

ta(u)du >
∑

a∈q

∫ xa

0

ta(u)du,

Then
∑

a∈(p−q)

∫ xa

0

ta(u)du−
∑

a∈(q−p)

∫ xa

0

ta(u)du = δ > 0.

Due to continuity of
∫ xa

0 ta(u)du, there exist ∆f1 > 0, ∆f2 > 0, such that

∑

a∈(p−q)

∫ xa−∆f1

0

ta(u)du >
∑

a∈(p−q)

∫ xa

0

ta(u)du −
δ

3
, (16)



Game-Theoretic Approach for Modeling of Selfish and Group Routing 169

∑

a∈(q−p)

∫ xa+∆f2

0

ta(u)du >
∑

a∈(q−p)

∫ xa

0

ta(u)du+
δ

3
. (17)

Let us substitude ∆f = min{∆f1, ∆f2} for ∆f1 and ∆f2 in (16) and (17) and the
inequalities still hold. Thus, from (16) and (17) we obtain

∑

a∈(q−p)

∫ xa+∆f

0

ta(u)du−
∑

a∈(p−q)

∫ xa−∆f

0

ta(u)du <

<
∑

a∈(q−p)

∫ xa

0

ta(u)du −
∑

a∈(p−q)

∫ xa

0

ta(u)du+
2δ

3
=

−δ

3
< 0. (18)

Let ∆Pw be the change in Pw resulting from a transfer of ∆f from p to q. Since
∫ xa

0 ta(u)du is increasing function

∆Pw <
∑

a∈(q−p)

∫ xa+∆f

0

ta(u)du ·∆f −

−
∑

a∈(p−q)

∫ xa−∆f

0

ta(u)du ·∆f <
−δ

3
∆f < 0. (19)

Therefore, if no player w can lower his payoff Pw by an interpath flow transfer, then
the network is user optimized. However, the equivalence to Nash equilibrium is not
yet transparent.

Eventually, S. Devarajan made important conclusions that we cite further (De-
varajan, 1981). Theorem 2 does not guarantee the equivalence of user-equilibrium
and Nash equilibrium in game of OD-pairs Ω. Actually, user-optimization is a
weak condition for Nash equilibrium. The problem is that the criterion for user-
optimization, that a shift of ∆f from path p to path q not decrease the cost to ∆f ,
is a weak condition for Nash equilibrium. Pure strategy Nash equilibrium requires
that the adoption of any new pure strategy by a player should not improve his
payoff. This means we should be able to transfer any number of f (not necessarily
equal) from as many paths to another set of paths (all connecting the same OD-
pair w) and not register a drop in payoff Pw. To put it another way, given a pure
strategy (fpi

, . . . , fpn
), the user optimization criterion refers to changing only two

of the fpi
’s. For Nash equilibrium, we must test whether shifts which change up

to all the fpi
’s improve the payoff. Thus, every Nash equilibrium is a user optimal

network but not vice versa. However if we can show that:

• the user optimal solution is unique, and

• Nash equilibrium always exists in this game.

then the two equilibrium concepts are, in fact, equivalent.

5. Game of Individual Users

This section is devoted to another alternative game-theoretic formulation of user-
equilibrium assignment. All discussed here results are obtained by R.W. Rosenthal
(Rosenthal, 1973).
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Let us start from introductory citation of R.W. Rosenthal (Rosenthal, 1973).
The individuals are assumed to be playing a game in which the pure strategies for
each are the individuals’ feasible paths. The payoffs (to be minimized) are the sums
of the costs of the arcs used. Nash equilibria are sought. In this case these corre-
spond to equilibria for the system. For general n-person games, however, one is not
guaranteed that any Nash equilibria must exist; unless the individual strategy sets
are extended to include all possible randomizations over the sets of pure strategies.
(See Nash, 1951) (The cost of playing a randomized strategy is taken to be the
expected cost over the relevant pure strategies.) spond to fractional solutions to the
continuous-variables model . For this class of games, however, it is not necessary to
introduce randomizations, since pure-strategy Nash equilibria always exist.

Denote xk
a as the fraction of individual k’s flow which passes through arc a,

k ∈ {1, . . . , |F |}, a ∈ A. If all individuals have chosen their routes, the total cost to
an individual traversing route r is

Pk(r) =
∑

a∈r

ta(xa). (20)

Then we can formulate the following noncooperative network game:
Υ
(

F, R, {Pk}k∈F

)

, where F = {1, . . . , |F |} and R is a set of all possible routes.
An equilibrium for the system is a set of feasible paths, one for each individual,

such that no individual can decrease his total cost by switching unilaterally to some
other feasible path. We shall assume in all that follows that at least one feasible
route exists for each individual.

min
∑

a∈A

xa
∑

u=0

ta(u) (21)

subject to

xa =

|F |
∑

k=1

xk
a, a ∈ A, (22)

when

xk
a =

{

1, if choosen route containing arc a,

0, otherwise.
(23)

The following theorem was proved (Rosenthal, 1973).

Theorem 3. In game Υ , derived from network equilibrium models, pure-strategy
Nash equilibria always exist. Furthermore, any solution to the problem (21)–(23) is
a pure-strategy Nash equilibrium in game Υ .

We can say, that theorem 3 gave the first justification of a high correlation between
selfish routing and user equilibrium of Wardrop.

6. Game of Users’ Groups

This section is devoted to relationships between user equilibrium of Wardrop, Nash
equilibrium (competition between several groups of users) and system optimum of
Wardrop. All discussed here results are obtained by A.Y. Krylatov et al. (Krylatov
et al., 2016).
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Let’s start with the fact that the both Wardrop’s principle are useful from practi-
cal perspective. However, the drawback is that they are not applicable when instead
of atomic drivers, the behavior of groups of drivers (with common group interest)
should be taken into consideration. Thus, by virtue of rapid guidance systems devel-
opment the need for a new assignment principle is expected to increase significantly
in the coming years. If the term ”group of users (UG)” we understand as a set of all
drivers following advices of the same guidance system, then a new principle could
be formulated roughly as follows:

• Under competitive conditions the average journey time of each group of users
is a minimum.

Note, the explicit mention of the competitive environments in this principle is im-
portant since without competitive behavior of companies creating guidance systems
the second principle of Wardrop is sufficient for the purpose of appropriate model-
ing. Further we will associate this competitive traffic assignment principle with the
competitive traffic assignment problem.

Consider the same transportation network presented by oriented graph G =
(N,A), set of OD pairs W and corresponding sets of routes Rw, w ∈ W . Ac-
cording to competitive traffic assignment principle, each group tries to assign its
users among available routes from origin to destination in such a way, that their
average travel time is minimum. Introduce following notation: M = {1, . . . ,m}
is the set of users’ groups (UG); F jw > 0 is the demand of UG j between w,
F j =

∑

w∈W F jw ; xj
a is the flow of UG j throgh the arc a ∈ A, xj = (. . . , xj

a, . . .),
x−j = (x1, . . . , xj−1, xj+1, . . . , xm) and xa = (x1

a, . . . , x
m
a ); f jw

r is the flow of UG j

through r ∈ Rw; f jw = (f jw
1 , . . . , f

jw

|Rw|)
⊤ is the assignment of the flow F jw through

possible routes Rw; f j = (. . . , f j,w, . . .) is the strategy of UG j (the assignment
of the flows F jw between all OD-pairs), and f−j = (f1, . . . , f j−1, f j+1, . . . , fm);
f = (f1, ..., fm) is the set of all strategies of all UGs.

Each UG tries to minimize the average travel time of its own users. There-
fore, the following optimization programs could be formulated for all j = 1,m
Zakharov and Krylatov, 2016:

T j
m

(

xj∗, x−j
)

= min
xj

T j
m (x) = min

xj

∑

a∈A

ta(xa)x
j
a, (24)

subject to
∑

r∈Rw

f jw
r = F jw ∀w ∈ W, (25)

f jw
r ≥ 0 ∀r ∈ Rw, w ∈ W, (26)

with definitional constraints

xj
a =

∑

w∈W

∑

r∈Rw

f jw
r δwa,r ∀a ∈ A, (27)

xa =

m
∑

j=1

xj
a ∀a ∈ A. (28)

Note, that for each j ∈ M the set x−j is not fixed, but induced by the assignment
decisions of other UGs. Therefore, we obtain competitive traffic assignment problem,
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that could be reformulated in a form of noncooperative network game with penalty
functions zj, j = 1,m: Γm

(

M, {F j
m}j∈M , {T j

m}j∈M

)

, where F j
m = {f jw|f jw

k ≥

0 ∀k ∈ Kw,
∑

k∈Kw
f
jw
k = F jw, ∀w ∈ W}, when

xj
a =

∑

w∈W

∑

r∈Rw

f jw
r δjwa,r and xa =

m
∑

j=1

xj
a.

Consideration of competitive traffic assignment problem in a game theoretic
form leads us to the Nash equilibrium search. Nash equilibrium in the game Γm is
realized by strategies xne

m = (x1∗, . . . ,xm∗) such that

T j
m (xne

m ) ≤ T j
m

(

xj ,x−j∗
)

∀ j ∈ M. (29)

Theorem 4. The following inequalities hold

T (xso) ≤ T (xnem ) ≤ T (xue). (30)

Corollary 1. If ta(xa) 6= const then the following inequalities hold

T (xso) = T (xne1 ) < T (xne2 ) < . . . < T (xnem ) <

< T (xnem+1) < . . . < T (xne|F |) ≤ T (xue). (31)

The proof of Theorem 1 allow us to establish some rules that characterize the
border conversion of competitive assignment (Nash equilibrium) into non-competitive
assignment (user equilibrium and system optimum). Here they are:

• if j = 1 then Nash-equilibrium is converted into system optimum of Wardrop,

• if F j = 1 for all j = 1,m then Nash equilibrium in pure strategies is converted
into integer user equilibrium of Wardrop,

• if F j = 1 for all j = 1,m then Nash equilibrium in mixed strategies is
converted into user equilibrium of Wardrop,

• if F j → 0 for all j = 1,m or equivalently m → ∞ then Nash equilibrium is
converted into user equilibrium of Wardrop.

Moreover, due to Corollary one could state three important conclusions:

1 Competitive in-vehicle route guidance systems decrease the average travel time
in urban traffic area in comparison with an atomic vehicle guidance.

2 The less amount of competitive in-vehicle guidance systems, the less average
travel time in urban traffic area.

3 Centralized guidance system guarantees the least travel time in urban traffic
area.

Therefore, since in modern worldwide cities drivers chose routes by their own even
competitive guidance systems could decrease the average travel time. Consequently,
from this perspective, the development of intelligent vehicles could significantly
improve traffic conditions in urban areas.



Game-Theoretic Approach for Modeling of Selfish and Group Routing 173

7. Conclusion

This paper was devoted to discussing approaches for modeling selfish and group
routing. Surprisingly, first behavioral model for selfish routing appeared in 1950’s,
but no any methodological novations have appeared since then. Significant mean-
ingful contribution was made by T. Roughgarden in 2000’s. New relationships be-
tween user-equilibrium of Wardrop, Nash equilibrium (competiion between groups
of users) and system optimum of Wardrop were established in 2010’s. Thus, there
is a clear opportunity for development of selfish and group routing models on the
basis of game-theoretic approach.
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