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Abstract Supposing that Player 1’s computational power is higher than
that of Player 2, we give three examples of different kinds of public signal
about the state of a two-person zero-sum game with symmetric incomplete
information on both sides (both players do not know the state of the game)
where Player 1 due to his computational power learns the state of the game
meanwhile it is impossible for Player 2. That is, the game with incomplete
information on both sides becomes a game with incomplete information on
the side of Player 2. Thus we demonstrate that information about the state
of a game may appear not only due to a private signal but as a result of a
public signal and asymmetric computational resources of players.

Keywords: zero-sum game; incomplete information; asymmetry; finite au-
tomata.

1. Introduction

The literature on repeated games with incomplete information usually assumes that
players have unlimited computational capacity. Since in practice this assumption
does not hold, it is important to study whether and how its absence affects the
predictions of the theory.

We consider zero-sum games of players with limited computational capacity,
and discuss how these limitations may affect the information structure of the game.
We show how difference in computation resources may give rise to informational
asymmetry in an otherwise symmetric game.

Our model of limited computation resources is similar to the model of Abraham
Neyman (Neyman, 1997; Neyman, 1998). The strategies available to players are
limited to finite automata of different sizes.

Starting with the seminal papers by Rubinstein (Rubinstein, 1986) and by Abreu,
Rubinstein (Abreu and Rubinstein, 1988) there appeared a number of papers on
repeated games where strategies of players are implemented by finite automata.
These papers investigate properties of the set of equilibrium payoffs under this
assumption. For an abundant bibliography on the subject see Hernández, Solan
(Hernández and Solan, 2016).

We are interested in another aspect. Supposing that Player 1’s computational
power is higher than that of Player 2, we give three examples of different kinds
of public signal about the state of a two-person zero-sum game with symmetric
incomplete information on both sides (both players do not know the state of game
but know its probability) where Player 1 due to his computational power learns the
state of the game meanwhile it would be impossible for Player 2.
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In our examples each player chooses a finite automaton. The both chosen au-
tomata are given a signal depending on the state of the game. Intuitively it is clear
that higher computational power of Player 1 may let him “know” the state of the
game meanwhile it would be impossible for Player 2. That is, if Player 1 “computes”
the state of the game with help of his computational resources and Player 2 does
not, the game with incomplete information on both sides becomes a game with
incomplete information on the side of Player 2.

Thus we demonstrate that knowledge of the state of a game may arise not only
due to a private information (a private signal) but as a result of a public signal and
computational resources of players.

In the first two examples both chosen automata are given a signal consisting of
a string of 1’s whose length depends on the state of the game. In the first example
a signal is deterministic. In the second example a signal is random.

In the third example both chosen automata are given a random signal consisting
of a string of 0’s and 1’s. The state of the game is determined by the value of the
bit (0 or 1) of a certain fixed distance from the end of the string.

In the first example where a signal is deterministic Player 2 gets no new in-
formation on the state of the game. In the second and third examples of random
signals Player 2 reestimates the probability of the state. Hence players are faced
with a game with incomplete information on the side of Player 2 where the poste-
rior probability of the state known to both players is more accurate than the prior
one.

2. Games under consideration

As our approach only deals with revealing the information about the state of the
game before the game starts, the number of stages is irrelevant. So we are not
concerned with repetition of a game and do not go beyond analysis of games which
are played once.

We base our consideration on the classical setting of matrix games with incom-
plete information on one side and with incomplete information on both sides (see
(Harsanyi, 1967-68; Aumann and Maschler, 1995)).

I. The case of symmetric incomplete information on both sides.

Let A(p) denote the matrix game with incomplete information on both sides given
by two square payoff matrices A1 and A2. Before the game starts a chance move
determines the ”state of nature” k ∈ K = {1, 2} and therefore the payoff matrix
Ak: with probability p the matrix A1 is played and with probability 1−p the matrix
A2 is played. Both players know the probability p and do not know the result of the
chance move.

As a matter of fact in such a game with incomplete information on both sides
players are faced with the matrix game given by payoff matrix A(p) = pA1 + (1 −
p)A2. We will denote the matrix game given by payoff matrix B by the same symbol
B. The value V alA(p) is a continuous function on p over the interval [0, 1], where
V alA(0) = V alA2 and V alA(1) = V alA1 as equity of probability p to 0 or 1 means
that players know what game is played: if p = 0 then it is A2 and if p = 1 then it
is A1.

Note that the absence of information on a state of the game on the both sides
may be profitable for one player and not profitable for another one. Consider a
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simple example: 2× 2-matrices with V alA1 = V alA2 = 0

A1 =

[

0 1
0 0

]

, A2 =

[

0 0
1 0

]

and so A(p) =

[

0 p
1− p 0

]

.

It is easy to calculate that V alA(p) = p(1 − p) > 0. Hence in the game V alA(p)
Player 1 can guarantee the positive payoff while his guaranteed payoff is only zero if
both players know what game is played. If in matrices A1 and A2 the elements equal
to 1 are replaced by elements equal to −1, then V alA(p) = −p(1− p) is negative.
In this case it is Player 2 who gets a profit from the absence of information on the
both sides.

II. The case of incomplete information on the side of Player 2.

Now consider the same game as in case I but Player 1 is informed on the result of the
chance move but Player 2 is not. So Player 1 knows exactly what game is played.
Player 2 has no such information. Player 2 knows that Player 1 is the informed
player.

Let Aasy(p) denote this game with incomplete information on the side of Player
2. Naturally in this game Player 1 could guarantee himself not less than in the game
A(p). In any case he may play as though he ”forgives” the obtained information.
But usually it is profitable for him to use his knowledge of the state of the game.
Demonstrate it for the example of matrices A1 and A2 given in the case I. As Player
1 knows exactly what game is played he chooses the first row if it is A1 and the
second row if it is A2. The best reply of Player 2 who has no information on the
state is to choose the first column with probability p and the second column with
probability 1− p. Thus Player 1’ guaranteed payoff (1− p if A1 is played or p if A2

is played) is greater than his guaranteed payoff p(1− p) in the game A(p) with lack
of information on the both sides.

It is known (Aumann and Maschler, 1995) that the value V alAasy(p) is a con-
tinuous piecewise linear concave function over [0, 1] and as in the previous case
V alAasy(0) = V alA2 and V alAasy(1) = V alA1.

In this paper we consider a case in certain sense intermediate between I and
II: both players do not know the state of the game but there is some additional
information on this state besides its probability p.

For considerably complicated cases Gensbittel (for infinite action spaces)(Gens-
bittel, 2016) and Gensbittel, Oliu-Barton, Venel (for an evolution of states) (Gens-
bittel et al., 2014) deal with another intermediate informational structure: the in-
formed player does not observe the state variable directly but receives a stochastic
signal whose distribution depends on the state variable. The authors generalize
several classical asymptotic results concerning zero-sum repeated games with in-
complete information on one side.
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III. The case of symmetric information, public signal and automata.

Let Am,n
f (p) denote a modification of game A(p) with incomplete information on

both sides (both players do not know the matrix chosen). Here f is an injective
function of the state of the game, f(k), k = 1, 2. The codomain of the function f is
the set of binary strings (i.e. strings consisting of symbols 0’s and 1’s) of arbitrary
length. Function f is known to both players.

Each player chooses a finite automaton. Player 1 chooses an arbitrary automaton
(Automaton 1) of size at most m, and Player 2 chooses an arbitrary automaton
(Automaton 2) of size bounded by n where m > n. Note that the number of
automata of size at mostm is exponential in m, of orderm2m2m+2m = 22m logm+3m.
This rough estimate is obtained as follows. There are exactly two edges leaving each
of m vertices; there are m possibilities for an edge leaving a given vertex. This gives
m2m possibilities for the choice of the edges of the automaton. There are m vertices
and 2m edges, each labelled by either 0 or 1. This gives 2m+2m possibilities to choose
the labels of the edges.

Thus the number of possibilities for Player 1 to choose the automaton is of order
22m logm+3m while for Player 2 this number is 22n log n+3n. This implies that Player 1
has exponentially more options than Player 2 if m >> n. Both players know the
size of automaton of the opponent.

A meaningful strategy of choosing an automaton is as follows. A player runs each
automaton of appropriate size on input f(k), k = 1, 2 and chooses the one whose
output is k if such exists. In our examples such an automaton exists for Player 1
but not for Player 2.

After the players have chosen their automata, the game sends the public signal
f(k), k = 1, 2. This signal is received by the chosen automata which compute their
responses.

The output of Automaton i is interpreted by Player i as an indication towards
the state of the game A(p). Payoffs of the players are determined accordingly.

In sections 4-5 we give examples of functions f and numbers m, n depending on
f such that the size m of Player 1’s automaton allows him to “compute” the state
of the game but the size n of Player 2’s automaton is not sufficient for this purpose.
Hence Player 1 learns the state of the game and the game Am,n

f (p) is turning to the
game with incomplete information on the side of Player 2.

3. Automaton

For theory of finite automata see textbooks (Sakarovitch, 2009; Kobrinskii and
Trakhtenbrot, 1965); here we give a quick overview and introduce the notation
we use.

An automaton is represented by a connected labelled directed graph with a finite
set of vertices

• One vertex is distinguished as a initial vertex v0.

• Each edge of the graph is labelled by either 0 or by 1.

• Each vertex is labelled by either 0 or by 1.

• There are exactly two edges leaving each vertex,
one labelled 0 and one labelled 1.

• There is no restriction how many edges enter a vertex.
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In our context a label on a vertex represents the output of the automaton which
is interpreted as a state of the game. As input the automaton receives a signal which
is a binary string; labels on the edges correspond to the symbols of the binary string.
Next we explain how an automaton computes.

The computation of the automata proceeds as follows: the automaton receives
a string s1 . . . sl of 0’s and 1’s from the game.

Intuitively, we think that the automaton reads symbols one by one, starts at
the initial vertex v0 and upon reading the symbol s1, moves to the vertex v1 by the
unique edge labelled s1 coming out of v0. Then upon reading the symbol s2, moves
to the vertex v2 by the unique edge labelled s2 coming out of v1 and so on... Thus
there is a unique path of edges starting from the initial vertex v0

v0 −→s1 v1 −→s2 v2 −→s3 . . . −→sl−1 vl−1 −→sl vl

such that the path from the vertex vi−1 to the vertex vi is labelled by si, 1 ≤ i ≤ l.
The output of the automaton is the label of the end vertex vl of this path.

4. Results. Degenerate cases

In the first two examples the automaton is degenerate because the signal consists
only of 1’s and thus only edges labelled 1 matter. In the first case the signal is
deterministic, in the second case it is random.

4.1. Example 1: degenerate deterministic case

Consider function f(k) = 1kn!, k = 1, 2; here 1kn! denotes the string of 1 . . . 1
consisting of 1 repeated kn! times.

Theorem 1. For m > n such that m does not divide n!, Player 1 deciphers the

signal while Player 2 does not.

Proof. The proof is based on the following observation. Consider computation of an
automaton G with n vertices on a string of 1’s, i.e., equivalently, the path e1 . . . el
of edges in G labelled by 1. If l > n, then the path necessarily has a cycle, i.e. for
some n′ it holds ei = ei+n′ for all i > n.

Then the output of the automaton G with n vertices is the same for two strings
1i and 1i+rn′

, where r is an integer positive number. Thus, the output is the same
for any two strings whose lengths are more than n and have the same reminders
modulo n′.

As n′ divides n! for each 1 ≤ n′ ≤ n, we get that for any automaton of size at
most n, the output is the same for the strings f(1) = 1n! and f(2) = 12n!.

This proves that the automaton of Player 2 can not distinguish the two strings
f(1) = 1n! and f(2) = 12n!.

On the other hand, as m does not divide n! by the hypothesis of the theorem, it
is easy to construct an automaton of size m which distinguishes these two strings,
as follows.

Namely, consider the automaton such that its edges labelled by 1 form a single
cycle of size m. As m does not divide n!, the reminders modulo m of the lengths of
f(1) and f(2) are different, the end-vertices of the paths corresponding to the two
signals are different.

Now label them with different appropriate actions. Hence, this automaton cor-
rectly distinguishes the states of the game and therefore it is optimal for Player 1
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to choose this automaton to be able to use the information about the state of the
game.

Thus Player 1 knows the state of the game while Player 2 does not.

Corollary . Under hypothesis of Theorem 1 in the game Am,n
f (p) the players are

faced with the game Aasy(p) with incomplete information on the side of Player 2.
Thus it may be said that the game Am,n

f (p) is equivalent to the game Aasy(p).

4.2. Example 2: degenerate random case

Definition. We say that the game Am,n
f (p) with incomplete information on both

sides is ε-equivalent to the game Aasy(p) with incomplete information on the side
of Player 2 if in the game Am,n

f (p) the players are faced with the game Aasy(p′)
where |p− p′| < ε.

Now we consider the game Am,n
f (p) where the function f(k), k ∈ K is random.

For simplicity assume that m is prime.

The signal f(1) is a string of 1’s of a random length l, where l takes value
uniformly among m, 2m, . . . , (m− 1)m,m2.

The signal f(2) is a string of 1’s of a random length l, where l takes value
uniformly among m+ 1, 2m+ 1, . . . , (m− 1)m+ 1,m2 + 1.

Theorem 2. For m > 100n the game Am,n
f (p) is ε-equivalent to the game Aasy(p)

with ε = 0.05.

Remark. If we replace the condition m > 100n by m > Cn for an integer positive
constant C, then ε = 5/C.

Proof. By the definition of the signal f we get that the reminders modulo m of the
lengths of f(1) and f(2) are different. As in the previous proof, Player 1 may pick an
automaton which runs through a cycle of length exactly m and hence distinguishes
the f(1) and f(2). Hence Player 1 learns what game is played.

We will show that, regardless of prior probability p, Player 2 is able to correctly
guess the state of the game with probability at most 1/2 + 0.01. Indeed, as before,
any automaton that Player 2 is allowed to choose has the property that there is
n′ < n such that its output depends only on the length of the input signal modulo
n′. Look at the two sequences m, . . . ,m2 and m + 1, . . .m2 + 1 modulo n′. By
assumption m is prime, hence n′ and m are coprime. Hence both sequences consist
of a cycle of reminders n′ repeated several times, one last cycle may be not complete.
Therefore each reminder modulo n′ is repeated either [m/n′] times or [m/n′] + 1
times.

Now assume that p ≥ 1/2. The case p ≤ 1
2 is analogous.

Let us see whether Player 2 can reestimate the prior probability p based on
his knowledge of the reminder modulo n′ of the length of the input signal. If this
reminder appears the same number of times in both sequences, i.e. the probability
that if occurs is the same for both f(1) and f(2), then Player 2 can not reestimate
the prior probability.

If the reminder occurs [m/n′] + 1 times in one sequence and [m/n′] times in the
other one, then the probabilities that it occurs for f(1), respectively f(2), differ at
most by factor ([m/n′] + 1)/[m/n′] < 1.01.

Hence, the probabilities α1, respectively α2, that the automaton of Player 2
outputted 1 for f(1), respectively 2 for f(2), differ at most by factor ([m/n′] +
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1)/[m/n′] < 1.01, as probability α1, respectively α2, is the sum of the probabilities
of the signals that make the automaton outputs 1, respectively 2.

Thus

α1 ≤ 1.01α2 and α2 ≤ 1.01α1.

Now use Bayes formula to reestimate the prior probability p of state 1

p′ =
α1p

α1p+ α2(1− p)
= p

α1

α1 + (α2 − α1)(1− p)
≤

≤ p
α1

α1 − 0.01α1(1− p)
< 1.05p.

So it holds p′ < 1.05p.

Hence in the game Am,n
f (p) players are faced with the game Aasy(p′) where

|p− p′| < ǫ. Thus the game Am,n
f (p) is 0.05-equivalent to the game Aasy(p).

5. Result. Non-degenerate random case

In the games above we considered signals consisting of only one symbol repeated
many times. Much shorter signals suffice for the same effect (namely, that Player 1
can differentiate between the states but Player 2 can not) if one considers signals
using at least two different symbols.

Here we consider the game Am,n
f (p) where a random signal f(k), k ∈ K consists

of a binary string of both 0’s and 1’s.

For simplicity assume that m = 2L for some integer L.

To define f(1), consider the probability distribution over the set of binary strings
of length L ≤ l < 2L such that the probability of a string s1 . . . sl is 0 if sl−L = 1,
and is 2−l/L if sl−L = 0. For this distribution the probability of a string having
size l is 1/L. The signal f(1) takes value according to this distribution.

Similarly, to define f(2), consider the probability distribution over the set of
binary strings of length L ≤ l < 2L such that the probability of a string s1 . . . sl
is 0 if sl−L = 0, and is 2−l/L if sl−L = 1. As before, for this distribution the
probability of a string having size l is 1/L. The signal f(2) takes value according to
this distribution.

Note that for the uniform distribution on binary strings of length l such that
L ≤ l < 2L the probability that a string has length l is equal to 2L−l.

Observe that the signal described above is significantly shorter than in Theo-
rem 2, namely signals of length l < 2L = 2 log2 m are shorter than signals of length
m.

Theorem 3. Fix an 0 < ε ≤ 0.1 and an integer L. Let m > 22εLL and n <
exp(2ε2L). The game Am,n

f (p), is ε-equivalent to the game Aasy(p).

Remark. The hypothesis of Theorem 3 assumes that m is substantially larger that
n. For example, one may take L = 1000, ε = 0.1 and n = e19. Then the theorem
requirements m = 21000 > 22001000, n = e19 < e20 = exp(2ε2L) are fulfilled and
m = 21000 ≈ 10300, n = e19 ≈ 108.

To prove the theorem we need the following lemmas.
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Lemma 1 Let S be a set of strings of length L. Pick randomly and uniformly both

an integer number k < L and a string s1 . . . sL from S. Let pS be the probability

that sk = 1. Let ε > 0. If pS ≥ 1/2 + ε then the size of S is bounded above by

2L · 10exp(−2ε2L).

Remark. One way to construct such a set where pS = 1/2+ ε is to take the set of
all strings of length L starting with 1...1 repeated [2εL] times where [2εL] denotes
the least integer not less than 2εL. Note that

|S| = 2(−2ε+1)L < 2L · 10exp(−2ε2L)

as ε < 1.

Proof. Let S be a set such that pS ≥ 1/2 + ε. The inequality 2(−2ε+1)L < 2L ·
10exp(−2ε2L) implies we may assume that |S| > 2(−2ε+1)L. Now split S into three
disjoint sets:

S = S1 ∪ S2 ∪ S3

where S1 is the subset of strings containing more that (1/2 + 2ε)L occurrences of
1’s; S2 is the subset of strings containing not more than (1/2+ 2ε)L but more than
(1/2 + 1/2ε)L occurrences of 1’s. Finally, S3 is the subset of strings containing not
more than (1/2 + 1/2ε)L occurrences of 1’s.

We have the following equality:

|S| = |S1|+ |S2|+ |S3|.

Estimating the number of k’s such that sk = 1 among strings s1 . . . sL ∈ S, we also
get

ε|S| ≤ |S1|+ 2ε|S2|+ ε/2|S3|.

Then
ε(|S2|+ |S3|) ≤ 3ε|S2|+ ε/2|S1|

and thus
ε/2|S3| ≤ 3ε|S2| and |S3| ≤ 6|S2|.

Finally, by the Chernoff bound (see for example (Hagerup, 1990))

|S2| < 2L · exp(−(2ε)2L/2) = 2L · exp(−2ε2L),

|S1| < 2L · exp(−(8ε)2L/2) = 2L · exp(−4ε2L).

Hence

|S| ≤ 2L[exp(−4ε2L) + exp(−2ε2L) + 6exp(−2ε2L)] ≤ 2L · 10exp(−2ε2L),

thereby proving the lemma.

Remark. Note that there is another proof of the lemma using entropy bounds (see
for example (Borda, 2011)).

Now let us estimate how often an automaton of size n may correctly guess the state
of the game, i.e. what is the probability that it outputs 1 when receiving signal f(1).

Lemma 2 An automaton of size n < 2Lexp(−2ε2L) guesses correctly with proba-

bility at most ε+ 1/2.
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Proof. The automaton has at most n states (vertices) v1, ..., vn. Let Vi be the set
of strings of length exactly L such that the automaton is in state vi after reading
the string. Let pi = 1/2 + εi be the probability the automaton guesses correctly
after reading an input string whose first L bits is in Vi. The automaton output
depends on vi and the last l − L bits of the input string. Note that these last bits
are irrelevant for the correctness of the output.

At least for some choice of the rest of the string the conditional probability of
success is at least pi. Without loss of generality let this string be 1...1. Then we see
by Lemma 1 that the size of |Vi| ≤ exp((1− 2ε2i )L).

The overall probability of success is at most

1/2 + ε ≤
∑

1≤i≤n

pi|Vi| ≤
∑

1≤i≤n

pi · exp(−2ε2iL).

We have to estimate the number of summands. First notice that we may disregard
summands where εi > 2ε as we need at least 2ε of them to get ε/2. By a calculation
similar to the calculation above, the proportion of summands where εi < ε/2 cannot
be more than 5/6. This implies that we need a number of summands of order
exp(−2ε2L). This completes the proof of the lemma.

Lemma 3 There is an automaton of size of order L22εL which guesses correctly

with probability at least ε+ 1/2.

Proof. The automaton is constructed as follows. Let l = [2εL] be the least integer
not less than 2[εL]. It has states vs1...si where s1 . . . si, 1 ≤ i ≤ l runs through
strings of 0 and 1’s of length at most l.

Vertices vs1...si and vs1...sisi+1
are connected by an edge labelled si+1. Further

there are states vks1...sl , l ≤ k ≤ L+ l;

for l ≤ k < L + l both edges leaving vks1...sl go to vk+1
s1...sl

; both edges leaving

vL+l
s1...sl

go to the state itself. For L < k ≤ L+ l, the state vks1...sl is labelled by sk−L;

for 1 ≤ k ≤ L the state vks1...sl is labelled by 1. By construction this automaton
guesses correctly if the input string has length at most L+ l. If the string is longer
it always outputs 1, which is correct with probability 1/2. The probability of an
input string being of length at most L + l is l/L. Hence, the total probability of a
correct guess is then at least 2l/L+ (1− 2l/L) ≤ 2ε+ (1− 2ε)/2 = 1/2 + ε.

Proof of the Theorem 3. The structure of the proof is similar to that of Theorem
2. We use similar estimates on the posterior probabilities.

By Lemma 3 Player 1 can choose an automaton which always decodes the signal
correctly and thus Player 1 knows the state of the game.

By Lemma 2 the automaton chosen by Player 2 guesses correctly with probability
at most 1/2 + ε. Now let us calculate the posterior probabilities of state 1 of the
game.

Assume Player 2’s automaton pointed out to state 1 whose probability is p.
Using Bayes formula the posterior probability p′ of state 1 can be calculated as
follows:

p′ =
p(12 + ε)

p(12 + ε) + (1 − p)(12 − ε)
= p

1
2 + ε

1
2 − ε+ 2εp

.

It is easy to verify that p ≤ p′ ≤ (1 + ε)p.
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Assume Player 2’s automaton pointed out to state 2 whose probability is 1− p.
Similarly we get 1 − p ≤ 1 − p′ ≤ (1 + ε)(1 − p). Hence (1 − p′) ≤ (1 + ε)(1 − p)
and thus p′ ≥ (1 + ε)p − ε ≥ (1 − ε)p for p ≥ 1/2. Hence the game is ε-equivalent
to game Aasy(p′).

Conclusions

We consider zero-sum games with incomplete information on both sides with a
public signal about the state of the game. Supposing that Player 1’s computational
power is higher than that of Player 2, we give three examples of different kinds of
public signal where Player 1 learns the state of the game meanwhile itis impossible
for Player 2. Thus we show that a player may receive informationabout the state of
a game due to a public signal and his computational resource.

Note that boundedness of players’s computational resources is equivalent (in
a certain sense) to considering effectively computable strategies only. Hence we
demonstrate that such a restriction may change the information structure of the
game.

We hope to use this effect to shed some light on the open problem of exis-
tence of the value of stochastic games formulated in (Mertens, 1986) (see also
(Mertens et al., 2015)). Introduced by Shapley(Shapley, 1953) stochastic games mo-
del dynamic interactions in which the current state of the game depends on the be-
havior of the players. These games are games with complete information — players
know the current state of the game. We plan to construct an example of a stochas-
tic game for which the solution does not exist in the class of effectively computable
strategies.

Authors thank Fedor Sandomirski for valuable remarks and references.
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