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1. Two-stage games

In this section we introduce basic definitions and analyze how mutual links connect-
ing players can influence players’ behavior. Such links define a network. A two-stage
game is considered as a basic model in which players form a network at the first
stage, and at the second stage players choose their controls. The network game is
given in a strategic setting, and following (Kuhn, 1953) a strategy of a player is a
rule that uniquely defines his behavior at both stages of the game (player’s behavior
at the second stage depends on the network formed at the first stage).

It is supposed that payoff to each player depends on his behavior at the second
stage and behavior of his “neighbors” in a network formed at the first stage of
the game. Similar setting modeled with a two-stage network game, is considered
in (Goyal and Vega-Redondo, 2005; Jackson and Watts, 2002). In these papers, the
authors consider a model in which players form a network at the first stage, and at
the second stage, players are involved in a 2×2 coordination game which is the same
for all players. Another two-stage model on a network as a location–price game is
considered in (Lu et al., 2010).

This model is based on papers studying processes of network formation, net-
work evolution during the game as well as research connected with allocation rules
and its properties for a fixed network (Bala and Goyal, 2000; Dutta et al., 1998;
Goyal and Vega-Redondo, 2005; Feng et al., 2014; Igarashi and Yamamoto, 2013).
In (Bala and Goyal, 2000) a Nash network is considered as a solution for the strate-
gic setting, and the network evolution is modeled as a convergent stochastic pro-
cess. In (Petrosyan and Sedakov, 2009) the network evolution is constructed as the
result of players’ actions, and the solution is considered in the sense of subgame per-
fectness. Other solution concepts for games on networks are studied regardless of
network formation mechanisms (Dutta et al., 1998; Jackson and Wolinsky, 1996).

⋆ This research was supported by the Russian Foundation for Basic Research (grant No 17-
51-53030).
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In the papers mentioned above, the problem of time consistency is not studied.
This problem was initiated by Petrosyan (Petrosyan, 1977) for cooperative differ-
ential games, and later a special mechanism of stage payments—an imputation
distribution procedure—was designed to overcome time inconsistency of cooper-
ative solution concepts (Petrosyan and Danilov, 1979). Time-consistent solutions
for differential games under deterministic and stochastic dynamics can be found
in (Yeung and Petrosyan, 2006; Petrosjan, 2006; Yeung and Petrosyan, 2012). It has
been shown that the time consistency problem arises not only in cooperative differ-
ential games but also in other classes of cooperative dynamic games. In it is shown
that the time inconsistency problem also arises in cooperative two-stage network
games (Petrosyan, Sedakov and Bochkarev, 2013), where time inconsistency of the
Shapley value is proved. A more strict property of cooperative solution concepts—
the property of strong time consistency (Petrosyan, 2005)—is also studied.

1.1. The model

The following model was proposed in (Petrosyan, Sedakov and Bochkarev, 2013).
Consider the model in detail. Let N = {1, . . . , n} be a finite set of players who can
interact with each other. The interaction between two players means the existence
of a link connecting them and, therefore, communication between them. On the
contrary, the absence of the link connecting players means the absence of any com-
munication between the players. Under these assumptions cooperation of players is
said to be restricted by a communication structure (or a network). A pair (N, g) is
called a network where N is a set of nodes (and it coincides with the set of players),
and g ∈ N ×N is a set of links. If pair (i, j) ∈ g, there is a link connecting players
i and j, and, therefore, generating communication of the players in the network.
Below to simplify notations, the network will be identified with a set of its links and
denoted by g, and a link (i, j) in the network will be denoted by ij. It is supposed
that all links are undirected, so ij = ji.

Consider a two-stage problem. At the first stage each player chooses his partners—
the players with whom he wants to form links. Choosing partners and establishing
links, players, thereby, form a network. Having formed the network, each player
chooses a control influencing his payoff at the second stage. Consider the problem
in detail.

First stage: network formation Having the player set N given, define the link
formation rule in a standard way: links, and, therefore, a network, are formed as
a result of players’ simultaneous choices. Let Mi ⊆ N \ {i} be the set of players
whom player i ∈ N can offer a mutual link, and ai ∈ {0, . . . , n− 1} be the maximal
number of links which player i can maintain (and, therefore, can offer). Behavior of
player i ∈ N at the first stage is an n-dimensional profile gi = (gi1, . . . , gin) whose
entries are defined as:

gij =

{

1, if player i offers a link to j ∈ Mi,
0, otherwise,

(1)

subject to the constraint:
∑

j∈N

gij 6 ai. (2)

The condition gii = 0, i ∈ N excludes loops from the network, whereas (2) shows
that the number of possible links is limited. If Mi = N \ {i}, player i can offer a
link to any player, whereas if ai = n− 1, he can maintain any number of links.
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A set of all possible behaviors of player i ∈ N at the first stage satisfying (1)–
(2) is denoted by Gi. The Cartesian product

∏

i∈N Gi is the set of behavior profiles
at the first stage. It is supposed that players choose their behaviors at the first
stage simultaneously and independently of each other. In particular, player i ∈ N
chooses gi ∈ Gi, and as a result the behavior profile (g1, . . . , gn) is formed. Under
the assumptions, an undirected link ij = ji is established in network g if and only
if gij = gji = 1, i.e., g consists of mutual links which were offered only by both
players.

Second stage: choosing control Having formed the network, players choose
their behaviors at the second stage. Define neighbors of player i in network g as
elements of the set Ni(g) = {j ∈ N \ {i} : ij ∈ g}. Players are allowed to reconsider
their decisions made at the first stage by giving them the opportunity to break the
previously selected links.

Define components of an n-dimensional profile di(g) as follows:

dij(g) =







1, if player i does not break the link formed at the first stage
with player j ∈ Ni(g) in network g,

0, otherwise.
(3)

Elements di(g) satisfying (23) are denoted by Di(g), i ∈ N . It is obvious that profile
(d1(g), . . . , dn(g)) affects network g formed at the first stage by removing some links:
profile (d1(g), . . . , dn(g)) applied to network g changes its structure and forms a new
network, denoted by gd. Network gd is obtained from g by removing links ij such
that either dij(g) = 0 or dji(g) = 0.

Moreover, at the second stage player i ∈ N chooses control ui from a finite set
Ui. For example, in (Goyal and Vega-Redondo, 2005; Jackson and Watts, 2002) Ui

is a set of strategies of player i in a 2 × 2 symmetric coordination game in which
i ∈ N plays with neighbors; in (Corbae and Duffy, 2008) Ui is a set of strategies of
player i in a 2 × 2 stag-hunt game; in (Xie et al., 2013) Ui is a set of strategies in
a prisoner’s dilemma game (“cooperate” and “defect”) in which i also plays with
neighbors in the network. The sets U1, . . . , Un are not specified, thus they could be
of a general structure. We only claim the sets are finite.

Then, behavior of player i ∈ N at the second stage is a pair (di(g), ui): it defines,
on the one hand, links to be removed di(g), and, on the other hand, control ui.

A payoff function Ki of player i ∈ N depends on both new network gd and
controls ui, i ∈ N . Specifically, it depends on player i’s behavior at the second
stage as well as behavior of his neighbors in network gd, i.e., Ki(ui, uNi(gd)) is a
nonnegative real-valued function defined on Ui×

∏

j∈Ni(gd) Uj. Here uNi(gd) denotes

a profile of controls uj chosen by all neighbors j ∈ Ni(g
d) of player i in network gd.

Assume that functions Ki, i ∈ N , satisfy the following property:

(P): For any two networks g and g′ s.t. g′ ⊆ g, controls (ui, uNi(g)) ∈ Ui ×
∏

j∈Ni(g)
Uj , and player i, the inequality Ki(ui, uNi(g)) > Ki(ui, uNi(g′))

holds.

1.2. Cooperation in two-stage network games

Now we describe the cooperation in two-stage network game. We will answer three
main questions: What is a cooperative solution in the game? Can it be realized? Is
it strong time consistent? To answer all these questions, first we start analyzing an
additional case which results will be used below.
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Two-stage Network Game: Cooperation at the Second Stage In this section
it is supposed that players’ behavior profile (g1, . . . , gn), gi ∈ Gi, i ∈ N , which is
chosen at the first stage, is fixed, and it forms network g. At the second stage players
jointly choose n pairs (d∗i (g), u

∗
i ) ∈ Di(g)×Ui, i ∈ N maximizing the sum of players’

payoffs.

Proposition 1 (Petrosyan, Sedakov and Bochkarev, 2013). The maximal
sum of players’ payoffs can be calculated by the formula:

∑

i∈N

Ki(u
∗
i , u

∗
Ni(g)

) = max
ui∈Ui,i∈N

∑

i∈N

Ki(ui, uNi(g)). (4)

Next problem is to allocate the maximal sum of players’ payoffs among the play-
ers. After the allocating procedure, the game ends. To allocate the maximal sum of
players’ payoffs, a cooperative TU-game (N, v(g)) is constructed. The characteristic
function v(g) in this game is defined for any subset S ⊆ N—a coalition—as follows:

v(g,N) =
∑

i∈N

Ki(u
∗
i , u

∗
Ni(g)

),

v(g, S) = max
ui∈Ui,i∈S

∑

i∈S

Ki(ui, uNi(g)∩S),

v(g,∅) = 0,

subject to network g is fixed.
In (Petrosyan, Sedakov and Bochkarev, 2013; Gao et al., 2017) the characteris-

tic function was defined as in (Von Neumann and Morgenstern, 1944). Following
this idea, the value v(g, S) is the maximal payoff that coalition S can guarantee for
itself (the maxmin value) in a zero-sum game between two players: coalition S max-
imizing its payoff, and its complement N \ S minimizing the payoff to S, provided
that network g is fixed. However in (Petrosyan, Sedakov and Bochkarev, 2013) a
simplified form of such characteristic function was proposed for the first time.

Proposition 2. If payoff functions Ki, i ∈ N , are nonnegative and satisfy property
(P), the maximal payoff that coalition S can guarantee for itself is calculated by
formula:

v(g, S) = max
ui∈Ui,i∈S

∑

i∈S

Ki(ui, uNi(g)∩S). (5)

Note that under the assumptions the value v(g, S), S ⊂ N can be calculated as
a solution of the maximization problem (5). To find this solution is simpler than to
solve the maxmin problem in general case.

For a singleton {i}, its value is defined in the following way:

v(g, {i}) = max
ui∈Ui

Ki(ui), (6)

and it does not depend on the network.
An imputation is an n-dimensional profile ξ(g) = (ξ1(g), . . . , ξn(g)), satisfying

both the efficiency condition and the individual rationality condition:
∑

i∈N

ξi(g) = v(g,N),

ξi(g) > v(g, {i}), i ∈ N.
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Let the set of imputations in game (N, v(g)) be denoted by I(v(g)).
A cooperative solution concept in TU-game (N, v(g)) with fixed network g is

a rule that uniquely assigns a subset CSC(v(g)) ⊆ I(v(g)) to game (N, v(g)). For
example, if the cooperative solution concept is the core C(v(g)), then

CSC(v(g)) = C(v(g)) =

{

ξ(g) ∈ I(v(g)) :
∑

i∈S

ξi(g) > v(g, S), S ⊂ N

}

.

Two-stage Network Game: Cooperation at Both Stages Suppose now that
players jointly choose their behaviors at both stages of the game. Acting as one
player and choosing gi ∈ Gi, ui ∈ Ui, i ∈ N , the grand coalition N maximizes the
value:

∑

i∈N

Ki(ui, uNi(g)). (7)

Let the maximum be attained when players’ behavior profiles g∗i , u
∗
i , i ∈ N are

chosen where profile (g∗1 , . . . , g
∗
n) forms network g∗. Here as well as in (4) to maximize

the sum of players’ payoffs to N , players should not remove links from the network.
Therefore, any profile di(g) coincides with gi for any player i ∈ N and any network
g. Let

∑

i∈N

Ki(u
∗
i , u

∗
Ni(g∗)) = max

gi∈Gi,i∈N
max

ui∈Ui,i∈N

∑

i∈N

Ki(ui, uNi(g)).

Again to allocate the maximal sum of players’ payoffs according to some impu-
tation, a cooperative TU-game (N, V ) is constructed. The characteristic function
V is defined similarly to function v(g) considered in Subsection 1.2.

Proposition 3. In the cooperative two-stage network game the superadditive char-
acteristic function V (·) in the sense of von Neumann and Morgenstern is defined
as:

V (N) =
∑

i∈N

Ki(u
∗
i , u

∗
Ni(g∗)),

V (S) = max
gi∈Gi,i∈S

max
ui∈Ui,i∈S

∑

i∈S

Ki(ui, uNi(g)∩S),

V (∅) = 0.

For a singleton {i}, its value is defined in the following way:

V ({i}) = max
ui∈Ui

Ki(ui). (8)

An imputation in the cooperative two-stage network game is an n-dimensional
profile ξ = (ξ1, . . . , ξn), satisfying

∑

i∈N ξi = V (N) and ξi > V ({i}) for all i ∈ N .
Let the set of imputations in game (N, V ) be denoted by I(V ).

A cooperative solution concept in cooperative TU-game (N, V ) is a rule that
uniquely assigns a subset CSC(V ) ⊆ I(V ) to game (N, V ). For example, if the
cooperative solution concept is the core C(V ), then

CSC(V ) = C(V ) =

{

ξ ∈ I(V ) :
∑

i∈S

ξi > V (S), S ⊂ N

}

.
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1.3. Time-consistent and strong time-consistent cooperative solutions

The problem of time consistenty and strong time consistency was systematically
developed in (Petrosyan and Sedakov, 2014; Gao et al., 2017). Suppose that at the
beginning of the game players jointly decide to choose behavior profiles g∗i , u

∗
i , i ∈ N

to maximize the sum in (7), and then allocate it according to a specified cooperative
solution concept CSC(V ) which realizes an imputation ξ = (ξ1, . . . , ξn). It means
that in the cooperative two-stage network game player i ∈ N should receive the
amount of ξi as his payoff. What will happen if after the first stage (after choosing
the profiles g∗1 , . . . , g

∗
n) player i ∈ N recalculates the imputation according to the

same cooperative solution concept? The behavior profile g∗1 , . . . , g
∗
n at the first stage

forms network g∗, therefore, after recalculation of the imputation (according to the
same cooperative solution concept as ξ), players i’s payoff will be ξi(g

∗) based on
the values of characteristic function v(g∗, S) for all S ⊆ N .

The definition of time-consistent imputation was adopted for two-stage network
games in (Petrosyan, Sedakov and Bochkarev, 2013). In the aforementioned paper
it was shown for the first time that the Shapley value, the τ -value, and the core are
inconsistent cooperative solutions in this class of games.

Definition 1. An imputation ξ ∈ CSC(V ) is time consistent if there exists an im-
putation ξ(g∗) ∈ CSC(v(g∗)) such that the following equality holds for all players:

ξi = ξi(g
∗), i ∈ N. (9)

A cooperative solution concept CSC(V ) is time consistent if any imputation ξ ∈
CSC(V ) is time consistent.

Equality (9) means that if we choose a cooperative solution concept CSC(V )
at the first stage and according to it calculate the imputation ξ, defining players’
payoffs, and then at the second stage recalculate players’ payoffs according to the
same cooperative solution concept CSC(v(g∗)), i.e., calculate a new imputation
ξ(g∗), subject to formed network g∗, players’ payoffs will not change.

Proposition 4. Any cooperative solution concept based only on values V (N), V ({i}),
i ∈ N is time consistent.

Remark 1. Using the previous proposition, note that the CIS-value (CIS1, . . . ,
CISn) (Driessen and Funaki, 1991) calculated by the formula

CISi = V ({i}) +
V (N)−

∑

j∈N V ({j})

|N |
, i ∈ N

is the time-consistent cooperative solution concept.

Since in most games condition (9) is not satisfied, the time consistency problem
arises: player i ∈ N , who initially expected his payoff to be equal to ξi, can re-
ceive different payoff ξi(g

∗). To avoid such situation in the game, a stage payments
mechanism—an imputation distribution procedure (Petrosyan and Danilov, 1979)
for ξ is proposed. The definition of the imputation distribution procedure was also
adopted for two-stage network games.
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Definition 2. An imputation distribution procedure for ξ in the cooperative two-
stage network game is a matrix

β =







β11 β12

...
...

βn1 βn2






,

where

ξi = βi1 + βi2, i ∈ N.

The value βik is a payment to player i at stage k = 1, 2. Therefore, the following
payment scheme is applied: player i ∈ N at the first stage of the game receives
payment βi1, at the second stage of the game he receives payment βi2 in order to
his total payment received at both stages βi1+βi2 would be equal to the component
of allocation ξi, which he initially wanted to get in the game as his payoff.

Definition 3. Imputation distribution procedure β for ξ is time consistent if

ξi − βi1 = ξi(g
∗), for all i ∈ N.

It is obvious that the time-consistent imputation distribution procedure for ξ =
(ξ1, . . . , ξn) in the cooperative two-stage network game can be defined as follows:

βi1 = ξi − ξi(g
∗), (10)

βi2 = ξi(g
∗), i ∈ N.

If the cooperative solution concept CSC(V ) assigns multiple allocations (for
example, the core), a more strict property can be used—strong time consistency. In
(Gao et al., 2017) the definition of strongly time-consistent solution (the core) was
adopted, and the corresponding definitions and propositions were presented.

Definition 4. An imputation ξ ∈ CSC(V ) is strong time consistent if the following
inclusion is satisfied:

CSC(v(g∗)) ⊆ CSC(V ). (11)

A cooperative solution concept CSC(V ) is strong time consistent if any imputation
ξ ∈ CSC(V ) is strong time consistent.

Therefore, the core C(V ) is strong time consistent if C(v(g∗)) ⊆ C(V ).
The next result directly follows from Proposition 4.

Proposition 5. Any cooperative solution concept based only on values V (N), V ({i}),
i ∈ N is strong time consistent.

The proof of the statement is very similar to the proof of Proposition 4 replacing
equality (9) with inclusion (11).

For cooperative solution concepts which are not strong time consistent, one can
also introduce an imputation distribution procedure.

Definition 5. Imputation distribution procedure β for ξ is strong time consistent
if

(β11, . . . , βn1)⊕ CSC(v(g∗)) ⊆ CSC(V ), (12)

where a⊕A = {a+ a′ : a′ ∈ A}, a ∈ Rn, A ⊂ Rn.
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Unfortunately, for strong time-consistent imputation distribution procedures it
is impossible even to derive formulas similar to (10) in general. However, for the core,
one can provide conditions for the existence of strong time-consistent imputation
distribution procedures. Note, that inclusion (12) for the core can be rewritten as

(β11, . . . , βn1)⊕ C(v(g∗)) ⊆ C(V ). (13)

Proposition 6 (Gao et al., 2017). Let a set C(W ) be an analog of the core in
the game with characteristic function W (S) = V (S)− v(g∗, S), S ⊆ N , i.e.,

C(W ) = {(ξ1, . . . , ξn) :
∑

i∈S

ξi > W (S), S ⊂ N ;
∑

i∈N

ξi = W (N) = 0},

and let this set be non-empty. Then imputation distribution procedure β for an
imputation from the core C(V ) satisfying the conditions

(β11, . . . , βn1) ∈ C(W ), (14)

(β12, . . . , βn2) ∈ C(v(g∗)),

is strong time consistent.

1.4. Two-stage games on undirected networks

Now we consider a case of directed networks (Petrosyan and Sedakov, 2014). Since
the network can be undirected, the characteristic function has to be redefined. Let
the resulting network g consists of directed links (i, j) s.t. gij = 1. Define the closure
of network g as an undirected network ḡ where ḡij = max{gij , gji}. Similarly to the
previous case, payoff function Ki of player i depends on network gd, his control ui

and controls uj , j ∈ Ni(ḡ
d) of his neighbors in the closure ḡd:

Ki(ui, uNi(ḡd)) : Ui ×
∏

j∈Ni(ḡd)

Uj 7→ R, i ∈ N,

When players act cooperatively, they should choose gi ∈ Gi and (di(g
d), ui) ∈

Di(g)× Ui, i ∈ N to maximize the joint payoff:

∑

i∈N

Ki(ui, uNi(ḡd)). (15)

Again, to allocate the maximal sum of players’ payoffs according to some solution
concept, one needs to construct a cooperative TU-game (N, V ). Note that V (N) =
∑

i∈N

Ki(u
∗
i , u

∗
Ni(ḡ∗)).

Consider a non-empty coalition S ⊂ N . Denote a network, formed by profiles
gi, i ∈ N , s.t. gj = (0, . . . , 0) for all j ∈ N \ S, by gS. Let ḡS be the closure of gS .
For any controls ui, i ∈ S let controls ũj(uS), j ∈ N \ S, where uS = {ui}, i ∈ S,
solve the following optimization problem

∑

i∈S

Ki

(

ui, uNi(ḡS)∩S , ũ(N\S)∩Ni(ḡS)(uS)
)

=

= min
uj ,j∈(N\S)∩Ni(ḡS)

∑

i∈S

Ki

(

ui, uNi(ḡS)∩S , u(N\S)∩Ni(ḡS)

)

.
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Here uNi(ḡS)∩S is the profile of controls chosen by all neighbors of player i from
coalition S in the network ḡS, and ũ(N\S)∩Ni(ḡS)(uS) is a profile of controls chosen
by all players from coalition N \S who are neighbors of player i in the network ḡS .

The next proposition is the analog of Proposition 3.

Proposition 7 (Petrosyan and Sedakov, 2014). Suppose that functions Ki, i ∈
N , are non-negative and satisfy the property (P). Then for all S ⊂ N we have

V (S) = max
(gi,ui)∈Gi×Ui,

i∈S

∑

i∈S

Ki

(

ui, uNi(ḡS)∩S , ũ(N\S)∩Ni(ḡS)(uS)
)

.

In a similar way one can determine the characteristic function v(g∗, S) for S ⊆ N .
Note that

v(g∗, N) =
∑

i∈N

Ki(u
∗
i , u

∗
Ni(ḡ∗)) = V (N),

The following result becomes the analog of Proposition 2 for the case of directed
networks.

Proposition 8. If functions Ki, i ∈ N , are non-negative and satisfy the property
(P), the value v(g∗, S) can be calculated by formula

v(g∗, S) = max
ui∈Ui,

i∈S

∑

i∈S

Ki(ui, uNi(ḡ∗
S
)∩S , ˜̃u(N\S)∩Ni(ḡ∗

S
)(uS)),

where ˜̃uj(uS), j ∈ N \ S, solve the following optimization problem:

∑

i∈S

Ki

(

ui, uNi(ḡ∗
S
)∩S , ˜̃u(N\S)∩Ni(ḡ∗

S
)(uS)

)

=

= min
uj ,j∈(N\S)∩Ni(ḡ∗

S
)

∑

i∈S

Ki

(

ui, uNi(ḡ∗
S
)∩S , u(N\S)∩Ni(ḡ∗

S
)

)

and ḡ∗S is the closure of network g∗S, formed by profiles g∗i , i ∈ N , s.t. g∗j = (0, . . . , 0)
for all j ∈ N \ S.

1.5. Two-stage games with pairwise interactions

In (Bulgakova and Petrosyan, 2015; Bulgakova and Petrosyan, 2016) two-stage co-
operative network games with pairwise interactions were proposed. The first stage
is a network formation stage. On the second stage players play bimatrix games
between partners according to the network realized on the first stage.

Description of the model The model under consideration was introduced in
(Bulgakova and Petrosyan, 2015). Let N be a finite set of players, |N | = n ≥ 2.
On first stage z1 each player i ∈ N chooses his behavior b1i , an n-dimensional
vector of offers to connect with other players. The result of first stage is a network
g(b11, . . . , b

1
n). On the second stage z2(g) which depends upon the network chosen on

the first stage, neighbors in the network play pairwise simultaneous bimatrix games
and after that get their payoffs then the game ends.

Consider first stage of game. As it was mentioned, players on the first stage
choose behaviors b1i = (b1i1, . . . , b

1
in), with components:

b1ij =

{

1, if j ∈ Mi,
0, otherwise

(16)
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Connection ij takes place if and only if b1ij = b1ji = 1. Briefly denote Ni(g) as Ni.
After formation of network players pass to the second stage z2(g). On the second
stage n-person game between all participants of network takes place. This game is
a family of simultaneous pairwise bimatrix games γij between neighbors. Namely,
let i ∈ N, j ∈ N, i 6= j, j ∈ Ni, then i plays with j a bimatrix game γij with matrix
Aij and Bij for players i and j respectively,

Aij =











aij11 aij12 · · · aij1k
aij21 aij22 · · · aij2k
...

...
. . .

...

aijm1 aijm2 · · · aijmk











Bij =











bji11 bij12 · · · bij1k
bji21 bij22 · · · bij2k
...

...
. . .

...

bijm1 bijm2 · · · bijmk











apl ≥ 0 , bpl ≥ 0, p = 1, · · · ,m; l = 1, · · · , k

Characteristic function in two-stage game The characteristic function in the
two-stage game with pairwise interactions under the consideration is defined using
the ideas from (Petrosyan, Sedakov and Bochkarev, 2013). Moreover, due to the
structure of interactions, the expression of the characteristic function in found in a
closed form.

Game Γz2 can be considered in cooperative form. The characteristic function
is defined in trivial way. Denote maximal guaranteed gain (maxmin) of player i(j)
with neighbor j(i) as:

wij = max
p

min
l

aijpl, wji = max
l

min
p

bjipl, p = 1, . . . ,m, l = 1, . . . , k. (17)

The values of the characteristic function v(z2;S) are equal to:

v(z2; {ij}) = max
p,l

(aijpl + bjipl) +
∑

r∈Ni\{j}

wir +
∑

q∈Nj\{i}

wjq , j ∈ Ni,

v(z2; {ij}) = v(z2; {ji}) = 0, j ∈ N \Ni,

v(z2; {i}) =
∑

j∈Ni

wij ,

v(z2;S) =
1

2

∑

i,j∈S,j∈Ni

v(z2; {ij}) +
∑

i∈S,k∈(Ni\S)

wik, S ⊂ N,

v(z2;N) =
1

2

n
∑

i=1,i6=j,j∈Ni

max
p,l

(aijpl + bjipl).

In this case we define the value of the characteristic function for coalition S ⊂
N as lower value of zero-sum game between S and N \ S in game Γz2 , and the
superadditivity follows from this.

As before for S ⊂ N define the characteristic function v(z̄1;S) as lower value of
zero-sum game between coalition S, acting as player I (maximizing) and coalition
N\S, acting like player II (minimizing), where payoff of player S is sum of payoffs
of players in S, and strategy of player S — element of Cartesian product of sets
of players’ strategies from S. For minimizing player the best way of behavior is to
eliminate all the connections with maximizing player (because of positive payoffs
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for each connection) Hence we get:

v(z̄1; {i}) = 0,

v(z̄1; ∅) = 0,

v(z̄1; {ij}) =

{

max
p,l

(apl + bpl), j ∈ Ni,

0, j ∈ N \Ni,

v(z̄1;S) =
∑

i∈S,j∈Ni⊂S

v(z̄1; {ij}))

2

v(z̄1;N) = v(z̄2;N).

1.6. The core in two-stage three-person game

With the use of the characteristic function considered in (Bulgakova and Petrosyan,
2015), we examine the core as solution in three-person game. Define also the core
C(z̄) ⊂ I(v) in game Γ and suppose, that for every z1, z2, C(z̄) 6= ∅. For the second
stage z2 we have following values of the characteristic function:

v(z̄2; ∅) = 0, v(z̄2; {1}) = w13 + w12,

v(z̄2; {2}) = w21 + w23, v(z̄2; {3}) = w31 + w32,

v(z̄2; {12}) = max
p,l

(a12pl + b21pl ) + w13 + w23,

v(z̄2; {13}) = max
p,l

(a13pl + b31pl ) + w12 + w32,

v(z̄2; {23}) = max
p,l

(a23pl + b32pl ) + w21 + w31,

v(z̄2;N) = max
p,l

(a12pl + b21pl ) + max
p,l

(a13pl + b31pl ) + max
p,l

(a23pl + b32pl ).

Introduce notations: A12 = max
pl

(a12pl + b21pl ), D1 = w23 + w13, A13 = max
pl

(a13pl +

b31pl ), D2 = w12 + w32, A23 = max
pl

(a23pl + b32pl ), D3 = w21 + w31. Imputation

x = (x1, x2, x3) belongs to core C(z̄2), when following conditions are satisfied. This
system, which defines structure of the core C(z̄2) can be rewritten in the form:







































x1 + x2 ≥ v(z̄2; {12})
x1 + x3 ≥ v(z̄2; {13})
x2 + x3 ≥ v(z̄2; {23})

x1 ≥ v(z̄2; {1})
x2 ≥ v(z̄2; {2})
x3 ≥ v(z̄2; {3})

x1 + x2 + x3 = v(z̄2;N)














x1 + x2 ≥ A12 +D1

x1 + x3 ≥ A13 +D2

x2 + x3 ≥ A23 +D3

x1 + x2 + x3 = v(z̄2;N)

Consider the core C(z̄1) of two-stage game Γ and rewrite it in accordance to
new notations:
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x′
1 + x′

2 ≥ v(z̄1; {12})
x′
1 + x′

3 ≥ v(z̄1; {13})
x′
2 + x′

3 ≥ v(z̄1; {23})
x′
1 + x′

2 + x′
3 = v(z̄1;N)















x′
1 + x′

2 ≥ A12

x′
1 + x′

3 ≥ A13

x′
2 + x′

3 ≥ A23

x′
1 + x′

2 + x′
3 = v(z̄1;N)

Strongly time-consistency of the core Using an IDP β, we get:







β1
1 + β1

2 + β2
1 + β2

2 ≥ A12

β1
1 + β1

2 + β3
1 + β3

2 ≥ A13

β2
1 + β2

2 + β3
1 + β3

2 ≥ A23

(18)

For strongly time-consistency these inequalities must satisfy under following addi-
tional conditions:







β1
2 + β2

2 ≥ A12 +D1

β1
2 + β3

2 ≥ A13 +D2

β2
2 + β3

2 ≥ A23 +D3

(19)

Fix β1, then for strongly time-consistency we must have (19) for all β2. β2 must
satisfy conditions (18). Also from that v(z̄2;N) = v(z̄1;N), we get β1

1+β2
1+β3

1 = 0. If
(18) satisfies under minimal values of β1

2 , β
2
2 , β

3
2 from condition (19), then it satisfies

for other values as well. We get:







−β3
1 +A12 +D1 ≥ A12

−β2
1 +A13 +D2 ≥ A13

−β1
1 +A23 +D3 ≥ A23

(20)

Hence we get conditions for strongly time-consistency of the core C(z̄1) in game Γ .

Proposition 9. Suppose that the following conditions are satisfied







β3
1 ≤ D1

β2
1 ≤ D2

β1
1 ≤ D3

(21)

(there exists β1 which satisfy (21)), then the core C(z̄1) is strongly time-consistent.

2. Dynamic games with shock

The following papers (Gao et al., 2017; Petrosyan and Sedakov, 2016) are devoted
to repeated games with finite number of rounds. In the framework, the first round is
the network formation stage where players form a network choosing their neighbors.
All the subsequent rounds have similar structure: observing the network, each player
may reconsider his set of neighbors (he can only make the set smaller) and after
that the player selects an admissible control. Players’ decisions made in the current
round do not influence the structure of the game in any of subsequent rounds. What
does influence it is a so-called “shock”, an external factor with a stochastic nature.
There are different types of shocks. For instance, in (Corbae and Duffy, 2008), the
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shock changes sets of players’ actions. In the setting, it is supposed that the shock
makes a particular player inactive in the game. Moreover, it is assumed that the
shock may appear in each round after the network formation stage, but once the
shock appears, it will never appear in subsequent rounds of the game.

One-shot network games are studied in (Bala and Goyal, 2000; Galeotti et al.,
2006; Haller, 2012) where Nash equilibrium is considered as a solution. The model
is based on a cooperative two-stage network formation game (Petrosyan, Sedakov
and Bochkarev, 2013). It is worth noting that for static games (or two-stage games),
similar settings involving network formation as well as a strategic component are
well-studied for coordination games and prisoner’s dilemma games (Goyal and Vega-
Redondo, 2005; Jackson and Wolinsky, 1996; Xie et al., 2013). Dynamic aspects of
network formation including stochastic elements or cooperative behavior, are con-
sidered, for instance, in (Feri, 2007; Fosco and Mengel, 2011; Feri and Meléndez-
Jiménez, 2013; Jackson and Watts, 2002).

The papers (Gao et al., 2017; Petrosyan and Sedakov, 2016) also cover the prob-
lem of subgame consistency of a cooperative solution in repeated network games,
namely, subgame consistency of the dynamic Shapley value (Shapley, 1953). It is
known that the Shapley value is an efficient cooperative solution. The Shapley value
is subgame consistent if for any player his entry of the Shapley value equals to the
sum of cumulative individual stage payoffs up to an arbitrary round and his entry
of the Shapley value in the subgame starting from this round, provided that all the
players follow the cooperative agreement. The notion of subgame consistency was
introduced in (Petrosjan, 2006) for a cooperative stochastic game. Inconsistency of
the cooperative solution may break the cooperative agreement, but by means of spe-
cially designed imputation distribution procedure (Petrosyan and Danilov, 1979),
the cooperative agreement can be kept throughout the game.

As an application of the proposed theory, one can imagine a wireless network
in which a pair of wireless agents (players) can transmit data to each other. Data
transmission is successful if transmit power of the players is greater than a threshold,
i.e. if they are “connected”. Thus the first stage can be interpreted as a stage at
which players choose their transmit power. Then observing the network, agents can
reduce their transmit power (if it makes sense) and select the transmission capacity
according to a demand, while the shock can make the particular agent inactive
in the network. In a cooperative scenario one may focus on finding a policy that
maximizes the expected total profit of the network according to its topology and
transmission capacities chosen by the agents.

2.1. The model

Due to the importance of (Gao et al., 2017) from our perspective, we describe the
model in detail. We consider a dynamic game with more than two stages. Let ℓ+1
be a length of the game. The game consists of one network formation stage and ℓ
rounds. When the game is deterministic, one can easily extend the theory of two-
stage games to the (ℓ + 1)-stage game. For this reason a stochastic element called
“shock” influencing the network structure is introduced. The shock, which may
appear between rounds with a given probability p, is characterized by a discrete
random variable ω that takes only ℓ + 1 values. If ω = 0, the shock does not
appear in the game, whereas ω = t specifies the game round before which the
shock appears. It is supposed that the probability of the shock in round t equals
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Pr(ω = t) = (1− p)t−1p for t ∈ {1, . . . , ℓ}, and the probability of not appearing the
shock in the game is Pr(ω = 0) = (1− p)ℓ.

Consider a tuple (τ1, . . . , τℓ) where τt ∈ {0, 1, . . . , t} for all t ∈ {1, . . . , ℓ}. We
connect realization of ω = t with a unique tuple (τ1(ω), . . . , τℓ(ω)) such that τ1(t) =
. . . = τt−1(t) = 0 and τt(t) = . . . = τℓ(t) = t. Below, to simplify notations, the
dependence on ω is left out.

Game stages Again we distinguish the network formation stage and other subse-
quent stages as in (Petrosyan, Sedakov and Bochkarev, 2013).

Network formation stage. This stage dos not differ from that of the two-stage model.
Let network g be formed at this stage. Denote the player who has more neighbors
in g than any other player by m ∈ N , i.e.

m = argmax
i∈N

|Ni(g)|, (22)

If more than one player satisfies (22), we select one of them for further consideration.

Round 1. At the beginning of the round the shock appears with probability p. It
means that player m with this probability becomes inactive in the network. In other
words, all links involving player m are eliminated from network g, yet this player
still belongs to set N and receives zero payoffs. Note that in round 1, τ1 can take
only two values: 0 and 1.

Let g−m denote a network in which all the link with player m ∈ N are deleted,
i.e. g−m = g \ {(j,m) ∈ g : j ∈ Nm(g)}. Thus we have a network

g1,τ1 =

{

g, τ1 = 0
g−m, τ1 = 1.

After observing the network g1,τ1 , players are allowed to reconsider its structure:
in particular, players can only delete some “ineffective” links. For this purpose, we
introduce n-dimensional vectors di(g

1,τ1) = (di1(g
1,τ1), . . . , din(g

1,τ1)), i ∈ N which
show an updated network:

dij(g
1,τ1) =

{

1, if i keeps the link with player j ∈ Ni(g
1,τ1) in g1,τ1 ,

0, otherwise.
(23)

Let Di(g
1,τ1) = {di(g1,τ1) : di(g

1,τ1) satisfies (23)}, i ∈ N . The profile d(g1,τ1) =
(d1(g

1,τ1), . . . , dn(g
1,τ1)) updates network g1,τ1, thus a new network, denoted by

gd,1,τ1, consists of links (i, j) such that dij(g
1,τ1) = dji(g

1,τ1) = 1.

At the same time, each player chooses a control from a given set. In particular,
player i ∈ N chooses u1,τ1

i ∈ Ui. Then behavior of player i in round 1 is a pair

(di(g
1,τ1), u1,τ1

i ). A payoff to player i ∈ N is defined according to a real-valued

payoff function Ki which depends on the updated network gd,1,τ1, control u1,τ1
i of

player i, and controls of his neighbors u1,τ1
j , j ∈ Ni(g

d,1,τ1), i.e.Ki(u
1,τ1
i , u1,τ1

Ni(gd,1,τ1 )
).

Having received the payoffs in this round, players proceed to the next round with
the similar structure. Consider an intermediate round t ∈ {2, . . . , ℓ} and suppose
that we have an updated network gd,t−1,τt−1 after round t− 1.
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Round t, t ∈ {2, . . . , ℓ}. At the beginning of this round the shock appears with
probability p (if it did not appear before). In case of the shock, player m becomes
inactive with this probability. If shock appeared in previous rounds, nothing hap-
pens. Thus we have a network just prior the round t:

gt,τt =

{

gd,t−1,τt−1, τt ∈ {0, 1, . . . , t− 1},

g
d,t−1,τt−1

−m , τt = t.

After observing the network gt,τt, players are allowed to reconsider its link structure.
For this purpose, we introduce n-dimensional vectors di(g

t,τt) = (di1(g
t,τt), . . . ,

din(g
t,τt)), i ∈ N which show an updated network:

dij(g
t,τt) =

{

1, if i keeps the link with player j ∈ Ni(g
t,τt) in gt,τt ,

0, otherwise.
(24)

Let Di(g
t,τt) = {di(gt,τt) : di(g

t,τt) satisfies (24)}, i ∈ N . The profile d(gt,τt) =
(d1(g

t,τt), . . . , dn(g
t,τt)) updates network gt,τt, thus a new network, denoted by

gd,t,τt, consists of links (i, j) such that dij(g
t,τt) = dji(g

t,τt) = 1.
At the same time, each player chooses control from a given set. In particular,

player i ∈ N chooses ut,τt
i ∈ Ui. Then behavior of player i in round t is a pair

(di(g
t,τt), ut,τt

i ).
In round t, a payoff to player i ∈ N is defined according to the same real-valued

payoff function Ki(u
t,τt
i , ut,τt

Ni(gd,t,τt )
).

Having received the payoffs in this round, players proceed to the round t + 1
unless t = ℓ. In this case the game ends.

Strategies To formalize the game, define strategies of players.

Definition 6. A strategy xi = {xω
i } of player i ∈ N is a rule that assigns a profile:

xω
i = (gi, (di(g

1,τ1), u1,τ1
i ), . . . , (di(g

ℓ,τℓ), uℓ,τℓ
i ))

to each value ω ∈ {0, 1, . . . , ℓ}.

Recall that ω defines profile (τ1, . . . , τℓ) in a unique way, therefore, for any ω = t,
t ∈ {0, 1, . . . , ℓ} and player i ∈ N , we get

xt
i =















(gi, (di(g
1,0), u1,0

i ), . . . ,

(di(g
t−1,0), ut−1,0

i ), (di(g
t,t), ut,t

i ), . . . , (di(g
ℓ,t), uℓ,t

i )), i 6= m,
(gm, (dm(g1,0), u1,0

m ), . . . ,
(dm(gt−1,0), ut−1,0

m ), (0, ut,t
m ), . . . , (0, uℓ,t

m )), i = m.

Let Xi denote a set of strategies of player i ∈ N . Given a value ω = t, consider a
profile xt = (xt

1, . . . , x
t
n). A payoff to player i ∈ N for ω = t equals:

Ki(x
t) =















t−1
∑

j=1

Ki(u
j,0
i , uj,0

Ni(gd,j,0)
) +

ℓ
∑

j=t

Ki(u
j,t
i , uj,t

Ni(gd,j,t)
), i 6= m,

t−1
∑

j=1

Km(uj,0
m , uj,0

Nm(gd,j,0)
), i = m.

Then a payoff Ei to player i ∈ N in the whole game is defined as his expected payoff,
provided that the strategy profile x = (x1, . . . , xn) ∈ X1 × . . .×Xn is chosen:

Ei(x) =
ℓ

∑

t=0

Pr(ω = t)Ki(x
t).
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2.2. Cooperation in the dynamic game with shock

In the previous section we specified rules of the repeated game and formalized it.
Now the repeated game is considered from the perspective of classical cooperative
theory.

Characteristic function Under the cooperative agreement, the value V (N) can
be easily determined using the ideas of (Petrosyan, Sedakov and Bochkarev, 2013).
Since all the players aim at maximizing their total expected payoff, let

V (N) = max
xi,i∈N

∑

i∈N

Ei(x) =
∑

i∈N

Ei(x
∗). (25)

A strategy profile x∗ = (x∗
1, . . . , x

∗
n) which entries x∗

i , i ∈ N are from (25) is called
the cooperative strategy profile.

Proposition 10. Let functions Ki, i ∈ N satisfy property (P). Then cooperative
strategy x∗

i = {x∗ω
i } of player i ∈ N for a given ω = t, t ∈ {0, 1, . . . , ℓ} is of the

form: x∗t
i = (g∗i , (g

∗
i , u

∗0
i ), . . . , (g∗i , u

∗0
i ), (g∗i , u

∗t
i ), . . . , (g∗i , u

∗t
i )) for all i ∈ N \ {m}

and x∗t
m = (g∗m, (g∗m, u∗0

m ), . . . , (g∗m, u∗0
m ), (0, u∗t

m), . . . , (0, u∗t
m)).

From the previous statement, we conclude that only two networks are possible
in the cooperative framework: network g∗ which is not changed until the shock
appears, and network g∗−m which is not changed after the shock has appeared.

The next result is an extension of the result introduced in (Gao et al., 2017),
provided that functions Ki, i ∈ N satisfy property (P). The statement connects the
value V (S) for a given coalition S ⊆ N with values of “local” (or stage) charac-
teristic functions in games played in each round. More specifically, given a round
t and a number τt ∈ {0, 1, . . . , t}, we define stage characteristic functions as in
(Gao et al., 2017) v(S) before the shock and v̂(S) after the shock:

v(S) = max
(gi,ui)∈Gi×Ui

i∈S

∑

i∈S

Ki(ui, uNi(g)∩S), (26)

v̂(S) = max
(gi,ui)∈Gi×Ui

i∈S\{m}

∑

i∈S\{m}

Ki(ui, uNi(g)∩S). (27)

Proposition 11. The value V (S) can be found from the recurrence equation

V (S) = pℓv̂(S) + (1− p)V1(S) where

Vt(S) = v(S) + p(ℓ− t)v̂(S) + (1− p)Vt+1(S)

for t = 1, . . . , ℓ− 1

with boundary condition Vℓ(S) = v̂(S).

2.3. Cooperative solution

Having determined values V (S) for all S ⊆ N , one can define an imputation which
is a n-dimensional vector showing how the maximal total expected payoff V (N) is
allocated among players. Let the Shapley value Φ = (Φ1, . . . , Φn) be taken as the
solution. Specifying the Shapley value as the solution, for all i ∈ N , its entries can
be determined by the formula:

Φi =
∑

S⊆N,i∈S

αS [V (S)− V (S \ {i})] , (28)
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where αS = (|N | − |S|)!(|S| − 1)!/|N |!.

Let φ = (φ1, . . . , φn) and φ̂ = (φ̂1, . . . , φ̂n) be the “local” Shapley values calcu-
lated for characteristic functions v and v̂ respectively:

φi =
∑

S⊆N,i∈S

αS [v(S)− v(S \ {i})] ,

φ̂i =
∑

S⊆N,i∈S

αS [v̂(S)− v̂(S \ {i})] .

Note, that φ̂m = 0.

Proposition 12 (Gao et al., 2015). The Shapley value Φ in (28) can be found

in an explicit form by means of the Shapley values φ and φ̂ in stage games:

Φi =
(1− p)[1− (1− p)ℓ]

p
φi +

[

ℓ−
(1− p)[1− (1− p)ℓ]

p

]

φ̂i, i 6= m, (29)

Φm =
(1− p)[1− (1− p)ℓ]

p
φm. (30)

2.4. Subgame-consistency problem

The problem of subgame consistency of cooperative solutions was considered in
(Yeung and Petrosyan, 2006; Yeung and Petrosyan, 2012) for cooperative differen-
tial games. In cooperative dynamic network games this problem was examined in
(Gao et al., 2017; Petrosyan and Sedakov, 2016). Before the game ΓC starts, play-
ers agree on choosing cooperative strategies x∗

1, . . . , x
∗
n from (25), i.e. the strategies

that maximize the total expected payoff, and allocating the value V (N) according to
the Shapley value Φ. This means that in ΓC each player i ∈ N expects his payoff to
be equal to Φi. If players recalculate the Shapley value after the network formation
stage (after choosing g∗1 , . . . , g

∗
n), unfortunately, it turns out that the recalculated

Shapley value differs from the “original” Φ. This fact leads to breaking the coop-
erative agreement since some players may refuse using their cooperative strategies.
We study the problem in detail.

Characteristic function and the Shapley value in a subgame Similarly to
(26) and (27), we define characteristic functions: before the shock v(g, S) and after
the shock v̂(g, S) for any S ⊆ N , provided that network g has formed (which is the
case after the network formation stage):

v(g, S) = max
ui∈Ui,

i∈S

∑

i∈S

Ki(ui, uNi(g)∩S), (31)

v̂(g, S) = max
ui∈Ui,

i∈S\{m}

∑

i∈S\{m}

Ki(ui, uNi(g)∩S). (32)

Consider a game round t ∈ {1, . . . , ℓ} and τ ∈ {0, 1, . . . , t}. Let Γ t,τ
C = (N, V t,τ )

denote a subgame of the game ΓC . The characteristic function V t,τ for any S ⊆ N
is defined similarly to V (S) as:

V t,τ (S) =







(ℓ− t+ 1)v̂(g∗−m, S) for τ ∈ {1, . . . , t},
v(g, S) + p(ℓ− t)v̂(g∗−m, S) + (1− p)V t+1,0(S) for τ = 0
with boundary condition V ℓ+1,0(S) = v̂(g∗−m, S).
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The entries of the Shapley value Φt,τ = (Φt,τ
1 , . . . , Φt,τ

n ) in subgame Γ t,τ
C can be

determined by the formula:

Φt,τ
i =

∑

S⊆N,i∈S

αS

[

V t,τ (S)− V t,τ (S \ {i})
]

. (33)

Note that Φt,τ
m = 0 for all τ ∈ {1, . . . , t}.

Let φ(g) = (φ1(g), . . . , φn(g)) and φ̂(g) = (φ̂1(g), . . . , φ̂n(g)) denote the “local”
Shapley values calculated for characteristic functions v(g, S) and v̂(g, S) respec-
tively:

φi(g) =
∑

S⊆N,i∈S

αS [v(g, S)− v(g, S \ {i})] ,

φ̂i(g) =
∑

S⊆N,i∈S

αS [v̂(g, S)− v̂(g, S \ {i})] .

Note, that φ̂m(g) = 0. Then we get a result similar to Proposition 12.

Proposition 13 (Gao et al., 2015). The Shapley value Φt,τ in (33), t ∈ {1, . . . , ℓ},

can be found in an explicit form by means of the Shapley values φ(g∗) and φ̂(g∗−m)
in stage games

Φt,0
i =

[

1 +
(1− p)[1− (1− p)ℓ−t]

p

]

φi(g
∗) (34)

+

[

ℓ− t−
(1− p)[1− (1− p)ℓ−t]

p

]

φ̂i(g
∗
−m), i 6= m,

Φt,τ
i = (ℓ− t+ 1)φ̂i(g

∗
−m), τ ∈ {1, . . . , t}, i 6= m, (35)

Φt,0
m =

[

1 +
(1− p)[1− (1− p)ℓ−t]

p

]

φm(g∗), (36)

Φt,τ
m = 0, τ ∈ {1, . . . , t}. (37)

The entries of the expected Shapley value Φt = (Φt
1, . . . , Φ

t
n) in the remaining

rounds of the game starting from round t ∈ {1, . . . , ℓ}, provided that the shock has
not appeared yet, have the following form (Gao et al., 2015):

Φt
i = (1− p)Φt,0

i + pΦt,t
i

=
(1− p)[1− (1− p)ℓ−t+1]

p
φi(g

∗)

+

[

ℓ− t+ 1−
(1 − p)[1− (1− p)ℓ−t+1]

p

]

φ̂i(g
∗
−m), i 6= m,

Φt
m = (1− p)Φt,0

m =
(1− p)[1− (1 − p)ℓ−t+1]

p
φm(g∗).

Thus, we come to the following observation. In game ΓC players agree on choos-
ing cooperative strategies x∗

i , i ∈ N and allocating value V (N) according to the
Shapley value Φ determined by formulas (29) and (30). After forming network g∗

prescribed by the cooperative strategies, players may recalculate the Shapley value
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which becomes Φ1. Therefore, there may exist a player i ∈ N such that Φi 6= Φ1
i .

This fact means “inconsistency” of the Shapley value. The Shapley value would be
subgame consistent if for any player the statement was true: the entry Φi equals the
sum of cumulative individual stage payoffs to player i up to round t and the entry
Φt
i in the subgame starting from this round, provided that all the players follow

their cooperative strategies x∗
i , i ∈ N .

Mechanism of stage payments Since the Shapley value is subgame inconsis-
tent (Gao et al., 2015; Petrosyan and Sedakov, 2016), we reallocate players’ stage
payoffs with new payments specified below. Denote payments to player i ∈ N in
all rounds in ΓC by βi = {β0

i , β
t,τ
i }, t ∈ {1, . . . , ℓ}, τ ∈ {0, 1, . . . , t}. Here β0

i is a
payment to player i at the network formation stage, βt,τ

i is a payment to player i
in round t, provided that the shock appears in round τ for τ > 0 (or the shock does
not appear before round t for τ = 0).

Definition 7. Imputation distribution procedure (IDP) of the Shapley value Φ =
(Φ1, . . . , Φn) is a profile β = (β1, . . . , βn) such that

Φi = β0
i +

ℓ
∑

τ=0

Pr(ω = τ)
ℓ

∑

t=1

βt,τ
i , i ∈ N. (38)

Definition 8. IDP β of the Shapley value Φ is subgame consistent if for all i ∈ N
and t ∈ {1, . . . , ℓ} we have:

Φt,τ
i =

ℓ
∑

j=t

βt,τ
i , τ ∈ {1, . . . , t}, (39)

Φt,0
i = βt,0

i +

ℓ
∑

τ=t+1

Pr(ω = τ |t)
ℓ

∑

j=t+1

βt,τ
i + Pr(ω = 0|t)

ℓ
∑

j=t+1

βt,0
i ,

i.e. if a stage payment to player i and his expected component of the Shapley value
in the game starting from this stage till the end equals Φt,τ

i for all t.

Proposition 14. Subgame consistent IDP β for the Shapley value Φ is of the form:

β0
i = Φi − Φ1

i , i 6= m,

βt,0
i = Φt,0

i − Φt+1
i = φi(g

∗), t ∈ {1, . . . , ℓ}, i 6= m,

βt,τ
i = Φt,τ

i − Φt+1,τ
i = φ̂i(g

∗
−m), t ∈ {1, . . . , ℓ}, τ 6= 0, i 6= m,

β0
m = Φm − Φ1

m,
βt,0
m = Φt,0

m − Φt+1
m = φm(g∗), t ∈ {1, . . . , ℓ},

βt,τ
m = Φt,0

m − Φt+1
m = 0, t ∈ {1, . . . , ℓ}, τ 6= 0.

The designed subgame consistent IDP prescribes players the following mechanism
of stage payments: in each round players are paid according to their local Shapley
values, whereas at the network formation stage players are paid the difference Φi −
Φ1
i , i ∈ N which does not always equal zero.
In (Petrosyan and Sedakov, 2016), a more general model is considered when

there is the second network formation stage where all players without the player
affected by the shock can revise the network again. Alternative studies, for exam-
ple, (Butenko and Petrosyan, 2014; Butenko and Petrosyan, 2015) differ from the
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model under consideration in that that the shock influences not a particular player,
but particular links, or players’ action space. These model are applied to a three-
stage problem, however they can also be extended to a game with an arbitrary
number of stages.

3. Strategic support of cooperation

This probled was studied in (Petrosyan and Sedakov, 2015). For players, coopera-
tion is more preferable than non-cooperative behavior as cooperative behavior can
be more beneficial for them. However, in dynamic games, a cooperative agreement
creates two major problems. The first one is time inconsistency of any dynamic co-
operative solution in general: Even if all players agree on the solution at the begin-
ning of the game, a player/group of players, focusing on her/its cooperative payoffs,
might want to revise the solution after some stages (time). To make players indiffer-
ent to the revision of the cooperative solution, an imputation distribution procedure
(Petrosyan and Danilov, 1979) reallocating players’ stage payoffs over time under
the cooperative agreement is introduced. The second problem is that the players’
cooperative strategies which result in the cooperative payoffs are not a Nash equi-
librium in general. This means that there exists a player who will benefit if she
stops following her cooperative strategy prescribed by the agreement. Is is shown
show that implementing the time-consistent imputation distribution procedure, it
becomes possible to find a Nash equilibrium guaranteeing the cooperative payoffs
in some class of strategies. However, we can only do it under a specific condition
on parameters of the dynamic game. When we are able to have the cooperative
payoffs as a result of both a time-consistent imputation distribution procedure and
a Nash equilibrium, we can say that the cooperative agreement and, therefore, the
cooperation of players is strategically supported (Parilina, 2014; Petrosyan, 2008;
Petrosyan and Zenkevich, 2009; Yeung and Petrosyan, 2012).

Here the theory of strategically supported cooperation is developed for dynamic
games on networks in which a network structure is a central element (see, for exam-
ple, (Petrosyan and Sedakov, 2015)). Again during the game, players form a net-
work and choose their control variables, but they can benefit only from their neigh-
bors in the network as in (Petrosyan, Sedakov and Bochkarev, 2013). The theory
will also be applied to repeated games (Abreu et al., 1994; Aumann and Shapley,
1994; Myerson, 1997) which is a special class of dynamic games.

4. The model

The game considered in (Petrosyan and Sedakov, 2015) consists of a network for-
mation stage which is the same as in previous models and subsequent stages of a
similar structure where at stage t each player chooses (di(g

t), ui(g
t)) and the is re-

warded according to his payoff function δtKi(ui(g
t), uNi(d(gt))(g

t)), where δ ∈ (0, 1)
is a common discount factor. Here we note that for any player i ∈ N , his control
ui(g

t) ∈ Ui(g
t) depends on a network. After players receive their stage payoffs, we

proceed to next stage and the corresponding stage game on the network gt+1 given
by a single-valued rule T : gt+1 = T (gt, u(gt)) where u(gt) = (u1(g

t), . . . , un(g
t)).

Definition 9. A strategy ηi of player i ∈ N is a rule that uniquely prescribes be-
havior gi of this player at the network formation stage and behavior (di(g

t), ui(g
t))

at game stage t ≥ 1 on network gt ∈ G(N).
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Given a strategy profile η = (η1, . . . , ηn), one can define the payoff to player i ∈ N
in the game as a function of the strategy profile η as

Ki(η) =
∞
∑

t=1

δtKi(ui(g
t), uNi(d(gt))(g

t)),

provided that the discounted sum exists.
Suppose now that players jointly choose strategies η1, . . . , ηn to maximize the

sum of their payoffs in the game. The profile η̄ = (η̄1, . . . , η̄n) solving the following
maximization problem

∑

i∈N

Ki(η̄) = max
η

∑

i∈N

Ki(η),

(if the maximum exists), we call the cooperative strategy profile, and an element of
the profile is a cooperative strategy. Since the game is considered in the cooperative
setting, the payoff to a player is prescribed by a cooperative solution. As the solution,
we take the Shapley value Φ = (Φ1, . . . , Φn) which is calculated for the characteristic
function

V (S) =











∑

i∈N Ki(η̄), S = N,
max
ηi,i∈S

min
ηj ,j∈N\S

∑

i∈S Ki(η), S ⊂ N,S 6= ∅,

0, S = ∅,

where approach from (Von Neumann and Morgenstern, 1944) is used. Thus, in the
cooperative setting each player should follow her cooperative strategy, and the payoff
to each player i ∈ N in the games equals Φi. However, due to time inconsistency of
the Shapley value, the player may not get the value Φi as her payoff. It means that
the equality

Φi 6=
τ−1
∑

t=1

δtKi(ūi(ḡ
t), ūNi(d̄(ḡt))(ḡ

t)) + δτΦi(ḡ
τ ), (40)

does not hold at least for one τ ≥ 1 and player i ∈ N . Here ḡτ is the network to
which the process comes at stage τ under cooperation, i.e., ḡτ = T (ḡτ−1, ū(ḡτ−1)),
and Φi(ḡ

τ ) is the Shapley value in the infinite-horizon game starting from network
ḡτ and calculated for the characteristic function V (ḡτ , S), given by

V (ḡτ , S) =







































∞
∑

t=τ

δt−τKi(ūi(ḡ
t), ūNi(d̄(ḡt))(ḡ

t)), S = N,

max
(di(g

t),ui(g
t)),

i∈S,t≥τ

min
(dj(g

t),uj (gt)),

j∈N\S,t≥τ

∑

i∈S

∞
∑

t=τ

δt−τKi(ui(g
t), uNi(d(gt))(g

t)),

s.t. gt+1 = T (gt, u(gt)), t ≥ τ,
gτ = ḡτ , S ⊂ N,S 6= ∅,

0, S = ∅.

Here the value V (ḡτ , S) is the maximal value which coalition S guarantees for itself
if its complement N \ S acts against it in a zero-sum game, provided that network
ḡτ is given.

To fulfill condition (40) for all stages, we replace players’ stage payoffs with
payments (and we also add payments at the network formation stage) according
to an imputation distribution procedure (IDP) which reallocates the Shapley value
over time and players’ stage payoffs at each game stage. In this model the IDP β =



Cooperation in Dynamic Network Games 63

{βit}i∈N,t≥0 of the Shapley value Φ is determined in the way that
∑∞

t=0 δ
tβit = Φi.

The IDP β is time consistent if for all τ ≥ 1 and players, we have:

Φi =

τ−1
∑

t=0

δtβit + δτΦi(ḡ
τ ). (41)

Dynamic games on networks of general structure In this section, we formu-
late the results about strategic support of cooperation in case of a dynamic game
of a general form.

Proposition 15. The time-consistent IDP β of the Shapley value Φ for each i ∈ N
is given by the following expressions:

βi0 = Φi − δΦi(ḡ
1),

βit = Φi(ḡ
t)− δΦi(ḡ

t+1), t ≥ 1,

where ḡt+1 = T (ḡt, ū(ḡt)).

In general, cooperative strategy profile η̄ is not a Nash equilibrium, therefore,
even implementing a time-consistent IDP of the Shapley value, a player may break
the cooperative agreement and switch from her cooperative strategy to some other
trajectory. Below a condition when cooperative strategy profile is a Nash equilibrium
is proposed. This result is obtained in a class of punishment strategies which is a
sub-class of strategies in the sense of Definition 1. A punishment strategy ζi of
player i ∈ N is determined in such way that if no one deviates from her cooperative
strategy, all players continue to follow these strategies, but if one player i ∈ N
deviates from her cooperative strategy η̄i at some game stage, the remaining players
from N \ {i} start punishing her immediately from the next game stage onwards
and never switch their strategies back to cooperative (in other words, starting from
the next game stage players i and N \ {i} are involved in a zero-sum game in which
i tries to maximize her future payoff, whereas the coalition N \{i} acting as a single
player minimizes it).

Consider the following system of implicit inequalities with respect to δ:






Φi ≥ δV (g, {i}),
Φi(g) ≥ κi(g) + δV (T (g, u(g)), {i}),

for all i ∈ N, g ∈ L,

where κi(g) is the stage payoff to player i if deviating from her cooperative strat-
egy, she plays best response to opponents’ cooperative strategies in network g, and
L ⊆ G(N) is a set of networks generated by cooperative strategy profile η̄. Here δ
implicitly appears in Φi, Φi(g), V (g, {i}), and V (T (g, u(g)), {i}). The system above
is reduced to the following:

δ ≤ min
i∈N

min
g∈L

{

Φi

V (g, {i})
;

Φi(g)− κi(g)

V (T (g, u(g)), {i})

}

. (42)

Let there exist δ such that the minimum in the right-hand side in (42) exceeds it.

Proposition 16 (Petrosyan and Sedakov, 2015). For any δ that solves (42),
strategy profile (ζ1, . . . , ζn) with players’ payoffs as Φ1, . . . , Φn guaranteeing by time-
consistent IDP β is a Nash equilibrium.
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It is worth noting, that the system (42) may not have a solution from (0, 1). If
it is the case, we cannot obtain the cooperative outcome Φ1, . . . , Φn as a result of a
Nash equilibrium.

Repeated Network Games Repeated games is a class of dynamic games in which
a given normal-form game appears either a finite or an infinite number of periods.
In this part of the review, we suppose that we have one stage at which players create
a network structure, and after this stage we have a normal-form game on a network
which is repeated an infinite number of periods. In other words, Ui(g) = Ui(g

′) = Ui

for all i ∈ N and g 6= g′, and for any g ∈ G(N), we have T (g, u(g)) = g.
In (Petrosyan, Sedakov and Bochkarev, 2013; Petrosyan and Sedakov, 2015) the

structure of players’ cooperative strategies was proposed for two-stage games (one
network formation stage and one game stage). Since the considered game is re-
peated, a structure of players’ cooperative strategies in this game will be the same.
Specifically, at the network formation stage players should choose ḡi, i ∈ N and
form network ḡ, and from this stage players do not change the network choosing
controls ūi, i.e., d̄i(ḡ) = ḡi.

Assuming that players behave cooperatively, again, the Shapley value is taken as
a solution of the game. The entries of the Shapley value Φ are: Φi =

δ
1−δ

φi, i ∈ N ,
where φi is the entry of the Shapley value in any of stage games determined by the
characteristic function

v(S) =















∑

i∈N

Ki(ūi, ūNi(ḡ)), S = N,

max
gi,i∈S

max
ui,i∈S

∑

i∈S

Ki(ui, uNi(g)∩S), S ⊂ N,S 6= ∅,

0, S = ∅.

Therefore, V (S) = δ
1−δ

v(S), S ⊆ N . The Shapley value Φ(ḡ) in the infinite-horizon

game starting from network ḡ has a similar form: Φi(ḡ) =
1

1−δ
φi(ḡ), i ∈ N , where

φi(ḡ) is the entry of the Shapley value in any of stage games determined by the
characteristic function

v(ḡ, S) =















∑

i∈N

Ki(ūi, ūNi(ḡ)), S = N,

max
ui∈Ui,i∈S

∑

i∈S

Ki(ui, uNi(ḡ)∩S), S ⊂ N,S 6= ∅,

0, S = ∅,

provided that the network ḡ is given. Therefore, V (ḡ, S) = 1
1−δ

v(ḡ, S), S ⊆ N .
Due to time inconsistency of the solution, the allocation is realized with the

use of an imputation distribution procedure. In case of repeated games, the time-
consistent IDP β for the Shapley value Φ is of the form:

βi0 =
δ

1− δ
(φi − φi(ḡ)) ,

βit = φi(ḡ), i ∈ N, t = 1, 2, . . . .

Under the cooperative agreement, players create network ḡ by profile (ḡ1, . . . , ḡn)
at the network formation stage, and do not change it choosing (ū1, . . . , ūn) at each
subsequent stage. So, if player i ∈ N deviates from cooperative behavior at the
network formation stage, she gets the value δ

1−δ
v({i}) as her payoff in the game.
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However, if she deviates at a game stage, she will play her best response to those
of other players and get the value κi = maxui∈Ui

Ki(ui, ūNi(ḡ)) at this stage, and

after deviation, her future payoff will be δ
1−δ

v(ḡ, {i}). Therefore, player i will never

switch from her cooperative strategy η̄i to any other strategy if Φi ≥
δ

1−δ
v({i}) and

Φi(ḡ) ≥ κi +
δ

1−δ
v(ḡ, {i}). These two inequalities can be simplified to: φi ≥ v({i})

which always holds, and δ ≥ 1− φi(ḡ)−v(ḡ,{i})
κi−v(ḡ,{i}) if κi 6= v(ḡ, {i}). If κi = v(ḡ, {i}), we

have Φ(ḡ) ≥ v(ḡ, {i})+ δ
1−δ

v(ḡ, {i}) = 1
1−δ

v(ḡ, {i}) = V (ḡ, {i}) which always holds.
Then we have:

Proposition 17 (Petrosyan and Sedakov, 2015). For any δ ≥ δ∗, where

δ∗ = max
i∈N :

κi>v(ḡ,{i})

(

1−
φi(ḡ)− v(ḡ, {i})

κi − v(ḡ, {i})

)

, (43)

strategy profile (ζ1, . . . , ζn) with players’ payoffs as Φ1, . . . , Φn guaranteeing by time-
consistent IDP β is a Nash equilibrium.
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