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Abstract In this paper, an information pooling game is proposed and stud-
ied for multi-portfolio optimization. Our approach differs from the classical
multi-portfolio optimization in several aspects, with a key distinction of al-
lowing the clients to decide whether and to what extent their private trading
information is shared with others, which directly affects the market impact
cost split ratio. We introduce a built-in factor related to the clients’ vertical
fairness regarding the outcomes, which is termed as “dissatisfaction indica-
tor”. With balanced horizontal dissatisfactions across all accounts, the main
formulation guarantees that no client is systematically advantaged or disad-
vantaged by the information pooling process. This is a novel mechanism to
incorporate both the horizontal and vertical fairness in the optimization pro-
cess. We show that information pooling solution outperforms the pro-rata
collusive solution from fairness aspect, and the Cournot-Nash equilibrium
solution for its Pareto optimality. Moreover, the empirical results suggest
that within our framework, information pooling has non-negative impact
on all participants’ perceived fairness, although it may hurt some account’s
realized benefit compared to null information pool.

Keywords: information pooling, multi-portfolio optimization, horizontal
fairness, vertical fairness

1. Introduction

Since the introduction of modern portfolio theory (Markowitz, 1952), financial mod-
els with incorporation of various new factors and findings have been constantly
reinvented. In the portfolio optimization process, almost all portfolios need to be
adjusted during their lifetimes, so incurring periodic transaction costs is inevitable.
In October 2000, the Texas Permanent School Fund rebalanced its portfolio of 2,200
securities of about $17.5 billion. Not to mention the administrative costs, the trans-
action cost itself is $120 million (PlexusGroup, 2002). Managers cannot afford to
ignore transaction costs, a large portion of which is attributed to the market impact.

In practice, financial advisers usually provide their services to multiple clients
simultaneously. In order to efficiently serve a large number of clients, Securities and
Exchange Commission (SEC) allows the manager to “bunch orders on behalf of two
or more client accounts, so long as the bunching is done for the purpose of achiev-
ing best execution, and no client is systematically advantaged or disadvantaged”
(Securities and Exchange Commission, 2011). In this case, a problematic interac-
tion arises between the multiple portfolios because the transaction cost for a given
client may depend on the overall level of trading and not just on that client’s trading
requirements (O’Cinneide et al., 2006). The rebalancing price tends to be underes-
timated largely due to the market impact of bunched trades: benefits sought for
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individual accounts through trading are lost due to increased overall transaction
costs.

To model the market impact cost more accurately, several multi-portfolio op-
timization approaches have been developed. In the first paper recognizing this
problematic interaction (O’Cinneide et al., 2006), the authors propose a pro-rata
collusive solution to the problem where the objective function is the sum of the
objective functions of each individual account. They assert that this is fair since
the solution obtained is the same as if each account directly competes in an open
market for liquidity. Showing that certain accounts may be better off acting alone
instead of participating in the collusive solution, practitioners propose to solve the
problem by identifying the set of portfolios that form a Cournot-Nash equilibrium
(Savelsbergh et al., 2010). In their model, each account is optimizing its own ob-
jective by assuming that it is “made aware” of the trades of other accounts that
are being pooled together for execution, and gives its best response. An attractive
property of this approach is that the actual market impact cost for each account is
exactly what it has anticipated. However, the Cournot-Nash solution is not neces-
sarily Pareto optimal, which means that it may violate the SEC best execution rules.
Moreover, some heuristic approach has to be applied to bypass the intractability
problem in solving the overall equilibrium (Fabozzi et al., 2010). A recent publi-
cation (Iancu and Trichakis, 2014) has well documented the solutions available to
multi-portfolio optimization problems.

Let us organize the fairness issue from the investors’ perspective. The contract
renewal decision by a client is not only affected by the final gain/loss of the in-
vestment, but also by the performance difference between her own account and
others’ (horizontal fairness), and the difference between her expected and realized
net return (vertical fairness). Investors care about fairness, for it is a crucial role in
establishing and maintaining relationships (Kahneman et al., 1986). However, it is
frequently sacrificed in the efficient approaches, and the perfectly fair Cournot-Nash
equilibrium solution is not Pareto optimal. Hence, a natural question arises: how
can we implement both horizontal and vertical fairness in an efficient multi-portfolio
optimization solution reasonably?

Vertical fairness is responsive to a wide range of factors, i.e., needs, wants, beliefs,
prior expectations, etc. An empirical study on procedural fairness (Bies et al., 1993)
suggests that without involvement (voice) of investors, the portfolio optimization
process is less than appropriate to be regarded as fair. This indicates that an investor
participates more in the optimization process, more information is acquired, and the
vertical fairness might be improved. We propose an information pooling game to
give a potential answer to the above-mentioned question.

The remainder of this paper is organized as follows. In Section 2, three re-
lated prominent solutions in literature are reviewed and discussed. In Section 3, key
modeling choices in information pooling game is elaborated in detail first, and the
main formulation is highlighted then. In Section 4, to compare the different solu-
tion concepts and verify the effect of information pooling, two numerical studies are
conducted and discussed. Finally, Section 5 summarizes the main contribution of
this work and comments on future research briefly.
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2. Multi-portfolio Optimization

In this section, three prominent approaches proposed in literature to solve the multi-
portfolio optimization problem are reviewed and discussed. Suppose a financial ad-
viser is managing n distinct portfolios (accounts), indexed by P = {1, ..., n}. To
improve the operational efficiency, managers prefer to invest in assets from the
same pool of available investments, reflecting a particular investment style. Thus,
for simplicity, the pool of investments available for all clients is assumed to be
A = {1, ...,m}. In this paper, each account is assumed to have an all-cash initial
position to simplify the discussion. In other words, in a single rebalancing period,
all clients are not allowed to short assets. Let w = (w1, ..., wn) ∈ R

n denote the
initial cash positions of all accounts. Let xj ∈ R

m represent the rebalancing trades
of account j ∈ P in units of currency, and x = (x1, ..., xn) ∈ R

mn represent the
vector of all trades. Natural constraints in a single rebalancing period to xj are
xj ≥ 0 and

∑

i∈A xij ≤ wj . Let ξj ⊆ R
m denote the feasible trades of account j

satisfying the two constraints above.

Market impact cost is, broadly speaking, the price an investor has to pay for
obtaining the liquidity in the market. It is the deviation of the transaction price from
the market (mid) price that would have prevailed had the trade not occurred. In
general, liquidity providers experience negative costs while liquidity demanders will
face positive costs. One of the common approaches in both literature and practice
to model market impact is through a nonlinear and strictly convex function of the
amounts traded in the form xT c(x), where c(x) = (c1(x), ..., cm(x)) is a vector
function giving the cost per unit traded for each asset. The vector function c(x) is
assumed to be independent for each asset (ignoring the cross-asset price impact)
and expressed in the form of polynomial ci(x) = (

∑

j∈P xij)
p, ∀i ∈ A, where p

is a rational number between 0.5 and 1 (Almgren et al., 2005). Then, the market
impact cost of executing the trades of account j ∈ P is given as xT

j c(x).

2.1. Independent Optimization Solution

First, consider a simplest setting with a single account j ∈ P , where the objective
function for account j is to maximize its net utility. The independent optimization
problem to determine the portfolio for account j can be represented as

max
xj∈ξj

uj(xj)− xT
j c(xj) (1)

The net utility for portfolio j is the expected return uj(xj) derived from its rebal-
ancing trades, subtracting its market impact cost xT

j c(xj). Notice that uj(xj) is

assumed to be concave, xT
j c(xj) is convex, ξj is a convex subset of Rm. Via convex

optimization techniques, the problem can be solved efficiently in variables xj . The
independent optimization problem has been extensively studied in the literature.

A direct expression for the problem above is that each account is acting inde-
pendently and unaware of the market impact by the trades of other accounts. Let
us denote the optimal solution as (xind

j )j∈P . If all accounts are optimized following

this model, the true market impact cost to each account is (xind
j )T c(xind

1
, ..., xind

n ),

which is greater than the prior expectation (xind
j )T c(xind

j ) and reduces the vertical
fairness of the clients considerably. A numerical example has shown that the true
market impact cost to each account might have been 9900% higher than the antic-
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ipation in a 100-portfolio setting (Savelsbergh et al., 2010). Neither horizontal nor
vertical fairness can be implemented in independent optimization solution.

2.2. Collusive Solution

The basic idea of the collusive solution is to optimize all trades simultaneously
by aggregating the utility functions of all accounts (O’Cinneide et al., 2006). The
problem can be written as

max
xj∈ξj ,∀j∈P

∑

j∈P

uj(xj)− (
∑

j∈P

xij)
T
i∈Ac(x) (2)

As with the independent optimization solution, collusive optimization problem can
be solved efficiently as well. The resulting market impact cost is allocated propor-
tionally to the trading amount of each account, hence we also refer the original
collusive solution as pro-rata collusive solution in this paper. The authors argue
that this approach is horizontally fair as the solution (xcol

j )j∈P is the same as the
one that would have been obtained if clients are competing in an open market
for liquidity. However, in certain situations, some accounts may have to sacrifice
their own benefits for the good of others in order to maximize the total welfare
(Savelsbergh et al., 2010), and the horizontal fairness cannot be justified if those
accounts deviate from the collusive solution.

2.3. Cournot-Nash Equilibrium Solution

Motivated by the significant underestimation of market impact in independent op-
timization and unfairness in the collusive solution, an equilibrium solution is de-
veloped by optimizing each account’s objective with the assumption that the trade
decisions of all other accounts that participate in the pooled trading have been
made and fixed (Savelsbergh et al., 2010). More precisely, for account j ∈ P , the
trades for all other accounts x

−j = (xk : k 6= j ∈ P ) are fixed and known. The
optimization problem for j can be modeled as

max
xj∈ξj

uj(xj)− xT
j c(xj ,x−j) (3)

In microeconomics, the equilibrium solution (xcn
j )j∈P is referred to as Cournot-

Nash equilibrium (Mas-Colell, 1984). It has the property that the expected market
impact cost exactly corresponds to the realized market impact cost for each account
and no client will have the incentive to deviate from her Cournot-Nash portfolio
unilaterally, which is superior to the previous two approaches from the vertical
fairness facet. However, Cournot-Nash solution is not necessarily Pareto optimal.
It is possible to have at least one account improved without negatively impacting
any other account with the independent optimization approach, violating the best
execution rules.

3. Information Pooling Game

In this section, a multi-portfolio optimization approach with incorporation of both
horizontal and vertical fairness from the clients’ perspective is proposed and justi-
fied, which is termed as information pooling game. First, three key modeling choices
will be explained, namely,
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1) information pooling: it allows the clients to decide whether and to what
extent their private trading information is shared with others in the same
bunched trade;

2) vertical fairness: for each account, it is reflected by the difference between the
expected and realized net utility, which is termed as dissatisfaction indicator;

3) horizontal fairness: information pooling process does not inflict particularly
high or low dissatisfaction to any account.

3.1. Information Pooling

Cournot-Nash equilibrium is criticized to be unfair from certain aspect, because it
coerces the clients to participate in an “artificial game” and share their complete in-
formation with others (Iancu and Trichakis, 2014). Motivated by the shortcomings
of Cournot-Nash equilibrium, our approach invites all clients to decide whether and
to what extent to share their private trading information. Moreover, as is discussed
in the introduction, initiative and active participation in the portfolio optimiza-
tion process improves the information transparency, and ultimately the perceived
fairness of clients.

For a more detailed explanation, let τ = (τj)j∈P ∈ R
mn denote an information

pool from all clients, where τj = (τij)i∈A ∈ R
m is a binary vector and τij ∈ {0, 1}

is a binary indicator of client j’s willingness or preference on whether to share her
trading information of asset i. More precisely, τij = 0 indicates that client j rejects
to pool her trading information of asset i, while τij = 1 indicates that j is willing
to share i’s trading information with others who contribute to the information pool
of i. It is a natural and fair assumption to avoid the free-rider phenomenon in
information pooling, and we define the vector function of the cost per unit traded
for each asset as below

Definition 1. For account k ∈ P , its estimation on the vector function of the
cost per unit traded for asset i ∈ A with information pool τ can be defined as
ck(x|τ ) = (cki (x|τ ))i∈A, where

cki (x|τ ) =

{

(xik)
p if τik = 0

(
∑

j∈P (τijxij))
p if τik = 1

(4)

Let Uε
j (x

ip
j |τ ) denote the expected net utility for account j ∈ P with information

pool τ . It can be derived by the information pooling problem as follows

{Uε
j (x

ip
j |τ ) = max

xj∈ξj
uj(xj)− xT

j c
j(x|τ )} (5)

Conditional on a fixed information pool τ , the set of equilibrium solutions to prob-
lem (5) is the same as the set of simultaneous solutions of the first-order optimality
conditions for all accounts. For account j ∈ P , let Uε

j (xj |τ ) = uj(xj)−xT
j c

j(x|τ ),
and the conditions can be written as
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−
∂Uε

j (xj |τ )

∂xij

= −
∂uj(xj)

∂xij

+ c
j
i (x|τ ) + xij

∂c
j
i (x|τ )

∂xij

≥ 0, ∀i ∈ A

xij(−
∂Uε

j (xj |τ )

∂xij

) = 0, ∀i ∈ A

xij ≥ 0, ∀i ∈ A
∑

i∈A

xij ≤ wj

(6)

This is a nonlinear complementary problem NCP (Rm
+ ,−∇Uε

j (xj |τ )) such that

xj ≥ 0, −∇Uε
j (xj |τ ) ≥ 0, (xj)

T (−∇Uε
j (xj |τ )) = 0 (7)

with and an extra constraint of
∑

i∈A xij ≤ wj .

Lemma 1. (xip
j )j∈P is an equilibrium of the information pooling problem if and

only if (xip
j )j∈P is a solution to {NCP (Rm

+ ,−∇Uε
j (xj |τ ))}j∈P constrained by up-

per bounded trades of
∑

i∈A xij ≤ wj , ∀j ∈ P .

In portfolio selection theory, the expected return for account j ∈ P in a single
rebalancing period is generally modeled as uj(xj) = ̟Txj , where ̟ = (̟i)i∈A is
a random return rate vector. We prove that

Theorem 1 (Existence and Uniqueness of Equilibrium Solution). Assume

uj(xj) = ̟Txj , ∀j ∈ P , then there exists a unique equilibrium solution (xip
j )j∈P

to the information pooling problem.

Remark 1. With an null information pool where all accounts deny to share their
trading information, (xip

j )j∈P corresponds to the independent optimization solution

(xind
j )j∈P . In complete information pooling where all accounts reach a consensus

on sharing their trading information, (xip
j )j∈P is consistent with the Cournot-Nash

equilibrium solution (xcn
j )j∈P .

3.2. Vertical Fairness

The clients are invited to express their preferences on pooling the trading infor-
mation, however, this approach does not affect the aggregative optimization by the
manager for efficiency and best execution. In other words, the bunched trading deci-
sions are still made in accordance to the collusive solution, and this paper concerns
the split mechanism of the resulting market impact cost. Let rτj denote the market
impact cost split ratio of account j ∈ P with information pool τ . Let ρτj ⊆ (0, 1)
denote the feasible set of j’s split ratio satisfying rτj ≥ 0 and

∑

j∈P rτj = 1. Then
the realized net utility of account j with information pool τ can be written as

Uj(x
col
j |τ ) = uj(x

col
j )− rτj (

∑

j∈P

xcol
ij )Ti∈Ac(xcol) (8)

where (xcol
j )j∈P is the solution to the optimization problem (2). Following the

argument on perceived fairness such that actions which made some party worse off
than the prior expectations are generally viewed as unfair (Kahneman et al., 1986),
we have
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Definition 2. A dissatisfaction indicator of account j ∈ P with information pool
τ is defined as

dsτj =
Uε
j (x

ip
j |τ ) − Uj(x

col
j |τ )

Uε
j (x

ip
j |τ )

(9)

The dissatisfaction indicator reflects the vertical fairness for a client by the relative
difference between her expected and realized net utility, and higher dissatisfaction
implies worse vertical fairness.

3.3. Horizontal Fairness

From the clients’ perspective, they are desiring that any trade x executed with
information pool τ will generate non-positive dissatisfaction. However, it is very
difficult to be implemented both theoretically and in practice. Hence, the following
optimization problem is introduced to decide the market impact cost split ratio.

min
rτ
j
∈ρτ

j
,∀j∈P

V ar(dsτ1 , ds
τ
2 , ..., ds

τ
n) (10)

The optimal solution (rτ∗j )j∈P guarantees the horizontal fairness in splitting the
resulting market impact cost by minimizing the variance of dissatisfaction indica-
tors across all accounts. Although 100% envy-freeness is not implemented in our
mechanism, at least clients’ dissatisfactions (or satisfactions) do not spread out too
much from a certain level. For example, an investor thinks it unfair if she suffers a
10% dissatisfaction while others in the same bunched trade only suffer 1%, however,
it will be judged to be fair if others are dissatisfied at 9.99%.

3.4. Main Formulation: Information Pooling Game

Next the main formulation based on the modeling choices elaborated above will be
summarized. The manager would proceed as follows

1) Determine the trades xcol by solving the collusive optimization problem (2),
and execute it.

2) Invite each client j ∈ P to determine her information pooling strategy τj =
(τij)i∈A, which forms an information pool τ .

3) Authorize client j to access her corresponding information pool. Both the
manager and client j may estimate j’s expected net utility by solving the in-
formation pooling problem (5) with SLCP (Sequential Linearly Constrained
Programming).

4) Determine the split ratio (rτj )j∈P of the resulting market impact cost by
solving problem (11), where the dissatisfaction indicator for account j ∈ P is
defined by equation (10). Then the realized net utility for j can be determined
by equation (9).

From clients’ perspective, the process above can be viewed as an information pooling
game. They have to decide their own information pooling strategies, and the formed
information pool directly affects the allocation of resulting market impact cost by
the bunched trades. Here is a very simple example illustrating our mechanism.

Example 1 (Information Pooling Game). Suppose that there are only two accounts,
account 1 with $100 and account 2 with $10 initially for investment. Furthermore,
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suppose there is only one risky asset available for investment with an expected
return rate, i.e., 40%. Assume p = 0.6 (p = 0.6 ± 0.038 with 67% probability,
Almgren et al., 2005), then

1) The collusive solution is xcol = (0.0583, 0.0408), and the total resulting mar-
ket impact cost is 0.0248.

2) The potential information pools are τ1 = (0, 0), τ2 = (0, 1), τ3 = (1, 0), τ4 =
(1, 1).

3) Regarding each information pool, the expected net utility Uε
j (x

ip
j |τ ) of ac-

count j ∈ {1, 2} can be summarized as an payoff matrix

Table 1. Expected net utilities of the information pooling problems

Account 2
τ2 = 0 τ2 = 1

Account 1
τ1 = 0 (0.0149, 0.0149) (0.0149, 0.0149)
τ1 = 1 (0.0149, 0.0149) (0.0065, 0.0065)

4) Due to the same expected net utilities for both accounts with any of the informa-

tion pools, the optimal market impact cost split ratio vector is rτ i

= (0.6414, 0.3586),
∀i ∈ {1, 2, 3, 4}, and the realized net utility vector is U(xcol|τ ) = (0.0074401, 0.0074417).
Moreover, the dissatisfaction indicators are

dsτ
1

= dsτ
2

= dsτ
3

= (0.50066, 0.50055)

dsτ
4

= (−0.14921,−0.14946)
(11)

Remark 2. In this example, although the realized net utilities for both clients does
not vary with the information pool, their vertical fairness is improved considerably
by approximately 65%. It will help establish a stable manager-client relationship in
practice.

If the resulting market impact cost is simply allocated in a pro rata fashion
(O’Cinneide et al., 2006), the split ratio will be rpr = (0.5883, 0.4117), and realized
net utilities will be Upr(xcol) = (0.0088, 0.0061). In this case, there is no information
sharing between the clients, and the expected net utilities is corresponding to that
with τ1. Hence the dissatisfactions will be dspr = (0.4124, 0.5888), and client 2 with
a small account is suffering almost 20% higher dissatisfaction compared to client 1.
Moreover, our Pareto optimal information pooling solution (0.0074401, 0.0074417)
outperforms the Cournot-Nash equilibrium solution (0.0647414, 0.0647414) for both
accounts by sacrificing less than 0.03% horizontal fairness.

3.5. Discussion

This mechanism allows the manager to jointly optimize all clients’ trading and split
the market impact cost in a fair way. More precisely, the resulting market impact
cost is allocated by minimizing the variance of dissatisfactions (vertical fairness)
across all accounts (horizontal fairness). It produces Pareto optimal utilities while
also keeps the satisfactions of all accounts at a similar level, complying with the
SEC best execution rules.

From the clients’ perspective, the information pooling game improves their per-
ceived fairness from two aspects: first, it allows the clients to decide whether and
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to what extent to share their trading information, and their information pooling
strategies will directly affect the market impact cost split ratio. A mechanism with
involvement (voice) of investors is more likely to be regarded as fair. Second, it
outperforms the pro-rata collusive solution in horizontal fairness, and overcomes
the pitfall in Cournot-Nash equilibrium solution with a more tractable approach by
introducing the expected net utility function.

4. Numerical Studies

In this section, two numerical studies are conducted to (1) compare the solutions
in our mechanism to pro-rata collusive solution and Cournot-Nash equilibrium so-
lution; (2) verify the information pooling effect on the realized net utilities and
dissatisfaction indicators. In our numerical study, the return rate ̟ is randomly
selected between −20% and 40%, and p is assumed to be 0.6 as in the example
above.

4.1. Numerical Study on Three Solution Concepts

Suppose a manager is in charge of 2 portfolios P = {1, 2}, and there are 50 assets
A = {1, 2, ..., 50} available for investment. Account 1 has w1 = $1M and account 2
has w2 = $100M initially. Assume that the two clients reach a consensus on sharing
their trading information regarding all assets, that is, τij = 1, ∀i ∈ A, ∀j ∈ P . This
numerical study compares the performances of both accounts by collusive solution,
Cournot-Nash equilibrium solution, and the information pooling solution proposed
in this paper. The statistical results are summarized in Table 2 with properties of
average expected/realized net utilities and dissatisfaction indicators reported.

Table 2. Account performances with collusive solution, Cournot-Nash equilibrium solution
and information pooling solution

Property
Collusive Cournot-Nash Information Pooling
1 2 1 2 1 2

Avg. Expected Net Utility (%) 1.9487 1.2375 1.2814 1.1023 1.2814 1.1023
Avg. Realized Net Utility (%) 1.3495 1.1951 1.2814 1.1023 1.3857 1.1947
Dissatisfaction Indicator (%) 30.7487 3.4263 0.0000 0.0000 -8.1395 -8.3825

Remark 3. The statistical results above provide further evidence that

1) Managers and investors cannot afford to ignore the market impact cost. The
mean of the return rate is set to be 10%, however, the net return after cost
is only around 1%.

2) In collusive solution, the account with lower initial cash positions is hurt
more. The actual market impact cost is significantly underestimated for
clients without any information (Remark 1), which reduces their vertical
perceived fairness considerably. As shown in Table 2, the realized net utility
is approximately 30% lower than the prior expectation for account 1.

3) Cournot-Nash equilibrium solution is not Pareto optimal and violates the
best execution rules, although it implements perfect horizontal fairness. For
all accounts, both collusive and information pooling solutions bring about
higher realized net utilities. (Figure 1).
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4) Note that the expected net utility in our information pooling approach keeps
consistent with that in Cournot-Nash equilibrium solution as all clients agree
to disclose their trading information (Remark 1). Unlike the collusive solu-
tion, it rewards (or hurts) both accounts by approximately the same ra-
tio. Compared to the Cournot-Nash equilibrium solution, although our ap-
proach sacrifices approx. 0.2% horizontal fairness, the Pareto optimal solution
strictly improves the net utilities for both accounts by approx. 8%.
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Fig. 1. Relative improvement of the realized net utilities with collusive and information
pooling solutions compared to the Cournot-Nash equilibrium solution

4.2. Numerical Study on Information Pooling Game

Within our framework, this numerical study focuses on the effect of clients’ infor-
mation pooling strategies on the realized net utilities and perceived fairness. The
setup is similar to the previous numerical study, but the manager is supposed to
be in charge of 3 portfolios P = {1, 2, 3} with w1 = w2 = $1M and w3 = $100M
in initial cash positions. With respect to the 50 available assets, there are 2150 po-
tential information pools and it exceeds the upper iteration limit of our program.
Hence, four typical information pools will be compared, namely

1) Null information pool (τij = 0, ∀i ∈ A, ∀j ∈ P ): all accounts decline to pool
their trading information;

2) Partial information pool (1 − 2) (τi1 = τi2 = 1, τi3 = 0, ∀i ∈ A): accounts 1
and 2 with lower initial cash positions agree to pool their trading information;

3) Partial information pool (1 − 3) (τi1 = τi3 = 1, τi2 = 0, ∀i ∈ A): a small
account and a large account consent to share their information, which is the
same as partial information pool (2 − 3).
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4) Complete information pool (τij = 1, ∀i ∈ A, ∀j ∈ P ): all accounts reach a
consensus to disclose their trading information.

The average realized net utilities are summarized in Tables 3 and 4, and note that
there are two pure strategy Nash equilibria (τ1, τ2, τ3) = (0, 0, 0) or (1, 1, 0).
If we take the opposite of dissatisfaction indicators (satisfaction) as the payoff,
the information pooling game can be represented in Tables 5 and 6, and the pure
strategy Nash equilibria become (τ1, τ2, τ3) = (0, 0, 0) or (1, 1, 1). It indicates that
although account 3 with higher initial cash position tends not to join the information
pool if others do, it does perceive higher vertical satisfaction by acquiring more
trading information.

Table 3. Avg. realized net utilities (%) if τ3 = 0

Account 2
τ2 = 0 τ2 = 1

Account 1
τ1 = 0 (1.3037, 1.3040, 1.1922) (1.3037, 1.3040, 1.1922)
τ1 = 1 (1.3037, 1.3040, 1.1922) (1.3086, 1.3088, 1.1921)

Table 4. Avg. realized net utilities (%) if τ3 = 1

Account 2
τ2 = 0 τ2 = 1

Account 1
τ1 = 0 (1.3037, 1.3040, 1.1922) (1.2896, 1.3113, 1.1923)
τ1 = 1 (1.3113, 1.2896, 1.1923) (1.3114, 1.3115, 1.1920)

Table 5. Opposite of avg. dissatisfaction indicators (%) if τ3 = 0

Account 2
τ2 = 0 τ2 = 1

Account 1
τ1 = 0 (−33.1573,−33.1316,−2.0217) (−33.1573,−33.1316,−2.0217)
τ1 = 1 (−33.1573,−33.1316,−2.0217) (−30.2415,−30.2457,−1.9977)

Table 6. Opposite of avg. dissatisfaction indicators (%) if τ3 = 1

Account 2
τ2 = 0 τ2 = 1

Account 1
τ1 = 0 (−33.1573,−33.1316,−2.0217) (−33.8768, 1.1962, 0.7095)
τ1 = 1 (1.1962,−33.8768, 0.7095) (3.3331, 3.3247, 2.3527)

Remark 4. The comparative results shown in Figures 2 and 3 also suggest that

1) From the perspective of realized net utility, account 3 with higher initial cash
position has less incentive to pool its trading information compared to the
other two accounts, and complete information pool actually hurts its benefit
compared to null information pool.

2) Even though some account chooses not to disclose its information, its realized
net utility is made worse off by the existence of partial information pool, and
a small account is hurt more.

3) From the perspective of fairness, information pooling process improves all
participants’ vertical fairness compared to the null situation, and has more
impact on the small accounts as well.
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Fig. 2. Relative improvement of the realized net utilities with partial
and complete information pools to that with null information pool
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Fig. 3. Increase of dissatisfaction indicators with partial and complete
information pools from that with null information pool

5. Conclusion

In this paper, an information pooling game for multi-portfolio optimization is in-
troduced with incorporation of both horizontal and vertical perceived fairness from
the clients’ perspective. This novel mechanism invites the clients to decide whether
and to what extent their trading information is shared with others, which directly
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affects the split ratio of resulting market impact cost in the collusive solution. It
also allows the manager to jointly optimize multiple portfolios and split the market
impact cost in a fair way by keeping the satisfactions of all accounts at a similar
level.

The numerical study verifies that our approach outperforms the pro-rata collu-
sive solution in fairness, and the Cournot-Nash equilibrium in Pareto optimality.
It also suggests that small accounts are more sensitive to the information pooling
process. For a more robust evidence, the existence of separate equilibria in multi-
period information pooling game, as well as extensions with cross-asset effect still
remain as our future work.

Acknowledgments. The author expresses her gratitude to S. Muto for useful
discussions on the subjects.

Appendix

1. Proof of Lemma 1

Proof. With Definition 1, for account k ∈ P , the first derivative of cki (x|τ ) with
respect to xik, ∀i ∈ A can be derived as

∂cki (x|τ )

∂xik

=

{

p(xik)
p−1 if τik = 0

p(
∑

j∈P (τijxij))
p−1 if τik = 1

(12)

The second derivative with respect to xik can be derived as

∂2cki (x|τ )

∂x2
ik

=

{

p(p− 1)(xik)
p−2 if τik = 0

p(p− 1)(
∑

j∈P (τijxij))
p−2 if τik = 1

(13)

We have ignored the cross-asset market impact, thus the second derivative with
respect to xhk, ∀h 6= i ∈ A is 0 regardless of the value of τik. As p is a rational
number between 0.5 and 1, we have

∇cki (x|τ ) > 0, ∇2cki (x|τ ) ≤ 0 (14)

Then for account k, the second derivative of Uε
k (xk|τ ) with respect to xik, ∀i ∈ A

can be represented as

∂2Uε
k(xk|τ )

∂x2
ik

=
∂2uk(xk)

∂x2
ik

− 2
∂cki (x|τ )

∂xik

− xik

∂2cki (x|τ )

∂x2
ik

=







∂2uk(xk)
∂x2

ik

− (p2 + p)(xik)
p−1 < 0 if τik = 0

∂2uk(xk)
∂x2

ik

− p(
∑

j∈P (τijxij))
p−2(2

∑

j∈P (τijxij) + (p− 1)xik) < 0 if τik = 1

(15)

And the second derivative with respect to xhk, ∀h 6= i ∈ A is

∂2Uε
k(xk|τ )

∂xik∂xhk

=
∂2uk(xk)

∂xik∂xhk

≤ 0 (16)
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For any account j ∈ P , Uε
j (xj |τ ) is twice continuously differentiable and concave

with respect to its own trade xj. Hence, (x
ip
j )j∈P is an equilibrium of the infor-

mation pooling problem if and only if (xip
j )j∈P is a solution to the set of nonlin-

ear complementary problems {NCP (Rm
+ ,−∇Uε

j (xj |τ ))}j∈P constrained by upper
bounded trades of

∑

i∈A xij ≤ wj , ∀j ∈ P .

2. Proof of Theory 2

Proof. For account k ∈ P , assume the Hessian matrix of Uε
k (xk|τ ) to be

H =

















a11 · · · a1i · · · a1m
...

. . .
...

ai1 aii aim
...

. . .
...

am1 · · · ami · · · amm

















Following the proof for Lemma 1, aii, ∀i ∈ A could be represented by equation
(15), while aih and ahi, ∀h 6= i ∈ A could be derived by equation (16). With
uk(xj) = ̟Txk, it is very simple to show that

|aii| >
∑

h 6=i

|aih|, |aii| >
∑

h 6=i

|ahi| (17)

is satisfied for all i ∈ A. Hence H is negatively strictly diagonally dominant. For
any account j ∈ P , the three conditions below are all satisfied

1) Expected net utility function Uε
j (xj |τ ) is twice continuously differentiable

and concave with respect to xj ;

2) Trades xj is bounded;

3) ∇2Uε
j (xj |τ ) has a negative strictly dominant diagonal for all xj ≥ 0.

Based on K&M Theorem (Kolstad and Mathiesen, 1991), there exists a unique so-
lution to {NCP (Rm

+ ,−∇Uε
j (xj |τ ))}j∈P .
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