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Abstra
t We 
onsider a dynami
 oligopoly advertising model for both non-


ooperative and 
ooperative setting. Feedba
k Nash equilibrium strategies

and 
ooperative strategies are found to determine the optimal advertising

e�orts of ea
h �rm for both setting respe
tively. Besides, depending upon

the 
ooperative strategies, imputation is introdu
ed as an optimal allo
ation

of joint payo� and Imputation Distribution Pro
edure is used to guarantee

the time 
onsisten
y for 
ooperation.
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1. Introdu
tion

267 billions of dollars were spent in advertising by the world's 100 largest adver-

tisers in 2016 a

ording to the statisti
s from the sour
e: Ad Age Data
enter, it's

easy to imagine that a 
ompany 
ouldn't survive in the market without advertising.

Hen
e, advertising as a strategy for market share 
ompetition has been studied in

many marketing models, so as we are doing in this paper, where we are 
on
en-

trating on the dynami
 advertising model. Here ea
h �rm's market share depends

on its own and its 
ompetitors' 
urrent and past advertising expenditures. Com-

petition between �rms is formulated by the non
ooperative di�erential game as

it was done by (Eri
kson, 2003), (Sorger, 1989), (J�¼rgensen and Za

our, 2004),

(Prasad and Sethi, 2004), (Naik et al., 2008) and (Prasad et al., 2009). In this pa-

per we derived a dynami
 oligopoly advertising model from (Prasad et al., 2009),

in the paper the Sethi model was extended to model awareness of auto brands with


hurn term, whi
h is the extension of the de
ay of market share term in monopoly

models 
apturing forgetting and noise. Closed-loop Nash equilibrium 
on
ept is

used to obtain the optimal advertising expenditure for non
ooperative game. Simi-

lar to this paper's work, we also 
onsider the non
ooperative dynami
 game and use

feedba
k Nash equilibrium 
on
ept to obtain the optimal advertising expenditure,

but more than that, the 
ooperative dynami
 game whi
h wasn't 
onsidered by the

previous work was eli
ited to this model and mainly studied in our paper.

Non
ooperative game theory deals with strategi
 intera
tions among multiple

de
ision makers with the obje
tive fun
tions depending on the 
hoi
es of all the

players and suggests solution 
on
epts for a 
ase when players do not 
ooperate

or make any arrangements about their a
tions. A player 
annot simply optimize

her own obje
tive fun
tion independent from the 
hoi
es of the other players. In

1950 and 1951 in (Nash, 1950),(Nash, 1951) by John Nash, su
h a solution 
on
ept

was introdu
ed, whi
h is now 
alled the Nash equilibrium. For di�erential game

models Nash equilibrium 
an be de�ned in an open-loop strategies or in 
losed-loop

strategies. For both types 
onsult (Basar and Olsder, 1999). In this paper we use the
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approa
h with feedba
k strategies as the most preferable for the game theoreti
al

problems.

The 
ooperative dynami
 game theory o�ers so
ially 
onvenient and group ef-

�
ient solutions to di�erent de
ision problems involving strategi
 a
tions. One of

the fundamental questions in the theory of 
ooperative dynami
 games is the for-

mulation of optimal behavior for players. A 
hara
teristi
 fun
tion of a 
oalition

is an essential 
on
ept in the theory of 
ooperative games. This fun
tion is de-

�ned as indi
ated in (Chander and Tulkens, 1995) as total payo� of players from


oalition S in Nash equilibrium in the game with following set of players: 
oali-

tion S (a
ting as one player) and players from the set I \ S. A 
omputation of

Nash equilibrium fully des
ribed in (Basar and Olsder, 1995) is ne
essary for this

approa
h. A set of imputations or a solution of the game is determined by the


hara
teristi
 fun
tion as the set of individually rational ve
tors. To guarantee the


ooperation of all players will holds during the game, whi
h means the 
oopera-

tion is time 
onsistent. Notion of time 
onsisten
y was formalized mathemati
ally

by Petrosyan in the paper (Petrosjan, 1977). In the next paper on time 
onsis-

ten
y (Petrosyan and Danilov, 1979) L. Petrosyan de�ned the notion of imputation

distribution pro
edure (IDP), whi
h is used to 
ompose a time 
onsistent 
ooper-

ative solution or single imputation. Later on, L. Petrosyan de�ned the notion of

strong time 
onsisten
y in the paper (Petrosyan, 1993), it was introdu
ed to guar-

antee the time-
onsisten
y for a set-value 
ooperative solutions, su
h as Core, Nu-


leus et
.. See re
ent publi
ations on this topi
 in (Petrosyan and Yeung, 2006),

(Jorgensen and Yeung, 1999) and (Jorgensen et al., 2003). The property of time


onsisten
y introdu
ed by Petrosyan in (Petrosyan, 1993) is examined for Shap-

ley value.

The paper is organized as follows. In the next se
tion, we formulate a dynami


oligopoly marketing model 
orresponding to the model from (Prasad et al., 2009).

In se
tion 3, feedba
k Nash equilibrium strategies for non
ooperative setting are

presented. In se
tion 4, 
ooperative 
ase is 
onsidered, Shapley value is used as


ooperative solution 
orresponding to the optimal 
ooperative strategies and IDP

is introdu
ed to guarantee the time 
onsisten
y property. In se
tion 5, a numeri
al

example is used to illustrate the results.

2. Initial model

Consider a n-�rm oligopoly market in a mature produ
t 
ategory so that the total

sales of the 
ategory are relatively stable (Prasad et al., 2009). The advertising ef-

forts as strategies are used by �rms to 
ompete on the oligopoly market, ea
h �rm

tries to in
rease its market share while the 
ompetitors try to minimize it using the

advertisement e�orts. Denote by xi(t) the market share of �rm i ∈ I ≡ {1, ..., n} at
time t and n ≥ 1.

Market share dynami
s of �rm i has the following form:

dxi
dt

=
n

n− 1
ρiui

√
1− xi −

1

n− 1

∑

j∈I

ρjuj
√
1− xj − δ(xi −

1

n
). (1)

with xi(0) = zi(0), where zi(0) is a positive 
onstant.
Payo� fun
tion of �rm i ∈ I is de�ned by its pro�t:

K(xi0, t0, u1, .., un) =

∫ ∞

0

e−riτ [mixi(τ)− (ui(τ))
2]dτ,
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where ri is the dis
ount rate of �rm i. We transformed this di�erential game

model to the 
orresponding dis
rete time game with �nite horizon T using Finite

Di�eren
e Method (FDM). Introdu
e the equally distributed grid points (tj)j=0,N

given by tj = jh where N is an integer and the spa
ing h is given by h = T/N and

xk ≃ x(tk) for all k ∈ {0, ..., N}. As a result, the market share dynami
s of �rm i

for dynami
 game model be
ame

xk+1
i = h(

n

n− 1
ρiu

k
i

√
1− xki −

1

n− 1

∑

j∈I

ρju
k
j

√
1− xkj )− (hδ − 1)xki + hδ

1

n
, (2)

with x0i = z0i , where z
0
i is a positive 
onstant.

Payo� fun
tion of �rm i in dynami
 game model be
ame:

K0
i (x

0, u0) =

N∑

l=0

mix
l
i − (uli)

2. (3)

Full list of notations is presented in Table 1.

Table 1. List of variables and parameters

Notation Explanation

xk
i ∈ [0, 1] Market share of �rm i ∈ I ≡ {1, ..., n} at stage k.

uk
i ≥ 0 Advertising e�ort rate by �rm i at stage k.

ρi > 0 Advertising e�e
tiveness parameter of �rm i.

δ > 0 Churn parameter.

mi > 0 Industry sales multiplied by the per unit

pro�t margin of �rm i.

C(ui(t)) Cost of advertising of �rm i, parameterized as (ui(t))
2
.

There is also a logi
al 
onsisten
y requirement that the sum of market shares

should be equal to one on ea
h stage, i.e.

∑

i∈I

xki = 1, for k ∈ {0, ..., N} ,

where this requirement 
an be 
he
ked by summing up right-side of all �rms' motion

equations in (2).

3. Non
ooperative game model

Consider a non
ooperative 
ase, where ea
h �rm a
ts individually. A

ording to

(Yeung and Petrosyan, 2012) one 
an determine the non
ooperative strategies as a

feedba
k Nash equilibrium for the game de�ned by (2) and (4).

De�nition 1. A feedba
k Nash equilibrium (Yeung, 1994) is an n-tuple of feedba
k

strategies

{
ūk1 , ū

k
2 , ..., ū

k
n

}
, for k ∈ {0, ..., N}, if for every possible initial 
ondition

xk of player i the following inequality holds

Kk
i (x

k, ūk1 , ..., ū
k
i−1, u

k
i , ū

k
i+1, ..., ū

k
n) ≤ Kk

i (x
k, ūk1 , ..., ū

k
i−1, ū

k
i , ū

k
i+1, ..., ū

k
n), ∀i ∈ I.
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If there exists a feedba
k Nash equilibrium solution with the set of strategies{
ūki , for k ∈ {0, ..., N}, i ∈ {1, ..., n}

}
for (2) and (4), denote an equilibrium payo�

fun
tion for �rm i ∈ I over stage k to N by

V ki (x) =

N∑

l=k

mix
l
i − (ūli)

2,

where xki = x.

A frequently used way to 
hara
terize and derive a feedba
k Nash equilibrium

of the game is a dynami
 programming.

Theorem 1. A set of strategies

{
ūki , for k ∈ {0, ..., N} , i ∈ {1, ..., n}

}
provides a

feedba
k Nash equilibrium to the game de�ned by (2) and (4) if there exist fun
-

tions V ki (x), for i ∈ {1, ..., n} and k ∈ {0, ..., N}, su
h that the following re
ursive

relations are satis�ed:

V ki (x) = max
uk
i
≥0

{
mix

k
i − (uki )

2 + V k+1
i (xki , ū

k
1 , ..., ū

k
i−1, u

k
i , ū

k
i+1, ..., ū

k
n)
}

= mix
k
i − (ūki )

2 + V k+1
i (xki , ū

k
1 , ..., ū

k
i−1, ū

k
i , ū

k
i+1, ..., ū

k
n),

(4)

V N+1
i (x) = 0.

This theorem 
an be proved in the same way as it was done in

(Yeung and Petrosyan, 2012).

Proposition 1. The game equilibrium value fun
tions in (5) are

V ki (x
k
i ) =

∑

i∈I

Aki x
k
i +Bk(i), i ∈ {1, ..., n}, k ∈ {0, ..., N},

where Aki , B
k(i) are determined from the relations:

Aki = mi − (Gk+1
i Zi)

2 −Ak+1
i (δh− 1),

Akj = −2(Gk+1
j Zj)

2 −Ak+1
j (δh− 1), j 6= i, j ∈ I \ i,

Bk(i) =
∑

i∈I

[2(Gk+1
i Zi)

2 +
Ak+1
i hδ

n
] +Bk+1(i)− (Gk+1

i Zi)
2,

with initial 
onditions AN+1
i = BN+1(i) = 0, i ∈ {1, ..., n} and where Gk+1

i =

nAk+1
i −∑j∈I A

k+1
j , Zi =

hρi
2(n−1) .

Corresponding feedba
k Nash equilibrium strategies are

ūki = Gk+1
i Zi

√
1− xki , k ∈ {0, ..., N} , i ∈ {1, ..., n} . (5)

Proof see Appendix.

Substituting (6) into the original dynami
s (2), we derive traje
tory 
orrespond-

ing to the feedba
k Nash equilibrium, i ∈ {1, ..., n} and k ∈ {0, ..., N},

x̄k+1
i = nP k+1

i (1 − x̄ki )−
∑

j∈I

[P k+1
j (1 − x̄kj )] +

1

n
, (6)

where P k+1
i ≡ 2Gk+1

i (Zi)
2 + hδ−1

n . The non
ooperative traje
tory ve
tors for any

stage are denoted by

x̄k = [x̄k1 , ..., x̄
k
n], k = 0, N.
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4. Cooperative game

Consider the 
ase when all �rms agree to 
ooperate. Maximizing the playersâ�

TM

joint payo� guarantees grand 
oalition optimality in a game where payo�s are trans-

ferable. To maximize their joint payo� the following optimization should be per-

formed:

∑

i∈I

K0
i (x

0, u0) =
∑

i∈I

N∑

l=0

mix
l
i − (uli)

2 → max
u1,...,un

(7)

subje
t to

xk+1
i = h(

n

n− 1
ρiu

k
i

√
1− xki −

1

n− 1

∑

j∈I

ρju
k
j

√
1− xkj )−(hδ−1)xki +hδ

1

n
, x0i = z0i .

This is a dis
rete time optimization problem. Dynami
 programming

(Bellman, 1957) is used to solve it. Suppose that the Bellman fun
tion has

the following form:

W k(xk) = max
uk
1 ,...,u

k
n

{∑

i∈I

N∑

l=k

mix
l
i − (uli)

2

}
, k ∈ {0, ..., N} . (8)

Theorem 2. Assume that there exists fun
tion W k(x), su
h that the following re-


ursive relations are satis�ed:

W k(xk) = max
uk
1 ,...,u

k
n

{∑

i∈I

mix
k
i − (uki )

2 +W k+1(xk)

}
, k ∈ {0, ..., N} ,

(9)

where WN+1(xN+1) = 0.

We use the following linear fun
tions, observing that they satisfy the Bellman

equations, to solve this re
ursive relations.

Proposition 2. Bellman fun
tion W k(xk) in (9) 
an be 
omputed in the form

W k(xk) =
∑

i∈I

Cki x
k
i +Dk

i , (10)

where Cki , D
k
i , i ∈ {1, ..., n} and k ∈ {0, ..., N} satisfy:

Cki = mi − (Qk+1
i Zi)

2 − Ck+1
i (δh− 1),

Dk
i = (Qk+1

i Zi)
2 +

Ck+1
i δh

n
+Dk+1

i ,

with initial 
onditions CN+1
i = DN+1

i = 0, i ∈ {1, ..., n} .
The optimal 
ooperative strategies 
an be obtained as follows:

ϕki = Qk+1
i Zi

√
1− xki , ∀i ∈ I,

where Qk+1
i = nCk+1

i −∑j∈I C
k+1
j .
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Substituting optimal 
ooperative strategies in (2), 
ooperative traje
tory of i ∈ I
is 
omputed as

xc,k+1
i = 2nQk+1

i Z2
i (1 − xc,ki )−

∑

j∈I

2Qk+1
j Z2

j (1− xc,kj )− (hδ − 1)xc,ki +
hδ

n
,

where k ∈ {0, . . . , N}.
It's worth mentioning that the advertising e�ort rate of ea
h �rm is equal to zero

when all the �rms are symmetri
, be
ause of the whole market a
ts as a monopoly

when all symmetri
 �rms de
ide to 
ooperate. On
e 
onsumers want to buy goods

they have to buy it from one of the �rm even if �rms do not spend on advertising.

Proposition 3. If all �rms are identi
al: mi = m, ρi = ρ for i ∈ I, then the

optimal strategies of players are

ϕki = 0, ∀i ∈ I, k ∈ {0, . . . , N}.

Proof see Appendix.

4.1. Chara
teristi
 fun
tion

For ea
h 
oalition S ⊂ I de�ne the values of 
hara
teristi
 fun
tion as it was done

in (Chander and Tulkens, 1995):

V (S;xc) =





∑
i∈I Ki(x

c;u), S = I,

Ṽ (S, xc), S ⊂ I,

0, S = ∅,
(11)

where Ṽ (S, xc) is de�ned as total payo� of players from 
oalition S in feedba
k

Nash equilibrium ū = (ū1, ..., ūn) in the game with the following set of players:


oalition S (a
ting as one player) and players from the set |I \ S|, i.e. in the game

of |I \ S|+ 1 players.

For |S| = 1 
ooperative 
ase be
omes to the non
ooperative 
ase:

V k({i} ;xck) = α ∗ V ki (xc,ki ) = Aki x
c,k
i +Bk(i) , i ∈ I \ S,

we 
onsider a parameter α in this 
ase whi
h is a given dis
ount of 
hara
teristi


fun
tion of |S| = 1 under the 
ooperation . Parameter α guaranties the property of

essential always hold for 
ooperative 
ase, therefore α should satisfy this inequality:

0 < α ≤ V k(I;xck)∑
i∈I V

k
i (x

c,k
i )

In a

ordan
e with the formula (11) 
hara
teristi
 fun
tion for 
oalition S = I is

de�ned as

V k(I;xck) =W k(xck).

The 
hara
teristi
 fun
tion for 
oalition S ⊂ I is de�ned as the payo� of players

from 
oalition S in Nash feedba
k equilibrium in the game with |I \ S + 1| players.
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Corresponding system of Bellman equations for 
oalition S and players i ∈ I \S
will have the form:




V k(S, xk) = max
uk∈S

{∑

i∈S

[mix
k
i − (uki )

2] + V k+1(S, xk+1)

}
,

V k({i} , xki ) = max
uk
i

{
mix

k
i − (uki )

2 + V k+1({i} , xk+1
i )

}
, i ∈ I \ S,

(12)

with initial 
onditions V N+1(S, xN+1) = 0, V N+1({i} , xN+1
i ) = 0, i ∈ I \ S.

Proposition 4. Bellman fun
tion for 
oalition S and players i ∈ I \ S 
an be


omputed in the form:

V k(S, xk) =
∑

i∈I

C̄ki x
k
i + Ek,

V k({i} , xki ) =
∑

i∈I

Āki x
k
i + B̄(i)k, i ∈ I \ S,

where parameters C̄ki , Ā
k
i ,E

k
and B̄(i)k are de�ned as:

C̄ki = mi − (Rk+1
i Zi)

2 − C̄k+1
i (δh− 1), i ∈ S,

C̄ki = −2Ḡk+1
i Rk+1

i Z2
i − C̄k+1

i (δh− 1), i ∈ I \ S,

Ek =
∑

i∈S

(Rk+1
i Zi)

2 +
∑

i∈I\S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

C̄k+1
i hδ

n
+ Ek+1,

Āki = mi − (Ḡk+1
i Zi)

2 − Āk+1
i (δh− 1), i ∈ I \ S,

Ākj = −2(Ḡk+1
j Zj)

2 − Āk+1
j (δh− 1), j ∈ I \ (S ∪ i),

Ākf = −2Ḡk+1
f Rk+1

f Z2
f − Āk+1

f (δh− 1), f ∈ S,

B̄(i)k =
∑

i∈I\S

2(Ḡk+1
i Zi)

2 +
∑

i∈S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

Āk+1
i δh

n
+ B̄(i)k+1−

− (Ḡk+1
i Zi)

2, i ∈ I \ S,

with initial 
onditions C̄N+1
i = 0, EN+1 = 0, ĀN+1

i = 0 and B̄(i)N+1 = 0,
where

Rk+1
i = nC̄k+1

i −
∑

j∈I

C̄k+1
j ,

Ḡk+1
i = nĀk+1

i −
∑

j∈I

Āk+1
j .

Optimal strategies used by players from 
oalition S and players i ∈ I \S 
an be


omputed as follows:

ūS,ki = (nC̄k+1
i −

∑

j∈I

C̄k+1
j )

hρi
√
1− xki

2(n− 1)
, i ∈ S,

ūki = (nĀk+1
i −

∑

j∈I

Āk+1
j )

hρi
√
1− xki

2(n− 1)
, i ∈ I \ S.
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Value of 
hara
teristi
 fun
tion for 
oalition S ⊂ I is 
al
ulated as follows:

V k(S;xc) = V k(S, xc,k),

where k ∈ {0, . . . , N}.
4.2. Imputation set

Main problem in the theory of 
ooperative games is to 
onstru
t realizable prin
iple

of allo
ation of total payo� W k(xck) among players. An optimality prin
iple 
an be

introdu
ed if all players agree to allo
ate the total 
ooperative payo� along the


ooperative traje
tory a

ording to an imputation.

De�nition 2. Imputation is a ve
tor ξk(xck) = [ξk1 (x
c,k
1 ), ..., ξkn(x

c,k
n )] for k = 0, N,

whi
h satis�es the 
onditions

ξki (x
c,k
i ) ≥ V k({i} ;xck), i ∈ I,

∑

i∈I

ξki (x
c,k
i ) = V k(I;xck).

4.3. Imputation distribution pro
edure

Following the 
ontinuous-time analysis of (Petrosyan and Yeung, 2006) for 
oop-

erative di�erential games, we formulate a dis
rete-time version of the Imputation

Distribution Pro
edure so that the agreed upon imputations of de�nition 2 
an be

realized. By Bki (x
c,k
i ) denote the payment that the �rm i will re
eive at stage k

under the 
ooperative agreement along the 
ooperative traje
tory

{
xc,ki

}N
k
.

Payment s
heme involving Bki (x
c,k
i ) 
onstitutes an IDP in the sense that the

imputation of �rm i over the stages from k to N:

ξki (x
c,k
i ) =

N∑

j=k

Bji (x
c,j
i ). (13)

4.4. Time 
onsisten
y

The property of time-
onsisten
y was introdu
ed in 1977 by Petrosyan

(Petrosjan, 1977). To ensure stability in dynami
 
ooperation over time a strin-

gent 
ondition is required: the spe
i�
 agreed-upon optimality prin
iple must be

maintained at any instant of time throughout the game along the optimal state

traje
tory. This 
ondition is known as time 
onsisten
y.

De�nition 3. Solution H(xck, k) is 
alled time 
onsistent if for any imputation

ξki (x
c,k
i ) ∈ H(xck, k) exists IDP Bki (x

c,k
i ), k = 0, N su
h that it satis�es:

N∑

k

Bki (x
c,k
i ) ∈ H(xck, k),

N∑

k

Bki (x
c,k
i ) = ξki (x

c,k
i ).

Theorem 3. If optimality prin
iple satis�es the following 
onditions:
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(i) uki = ϕki , for i ∈ I and k = 0, N , is the set of group optimal strategies for the

this game,

(ii) Bki (x
k
i ) = Bki (x

c,k
i ), for i ∈ I and k = 0, N , where

Bki (x
c,k
i ) = ξki (x

c,k)− ξk+1
i (xc,k+1), (14)

then [ξk1 (x
c,k
1 ), ..., ξkn(x

c,k
n )] is is time 
onsistent.

This theorem was proved in (Petrosjan and Yeung, 2012).

4.5. Cooperative solution

In this paper, we 
onsider Shapley value as a 
ooperative solution Shk(xc,k)
(Shapley, 1953), whi
h is 
al
ulated in the following way:

Shki (x
c,k) =

∑

S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!

|I|! · [V k(S;xc,k)− V k(S \ i;xc,k)], (15)

for k = 0, N .

5. Numeri
al example

We 
onsider a spe
i�
 three-�rms oligopoly 
ase within the stage interval N=8. To

illustrate our model, let the parameters for ea
h �rms to be ρ = [0.4, 0.5, 0.3], h =
0.4, α = 0.7, δ = 0.09, m = [0.6, 1, 1.2] and for the initial 
onditions z0 =
[0.3, 0.5, 0.2].

Fig.1. shows feedba
k Nash equilibrium strategies for non
ooperative game and

Fig.2. shows how the market share of ea
h �rm 
hanges 
orresponding to their

advertising expenditure.
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Fig. 1. Feedba
k Nash equilibrium strategies of non
ooperative game
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Fig. 2. Non
ooperative traje
tory

Non
ooperative out
omes are obtained respe
tively, whi
h is shown in Fig.3. The

optimal 
ooperative strategies and 
ooperative traje
tory are illustrated in Fig.4.

and Fig.5.
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Fig. 3. Non
ooperative out
omes
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Fig. 4. The optimal strategies of 
ooperative game

On the Fig.6. Shapley value 
al
ulated using 
hara
teristi
 fun
tion (11) is pre-

sented.

In order to guarantee time 
onsisten
y for 
ooperative game, Fig.7. shows IDP

for Shapley value.
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Fig. 5. Cooperative traje
tory
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Fig. 7. Imputation Distribution Pro
edure

6. Con
lusion

In this paper, we 
onsidered an oligopoly dynami
 marketing model for the non
o-

operative game as in the previous paper, and obtained a feedba
k Nash equilibrium

strategies for the advertising expenditures of all �rms. Then the 
ooperation for all

oligopolisti
 �rms is introdu
ed, the optimal 
ooperative strategies are obtained to

determine the advertising expenditures, whi
h maximize the pro�t for this 
oop-

eration, in order to maintain this 
ooperation for all �rms. An agreement, namely

Imputation Distribution Pro
edure, is obtained to guarantee no �rms will 
ollude

and form a smaller 
oalition under this agreement.

A simple numeri
al example is presented in this paper to illustrate the results

for both 
ooperative and non
ooperative game obtained of the oligopoly dynami


marketing model.

Appendix

1. First appendix

The Bellman equation for �rm i is given by

V ki (x
k
i ) = max

uk
i
≥0

{
mix

k
i − (uki )

2 + V k+1
i (xk+1

i )
}
.
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Invoking (2) and V ki (x
k
i ) =

∑
i∈I A

k
i x

k
i + Bk(i), for i ∈ I and k ∈ {0, ..., N}, then

the above Bellman equation be
omes

∑

i∈I

Aki x
k
i +Bk(i) = max

uk
i ≥0

{
mix

k
i − (uki )

2 +
∑

i∈I

Ak+1
i xk+1

i +Bk+1(i)

}

= max
uk
i
≥0

{∑

i∈I

Ak+1
i [h(

n

n− 1
ρiu

k
i

√
1− xki −

1

n− 1

∑

j∈I

ρju
k
j

√
1− xkj )−

− (hδ − 1)xki + hδ
1

n
] +Bk+1(i) +mix

k
i − (uki )

2

}
.

(16)

Performing the indi
ated maximization in above yields

−2uki +
hρi
n− 1

nAk+1
i

√
1− xki −

hρi
n− 1

√
1− xki

∑

j∈I

Ak+1
j = 0,

for i ∈ I and k ∈ {0, ..., N}. Then the feedba
k Nash equilibrium of �rm i 
an be

obtained in the form

ūki = max{0, [nAk+1
i −

∑

j∈I

Ak+1
j ]

hρi
2(n− 1)

√
1− xki }.

Anti
ipating that the 
ontrols will be shown to be positive, substituting it into (16),


olle
ting the terms together, then the parameters Aki and B
k(i) 
an be expressed

as

Aki = mi − (Gk+1
i Zi)

2 −Ak+1
i (δh− 1),

Akj = −2(Gk+1
j Zj)

2 −Ak+1
j (δh− 1), j 6= i, j ∈ I \ i,

Bk(i) =
∑

i∈I

[2(Gk+1
i Zi)

2 +
Ak+1
i hδ

n
] +Bk+1(i)− (Gk+1

i Zi)
2,

where Gk+1
i = nAk+1

i −∑j∈I A
k+1
j , Zi =

hρi
2(n−1) .

2. Se
ond appendix

Substituting (10) into (9) we re
eive

W k(xk) = max
uk
1 ,...,u

k
n

{∑

i∈I

[mix
k
i − (uki )

2] +W k+1(xk)

}

⇒
∑

i∈I

Cki x
k
i +Dk

i = max
uk
1 ,...,u

k
n

{∑

i∈I

[mix
k
i − (uki )

2] +
∑

i∈I

Ck+1
i xk+1

i +Dk+1
i

}
(17)

WN+1(xN+1) = 0.

substitute the right-side of (2) into (17). Performing the indi
ated maximization

in (17) yields
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−2uki + (nCk+1
i −

∑

j∈I

Ck+1
j )

hρi
√
1− xki

n− 1
= 0.

The optimal 
ooperative strategies 
an be obtained in the form

ϕki = max{0, (nCk+1
i −

∑

j∈I

Ck+1
j )

hρi
√
1− xki

2(n− 1)
},

for i ∈ I and k ∈ {0, ..., N} .
Anti
ipating that the 
ooperative strategies will be shown to be positive, then

substituting them into (17), hen
e Cki and Dk
i are de�ned as:

Cki = mi − (Qk+1
i Zi)

2 − Ck+1
i (δh− 1),

Dk
i = (Qk+1

i Zi)
2 +

Ck+1
i δh

n
+Dk+1

i .

3. Third appendix

The asymmetri
 optimal 
ooperative strategies 
an be obtained in the form

ϕki = max{0, (nCk+1
i −

∑

j∈I

Ck+1
j )

hρ
√
1− xki

2(n− 1)
},

for i ∈ I and k ∈ {0, ..., N} .
Suppose that all �rms are identi
al: mi = m, ρi = ρ for i ∈ I, then the related

parameters in Proposition 2.3 
an be rewritten as follows

Cki = m− (Qk+1
i Z)2 − Ck+1

i (δh− 1),

Dk
i = (Qk+1

i Z)2 +
Ck+1
i δh

n
+Dk+1

i ,

with initial 
onditions CN+1
i = DN+1

i = 0 and where Z = hρ
2(n−1) and Q

k+1
i =

nCk+1
i −∑j∈I C

k+1
j . It shows that the value of Cki is equal for ∀i ∈ I, k ∈ {0, ..., N},

whi
h means the optimal 
ooperative strategies equal to 0 at any stage when all

�rms are identi
al.

4. Fourth appendix

Substituting the Bellman fun
tion of 
oalition S and individual players into (12)

respe
tively and 
orresponding to (2). Performing the indi
ated maximization in

(12) yields

−2uki + (nC̄k+1
i −

∑

j∈I

C̄k+1
j )

hρi
√
1− xki

n− 1
= 0, i ∈ S,

−2uki + (nĀk+1
i −

∑

j∈I

Āk+1
j )

hρi
√
1− xki

n− 1
= 0, i ∈ I \ S.
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The optimal strategies 
an be obtained in the form

ūS,ki = max{0, (nC̄k+1
i −

∑

j∈I

C̄k+1
j )

hρi
√
1− xki

2(n− 1)
}, i ∈ S,

ūki = max{0, (nĀk+1
i −

∑

j∈I

Āk+1
j )

hρi
√
1− xki

2(n− 1)
}, i ∈ I \ S.

Anti
ipating that the optimal strategies will be shown to be positive and substi-

tuting them into (12), then 
olle
ting the terms together we obtain the parameters

C̄ki , Ā
k
i ,E

k
and B̄(i)k

C̄ki = mi − (Rk+1
i Zi)

2 − C̄k+1
i (δh− 1), i ∈ S,

C̄ki = −2Ḡk+1
i Rk+1

i Z2
i − C̄k+1

i (δh− 1), i ∈ I \ S,

Ek =
∑

i∈S

(Rk+1
i Zi)

2 +
∑

i∈I\S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

C̄k+1
i hδ

n
+ Ek+1,

Āki = mi − (Ḡk+1
i Zi)

2 − Āk+1
i (δh− 1), i ∈ I \ S,

Ākj = −2(Ḡk+1
j Zj)

2 − Āk+1
j (δh− 1), j ∈ I \ (S ∪ i),

Ākf = −2Ḡk+1
f Rk+1

f Z2
f − Āk+1

f (δh− 1), f ∈ S,

B̄(i)k =
∑

i∈I\S

2(Ḡk+1
i Zi)

2 +
∑

i∈S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

Āk+1
i δh

n
+ B̄(i)k+1−

− (Ḡk+1
i Zi)

2, i ∈ I \ S.
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