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Abstrat We onsider a dynami oligopoly advertising model for both non-

ooperative and ooperative setting. Feedbak Nash equilibrium strategies

and ooperative strategies are found to determine the optimal advertising

e�orts of eah �rm for both setting respetively. Besides, depending upon

the ooperative strategies, imputation is introdued as an optimal alloation

of joint payo� and Imputation Distribution Proedure is used to guarantee

the time onsisteny for ooperation.
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1. Introdution

267 billions of dollars were spent in advertising by the world's 100 largest adver-

tisers in 2016 aording to the statistis from the soure: Ad Age Dataenter, it's

easy to imagine that a ompany ouldn't survive in the market without advertising.

Hene, advertising as a strategy for market share ompetition has been studied in

many marketing models, so as we are doing in this paper, where we are onen-

trating on the dynami advertising model. Here eah �rm's market share depends

on its own and its ompetitors' urrent and past advertising expenditures. Com-

petition between �rms is formulated by the nonooperative di�erential game as

it was done by (Erikson, 2003), (Sorger, 1989), (J�¼rgensen and Zaour, 2004),

(Prasad and Sethi, 2004), (Naik et al., 2008) and (Prasad et al., 2009). In this pa-

per we derived a dynami oligopoly advertising model from (Prasad et al., 2009),

in the paper the Sethi model was extended to model awareness of auto brands with

hurn term, whih is the extension of the deay of market share term in monopoly

models apturing forgetting and noise. Closed-loop Nash equilibrium onept is

used to obtain the optimal advertising expenditure for nonooperative game. Simi-

lar to this paper's work, we also onsider the nonooperative dynami game and use

feedbak Nash equilibrium onept to obtain the optimal advertising expenditure,

but more than that, the ooperative dynami game whih wasn't onsidered by the

previous work was eliited to this model and mainly studied in our paper.

Nonooperative game theory deals with strategi interations among multiple

deision makers with the objetive funtions depending on the hoies of all the

players and suggests solution onepts for a ase when players do not ooperate

or make any arrangements about their ations. A player annot simply optimize

her own objetive funtion independent from the hoies of the other players. In

1950 and 1951 in (Nash, 1950),(Nash, 1951) by John Nash, suh a solution onept

was introdued, whih is now alled the Nash equilibrium. For di�erential game

models Nash equilibrium an be de�ned in an open-loop strategies or in losed-loop

strategies. For both types onsult (Basar and Olsder, 1999). In this paper we use the



208 Lihong Shi, Ovanes Petrosian

approah with feedbak strategies as the most preferable for the game theoretial

problems.

The ooperative dynami game theory o�ers soially onvenient and group ef-

�ient solutions to di�erent deision problems involving strategi ations. One of

the fundamental questions in the theory of ooperative dynami games is the for-

mulation of optimal behavior for players. A harateristi funtion of a oalition

is an essential onept in the theory of ooperative games. This funtion is de-

�ned as indiated in (Chander and Tulkens, 1995) as total payo� of players from

oalition S in Nash equilibrium in the game with following set of players: oali-

tion S (ating as one player) and players from the set I \ S. A omputation of

Nash equilibrium fully desribed in (Basar and Olsder, 1995) is neessary for this

approah. A set of imputations or a solution of the game is determined by the

harateristi funtion as the set of individually rational vetors. To guarantee the

ooperation of all players will holds during the game, whih means the oopera-

tion is time onsistent. Notion of time onsisteny was formalized mathematially

by Petrosyan in the paper (Petrosjan, 1977). In the next paper on time onsis-

teny (Petrosyan and Danilov, 1979) L. Petrosyan de�ned the notion of imputation

distribution proedure (IDP), whih is used to ompose a time onsistent ooper-

ative solution or single imputation. Later on, L. Petrosyan de�ned the notion of

strong time onsisteny in the paper (Petrosyan, 1993), it was introdued to guar-

antee the time-onsisteny for a set-value ooperative solutions, suh as Core, Nu-

leus et.. See reent publiations on this topi in (Petrosyan and Yeung, 2006),

(Jorgensen and Yeung, 1999) and (Jorgensen et al., 2003). The property of time

onsisteny introdued by Petrosyan in (Petrosyan, 1993) is examined for Shap-

ley value.

The paper is organized as follows. In the next setion, we formulate a dynami

oligopoly marketing model orresponding to the model from (Prasad et al., 2009).

In setion 3, feedbak Nash equilibrium strategies for nonooperative setting are

presented. In setion 4, ooperative ase is onsidered, Shapley value is used as

ooperative solution orresponding to the optimal ooperative strategies and IDP

is introdued to guarantee the time onsisteny property. In setion 5, a numerial

example is used to illustrate the results.

2. Initial model

Consider a n-�rm oligopoly market in a mature produt ategory so that the total

sales of the ategory are relatively stable (Prasad et al., 2009). The advertising ef-

forts as strategies are used by �rms to ompete on the oligopoly market, eah �rm

tries to inrease its market share while the ompetitors try to minimize it using the

advertisement e�orts. Denote by xi(t) the market share of �rm i ∈ I ≡ {1, ..., n} at
time t and n ≥ 1.

Market share dynamis of �rm i has the following form:

dxi
dt

=
n

n− 1
ρiui

√
1− xi −

1

n− 1

∑

j∈I

ρjuj
√
1− xj − δ(xi −

1

n
). (1)

with xi(0) = zi(0), where zi(0) is a positive onstant.
Payo� funtion of �rm i ∈ I is de�ned by its pro�t:

K(xi0, t0, u1, .., un) =

∫ ∞

0

e−riτ [mixi(τ)− (ui(τ))
2]dτ,
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where ri is the disount rate of �rm i. We transformed this di�erential game

model to the orresponding disrete time game with �nite horizon T using Finite

Di�erene Method (FDM). Introdue the equally distributed grid points (tj)j=0,N

given by tj = jh where N is an integer and the spaing h is given by h = T/N and

xk ≃ x(tk) for all k ∈ {0, ..., N}. As a result, the market share dynamis of �rm i

for dynami game model beame

xk+1
i = h(

n

n− 1
ρiu

k
i

√
1− xki −

1

n− 1

∑

j∈I

ρju
k
j

√
1− xkj )− (hδ − 1)xki + hδ

1

n
, (2)

with x0i = z0i , where z
0
i is a positive onstant.

Payo� funtion of �rm i in dynami game model beame:

K0
i (x

0, u0) =

N∑

l=0

mix
l
i − (uli)

2. (3)

Full list of notations is presented in Table 1.

Table 1. List of variables and parameters

Notation Explanation

xk
i ∈ [0, 1] Market share of �rm i ∈ I ≡ {1, ..., n} at stage k.

uk
i ≥ 0 Advertising e�ort rate by �rm i at stage k.

ρi > 0 Advertising e�etiveness parameter of �rm i.

δ > 0 Churn parameter.

mi > 0 Industry sales multiplied by the per unit

pro�t margin of �rm i.

C(ui(t)) Cost of advertising of �rm i, parameterized as (ui(t))
2
.

There is also a logial onsisteny requirement that the sum of market shares

should be equal to one on eah stage, i.e.

∑

i∈I

xki = 1, for k ∈ {0, ..., N} ,

where this requirement an be heked by summing up right-side of all �rms' motion

equations in (2).

3. Nonooperative game model

Consider a nonooperative ase, where eah �rm ats individually. Aording to

(Yeung and Petrosyan, 2012) one an determine the nonooperative strategies as a

feedbak Nash equilibrium for the game de�ned by (2) and (4).

De�nition 1. A feedbak Nash equilibrium (Yeung, 1994) is an n-tuple of feedbak

strategies

{
ūk1 , ū

k
2 , ..., ū

k
n

}
, for k ∈ {0, ..., N}, if for every possible initial ondition

xk of player i the following inequality holds

Kk
i (x

k, ūk1 , ..., ū
k
i−1, u

k
i , ū

k
i+1, ..., ū

k
n) ≤ Kk

i (x
k, ūk1 , ..., ū

k
i−1, ū

k
i , ū

k
i+1, ..., ū

k
n), ∀i ∈ I.
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If there exists a feedbak Nash equilibrium solution with the set of strategies{
ūki , for k ∈ {0, ..., N}, i ∈ {1, ..., n}

}
for (2) and (4), denote an equilibrium payo�

funtion for �rm i ∈ I over stage k to N by

V ki (x) =

N∑

l=k

mix
l
i − (ūli)

2,

where xki = x.

A frequently used way to haraterize and derive a feedbak Nash equilibrium

of the game is a dynami programming.

Theorem 1. A set of strategies

{
ūki , for k ∈ {0, ..., N} , i ∈ {1, ..., n}

}
provides a

feedbak Nash equilibrium to the game de�ned by (2) and (4) if there exist fun-

tions V ki (x), for i ∈ {1, ..., n} and k ∈ {0, ..., N}, suh that the following reursive

relations are satis�ed:

V ki (x) = max
uk
i
≥0

{
mix

k
i − (uki )

2 + V k+1
i (xki , ū

k
1 , ..., ū

k
i−1, u

k
i , ū

k
i+1, ..., ū

k
n)
}

= mix
k
i − (ūki )

2 + V k+1
i (xki , ū

k
1 , ..., ū

k
i−1, ū

k
i , ū

k
i+1, ..., ū

k
n),

(4)

V N+1
i (x) = 0.

This theorem an be proved in the same way as it was done in

(Yeung and Petrosyan, 2012).

Proposition 1. The game equilibrium value funtions in (5) are

V ki (x
k
i ) =

∑

i∈I

Aki x
k
i +Bk(i), i ∈ {1, ..., n}, k ∈ {0, ..., N},

where Aki , B
k(i) are determined from the relations:

Aki = mi − (Gk+1
i Zi)

2 −Ak+1
i (δh− 1),

Akj = −2(Gk+1
j Zj)

2 −Ak+1
j (δh− 1), j 6= i, j ∈ I \ i,

Bk(i) =
∑

i∈I

[2(Gk+1
i Zi)

2 +
Ak+1
i hδ

n
] +Bk+1(i)− (Gk+1

i Zi)
2,

with initial onditions AN+1
i = BN+1(i) = 0, i ∈ {1, ..., n} and where Gk+1

i =

nAk+1
i −∑j∈I A

k+1
j , Zi =

hρi
2(n−1) .

Corresponding feedbak Nash equilibrium strategies are

ūki = Gk+1
i Zi

√
1− xki , k ∈ {0, ..., N} , i ∈ {1, ..., n} . (5)

Proof see Appendix.

Substituting (6) into the original dynamis (2), we derive trajetory orrespond-

ing to the feedbak Nash equilibrium, i ∈ {1, ..., n} and k ∈ {0, ..., N},

x̄k+1
i = nP k+1

i (1 − x̄ki )−
∑

j∈I

[P k+1
j (1 − x̄kj )] +

1

n
, (6)

where P k+1
i ≡ 2Gk+1

i (Zi)
2 + hδ−1

n . The nonooperative trajetory vetors for any

stage are denoted by

x̄k = [x̄k1 , ..., x̄
k
n], k = 0, N.
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4. Cooperative game

Consider the ase when all �rms agree to ooperate. Maximizing the playersâ�

TM

joint payo� guarantees grand oalition optimality in a game where payo�s are trans-

ferable. To maximize their joint payo� the following optimization should be per-

formed:

∑

i∈I

K0
i (x

0, u0) =
∑

i∈I

N∑

l=0

mix
l
i − (uli)

2 → max
u1,...,un

(7)

subjet to

xk+1
i = h(

n

n− 1
ρiu

k
i

√
1− xki −

1

n− 1

∑

j∈I

ρju
k
j

√
1− xkj )−(hδ−1)xki +hδ

1

n
, x0i = z0i .

This is a disrete time optimization problem. Dynami programming

(Bellman, 1957) is used to solve it. Suppose that the Bellman funtion has

the following form:

W k(xk) = max
uk
1 ,...,u

k
n

{∑

i∈I

N∑

l=k

mix
l
i − (uli)

2

}
, k ∈ {0, ..., N} . (8)

Theorem 2. Assume that there exists funtion W k(x), suh that the following re-

ursive relations are satis�ed:

W k(xk) = max
uk
1 ,...,u

k
n

{∑

i∈I

mix
k
i − (uki )

2 +W k+1(xk)

}
, k ∈ {0, ..., N} ,

(9)

where WN+1(xN+1) = 0.

We use the following linear funtions, observing that they satisfy the Bellman

equations, to solve this reursive relations.

Proposition 2. Bellman funtion W k(xk) in (9) an be omputed in the form

W k(xk) =
∑

i∈I

Cki x
k
i +Dk

i , (10)

where Cki , D
k
i , i ∈ {1, ..., n} and k ∈ {0, ..., N} satisfy:

Cki = mi − (Qk+1
i Zi)

2 − Ck+1
i (δh− 1),

Dk
i = (Qk+1

i Zi)
2 +

Ck+1
i δh

n
+Dk+1

i ,

with initial onditions CN+1
i = DN+1

i = 0, i ∈ {1, ..., n} .
The optimal ooperative strategies an be obtained as follows:

ϕki = Qk+1
i Zi

√
1− xki , ∀i ∈ I,

where Qk+1
i = nCk+1

i −∑j∈I C
k+1
j .
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Substituting optimal ooperative strategies in (2), ooperative trajetory of i ∈ I
is omputed as

xc,k+1
i = 2nQk+1

i Z2
i (1 − xc,ki )−

∑

j∈I

2Qk+1
j Z2

j (1− xc,kj )− (hδ − 1)xc,ki +
hδ

n
,

where k ∈ {0, . . . , N}.
It's worth mentioning that the advertising e�ort rate of eah �rm is equal to zero

when all the �rms are symmetri, beause of the whole market ats as a monopoly

when all symmetri �rms deide to ooperate. One onsumers want to buy goods

they have to buy it from one of the �rm even if �rms do not spend on advertising.

Proposition 3. If all �rms are idential: mi = m, ρi = ρ for i ∈ I, then the

optimal strategies of players are

ϕki = 0, ∀i ∈ I, k ∈ {0, . . . , N}.

Proof see Appendix.

4.1. Charateristi funtion

For eah oalition S ⊂ I de�ne the values of harateristi funtion as it was done

in (Chander and Tulkens, 1995):

V (S;xc) =





∑
i∈I Ki(x

c;u), S = I,

Ṽ (S, xc), S ⊂ I,

0, S = ∅,
(11)

where Ṽ (S, xc) is de�ned as total payo� of players from oalition S in feedbak

Nash equilibrium ū = (ū1, ..., ūn) in the game with the following set of players:

oalition S (ating as one player) and players from the set |I \ S|, i.e. in the game

of |I \ S|+ 1 players.

For |S| = 1 ooperative ase beomes to the nonooperative ase:

V k({i} ;xck) = α ∗ V ki (xc,ki ) = Aki x
c,k
i +Bk(i) , i ∈ I \ S,

we onsider a parameter α in this ase whih is a given disount of harateristi

funtion of |S| = 1 under the ooperation . Parameter α guaranties the property of

essential always hold for ooperative ase, therefore α should satisfy this inequality:

0 < α ≤ V k(I;xck)∑
i∈I V

k
i (x

c,k
i )

In aordane with the formula (11) harateristi funtion for oalition S = I is

de�ned as

V k(I;xck) =W k(xck).

The harateristi funtion for oalition S ⊂ I is de�ned as the payo� of players

from oalition S in Nash feedbak equilibrium in the game with |I \ S + 1| players.
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Corresponding system of Bellman equations for oalition S and players i ∈ I \S
will have the form:




V k(S, xk) = max
uk∈S

{∑

i∈S

[mix
k
i − (uki )

2] + V k+1(S, xk+1)

}
,

V k({i} , xki ) = max
uk
i

{
mix

k
i − (uki )

2 + V k+1({i} , xk+1
i )

}
, i ∈ I \ S,

(12)

with initial onditions V N+1(S, xN+1) = 0, V N+1({i} , xN+1
i ) = 0, i ∈ I \ S.

Proposition 4. Bellman funtion for oalition S and players i ∈ I \ S an be

omputed in the form:

V k(S, xk) =
∑

i∈I

C̄ki x
k
i + Ek,

V k({i} , xki ) =
∑

i∈I

Āki x
k
i + B̄(i)k, i ∈ I \ S,

where parameters C̄ki , Ā
k
i ,E

k
and B̄(i)k are de�ned as:

C̄ki = mi − (Rk+1
i Zi)

2 − C̄k+1
i (δh− 1), i ∈ S,

C̄ki = −2Ḡk+1
i Rk+1

i Z2
i − C̄k+1

i (δh− 1), i ∈ I \ S,

Ek =
∑

i∈S

(Rk+1
i Zi)

2 +
∑

i∈I\S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

C̄k+1
i hδ

n
+ Ek+1,

Āki = mi − (Ḡk+1
i Zi)

2 − Āk+1
i (δh− 1), i ∈ I \ S,

Ākj = −2(Ḡk+1
j Zj)

2 − Āk+1
j (δh− 1), j ∈ I \ (S ∪ i),

Ākf = −2Ḡk+1
f Rk+1

f Z2
f − Āk+1

f (δh− 1), f ∈ S,

B̄(i)k =
∑

i∈I\S

2(Ḡk+1
i Zi)

2 +
∑

i∈S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

Āk+1
i δh

n
+ B̄(i)k+1−

− (Ḡk+1
i Zi)

2, i ∈ I \ S,

with initial onditions C̄N+1
i = 0, EN+1 = 0, ĀN+1

i = 0 and B̄(i)N+1 = 0,
where

Rk+1
i = nC̄k+1

i −
∑

j∈I

C̄k+1
j ,

Ḡk+1
i = nĀk+1

i −
∑

j∈I

Āk+1
j .

Optimal strategies used by players from oalition S and players i ∈ I \S an be

omputed as follows:

ūS,ki = (nC̄k+1
i −

∑

j∈I

C̄k+1
j )

hρi
√
1− xki

2(n− 1)
, i ∈ S,

ūki = (nĀk+1
i −

∑

j∈I

Āk+1
j )

hρi
√
1− xki

2(n− 1)
, i ∈ I \ S.



214 Lihong Shi, Ovanes Petrosian

Value of harateristi funtion for oalition S ⊂ I is alulated as follows:

V k(S;xc) = V k(S, xc,k),

where k ∈ {0, . . . , N}.
4.2. Imputation set

Main problem in the theory of ooperative games is to onstrut realizable priniple

of alloation of total payo� W k(xck) among players. An optimality priniple an be

introdued if all players agree to alloate the total ooperative payo� along the

ooperative trajetory aording to an imputation.

De�nition 2. Imputation is a vetor ξk(xck) = [ξk1 (x
c,k
1 ), ..., ξkn(x

c,k
n )] for k = 0, N,

whih satis�es the onditions

ξki (x
c,k
i ) ≥ V k({i} ;xck), i ∈ I,

∑

i∈I

ξki (x
c,k
i ) = V k(I;xck).

4.3. Imputation distribution proedure

Following the ontinuous-time analysis of (Petrosyan and Yeung, 2006) for oop-

erative di�erential games, we formulate a disrete-time version of the Imputation

Distribution Proedure so that the agreed upon imputations of de�nition 2 an be

realized. By Bki (x
c,k
i ) denote the payment that the �rm i will reeive at stage k

under the ooperative agreement along the ooperative trajetory

{
xc,ki

}N
k
.

Payment sheme involving Bki (x
c,k
i ) onstitutes an IDP in the sense that the

imputation of �rm i over the stages from k to N:

ξki (x
c,k
i ) =

N∑

j=k

Bji (x
c,j
i ). (13)

4.4. Time onsisteny

The property of time-onsisteny was introdued in 1977 by Petrosyan

(Petrosjan, 1977). To ensure stability in dynami ooperation over time a strin-

gent ondition is required: the spei� agreed-upon optimality priniple must be

maintained at any instant of time throughout the game along the optimal state

trajetory. This ondition is known as time onsisteny.

De�nition 3. Solution H(xck, k) is alled time onsistent if for any imputation

ξki (x
c,k
i ) ∈ H(xck, k) exists IDP Bki (x

c,k
i ), k = 0, N suh that it satis�es:

N∑

k

Bki (x
c,k
i ) ∈ H(xck, k),

N∑

k

Bki (x
c,k
i ) = ξki (x

c,k
i ).

Theorem 3. If optimality priniple satis�es the following onditions:
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(i) uki = ϕki , for i ∈ I and k = 0, N , is the set of group optimal strategies for the

this game,

(ii) Bki (x
k
i ) = Bki (x

c,k
i ), for i ∈ I and k = 0, N , where

Bki (x
c,k
i ) = ξki (x

c,k)− ξk+1
i (xc,k+1), (14)

then [ξk1 (x
c,k
1 ), ..., ξkn(x

c,k
n )] is is time onsistent.

This theorem was proved in (Petrosjan and Yeung, 2012).

4.5. Cooperative solution

In this paper, we onsider Shapley value as a ooperative solution Shk(xc,k)
(Shapley, 1953), whih is alulated in the following way:

Shki (x
c,k) =

∑

S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!

|I|! · [V k(S;xc,k)− V k(S \ i;xc,k)], (15)

for k = 0, N .

5. Numerial example

We onsider a spei� three-�rms oligopoly ase within the stage interval N=8. To

illustrate our model, let the parameters for eah �rms to be ρ = [0.4, 0.5, 0.3], h =
0.4, α = 0.7, δ = 0.09, m = [0.6, 1, 1.2] and for the initial onditions z0 =
[0.3, 0.5, 0.2].

Fig.1. shows feedbak Nash equilibrium strategies for nonooperative game and

Fig.2. shows how the market share of eah �rm hanges orresponding to their

advertising expenditure.
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Fig. 1. Feedbak Nash equilibrium strategies of nonooperative game
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Fig. 2. Nonooperative trajetory

Nonooperative outomes are obtained respetively, whih is shown in Fig.3. The

optimal ooperative strategies and ooperative trajetory are illustrated in Fig.4.

and Fig.5.
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Fig. 3. Nonooperative outomes
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Fig. 4. The optimal strategies of ooperative game

On the Fig.6. Shapley value alulated using harateristi funtion (11) is pre-

sented.

In order to guarantee time onsisteny for ooperative game, Fig.7. shows IDP

for Shapley value.
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Fig. 5. Cooperative trajetory
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Fig. 7. Imputation Distribution Proedure

6. Conlusion

In this paper, we onsidered an oligopoly dynami marketing model for the nono-

operative game as in the previous paper, and obtained a feedbak Nash equilibrium

strategies for the advertising expenditures of all �rms. Then the ooperation for all

oligopolisti �rms is introdued, the optimal ooperative strategies are obtained to

determine the advertising expenditures, whih maximize the pro�t for this oop-

eration, in order to maintain this ooperation for all �rms. An agreement, namely

Imputation Distribution Proedure, is obtained to guarantee no �rms will ollude

and form a smaller oalition under this agreement.

A simple numerial example is presented in this paper to illustrate the results

for both ooperative and nonooperative game obtained of the oligopoly dynami

marketing model.

Appendix

1. First appendix

The Bellman equation for �rm i is given by

V ki (x
k
i ) = max

uk
i
≥0

{
mix

k
i − (uki )

2 + V k+1
i (xk+1

i )
}
.
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Invoking (2) and V ki (x
k
i ) =

∑
i∈I A

k
i x

k
i + Bk(i), for i ∈ I and k ∈ {0, ..., N}, then

the above Bellman equation beomes

∑

i∈I

Aki x
k
i +Bk(i) = max

uk
i ≥0

{
mix

k
i − (uki )

2 +
∑

i∈I

Ak+1
i xk+1

i +Bk+1(i)

}

= max
uk
i
≥0

{∑

i∈I

Ak+1
i [h(

n

n− 1
ρiu

k
i

√
1− xki −

1

n− 1

∑

j∈I

ρju
k
j

√
1− xkj )−

− (hδ − 1)xki + hδ
1

n
] +Bk+1(i) +mix

k
i − (uki )

2

}
.

(16)

Performing the indiated maximization in above yields

−2uki +
hρi
n− 1

nAk+1
i

√
1− xki −

hρi
n− 1

√
1− xki

∑

j∈I

Ak+1
j = 0,

for i ∈ I and k ∈ {0, ..., N}. Then the feedbak Nash equilibrium of �rm i an be

obtained in the form

ūki = max{0, [nAk+1
i −

∑

j∈I

Ak+1
j ]

hρi
2(n− 1)

√
1− xki }.

Antiipating that the ontrols will be shown to be positive, substituting it into (16),

olleting the terms together, then the parameters Aki and B
k(i) an be expressed

as

Aki = mi − (Gk+1
i Zi)

2 −Ak+1
i (δh− 1),

Akj = −2(Gk+1
j Zj)

2 −Ak+1
j (δh− 1), j 6= i, j ∈ I \ i,

Bk(i) =
∑

i∈I

[2(Gk+1
i Zi)

2 +
Ak+1
i hδ

n
] +Bk+1(i)− (Gk+1

i Zi)
2,

where Gk+1
i = nAk+1

i −∑j∈I A
k+1
j , Zi =

hρi
2(n−1) .

2. Seond appendix

Substituting (10) into (9) we reeive

W k(xk) = max
uk
1 ,...,u

k
n

{∑

i∈I

[mix
k
i − (uki )

2] +W k+1(xk)

}

⇒
∑

i∈I

Cki x
k
i +Dk

i = max
uk
1 ,...,u

k
n

{∑

i∈I

[mix
k
i − (uki )

2] +
∑

i∈I

Ck+1
i xk+1

i +Dk+1
i

}
(17)

WN+1(xN+1) = 0.

substitute the right-side of (2) into (17). Performing the indiated maximization

in (17) yields
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−2uki + (nCk+1
i −

∑

j∈I

Ck+1
j )

hρi
√
1− xki

n− 1
= 0.

The optimal ooperative strategies an be obtained in the form

ϕki = max{0, (nCk+1
i −

∑

j∈I

Ck+1
j )

hρi
√
1− xki

2(n− 1)
},

for i ∈ I and k ∈ {0, ..., N} .
Antiipating that the ooperative strategies will be shown to be positive, then

substituting them into (17), hene Cki and Dk
i are de�ned as:

Cki = mi − (Qk+1
i Zi)

2 − Ck+1
i (δh− 1),

Dk
i = (Qk+1

i Zi)
2 +

Ck+1
i δh

n
+Dk+1

i .

3. Third appendix

The asymmetri optimal ooperative strategies an be obtained in the form

ϕki = max{0, (nCk+1
i −

∑

j∈I

Ck+1
j )

hρ
√
1− xki

2(n− 1)
},

for i ∈ I and k ∈ {0, ..., N} .
Suppose that all �rms are idential: mi = m, ρi = ρ for i ∈ I, then the related

parameters in Proposition 2.3 an be rewritten as follows

Cki = m− (Qk+1
i Z)2 − Ck+1

i (δh− 1),

Dk
i = (Qk+1

i Z)2 +
Ck+1
i δh

n
+Dk+1

i ,

with initial onditions CN+1
i = DN+1

i = 0 and where Z = hρ
2(n−1) and Q

k+1
i =

nCk+1
i −∑j∈I C

k+1
j . It shows that the value of Cki is equal for ∀i ∈ I, k ∈ {0, ..., N},

whih means the optimal ooperative strategies equal to 0 at any stage when all

�rms are idential.

4. Fourth appendix

Substituting the Bellman funtion of oalition S and individual players into (12)

respetively and orresponding to (2). Performing the indiated maximization in

(12) yields

−2uki + (nC̄k+1
i −

∑

j∈I

C̄k+1
j )

hρi
√
1− xki

n− 1
= 0, i ∈ S,

−2uki + (nĀk+1
i −

∑

j∈I

Āk+1
j )

hρi
√
1− xki

n− 1
= 0, i ∈ I \ S.
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The optimal strategies an be obtained in the form

ūS,ki = max{0, (nC̄k+1
i −

∑

j∈I

C̄k+1
j )

hρi
√
1− xki

2(n− 1)
}, i ∈ S,

ūki = max{0, (nĀk+1
i −

∑

j∈I

Āk+1
j )

hρi
√
1− xki

2(n− 1)
}, i ∈ I \ S.

Antiipating that the optimal strategies will be shown to be positive and substi-

tuting them into (12), then olleting the terms together we obtain the parameters

C̄ki , Ā
k
i ,E

k
and B̄(i)k

C̄ki = mi − (Rk+1
i Zi)

2 − C̄k+1
i (δh− 1), i ∈ S,

C̄ki = −2Ḡk+1
i Rk+1

i Z2
i − C̄k+1

i (δh− 1), i ∈ I \ S,

Ek =
∑

i∈S

(Rk+1
i Zi)

2 +
∑

i∈I\S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

C̄k+1
i hδ

n
+ Ek+1,

Āki = mi − (Ḡk+1
i Zi)

2 − Āk+1
i (δh− 1), i ∈ I \ S,

Ākj = −2(Ḡk+1
j Zj)

2 − Āk+1
j (δh− 1), j ∈ I \ (S ∪ i),

Ākf = −2Ḡk+1
f Rk+1

f Z2
f − Āk+1

f (δh− 1), f ∈ S,

B̄(i)k =
∑

i∈I\S

2(Ḡk+1
i Zi)

2 +
∑

i∈S

2Ḡk+1
i Rk+1

i Z2
i +

∑

i∈I

Āk+1
i δh

n
+ B̄(i)k+1−

− (Ḡk+1
i Zi)

2, i ∈ I \ S.
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