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Abstract We consider a dynamic oligopoly advertising model for both non-
cooperative and cooperative setting. Feedback Nash equilibrium strategies
and cooperative strategies are found to determine the optimal advertising
efforts of each firm for both setting respectively. Besides, depending upon
the cooperative strategies, imputation is introduced as an optimal allocation
of joint payoff and Imputation Distribution Procedure is used to guarantee
the time consistency for cooperation.

Keywords: Advertising competition, Optimal control, Dynamic program-
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1. Introduction

267 billions of dollars were spent in advertising by the world’s 100 largest adver-
tisers in 2016 according to the statistics from the source: Ad Age Datacenter, it’s
easy to imagine that a company couldn’t survive in the market without advertising.
Hence, advertising as a strategy for market share competition has been studied in
many marketing models, so as we are doing in this paper, where we are concen-
trating on the dynamic advertising model. Here each firm’s market share depends
on its own and its competitors’ current and past advertising expenditures. Com-
petition between firms is formulated by the noncooperative differential game as
it was done by (Erickson, 2003), (Sorger, 1989), (JTérgensen and Zaccour, 2004),
(Prasad and Sethi, 2004), (Naik et al., 2008) and (Prasad et al., 2009). In this pa-
per we derived a dynamic oligopoly advertising model from (Prasad et al., 2009),
in the paper the Sethi model was extended to model awareness of auto brands with
churn term, which is the extension of the decay of market share term in monopoly
models capturing forgetting and noise. Closed-loop Nash equilibrium concept is
used to obtain the optimal advertising expenditure for noncooperative game. Simi-
lar to this paper’s work, we also consider the noncooperative dynamic game and use
feedback Nash equilibrium concept to obtain the optimal advertising expenditure,
but more than that, the cooperative dynamic game which wasn’t considered by the
previous work was elicited to this model and mainly studied in our paper.
Noncooperative game theory deals with strategic interactions among multiple
decision makers with the objective functions depending on the choices of all the
players and suggests solution concepts for a case when players do not cooperate
or make any arrangements about their actions. A player cannot simply optimize
her own objective function independent from the choices of the other players. In
1950 and 1951 in (Nash, 1950),(Nash, 1951) by John Nash, such a solution concept
was introduced, which is now called the Nash equilibrium. For differential game
models Nash equilibrium can be defined in an open-loop strategies or in closed-loop
strategies. For both types consult (Basar and Olsder, 1999). In this paper we use the
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approach with feedback strategies as the most preferable for the game theoretical
problems.

The cooperative dynamic game theory offers socially convenient and group ef-
ficient solutions to different decision problems involving strategic actions. One of
the fundamental questions in the theory of cooperative dynamic games is the for-
mulation of optimal behavior for players. A characteristic function of a coalition
is an essential concept in the theory of cooperative games. This function is de-
fined as indicated in (Chander and Tulkens, 1995) as total payoff of players from
coalition S in Nash equilibrium in the game with following set of players: coali-
tion S (acting as one player) and players from the set I\ S. A computation of
Nash equilibrium fully described in (Basar and Olsder, 1995) is necessary for this
approach. A set of imputations or a solution of the game is determined by the
characteristic function as the set of individually rational vectors. To guarantee the
cooperation of all players will holds during the game, which means the coopera-
tion is time consistent. Notion of time consistency was formalized mathematically
by Petrosyan in the paper (Petrosjan, 1977). In the next paper on time consis-
tency (Petrosyan and Danilov, 1979) L. Petrosyan defined the notion of imputation
distribution procedure (IDP), which is used to compose a time consistent cooper-
ative solution or single imputation. Later on, L. Petrosyan defined the notion of
strong time consistency in the paper (Petrosyan, 1993), it was introduced to guar-
antee the time-consistency for a set-value cooperative solutions, such as Core, Nu-
cleus etc.. See recent publications on this topic in (Petrosyan and Yeung, 2006),
(Jorgensen and Yeung, 1999) and (Jorgensen et al., 2003). The property of time
consistency introduced by Petrosyan in (Petrosyan, 1993) is examined for Shap-
ley value.

The paper is organized as follows. In the next section, we formulate a dynamic
oligopoly marketing model corresponding to the model from (Prasad et al., 2009).
In section 3, feedback Nash equilibrium strategies for noncooperative setting are
presented. In section 4, cooperative case is considered, Shapley value is used as
cooperative solution corresponding to the optimal cooperative strategies and IDP
is introduced to guarantee the time consistency property. In section 5, a numerical
example is used to illustrate the results.

2. Initial model

Consider a n-firm oligopoly market in a mature product category so that the total
sales of the category are relatively stable (Prasad et al., 2009). The advertising ef-
forts as strategies are used by firms to compete on the oligopoly market, each firm
tries to increase its market share while the competitors try to minimize it using the
advertisement efforts. Denote by z;(t) the market share of firm i € I = {1,...,n} at
time t and n > 1.

Market share dynamics of firm i has the following form:

dz; n 1 1
:—1piui\/1—a:i—mijuj\/l—a:j—(g(xi—ﬁ). (1)

dt n— -
Jjel

with 2;(0) = 2;(0), where z;(0) is a positive constant.
Payoff function of firm i € I is defined by its profit:

K(mig,to,ut, .., up) = /OOO e " T mxy (1) — (ui(1))?]dr,
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where r; is the discount rate of firm ¢. We transformed this differential game
model to the corresponding discrete time game with finite horizon T using Finite
Difference Method (FDM). Introduce the equally distributed grid points (¢;);_5x
given by t; = jh where N is an integer and the spacing h is given by h = T'/N and
xp ~ x(ty) for all k € {0,..., N}. As a result, the market share dynamics of firm i

for dynamic game model became
1
aF = ( ufy /1 —ak) = (hd — Dz} + ho—, (2)
n

ey 1k

with 20 = 20, where 2? is a positive constant.

Payoff function of firm i in dynamic game model became:

K?(29 u° Zmlx — (u; (3)

Full list of notations is presented in Table 1.

Table 1. List of variables and parameters

Notation Explanation

x¥ € [0,1] Market share of firm ¢ € I = {1,...,n} at stage k.
uf >0 Advertising effort rate by firm i at stage k.
pi >0 Advertising effectiveness parameter of firm i.
6 >0 Churn parameter.
m; > 0 Industry sales multiplied by the per unit
profit margin of firm i.
C(ui(t)) Cost of advertising of firm i, parameterized as (u;(t))%.

There is also a logical consistency requirement that the sum of market shares
should be equal to one on each stage, i.e.

fo =1, forke{0,..,N},
i€l
where this requirement can be checked by summing up right-side of all firms’ motion

equations in (2).

3. Noncooperative game model

Consider a noncooperative case, where each firm acts individually. According to
(Yeung and Petrosyan, 2012) one can determine the noncooperative strategies as a
feedback Nash equilibrium for the game defined by (2) and (4).

Definition 1. A feedback Nash equilibrium (Yeung, 1994) is an n-tuple of feedback
strategles {ul,ug, n} for k € {0,..., N}, if for every possible initial condition
x® of player i the followmg inequality holds

Klk(xkv ﬂlfv s ’akfla u?v ’aﬁrlv ceey ’afz) S Kk(xk ﬂ]fv s ’akfla ﬂ?v aﬁrlv ceey ’aﬁ),V’L S I

K3 K3
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If there exists a feedback Nash equilibrium solution with the set of strategies
{ak, forke{0,..,N},ie{1,..,n}} for (2) and (4), denote an equilibrium payoff
function for firm ¢ € I over stage k to N by

N
Fa) =Y mial — (ah)?,
lf
where xf = .

A frequently used way to characterize and derive a feedback Nash equilibrium
of the game is a dynamic programming.
Theorem 1. A set of strategies {uf, for k €{0,...,N}, i € {1,...,n}} provides a
feedback Nash equilibrium to the game defined by (2) and (4) if there exist func-
tions VF(x), fori € {1,...,n} and k € {0,..., N}, such that the following recursive
relations are satisfied:

VE(z) = max{mlx —(uf)Q+Vik+l(a:f,ﬂ]f,...,ﬂf_l,uf,ﬂf_‘_l,...,ﬂfl)}

uk>0 (4)

— k _ (k)2 ki k —k -k -k _k
=mxy — () + V7 (@, 0y, o, Uy, Uy Uy s ey Uy ),

VY @) =0,
This theorem can be proved in the same way as it was done in
(Yeung and Petrosyan, 2012).

Proposition 1. The game equilibrium value functions in (5) are

=Y Afaf + B*(i),i € {1,...,n}, k €{0,..., N},
el

where A¥, B*(i) are determined from the relations:
A =m; — (GiT Z3) — ATH (5h = 1),

A¥tthg
BY) = DG 2P + =]+ BRI G) - (GF ),
iel "
with initial conditions ANt = BNT1(i) = 0, i € {1,..,n} and where GF™' =

k+1 k+1 o _ hps
nA; Zjel A7 Zi = 2(n—1)°

Corresponding feedback Nash equilibrium strategies are

if =G Zi\ 1 — 2k k€ {0,...,N}, i€ {l,...,n}. (5)

Proof see Appendix.
Substituting (6) into the original dynamics (2), we derive trajectory correspond-
ing to the feedback Nash equilibrium, i € {1,...,n} and k € {0,..., N},

1
T = P (1= k) = SO PE— a)] + (6)

n
Jjel
where PFT! = 2G¥1(Z;)? + 22=1_ The noncooperative trajectory vectors for any
stage are denoted by
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4. Cooperative game

Consider the case when all firms agree to cooperate. Maximizing the playerss ™™
joint payoff guarantees grand coalition optimality in a game where payoffs are trans-
ferable. To maximize their joint payoff the following optimization should be per-
formed:

ZK?(xO,u ZZm x5 = e (7

i€l i€l 1=0

subject to

k1 _ / f1_ 1 0
x; _h(n 1pZ 1—ak)—(hé— 1)k +h5 ,:c =z

JEI

This is a discrete time optimization problem. Dynamic programming
(Bellman, 1957) is used to solve it. Suppose that the Bellman function has
the following form:

Wk (z) = max{g;;;mzx — (u; } ke{0,...N}. (8)

Theorem 2. Assume that there exists function W¥(x), such that the following re-
cursive relations are satisfied:

Wk (xy) = mazx {Zml u;) WkH(:vk)},kE {0,..., N}, 9)
ufyeoru icl
where WN+1(zn11) = 0.

We use the following linear functions, observing that they satisfy the Bellman
equations, to solve this recursive relations.

Proposition 2. Bellman function W¥*(xy,) in (9) can be computed in the form

W) =) Clal + DY, (10)
icl

where CF, D¥ i€ {1,...n} and k € {0,..., N} satisfy:

Cf =mi — Q' Z:)? = C} ! (5h — 1),

K2

k
=@z 0 pre
n
with initial conditions CX 1 = DNTt =0, i € {1,...,n}.

The optimal cooperative strategies can be obtained as follows:

= QM Zi\ /1 —ab Viel,

where Q! = nCft - 3. CF
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Substituting optimal cooperative strategies in (2), cooperative trajectory of i € I
is computed as

hé
c,k+1 k+1 72 ¢,k k+1 72 c.k ¢k

R op OF L 721 — 25%) = ST 20k 22(1 — 29%) — (he — 1)zt + 22
x; nQ; " Z:(1 — ") Z Q7 Z;(1—ai™) — ( Vs —

J
jer
where k € {0,...,N}.
It’s worth mentioning that the advertising effort rate of each firm is equal to zero
when all the firms are symmetric, because of the whole market acts as a monopoly

when all symmetric firms decide to cooperate. Once consumers want to buy goods
they have to buy it from one of the firm even if firms do not spend on advertising.

Proposition 3. If all firms are identical: m; = m, p; = p for i € I, then the
optimal strategies of players are

oF=0,Viel, ke{0,...,N}.

Proof see Appendix.

4.1. Characteristic function

For each coalition S C I define the values of characteristic function as it was done
in (Chander and Tulkens, 1995):

Zie] Ki(z%u), S=1
V(S;2¢) = L V(S, z°), Scl, (11)
S=0

0,

)

)

where V (S, z¢) is defined as total payoff of players from coalition S in feedback
Nash equilibrium @ = (41, ...,4,) in the game with the following set of players:
coalition S (acting as one player) and players from the set |\ S|, i.e. in the game
of [T\ S|+ 1 players.

For |S| = 1 cooperative case becomes to the noncooperative case:

VE({i}a5) = ax VE@EY) = Abat® 4 BY(G) , i€ I\ S,

we consider a parameter « in this case which is a given discount of characteristic
function of |S| = 1 under the cooperation . Parameter o guaranties the property of
essential always hold for cooperative case, therefore a should satisfy this inequality:

Vk I x¢
dier V(@)

In accordance with the formula (11) characteristic function for coalition S = I is
defined as

VA ag) = W ().

The characteristic function for coalition S C I is defined as the payoff of players
from coalition S in Nash feedback equilibrium in the game with |I\ S + 1| players.
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Corresponding system of Bellman equations for coalition S and players i € I\ S
will have the form:

Vk(S7 .I'k) = max {Z[mzxf — (uf)Q] + Vk-i—l (57 xk-l—l)} ,
uwres ies

VE(} o) = maa {miat — () + VI () af ) i€ T\ S,

i

(12)

with initial conditions VNT1(S, xN+t1) =0, VN ({i},zN*T1) =0,i e T\ S.

Proposition 4. Bellman function for coalition S and players i € I\ S can be
computed in the form:

VE(S,a*) =Y Cfal + BV,
iel
VE{i},2f) = szlfxf + Bk, ieTI\S,
el

where parameters CF, A¥ |E¥ and B(i)* are defined as:

CF=m; — (R Z;)> — CF*(6h— 1), i € S,
CF = —2Gi 'R Z2 — CFP (0h— 1), i € I\ S,
CHM1hs
EF =3 (RFV'Z)?+ Y 2GETRIM 22 4 i — 4 EFTY
€S i€I\S icl "
AF =m; — (GFZ)? — AN (Sh—1),i €T\ S,
A = —2(GY1 Z;)? — AKTH(oh - 1), je T\ (SU),
Al = 2GR 77 — AT (sh - 1), f €S,
=k ~k+1 7 \2 Ak+1 pk+1 72 Altlsh B\ k+1
B(iy = > 2GITZi)* + Y 2GFTIRIT 22+ S —— 4 B(i)M -
iel\S i€s iel n
— (GF Z)%ie I\ S,
with initial conditions CN Tt = 0, EN+1 = 0, ANT! = 0 and B(i)N*! = 0,
where
RETT =nCft =) R
7 ) J ?
jel
Gitl = nAtt =N " AR
7 (2 J
jel
Optimal strategies used by players from coalition S and players ¢ € I\ S can be

computed as follows:

- A = hpin/1 — k¥
S,k _ (’I’LC;CJFI _ chk-l—l)

[y 2 —1) , 1€ 8,

Jjel
_ _ hpiv/1 — xF
b = (nAF SN ARV T e T s,

= 2(n—1)
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Value of characteristic function for coalition S C I is calculated as follows:
VE(S;2%) = VF(S,2%F),
where k € {0,...,N}.

4.2. Imputation set

Main problem in the theory of cooperative games is to construct realizable principle
of allocation of total payoff W*(z¢) among players. An optimality principle can be
introduced if all players agree to allocate the total cooperative payoff along the
cooperative trajectory according to an imputation.

Definition 2. Imputation is a vector £ (z§) = [€F (@57, ..., €8 (25F)] for k =0, N,
which satisfies the conditions

(@) > VR({i}sa5),0 € 1,

K3
kY .
D ety = VR ).
iel
4.3. Imputation distribution procedure

Following the continuous-time analysis of (Petrosyan and Yeung, 2006) for coop-
erative differential games, we formulate a discrete-time version of the Imputation
Distribution Procedure so that the agreed upon imputations of definition 2 can be
realized. By Bf(xfk) denote the payment that the firm i will receive at stage k

N
under the cooperative agreement along the cooperative trajectory {xf’k}k .

Payment scheme involving Bf(xfk) constitutes an IDP in the sense that the

imputation of firm i over the stages from k to N:
N . .
) => Bl (@f). (13)
j=k

4.4. Time consistency

The property of time-consistency was introduced in 1977 by Petrosyan
(Petrosjan, 1977). To ensure stability in dynamic cooperation over time a strin-
gent condition is required: the specific agreed-upon optimality principle must be
maintained at any instant of time throughout the game along the optimal state
trajectory. This condition is known as time consistency.

Definition 3. Solution H(z{,k) is called time consistent if for any imputation
eF(x9%) € H(x%, k) exists IDP BF(25%), k =0, N such that it satisfies:
N
> BEE") € Haf k),
k

N
> O BFaph) = €f(afh).
k

Theorem 3. If optimality principle satisfies the following conditions:
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(i) uf =¥, fori € I and k =0, N, is the set of group optimal strategies for the
this game,
(ii) BF(zF) = BFS%), forie I and k =0, N, where

BF(a") = gF(a@F) — g a0k ), (14)

then [€F(x$F), ..., €5 (a&)] is is time consistent.

This theorem was proved in (Petrosjan and Yeung, 2012).

4.5. Cooperative solution

In this paper, we consider Shapley value as a cooperative solution ShF(z%F)
(Shapley, 1953), which is calculated in the following way:

Shf(xc’k) _ Z (|I| — |S||)I'|(||S| — 1)! . [Vk(S;(Ec’k) _ Vk(S \ i;xc’k)], (15>
SclI,ieS '

for k

=

0,

5. Numerical example

We consider a specific three-firms oligopoly case within the stage interval N=8. To
illustrate our model, let the parameters for each firms to be p = [0.4,0.5,0.3], h =
04, a = 0.7, 6 = 0.09, m = [0.6,1,1.2] and for the initial conditions 2° =
0.3,0.5,0.2].

Fig.1. shows feedback Nash equilibrium strategies for noncooperative game and
Fig.2. shows how the market share of each firm changes corresponding to their
advertising expenditure.
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Fig. 1. Feedback Nash equilibrium strategies of noncooperative game
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0 i i i i i i i
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Fig. 2. Noncooperative trajectory

Noncooperative outcomes are obtained respectively, which is shown in Fig.3. The
optimal cooperative strategies and cooperative trajectory are illustrated in Fig.4.
and Fig.5.
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Fig. 3. Noncooperative outcomes
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Fig. 4. The optimal strategies of cooperative game

On the Fig.6. Shapley value calculated using characteristic function (11) is pre-
sented.

In order to guarantee time consistency for cooperative game, Fig.7. shows IDP
for Shapley value.



218 Lihong Shi, Ovanes Petrosian

0.8

— ]

— 3

g
)
T

]

o
o
i

Market shares
o
N

o
w
i

\

0 i i i i i i i
0 1 2 3 4 5 6 7 8

Stage

Fig. 5. Cooperative trajectory
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Fig. 7. Imputation Distribution Procedure

6. Conclusion

In this paper, we considered an oligopoly dynamic marketing model for the nonco-
operative game as in the previous paper, and obtained a feedback Nash equilibrium
strategies for the advertising expenditures of all firms. Then the cooperation for all
oligopolistic firms is introduced, the optimal cooperative strategies are obtained to
determine the advertising expenditures, which maximize the profit for this coop-
eration, in order to maintain this cooperation for all firms. An agreement, namely
Imputation Distribution Procedure, is obtained to guarantee no firms will collude
and form a smaller coalition under this agreement.

A simple numerical example is presented in this paper to illustrate the results
for both cooperative and noncooperative game obtained of the oligopoly dynamic
marketing model.

Appendix
1. First appendix

The Bellman equation for firm i is given by

VF (k) = mazx {miak — (uF)2 + VI (2R}
ui >0
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Invoking (2) and V¥ () = 3, ; AFal + B*(i), for i € I and k € {0,..., N}, then
the above Bellman equation becomes

ZAfxf + B*(i) = max {mzsfiC — (uf)? + ZA?HCL“;CH + BFt1 (2)}

k>
iel uy 20 iel

:Z;gxo{ZA;““[( ulf\/1 — zk ——ij b1 =2k (16)

icl jel

K2

— (hé — 1)aF + hé— ] + BF(i) + maaf — (u’-“)Q}-

Performing the indicated maximization in above yields

hp;
k+1 Pi k k+1 _
—2u + nA; /1 Z _1\/1_% g Aj =0

jerI

for i € I and k € {0, ..., N}. Then the feedback Nash equilibrium of firm i can be
obtained in the form

_ hp;
k k+1 k+1 i
a; = max{0, [nA4; E Aj ]2(

/1 — gk
jer

Anticipating that the controls will be shown to be positive, substituting it into (16),
collecting the terms together, then the parameters A¥ and B*(i) can be expressed
as

A¥ = m; — (GF1Z;)2 — AR (5h - 1),
Al = =2(GTZ5)? = AT OR - 1), j#d, je T\,
ki _ k41772 A7 hs B+l _ (k4L 82
B¥(i) = 2[2((;1' Zi)" + ]+ B (i) — (G Zi),
iel "
where GiH = nAfT =3, AV 7, = i
2. Second appendix
Substituting (10) into (9) we receive

WH(ar) = max, {Z[mz—xf — (ub)?] + WM(M)}
’ (17)

= Z Ckzk + DF = max, {Z[mzxf — ()] + ZCfﬂfo + Df“}

""" il icl

WNJrl(CCNJrl) =0.

substitute the right-side of (2) into (17). Performing the indicated maximization
in (17) yields
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h i/ 1-— ,Tk
—2uf + (an+1 _ Z C;Hl)% =0.
Jjel

The optimal cooperative strategies can be obtained in the form

hpir/1 — xF
k _ k+1 k+1y2Pi i
¢; =maz{0, (nC;™"" — Z C; ) 2(n — 1) h
JjeI
forie I and k€ {0,...,N}.

Anticipating that the cooperative strategies will be shown to be positive, then
substituting them into (17), hence C¥ and D¥ are defined as:

CF=m; — (QF*Z,)* — CF (0h — 1),

CFish
DE= (@12 + 2 4 DI

3. Third appendix

The asymmetric optimal cooperative strategies can be obtained in the form

hpy/1 — zf
o = max{0, (nCH =Y " CFY) 25}’

jel

foriel and k€ {0,....,N}.
Suppose that all firms are identical: m; = m, p; = p for ¢ € I, then the related
parameters in Proposition 2.3 can be rewritten as follows

CF =m—(Qf'2)* = Cf 1 (h - 1),

Ck*1sn
n

Df = Qi 2)* + + Dt

with initial conditions C¥ ™' = DN *! = 0 and where Z = 2(_7};5_1) and Q¥ =

nCrH = jer CJ’-“H. It shows that the value of CF is equal for Vi € I, k € {0,..., N},
which means the optimal cooperative strategies equal to 0 at any stage when all
firms are identical.

4. Fourth appendix

Substituting the Bellman function of coalition S and individual players into (12)
respectively and corresponding to (2). Performing the indicated maximization in
(12) yields

~ - hpin/1 — zF
k k+1 k414 W04 i .
_2ul+(nC’Z _ch )?—O, 1 €8,
jer
- _ hpir/1 — xk
—2ul 4 (AR ST AR TPV TR g e\ s,

- n—1
jel
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The optimal strategies can be obtained in the form

_ _ hpir/1 — xF
O = maz{0, (nCHL =3 OV Tty e g,

u;
= 2(n—1)
- - hpiv/1 — zF
=k k+1 _ k+1y Pi iy
a; = max{0, (n4; jGZIAJ ) 2 —1) },oieI\S.

Anticipating that the optimal strategies will be shown to be positive and substi-
tuting them into (12), then collecting the terms together we obtain the parameters
CF, AF E* and B(i)*

Cf =mi — (R{™Z)? = CF ™ (0h = 1), i € S,
Ck = —2GFIRIIZ2 _ CFY(6h—1), i€\ S,
_ CFhs
EF =3 (REF'Z)?+ Y 2GETIRIT 22 4> ——  BFT
i€S i€I\S iel n
AF = m; — (GF1Z)% — AMTY(Sh—1),i € T\ S,
Al = —2(GE1 Z;)? — AT (6h - 1), je I\ (SUi),
Ak ~k+1 pk+1 72 Ak+1
Ak = oGNP R Z7 — AR (h - 1), f e S,
B(i)f = > 2GH Z:)? + Y 2GRV 27+
i€I\S icS iel
—(GM1z)2 eI\ s

B(i)k+l _

AFtlsp o
—- 4
n
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