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Abstract The paper is a survey on cooperative stochastic games with fi-
nite and infinite duration which based on the author’s and coauthors’ pub-
lications. We assume that the non-cooperative stochastic game is initially
defined. The cooperative version of the game is constructed, the coopera-
tive solutions are found. The properties of cooperative solutions of the game
which are realised in dynamics are considered. Several numerical examples
of stochastic games illustrate theoretical results.
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1. Introduction

The paper is an overview of the results obtained in the theory of cooperative
stochastic games by the author and her coauthors (Baranova, 2006, Parilina, 2014,
Parilina, 2015, Parilina, 2016, Baranova and Petrosjan, 2006, Parilina and Petro-
syan, 2017, Parilina and Tampieri, 2018, Petrosyan et al., 2004, Petrosjan and
Baranova, 2005, Petrosyan and Baranova, 2003, Petrosyan and Baranova, 2005a,
Petrosyan and Baranova, 2005b).

The starting point of stochastic game theory is a publication of L. Shapley
(Shapley, 1953a), in which the existence of value of a zero-sum stochastic game
with a finite set of players’ strategies is proved. A generalization of this result
for the case of n-person stochastic game was obtained in the papers (Fink, 1964)
and (Takahashi, 1964), in which it was proved that equilibrium exists in stationary
strategies in a stochastic game with a compact set of strategies and a finite set of
states. Many papers are devoted to the proof of the existence of the Nash equilibrium
in various classes of strategies, studying stochastic games with incomplete informa-
tion, asymmetric players, stochastic games of a special structures (see the following
publications: (Solan and Vieille, 2002, Vieille, 2000, Mertens and Neyman, 1981a,
Mertens and Neyman, 1981b, Neyman, 2008, Neyman, 2013, Nowak, 1985, Nowak,
1999, Nowak and Radzik, Horner et al., 2010, Solan, 1998, Jaskiewicz and Nowak,
2016, Neyman and Sorin, 2003, Solan, 2009, Solan and Vieille, 2015)).

The method of constructing a cooperative version of stochastic game realized on
a finite tree was first proposed by L. A. Petrosyan in the paper (Petrosjan, 2006),
where the problem of time consistency of the Shapley value was formulated and
a method of regularization of time-inconsistent Shapley value is introduced. Then
the method of constructing a cooperative version of stochastic game with infinite
duration was proposed in the paper (Baranova and Petrosjan, 2006). Cooperative
stochastic games of infinite duration with a finite set of strategies were later studied
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in (Kohlberg and Neyman, 2015, Parilina, 2015, Parilina and Tampieri, 2018). The
principles of stable cooperation are formulated for dynamic and differential games
in (Petrosyan and Zenkevich, 2015). The first principle is time consistency (or sub-
game consistency) of cooperative solutions which was initially proposed by L. A.
Petrosyan (Petrosyan, 1977) for differential games.

The mechanism for determining payments to the players for regularization of
time-inconsistent cooperative solutions using the so-called imputation distribution
procedure was introduced by L. A. Petrosyan and V. V. Danilov (Petrosyan and
Danilov, 1979). Further, the problem of constructing time-consistent cooperative
solutions was studied in the paper (Petrosyan and Shevkoplyas, 2000) for differen-
tial games with random duration, and in (Yeung and Petrosyan, 2011) for dynamic
games with random duration.

The second principle of stable cooperation in dynamic and differential games
is strategic consistency of a cooperative solution which was initially proposed in
(Petrosyan, 1998). This principle is relevant and can be adapted for various classes
of differential and dynamic games (Shevkoplyas, 2010, Petrosjan and Grauer, 2002,
Petrosyan and Chistyakov, 2013, Petrosyan and Sedakov, 2015).

The third principle of stable cooperation is irrational-behavior-proof which was
formulated by D. W. K. Yeung (Yeung, 2006) and then was applied for linear-
quadratic games (Tur, 2014, Markovkin, 2006). The conditions for stable coopera-
tion with Markov processes, which allow players’ cooperation, including irrational-
behavior-proof condition, are formulated in (Avrachenkov et al., 2013).

Time consistency condition was extended for the case when the cooperative
solution is a set (containing more than one imputation) in (Petrosyan, 1993) and
was called strongly time consistency. Recently, this condition is investigated in vari-
ous classes of games (Gromova and Petrosyan, 2015, Sedakov, 2015, Chistyakov and
Petrosyan, 2011, Parilina and Pet ro syan, 2017).

The paper is organized as follows. Section 2 contains results on cooperative
stochastic games with finite duration while Section 3 is devoted to cooperative
stochastic games with infinite duration. We briefly conclude in Section 4.

2. Cooperative stochastic games with finite duration

2.1. Non-cooperative stochastic games

We define a finite stochastic game played on a graph. Let ¥ = (Z, L) be a finite
graph of a tree structure, where Z is the set of vertices of the graph,and L : 7 — Z
is a point-set mapping defined on the set Z, with values in the set of the subsets
of set Z. The vertex zp is the initial vertex of the tree graph ¥. We denote the
terminal vertices of graph ¥ by Z7 C Z, that is, the vertices z for which L(z) = @.
The finite tree graph with initial vertex zg is denoted by ¥(zp).

Let at each vertex z € Z of the graph ¥(zy) the normal form game of n players

I(z) = (N, AL, ... AL KT, .. KD,

be given, and N = {1,2,...,n} is a finite set of players, the same for all vertices

z € Z; A is a finite set of actions of player i € N, K7 (af,...,a7) : [[;ey 45 = R

is a payoff function of player i, a? € A?. The collection of actions a* = (a5, ..., aZ),

a? € A7, i € N, is called an action profile in the game I'(z). And a* € A* = [] Az,
ieN

A? is the set of action profiles in game I'(z).
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For each vertex z € Z we define the transition probabilities to the vertices
y € L(z) of the graph ¥(z) following the vertex z. These probabilities depend on
the action profile a® realized in the game I'(z). Thus, for each vertex z € Z we define
a function p(-|z,a?) : A* — A(L(z)), where A(L(z)) is a probability distribution
over the set L(z):

S plylzat) =

yEL(2)

for any action profile a®* € A®. The value p(y|z,a®) is the probability that at the
next stage, the game I'(y) will be played, y € L(z), if at the previous stage in the
game I'(z), the action profile a® = (a%,...,a?) has been realized.
We also suppose that the duration of the game is random which values are 0, 1,
., I, and [ is the length of the game (by the length of the game we mean the number
of stages in the game of maximal possible path). Define probabilities ¢x of the event
that the game will end at stage k. Notice that 0 < qr, < 1, k=0,...,l—1,q =1,
where [ is the length of the game (by the length of the game we mean the number of
stages in the game of maximal possible path); stage k at vertex z € Z in a stochastic
game with random duration is determined from the condition: z € (L(z0))*.

Remark 1. Notice that the probabilities q;, £ = 0, ...,[ are conditional probabili-
ties and do not form probability distribution of the game duration. In case when all
paths in graph ¥(zo) have the same length [, the discrete distribution of a random
variable equal to the game duration, determined by the conditional probabilities gz,
is presented in Table 1, in which Py is the probability that the game will end at
stage k.

Table 1. Probability distribution of the game duration.

k| Py

0 qo

1/(1 —qo)q
2|(1—gqo)(1—q1)e

1-g)l-q) .- (I—=q-1)

~ -

Definition 1. Stochastic game with random duration G(zp), where z( is an initial
vertex of a tree graph ¥(zp), is a set

G(20) = (N, ¥(20),{I'(2)}sez {ar}hmo, {P(12,0%)}icz,07€5) - 1)

From the definition of a stochastic game with a random duration it is clear that
the transitions from some vertices of the graph ¥(z) to the others, as well as the
final stage of the game are random.

Stochastic game with random duration G(z) is played in the following way:

1. At vertex 2 of the graph ¥(2¢), a simultaneous game I'(z) is played. Suppose
that in this game action profile a* € A*® is realized by the players. Each
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player i € N receives a payoff K °(a®). The stochastic game G(zo) either
terminates with probability g, 0 < go < 1, or continues with probability 1 — gq
and transmits to the vertex y € L(zg) of the graph ¥(zp) with probability
p(y|20,a*°), depending on the action profile a* realized in the game I'(zp). In
case when the set L(zp) is empty, the game ends at the vertex zp with probability
1.

2. Suppose that at stage k the game process is at the vertex zx € Z, at which
the game in a normal form I'(zy) is given. Let the action profile a** € A% is
realized in this game. Each player ¢ € N receives a payoff K *(a®*). Stochastic
game either ends with probability ¢x, 0 < ¢x < 1, or continues with probability
1 — ¢ and transits to the vertex zp41 € L(zx) with probability p(zkt1|2k, a**),
which depending on the action profile a** realized in game I'(zj). In case when
the set L(zy) is empty, the game terminates at the vertex z; with probability 1.

3. The stochastic game continues until the terminal vertex is reached or it may
end according to the realizations of probabilities qq, ..., ¢-

We denote by G(zi) the subgame (see (Kuhn, 1950, Kuhn, 1953)) of the game G(zo)
starting at the vertex z, € Z of graph the ¥(zo) (starting with the game I'(zy)),
which is also a stochastic game with random duration. Subgame G(zy) is defined on
the subgraph ¥(z;) with the set of vertices Z(zx) C Z and is given by the quintuple

G(Zk) = <N7 !p(zk)’ {F(Z)}ZGZ’a {QS}é:ka {p('|Z, az)}zez(zk),azeAZ> .

To solve the game you need to determine the set of players’ strategies. We denote
by @i : Z = [],c; A(A7) the behavior strategy of player i in game G(zo), where
A(A?) is the set of mixed actions of the player ¢ at the vertex z € Z. The strategy
profile in stochastic game G(zg) is a collection of the players’ strategies given by
¢ = (p; : i € N). Denote by X; the set of behavior strategies of player ¢ in the
stochastic game G(zo), then X' = ],y 2 is the set of behavior strategy profiles
in game G(zp). Obviously, the restriction of the strategy ; on subgraph ¥(zy) of
graph ¥(zg) is a strategy in subgame G(zx). Denote this restriction of a strategy

by 7"
2.2. Main functional equations

Assume that in stochastic game G(zg) players implement strategies ¢;, ¢ € N.
Define the payoff of the player ¢ as mathematical expectation of his payoff relative
to a random variable equal to the game duration, and e. g., for the realized path
z1 € L(20), 22 € L(21), ..., z1 € L(z1-1), L(2;) = &, we obtain

l k k—1

! k
Ei(z0) =) Pry K7 () =Y a | [[(1-q) (Z K (aZm)> ,
k=0 m=0

k=0  j=0 j=0

where a*° € A% a*t € A%, ..., a* € A* is a sequence of realized action profiles
when players adopt strategies (¢; : i € N).

Since transitions from the vertices to the following vertices are stochastic, we
consider mathematical expectation of the player’s payoff relative to random tran-
sitions from vertices to the following vertices as a player’s payoff in the stochastic
game. The mathematical expectation E;(zo, ) of player ¢’s payoff in the game sat-
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isfies the functional equation

Ei(20,0) = 0K (a*) + (1= q0) | K[°(a®)+ > p(yl20,0™)Es(y, ") | (2)
y€L(z0)

= K@) +(1—q) Y plylzo,a™)Ei(y, ¢"),
yE€L(z0)

where E;(y, ¢¥) is the mathematical expectation of player i’s payoff in the subgame
G(y) starting at the vertex y € L(zg) of graph G(z).

Assume that z € (L(z))¥, that is, the game process enters the vertex z € Z
at stage k, then the mathematical expectation of player i’s payoff in the subgame
G(z) satisfies the functional equation

Ei(z,¢%) = K} (a®) + (1 — q) | K7 (a®)+ > p(ylz,a”)Ei(y, ¢")
y€L(z)

=K a)+ (1 —q) Y plylz2*)Ei(y, ¢").
yEL(2)

To define a cooperative version of the game, it is necessary to determine a
cooperative path (one of the cooperative paths, if there are several ones), that is,
the path that maximizes the total players’ payoffs. In the case of stochastic games,
this is a subtree with the given transition probabilities, at which the maximum of
the mathematical expectation of the total players’ payoffs in the whole game is
achieved. However, the maximum mathematical expectation of the total players’
payoffs in mixed strategies is equal to the maximum mathematical expectation
of the summarized players’ payoffs in pure strategies. Therefore, we can restrict
ourselves and consider the class of pure strategies to find cooperative strategies in
the stochastic game.

2.3. Cooperative stochastic games with finite duration

Denote by ¢ = (@1, - . ., @n) the pure strategy profile in game G(z¢) which maximizes
the total mathematical expectations of the players’ payoffs:

> Ei(z, w)} = Ei(x0,9).

V(N,20) =
(o0 =02 . _
1EN iEN

We call this strategy profile as a cooperative one. Let strategy profile ¢ be such
that @;(2) = af, i € N, z € Z. We can determine the cooperative strategy profile
for any subgame G(z), z € Z, starting with simultaneous game I'(z).

We construct a cooperative version of a stochastic game on the basis of a non-
cooperative stochastic game with random duration G(zp) described above. For this
purpose it is necessary to define the characteristic function for each subset S (coali-
tion) of the set of players N. The characteristic function calculated for the subgame
G(z), z € Z, is denoted by V (S, z), where S C N.

Characteristic function V(S,z) shows which total payoff can be obtained by
the players joining into coalition .S. There are different approaches to defining the
characteristic function that determines the cooperative game on the basis of a non-
cooperative one. We introduce some of these approaches:
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1. a-approach. In this case, V (S, z) is the mazmin value of the zero-sum game be-
tween coalitions S and N\S. Moreover, the maxmin is found in the pure strate-
gies of coalition S. This approach can be described as “pessimistic”, since V (S, z)
is equal to the minimum total payoff of coalition S which coalition S can obtain
regardless of how coalition N\S behaves. This approach was proposed in the
book of Neumann and Morgenstern (von Neumann and Morgenstern, 1944).

2. B-approach. Following this approach, V (S, z) is the minmaz value of the zero-
sum game Gg between coalitions S and N\S. Moreover, the minimax is found
in pure strategies. This approach can be considered as “optimistic”. Comparison
of a- and S-approaches can be found in (Aumann and Peleg, 1960).

3. The value of game Gg. In this case, value V(.5) is equal to the value of the zero-
sum game Gg game between coalitions S and N\S. Moreover, this value always
exists in mixed strategies, while it is equal to the maxmin and minimax of Gg.
In case the minmax and maxmin are found in mixed strategies, the values of a-
and B-characteristic functions coincide.

4. ~y-approach. According to this approach, V (S, z) is equal to the payoff of coali-
tion S in the Nash equilibrium, when all the players who do not belong to
coalition S play individually (Chander and Tulkens, 1997).

5. d-approach. Value V (5, z) is equal to the maximum payoff of coalition S in the
strategy profile when the players who do not belong to coalition S adopt the
Nash equilibrium strategies optimal in the n-person game when all players act
individually. This approach was proposed in (Petrosjan and Zaccour, 2003) and
further considered in detail in the paper (Reddy and Zaccour, 2016).

6. C-approach. In this case, V(S5 z) is equal to the payoff of coalition S in the
strategy profile when the players from coalition S use strategies that maximize
the total payoff of coalition N, and the players who do not belong to coalition
S minimize the total payoff of the players from coalition S (the idea is proposed
in (Gromova and Petrosyan, 2016)).

In this chapter we will use the a-approach and assume that the “power” of coali-
tion S is equal to the maxmin value of a two-person zero-sum stochastic game G g be-
tween coalitions S and N\S. This approach was used in the paper (Petrosjan, 2006),
in which for the first time a cooperative stochastic game was constructed on the
basis of a non-cooperative one and the problem of time-inconsistency of the Shapley
value is considered.

We determine the values of the characteristic function. First we consider the case
when S = N and find the maximum of the total payoff of the coalition N in stochas-
tic game G(zp). For this purpose, we write Bellman’s equation (see Bellman, 1957)
for the maximum sum of the mathematical expectations of players’ payoffs:

VW) = max |3 KP@)F(Lmm) 3wyl a )V Ny = ()
.GGN ieN yEL(20)
=Y KF@ ) +(1-q) Y. p(ylzw.a”)V(N,y)
iEN y€L(z0)

with boundary condition

V(N,z) = max, K?(a®), ze€e{z:L(z)=@or ¢ =1}. (4)
166;3 i€EN
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Later on in this chapter, we suppose that z € (L(zo))k.
For the subgame of G(z), z € Z, the equation (3) with the initial condition (4)
takes the form:

VN2) = max | S Ki@) +(1-a) Y 0l W)= 6)
icN' [iEN yeL(z)
=Y Ki@)+(1—a) Y (p(ylza)V(N,y)
i€EN yeL(z)

with boundary condition

V(N, z) = max K7 (a?), ze{z:L(z)=@or ¢, =1}. (6)

Strategy profile (@; : © € N) in stochastic game G(zo) generates the probability
distributions over set Z of the vertices of graph ¥(zy).

Definition 2. A subgraph of graph ¥(zg), which consists of the vertices z € Z of
the graph ¥(2), having positive realization probabilities, generated by the cooper-
ative strategy profile @(+), is called a cooperative subtree and denoted by ¥(z).

Obviously, subgraph ¥(zg) is a finite tree graph. The set of vertices in graph ¥(z)
is denoted by CZ C Z.

Let S C N, S # N. For each vertex z € CZ we define the auxiliary zero-sum
game denoted by Gg(z). It is a zero-sum game between coalition S C N acting
as a maximizing player, and coalition N \ S acting as a minimizing player. In this
case, the payoff of coalition S is calculated as the sum of the payoffs of the players
belonging to coalition S. Then, the value of the characteristic function V (S, z) is
given by the lower value of zero-sum game Gg(z) in pure strategies (similar to the
lower value of the matrix game) !.

Function V (S, z), z € CZ, satisfies the following functional equation

V(S,z) = max min ZKf(aé, ajs)t

a% €A% a%, €A%
sS85 IN\sSANS |ies

+(1—a) D pylz (ag ain))V(S,y) | (D)
yeL(2)

with boundary condition

V(S,z) = max  min ZKf(ag,afv\S), ze{z: L(z)=@ or ¢ =1}, (8)
az €A% afv\SEAfv\S Py
where a% = (a7 : ¢ € S) is an action of coalition S; A% = [[ A7 is the action set of
i€s
coalition S5 ajn g = (aj : j € N\S) is an action of coalition N\S; A%\ g = . 11:/[\5 Az
JE
is the action set of coalition N\S.

! In this chapter we use the a-approach for construction of the characteristic function,
proposed by Neumann and Morgenstern (von Neumann and Morgenstern, 1944).
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For all z € CZ it is natural to suppose that
V(g,z) =0. (9)

Thus, for each subgame G(z), z € CZ, we have determined the characteristic
function V' (S, z), S C N. The characteristic function V(5, z) is determined by the
equation (5) with the boundary condition (6), and also the equation (7) with the
boundary condition (8) and equation (9).

The characteristic function V (.S, z) defined by formulas (5) — (9) is superadditive
on S, i. e., for any vertex z € C'Z and any coalitions S,P C N, SN P = @&, the
inequality

V(SUPz) =2 V(S,z2)+ V(P z).

holds.

Definition 3. A cooperative stochastic game with random duration G(zo) const-
ructed on the basis of non-cooperative stochastic game G(zo) is a tuple (N, V(5S, z0)),
where V(S 2z9) is a characteristic function defined by equation (5) with boundary
condition (6) for coalition N, by equation (7) with boundary condition (8) for
coalition S # N, S # &, and by formula (9) for coalition S = @.

Definition 4. An imputation in cooperative stochastic game G(zg) is a vector
&(z0) = (&1(20), - - -, &n(20)), satisfying two properties:

1. Collective rationality: ),y &i(20) = V(IV, 20);
2. Individual rationality: & (z0) = V({i}, z0) for any i € N.

The set of imputations (see (Vilkas, 1990, Vorobiev, 1960, Vorobiev, 1967) and
also (Vorobiev, 1985, Pecherski and Yanovskaya, 2004) for definitions of cooperative
games) of cooperative stochastic game G(zg) is denoted by I(z).

Definition 5. A solution of cooperative stochastic game G/(z) is a subset C(2)
of the set of imputations I(zg).

The solutions of a cooperative game can be conventionally divided into single-
valued and multi-valued ones. The well-known single-valued solutions are the Shap-
ley value (Shapley, 1953b), the nucleolus (Schmeidler, 1969). The most well-known
multi-valued solution is the core (Gillies, 1959). Suppose that solution C(zg) of co-
operative stochastic game G(zg) is a non-empty subset of the imputation set I(zp).

Definition 6. A cooperative stochastic subgame G(z), z € Z, of game G(zp),
constructed on the basis of non-cooperative stochastic subgame G(z), is a pair
(N,V (S, z)), where V (S, z) is the characteristic function defined by equation (5)
with boundary condition (6) for coalition N, by equation (7) with boundary condi-
tion (8) for coalition S # N, S # &, and by formula (9) for coalition S = &.

Determine the imputation, the imputation set and the solution for any cooper-
ative subgame G(z), z € Z.

Definition 7. An imputation in cooperative stochastic subgame G(z) is vector
£(z) = (&1(2), ..., &n(2)), satisfying two properties:

L. ZieN §i(z) =V(N, 2);
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2. &(z) 2 V({i},z) for any i € N.
The set of imputations of cooperative stochastic subgame G(z) is denoted by I(z).

Definition 8. The solution of a cooperative stochastic subgame G(z) is a subset
C(z) of the set of imputations I(z).

Suppose that solution C(z) of any cooperative subgame G/(z) is non-empty sub-
set of the imputation set I(z) for any z € CZ.

2.4. The Shapley value, core and nucleolus

In this section we define some cooperative solutions which will be used further in
the work. The Shapley value of a cooperative stochastic game or subgame G(z),
z € CZ,is a vector Sh(z) = (Sh1(z),..., Shn(2)), where an element Sh;(z), i € N,
is calculated by the formula

(51 =D n —|S])! :
Shi(z) =Y | (V(S,2) = V(5\{i},2)),
n!
SCN
EEY
where |S] is the cardinality of S. The definition of the Shapley value is introduced
in Shapley’s paper (Shapley, 1953b). B
A core of a cooperative stochastic game or subgame G(z), z € CZ, is a set
denoted by CO(z), and it is the set

CO(z)z{ 2): Y &(2) 2 V(S,2) for VS C N, Y &i(2) (Nz)}

€S i€EN
(10)

For the cooperative stochastic game or subgame G(z) and any vector £(z) € I(z),
by 6(£(z)) we denote the vector of the values of excesses e(S,£(z)) = V(S5,z) —

>~ &i(2) located in a descending order:
i€s

0(£(2)) = (e(51,€(2)), e(52,£(2)), - - -, e(San—1,£(2))),

where coalitions are numbers that e(S1,£(z)) > e(S2,€(2)) = ... = e(San_1,&(2)).
On the set of excesses {0(£(z)) : £(2) € I(2)} we consider the lexicographic or-
dering >jes:
0(6(2)) 1ex O(1(2)) <=3 1€ {1,...,2"},

such that

{9k(g(z)) Or(1p(2)), forallk=1,....1—1;
01(§(2)) > 0i((2)),

where ¢(z) € I(z).
The definition of the nucleolus is first introduced in (Schmeidler, 1969). The
nucleolus of a cooperative stochastic game or subgame G(z), z € CZ, is a subset of

the imputation set on which 0?&1(111)) —les 1S Teached.
z
§(z)€I(2)

If C(z0) is the solution of cooperative stochastic game G(20), then later on in the
work by solution C(z) of cooperative subgame G(z) we mean a solution constructed
according to the same “rules” as C'(zg). For example, if C(zp) is the Shapley value
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in stochastic game G(zp), then C(z) is the Shapley value, calculated for cooperative
subgame G(z), z € CZ.

Here we assume that the players choose some fixed subset of the imputation
set, which contains the imputations satisfing “optimal” properties, i. e., the players
forming coalition N, are going to follow some “rule” distributing the payoffs of coali-
tion N throughout the game process. Set C'(z) may consist of a single imputation,
if, e. g., the players have decided to use the Shapley value or the nucleolus, or it
may be empty if, e. g., they have chosen the core and it is empty. The solution of
the game or subgame G(z) can be any other imputations from the classical “static”
cooperative theory, such as von Neumann-Morgenstern solution (or the so-called
stable set), the kernel, M-stable sets (see Pecherski and Yanovskaya, 2004).

Further in the work we will suppose that C(z) is a nonempty subset of set I(z)
for any z € C'Z, that is, for each vertex z € C'Z there exists at least one imputation

£(2) = (&1(2), .., €n(2)) € C(z) C I(2).

2.5. Imputation distribution procedure

In this section we introduce the definition of an imputation distribution procedure
of the cooperative stochastic game solution, which has been chosen by the players.
The imputation distribution procedure determines the payments to the players at
each vertex of the cooperative subtree ¥(zp).

Definition 9. A path in a stochastic game is the sequence of action profiles a®°,
a®, ..., a®, where a® is the action profile realized in the game I'(2;), z; € L(z;—1),
i=1,...,1

Consider any vertex z € CZ, z € (L(z0))¥, of the cooperative subtree. Each
player receives some payments implementing a cooperative agreement 2. Let at
the vertex z € CZ the payment to player i € N be §;(z). In any cooperative
subgame G(z), the player can calculate the sum of the payments along the path
a®,...,a* = a® % and this sum is a random variable. We denote by B;(z) the
mathematical expectation of the sum of such payments, calculated along the path
segment @*~* in cooperative subgame G(z). The value B;(z) satisfies the following
functional equation:

Bi(z) = Bi(2) + (1 —qx) > plylz,2*)Bi(y) (11)
yeL(2)
with boundary condition
Bi(z) = Bi(z) for z€{z: L(z) =@ or q, = 1}. (12)

Now we define the distribution procedure of the imputation belonging to the
cooperative solution C(zp), chosen by the players at the beginning of the game.

Definition 10. Let £(z0) be the vector (£1(20),-.-,&:.(20)) € C(z0). The set of
vectors {B(z) = (B1(2),...,8n(2)) : 2 € CZ} is called a distribution procedure of
the imputation £(zp) if the following conditions are satisfied:

2 Obviously, all z,...,z € CZ, since CZ is the set of vertices of the cooperative subtree,
and the strategy profile ¢ is determined.
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1. For each vertex z € CZ:

S 6i:) = S K@),

i€EN i€EN

2. The components §;(z9), ¢ € N, of imputation £ coincide with the mathemati-
cal expectation of the corresponding components of the imputation distribution
procedure with respect to the probability distribution of transitions and the end
of the game, i. e., &(z0) = B;(z0), where B;(2¢) satisfies the functional equation
(11) with the boundary condition (12).

For each cooperative subgame G(z), z € CZ, we write the functional equation
for the components &;(z) of the imputation £(z) € C(z) C I(z) of type (11) and
define the values ~;(z) from equation:

i(x) =mi(2) + (L—a) Y plylz,a®)&ly), (13)

ye€L(2)

where £(y) = (§i(y) : 4 € N) is an imputation belonging to the solution C(y) of the
cooperative subgame G(y). The boundary condition for v;(z) is as follows:

vi(z) =&(2) for z € {z: L(z) =@ or ¢, = 1}. (14)

Lemma 1. The vectorv(z) = (v:(z) : i € N) given by equation (13) with the bound-
ary condition (14) is an imputation distribution procedure.

Proof. 1t is obvious that for terminal vertices and the vertices at which the proba-
bility of the game end equals one, and the equality (14) holds, conditions 1 and 2
of Definition 10 are satisfied.

Now we prove that these conditions are satisfied for the remaining vertices of
the cooperative subtree. From (13) we express the values v;(z) and summing them
up over ¢ € N, and obtain

) =) &GE) -0—a)d | D plza)&Gw) | - (15)

iEN i€N i€EN \yeL(z)

As we have

then from (15) we obtain:

S i) = VN2~ (1—a0) 3 plylz,a*)V(N,y). (16)

iEN yEL(2)

From (16) and (5) it follows that ) . .\ 7vi(z) = > K7(a®) for action profile
iEN

a* = (a? : i € N), which has been realized in game I'(z) when the players used a

cooperative strategy profile ¢. Therefore, 7;(z) satisfies Condition 1 of Definition
10.
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Now we verify if Condition 2 of Definition 10 is satisfied. Specifically, we find
the mathematical expectation of the sums ~;(z), defined by formula (13), along the
vertices of the cooperative subtree. For the vertices z € {z: L(z) = @ or ¢ = 1},
Condition 2 is satisfied. Continue with the vertices of the cooperative subtree, from
which the vertices mentioned above are reached with one stage. For these vertices,
we obtain the equality:

Bi(z) =&(z) = (L—a) Y pylz,e™)&w) + (1 —a) D> pylz,z*)(y)

yEL(21) yEL(z1)
=&(a),

because &;(y) = v:(y). Following from the terminal vertices to the initial one, we
prove that condition 2 of Definition 10 is satisfied. Lemma is proved.

2.6. Subgame consistency of cooperative stochastic game solution

Before the game starts, players come to an agreement about cooperation, i. e., they
agree to maximize the mathematical expectation of the total payoff of coalition N
and expect to receive the imputation £(z9) € C(z9). The game process takes place
along the vertices of the cooperative subtree ¥(zg). But since the stochastic struc-
ture of the game implies uncertainty in realization of the vertices of the cooperative
subtree, then moving along a certain path, that is, along the vertices of the coopera-
tive subtree, does not yet ensure the support of cooperation. Indeed, players moving
along the cooperative path get into cooperative subgames with the current initial
states in which the same player may have different opportunities. Conditions of a
conflict and players’ opportunities involved in the conflict change over time. And
it will be natural to require maintenance of the optimality principle or "approach"
in the choice of solutions of cooperative subgames. But at some moment, at vertex
z € CZ, the sum of the remaining payments to player ¢ may not be equal to the ith
component of the imputation from solution C(z) of a cooperative subgame G(z).
Therefore, at vertex z € C'Z player ¢ may ask a question whether it is worth keep-
ing the cooperative agreement to act “jointly optimally” proposed before the game
starts. Thus, player ¢ may wish to deviate from the cooperative strategy profile. If
this deviation is beneficial for at least one player, it means subgame inconsistency
of imputation £(z9) € C(z9) and, accordingly, the motion along the vertices of the
cooperative subtree.

Definition 11. An imputation {(z9) € C(zo) is called subgame-consistent in coop-
erative stochastic game G(zo) if for each vertexz € CZ N (L(20))* there exists the
imputation distribution procedure 8(z) = (8;(z) : i € N) such that

G(2) =Bil2) + (1 —ax) Y pylzz9)& (), (17)
yEL(z)
and
&i(2)=0i(z), z€{z:L(z) = or q, =1}, (18)

where {(y) = (&i(y) : i € N) is an imputation belonging to solution C(y) of cooper-
ative subgame G(y).

Remark 2. If C(z) consists of more than one imputation, then the choice of
the imputation £(zg) is indefinite. If players have chosen a certain imputation
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&(z0) € C(z0) and decided to verify if it is subgame consistent, first it is neces-
sary to check the condition (17) for the vertex zo. This means to verify if there
exists the imputation distribution procedure 8(z9) = (Bi(z0) : @ € N), satisfying
condition (17) for some imputation £(y) € C(y), where y € L(zp). Obviously, there
is indefiniteness in the choice of imputation £(y) € C(y), which in its turn should
also be subgame consistent in cooperative subgame G(y). This means that condition
(17) should be satisfied for imputation imputation £(y) € C(y). From Definition 11
it follows that this condition should be satisfied for all z from the set of vertices of
the cooperative subtree.

Definition 12. We say that cooperative stochastic game G/(zo) has subgame con-
sistent solution C(z¢) if all imputations £(zg) € C(zo) are subgame consistent.

Obviously, if the payments to the players are made at the vertices of the co-
operative subtree in accordance with the initially defined payoff functions, it is
impossible in general to achieve subgame consistency of the cooperative solution.
This may lead to the breakup of the cooperative agreement. In this connection, the
problem of finding a scheme or procedure of payments to the players at the vertices
of the cooperative subtree in order to satisfy the property of subgame consistency
of a cooperative solution. For this we need to find such an imputation distribution
procedure (8;(z) : i € N) for all vertices z € CZ, for which the conditions (17) and
(18) are satisfied.

Theorem 1. Let in the cooperative stochastic game G(zo) and each subgame the
cooperative solutions C(z9) and C(2), z € CZ, be nonempty. If for each £(z) =
(&i(z) i € N) € C(z) the imputation distribution procedure is defined by the
formula

Bilz) = &(2) = (L—ar) Y plylz2")&(y), (19)

yeL(2)

for each z € CZ, z ¢ {z: L(z) = &}, where {(y) = (&i(y) : i € N) € C(y), and by
formula (18) for any z € {z : L(z) = @}, then cooperative solution C(z¢) is subgame
consistent.

Proof. To prove subgame consistency of the cooperative solution C(2¢), it is required
to prove that for each vector £(z¢) € C(z0) conditions (17) and (18) are satisfied.

From Lemma 1 it follows that the payments, determined by formulas (19) and
(18), are the components of the imputation distribution procedure. Condition (17)
follows from (19) taking into account that £(y) = (&(y) : @ € N) belongs to the
cooperative solution of the subgame G(y).

The proposed method of implementing the imputation has an important prop-
erty: at each vertex of the cooperative path, players are guided by the same “op-
timality principle” (property of subgame consistency) and, in this sense, have no
reasons for interruption of the previously adopted cooperative agreement and de-
viation from the cooperative strategy profile. The sum of payments to the players
at each vertex of the cooperative subtree is also equal to the sum of the payoffs
received by the players at that vertex (condition 1 of Definition 10 of an imputation
distribution procedure). The latter condition may be called a condition of attain-
ability of the payments, since players redistribute the sum which they obtain in the
game and do not take any funds outside.
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Notice that Definition 11 does not require the nonnegativity of functions g;(z),
where z € CZ. All imputations belonging to the solution C(z) will be subgame
consistent if solution is such that C(z) # @ for all vertices z € CZ. This is possi-
ble if the payments to the players are not made according to their initially defined
payoffs in games along which the cooperative path realizes, but according to the
imputation distribution procedure (z) = (81(2),...,Bn(2)) defined by (17), (18)
for all z € CZ, where (3;(z) is the payment to player 7 at the vertex z € CZ. More-
over, the mathematical expectation of all payments to player ¢ coincides with the
mathematical expectation of the ¢th component of the imputation belonging to the
solution chosen by the players. It follows from Theorem 1. Thus, players can agree
on getting negative payments at some vertices to ensure that the cooperation is sup-
ported throughout the whole game in order to guarantee receiving the components
of initially selected imputation £(zp) partition belonging to the solution C(z) of

the cooperative stochastic game G(zp).

2.7. Nonnegative components of imputation distribution procedure.
Regularization of imputations

In this section, we consider the case when for any player ¢ € N payoff function
is non-negative: K;(x*) > 0 for all vertices z € C'Z. Assume that the players are
interested in receiving non-negative payments at each vertex of the cooperative
subtree and at the same time they want to guarantee subgame consistency of the
cooperative solution. In case when non-negativity of $;(z) cannot be guaranteed
for all vertices z € C'Z, one can construct new subgame-consistent solution based
on the solution initially chosen by the players from the set C(zp). We present how
this is done when the set C(z0) C I(zp) is considered as the solution. Notice that
this procedure can be applied to the imputations well-known in the classical “static”
cooperative game theory (core, nucleolus, von Neumann-Morgenstern solution).
For each vertex z € C'Z define new imputation distribution procedure by

> Ki(a3,...,az)

Bile) = S, (20)

where £(2) = (&1(2),...,&,(2)) € C(2), and @* = (af,...,aZ) is the realization of
the cooperative strategy profile @ = (p1(-), ..., &n(+)) at vertex z € C'Z maximizing
the sum of mathematical expectations of the players’ payoffs in stochastic game
G(z0), V(N, z) is the value of characteristic function of coalition N calculated for
cooperative subgame G(z).

As K;(a®) > 0 for each vertex z € C'Z and each player i € N, then f;(z) > 0 for
each vertex z € C'Z. Taking into account equation (20) and equity » ..y &i(2) =
V(N, z), we obtain that the current payment §;(z) to player ¢ in game I'(z) should
be proportional to the ith component of the imputation £(z) € C(z) in cooperative
subgame G(z) of stochastic game G/(zp).

Determine a new imputation for cooperative subgame G(z), where z € CZ, and
z € (L(20))" on the basis of the “old” imputation £(z) as a solution of the functional
equation

§i(2) = () + (1 —qr) Y. plylz.a*)&(y) (21)

yeL(2)



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 143

with boundary condition

XJ:V Ki(a%)

2 1€

&) = St = 609 (22)
for z € {z:L(z) =@ or qx, = 1}. R

~ Construct a new characteristic function V(S, z) for each cooperative subgame
G(z) for all z € C'Z using functional equation

> Ki(a@®)

V(s = g VS +1-a) y;(z)p(mz, WV (Sy)  (23)

with boundary condition
V(S,z) =V(S,z) for z € {z: L(z) = @ or g = 1}. (24)

_ Functions V(S, z) and V (S, z) are superadditive, and V (N, z) = V (N, z) because
V(N,z) and V(N, z) satisfy the functional equation (5) with boundary condition
(6).
For all vertices of z € CZ and all subgame-inconsistent imputations (z) € C(z),
we compute the regularized imputations £(z) and define the set of solutions C(z)
as follows:

) o 2 K@) A
C={) 60 - Tye@ +1-a) ¥ s, @)

yeL(2)
Ci(z)=&(2)forze{z: L(z) =D or qu = 1},&(2) € C(z)}

Definition 13. The set C(z) defined by formula (25), is called the regularized
solution of the cooperative stochastic game G(z).

Therefore, players have an opportunity to regularize the solution chosen at the
beginning of the game so that at each vertex of the stochastic game G(zo) “new”
solution C'(zo) is subgame consistent. But the imputation belonging to the new
regularized solution C'(zo), generally speaking, will not be an imputation for coop-
erative game with the characteristic function V(S, zp), defined by (7) and (8). It
will be an imputation for a cooperative stochastic game with a new characteristic
function V' (S, zy) defined by formulas (23), (24).

Theorem 2. An imputation £(z) = (£1(2),...,En(2)), defined by formula (21)
with boundary condition (22), is subgame consistent imputation in cooperative game
(N, V> where characteristic function V(S,z) is defined by functional equation (23)
with boundary condition (24).

Proof. Subgame consistency follows from the method of construction of a “new”
imputation £(z). Comparing the functional equations (17) and (21), we obtain that
for the proof it is necessary to show the non-negativity of the component

> Ki(a®)

ieN
W&(Z)7
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which is obvious because
z z z
K7 (adf,...,a2) 20

for all z € Z and each player i € N.

Now we prove that £(z) = (£1(2), ..., &n(2)) has the properties of an imputation
in cooperative game with characteristic function V(S,z), which is given by the
functional equation (23) with the boundary condition (24). To do this, for any
player ¢« € N and each vertex z € CZ, it is necessary to prove satisfaction of two
properties:

€N R

2. gz(z) P V({Z},Z)
The first property is obviously satisfied for vertices z € {2 : L(z) = @ or ¢, = 1}

and z € CZ. Now prove these properties for vertices z € {z : L(z) 3 y and
L(y) = @} and such that z € CZ:

> Ki(@®) (

D EE) = TR L E@+1-a) 3 p<y|z,aZ>Zéi<y>> =

€N €N yeL(z) €N
T Kila) A
= Ty VWA 1 -a) 3 (plea)VN.2) =

yeL(2)

=V(N,z) =V(N,z),

because y € {y : L(y) = &}.

The second property is also obviously satisfied for the vertices z € {z : L(z) = @
or qr = 1}. We show that &(z) — V({i}, ) > 0 for the vertices z € {z : L(z) > y
and L(y) = g}, using formulas (21) and (23):

> Ki(a®)
&)= V{ih2) = TG+ 1 -a) y;(z)p(mz, a*)i(y) -
_ 71'%&(@2)\/({'} )+ (1 - a* )V ({i -
Vv, e q@ye;z)p(mz,a W({ity) p =
& .
VN (&(2) = V({i},2))+
+(1—a) Z( k) (&) - Vihy) > 0.
yeL(z

The first term is non-negative since £ (z) is an imputation of cooperative subgame

G(z), and the second term is non-negative, because y € {y : L(y) = @}. We prove
recursively for the previous vertices z € C'Z and so on until vertex zp.

It is important to know in what relation the set C(z) which is a regularized
solution defined by the formula (25), and the set C(z) which is the solution found
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for the cooperative subgame G(z) with the characteristic functionV (S, z) (i. e.,
the solution constructed using the same rules as the solution C(z) C I(z) for the
cooperative subgame G(z)). Now we find the sets C(z) and C(z) for the cooperative
stochastic subgame G(z) if when the solutions of the stochastic game G(zo) are the
imputations (the Shapley value and the core) from the classical “static” theory of
cooperative games.

2.8. Regularization of the Shapley value and the core

We start with the case when players choose the single-point optimality principle—
Shapley value—as a cooperative solution. The Shapley value calculated in cooper-
ative stochastic game G(z), is denoted by Sh(zg) = (Shi(z0) : i € N), and in
cooperative subgame G(z), where z € CZ, by Sh(z) = (Shi(z) : i € N).

Define the regularized Shapley value in cooperative subgame G(z), where z €
CZ,and z € (L(zo))]C based on the Shapley value of the initially given game as a
solution of the functional equation

> Ki(a@®)

Shi(2) = Sy Shil2) + (L= aw) g(z)p(mz, a)Shi(y)  (26)

with boundary condition .

for z € {z:L(z) = @ or q1, = 1}.
The following theorem holds.

Theorem 3. Vector satisfying the functional equation (26) with boundary condition
(27), is subgame-consistent and it is the Shapley value of the cooperative subgame
(N,V(-,2)), z € CZ of stochastic game (N,V (-, 2)), where the values of characte-
ristic function V (-, z) are calculated by formulas (23) and (24).

Remark 3. Theorem 3 provides the relation between the sets C(z) and C(z), which
are mentioned at the end of the previous paragraph. If the Shapley value is chosen
as a solution of the stochastic game G(zo), then C(z) = C(z) for any z € CZ.
Therefore, we may reformulate Theorem 2 in the following way.

Theorem 4. Vector satisfying the functional equation (26) with boundary condi-
tion (27), is subgame-consistent, and Sh(z) = C(z0) = C(z0), where C(z0) is
a regularized solution satisfying equation (25), and C’(zo) is the Shapley value of
the cooperative stochastic game (N,V (-, z)) with characteristic function given by
formulas (23), (24).

Proof. The fact that the vector satisfying the functional equation (26) with initial
condition (27) is subgame-consistent, follows from Theorem 1 which is formulated
for a general case, i. e. , for any solution C(z).

Calculate the Shapley value of cooperative stochastic game (IV, V(, z)),z € CZ,
with regularized characteristic function given by formulas (23), (24):

Shi(z) = 3 USI= DR =51 (V(8.2) = V(5 \{i}.2).

n!
SCN
NET
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Rewrite (23) for coalition S\ {i} and obtain

A 2. Ki(a?)
V(S\{i},2) = S ———V(S\ {i}, 2)+

V(N z)
+(—ax) > plylza’)V(S\{i}y). (28)
yEL(2)

(\5\—1)!('71—\5\)!

Subtracting (28) from (23), multiplying by and summing up over the

all possible coalitions S C N such that S 3 i, we obtain

5 B DT80 (52— (s ),2)] = (29)
=
e = K@)
_ SCZN(|5| 1);(' |S|)' [V(S,Z)—V(S\{Z}’Z)] le‘Jj(Tz)‘i‘
S31
+(—a) Y plylz,a®)x
yeL(2)
{3 UL DO0 g5 s g ] |
=
> Ko A
= Shi(2) Py + 0 - ) yg(:z)p(ylza a*)Shi(y).

The result of the theorem follows from (29) and (26).

Now we assume that the players choose the core as a solution of cooperative
stochastic game G(zg). As before, we suppose that CO(z) # @ for any vertex
z € CZ. We also assume that CO(zg) is not subgame-consistent, i. e., there exists at
least one imputation £(z¢) € CO(zo) for which the condition of subgame consistency
is not satisfied.

Definition 14. The regularized core of stochastic game G(zg) is the set:

> Ki(a™)

CO(z) —{éw G0 = SR G0 + (Lmw) D (plyl0,a)&)),
’ yEL(20)
Ei(20) =& (20), 20 € {z: L(z) =@ or g, = 1},&(20) € CO(Z())}. (30)

Definition 15. The regularized core of cooperative subgame G(z) is the set 6’5(2)
defined as:
ZJ:V K; (d’z)
== : : ic P
CO(2) = {€(2) - &i(2) = “TrmmmGilx) + (L—a) Y plylz,@)éi(y)
V(N, z) i

Ei(z)=¢&(2) for ze {z: L(z) =@ or q = 1} ,£(2) € C’O(Z)}. (31)
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Denote by 6\6(2) the core calculated for cooperative subgame (N, V(- 2)),z€CZ,
with characteristic function V' (S, z), defined by formulas (23), (24). We prove the

theorem providing the relation between 6\6(2) and CO(z).

Theorem 5. The regulamzed core defined by formula (30) is subgame-consistent
solution. Moreover, CO(zo) C CO(zo) where CO(zo) is the core of cooperative
stochastic game (N,V(-,z)) with characteristic function defined by formulas (23),
(24).

Proof. Subgame consistency of the core follows from Theorem 1. To prove that
C’O(zo) 'C CO(z), we need to prove that any imputation g(zo) € C’O(zo) belongs to
the set CO(zo), which is equivalent to the following: for any §( ) € CO( ),z€ CZ
and S C N the inequality
> &i(z) = V(S,2) (32)
€S
is true.

The proof is obvious for the vertices z € {z : L(z) = & or ¢ = 1}. Now we prove
this inequality for the vertices z € {z: L(2) > y and L(y) = &}:

~ Z K (7 ~
> Giz) = ZGN Zfz +(l—aq) Y <p(ylz,c‘f)25i(y)> >

€S yeL(z) €S
> V(S,2),

which is true because y € {z: L(z) = @ or qp = 1} and >, s &(2) = V(S,2), as
&(2) is the imputation belonging to the core CO(z).

The following part of the proof is made for the next vertices up to the initial
vertex zg like in the proof of Theorem 1.

Now we consider examples of construction and regularization of the solution in
cooperative stochastic games defined on the graphs.

Example 1.1. (Petrosyan et al., 2004) Consider stochastic game G(zp) de-
fined on graph W¥(z) which is represented on Fig. 1.

Zn

/L\

3 —= 2y
Fig. 1. Graph of Example 1.1.

The set of vertices of graph W(zg) is Z = {z0,...,29}. The set of players is
N = {1,2}. In each vertex of graph ¥(zp) two-player normal-form game I'(z),
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z € Z, is given and the payoffs in these games are the following:

((5:5) (6,1) ((4,2) (3,4)
res (G en) 1o (50 0s)
[(21), T(24), T(z5), T(z6) (883 Eé%) .

To determine non-cooperative stochastic game G(zp) we need to define transition
probabilities and probabilities of the game duration. First, define the transition
probabilities from the vertices of the graph to the next vertices. If in game I'(z)
the action profile (2, 2) is realised, then stochastic game G(zp) transits to the vertex
zo with probability 1/3 and to the vertex z3 with probability 2/3. If any other
action profile different from (2,2) is realised (arrow = means the deterministic
transition), then the game G(zp) transits to vertex z;. At vertices z1, zo when
any action profile is played, stochastic game G(zg) transits to vertices z4 and z5
respectively. If in the game I'(z3) the action profile (2,2) is played, then stochastic
game G(z) transits to vertices zg and z9 with equal probabilities 1/2. And if in the
game I'(z3) the action profile (2, 1) is played, the game G(zg) transits to vertex z7
with probability 1. The deterministic transition (with probability 1) is made from
other action profiles to vertex zg (arrow = means the deterministic transition).
Let probabilities g that the game ends at stage k be given:

1
©=3 g2=0, ¢g3=1

Let players choose the Shapley value as the cooperative solution of the game.
For two-player game, it is calculated by formulas:

Shi(z) = V({1},2) + LU 2H2) = V(é{l}’ 2 -V({2}.2)

Shalz) = V({2 2) + LU 2R Z VD2 2 V22,

where V ({1}, z) and V ({2}, z) are the values of characteristic function for the sub-
game beginning at vertex z calculated for coalitions {1} and {2} respectively.

The above described sets and values determine stochastic game with random
duration G(zg) (see (1)).

We start to find the solution of the cooperative game from the terminal vertices
of the graph, i. e., the vertices from which it is impossible to transmit to any
other vertices of the graph. First, calculate V ({1}, z9) and V ({2}, z9) as maximum
guaranteed players’ payoffs in the game I'(z9) using formula (8):

V({1},29) =3, V({2},20) =4, V({1,2},29) =11.
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Then, we may calculate the Shapley value of the subgame G/(zg) of the game G(2)
starting from game I'(zg):

Shl(Zg) = 5, ShQ(Zg) = 6.

We make the similar calculations for the subgames starting from the games I'(z4),
I'(z5), I'(z6), I'(z7) and I'(zg) using formula (8) while these games are realised
at the vertices belonging to the set {z : L(z) = @}. The values of characteristic
functions for these subgames and corresponding Shapley values are given in the
Table 2.

Table 2. Characteristic functions and the Shapley values of subgames G(z), z €
{24, 25,26, 27, 28, 20 }.

Vertex z|V ({1}, 2)|V ({2}, 2)|V({1, 2}, 2)|Shi(z) |Sh2(z)
21 0 0 1 12 | 1/2
25 0 0 1 1/2 | 1/2
26 0 0 1 1/2 | 1/2
27 1 2 3 1 2
28 5 5 12 6 6
29 3 4 11 5 6

Now consider the vertices from the set {2 : (L(z))? = @}. We start from vertex
z3. As stochastic game may transit to the other vertices of the graph, we need to
transform the payoff matrix of the game to calculate the Shapley value of cooperative
subgame G(z3). With action profile (2,2) the mathematical expectations of the
players’ payoffs we find in the following way:

e for Player 1:
L4 (1= ) (V{20 + 3V({120)) =5,
e for Player 2:
1 1
L+ (- a) (V2130 + V(D)) =55

With action profile (2,1) they are

e for Player 1:
14+ (1 —q)V({1},27) =2,

e for Player 2:
1+ (1 - QQ)V({2}, 27) =3.

7

Similarly, with action profile (1,1) the mathematical expectations of the players
payoffs are
e for Player 1:
1+ (1 —q)V({1} 2) =1,

o for Player 2:
114 (1 — q2)V ({2}, 26) = 11;
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and with action profile (1,2) the mathematical expectations of the players’ payoffs
are

o for Player 1:
A+ (1 - @)V {1}, %) =4,

e for Player 2:
2+ (1 - QQ)V({2}, 26) = 2.

Then the bi-matrix game written for the calculations of the values of characteristic
functions V ({1}, z3) and V ({2}, z3) looks like

~ The values of characteristic function of cooperative subgame G(z3) of the game
G(z0) for coalitions {1}, {2} are

V({1},23) =2, V({2},23) =5.
To calculate V' ({1, 2}, z3) we use formula (7) and obtain the bi-matrix game:

(12+(1 —q2)V({1,2}, 26) 6+ (1 —q2)V({1,2}, z) )
44+ (1 —q@)V{L,2}27) 24 (1 —q2)(0.5V({1,2}, z8) + 0.5V ({1, 2}, 20))

13 7
7135/

Vv ({17 2}7 Z3) = 137 57
Sh1(23) = 5.25, Sh2(23) = 8.25.

or in numeric form:

Therefore,

We make similar calculations for the cooperative subgame G(z1):

V({1},z1) =0, V({2},z1)=0, V({L,2},z1) =2,
Shl(zl) = ShQ(Zl) = 1,

and for subgame G/(z2):

V({l}a ZQ) = 3a V({2}7 22) = 27 14 ({1? 2}7 22) = 123
Shl(ZQ) = 65, ShQ(ZQ) = 55

For cooperative stochastic game G(zp), the matrix game for the calculation of the
values of characteristic function for coalitions {1}, {2} can be found by formula
(7). With action profile (2,2) the mathematical expectations of the players’ payoffs
are

e for Player 1:

L4 (1= a) 5V ) + 3V ) =33,
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e for Player 2:
L+ a) (3V2he + SV (i2he0) 03,

With action profile (2,1) the mathematical expectations of the players’ payoffs
are

e for Player 1:
84+ (1—q)V({1},2) =8,

e for Player 2:
0+ (1 —q)V({2} 21) =0.
Similarly, with action profile (1,1) the mathematical expectations of the players’
payoffs are
e for Player 1:
54+ (1 —aq)V({1},21) =5,

o for Player 2:

With action profile (1,2) the mathematical expectations of the players’ payoffs
are
e for Player 1:
04+ (1 —q)V({1} 21) =0,

e for Player 2:
8+ (1 - ql)V({2}, 21) = 8.

(&

V({1},20) = 32_147‘/({2}720) = 4%-

For the calculation of V' ({1,2}, z9) we form matrix game using formula (7):

(10+ (1 =q)V({1,2},21) 8+ (1 —q)V({1,2},21) )
8+ (1—q)V({1,2},21) 24+ (1 — q)(3V({1,2},22) + 2V ({1,2}, 23))

3 3
(11SZ 913) _
93 132

Calculating V ({1, 2}, z9) and Shq(z0), Sha(z0), we obtain:

Finally, we obtain the matrix:

5) (0,8)
0 g i)

24>

or in a numeric form:

3 23 5
V({12 =13= Sh =5— Sh =T7—.
({ ) }720) 87 1(20) 24’ 2(20) 12
The set of vertices forming the cooperative subtree consists of the vertices z,
22, 23, X5, 28, 9.
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Now we verify if the imputation distribution procedure is non-negative. It is
negative at vertex zs that follows from equation (17), in which the vertex zs is
used:

'Shl(ze})] :

N~

i) = Br(aa) + (1= ) 3 - ShaCae) +

5.25 = B1(z3) + (1 —0) {%-5—1—%-6},

51 (2’3) = —0.25.

As B1(z3) is negative, we make the regularization of the Shapley value to construct
a «new» non-negative Shapley value.

Determine the new Shapley value for the vertices of the cooperative subtree with
vertices 2o, 22, 23, 25, 28, 79 by formulas (26) and (27):

Shi(z5) = 0.5, Shy(zs) = 6, Shy(29) = 5,

Sha(zs) = 0.5, Shy(zs) = 6, Sha(z9) = 6,

Shi(z2) = % -6.5+ % = 6%,

Sha(z) = %~55+%:5£,

Shi(z3) = %-5.2“ [%-54—;6} :6%,

Sha(zs) = %-8.2“ [%-6—#%-6} :7%,

Shi(z) = é : 5% + (1 — %) E 6%+ ; : 15—8] = 612—?;6 ~ 6.437,
Sha(z) = é : 7% + (1 - é) E : 55 + ; - S} = gi:gé ~ 6.938.

The «new» vector is the Shapley value of the cooperative game with characteristic
function defined by formulas (23), (24). It is subgame-consistent which follows from
Theorem 4.

For the games I'(z5), I'(2s) and I'(z9) the new characteristic functions are pre-

sented in Table 3.

Table 3. «New» characteristic functions.

Vertex z|V ({1}, 2) [V ({2}, 2)|V ({1, 2}, 2)
20 3.763 | 4.265 13.375
2 2.750 1.833 12.000
23 4.296 5.574 13.500
z5 0.000 | 0.000 1.000
28 5.000 5.000 12.000
20 3.000 | 4.000 11.000

Remark 4. The nucleolus may be chosen by the players as a solution of the co-
operative game (see Schmeidler, 1969). Notice that the nucleolus consists of one



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 153

vector, so there are no problems with the choice of a unique imputation from the
imputation set. We also notice that the nucleolus belongs to the core when the latter
is non-empty.

Example 1.2. Consider stochastic game G(z¢) defined on the graph ¥(zo) which
is presented on Fig. 3. The set of vertices of graph ¥(zg) is Z = {zo,...,25}. The set

Fig. 2. Graph of Example 1.2.

of players is N = {1,2,3}. At each vertex of graph G(zg) three-player normal-form
game ['(z), z € Z, is given. The payoff matrix are the following:

re.re: (s 220) (53 821)),
I(21). I'(z5) ((83?2%3 83333) (gii D 133)) ’
[(z): ((&538 Efjifg) (8383 Do 3)) ’
I(z) ((Eézizgi Eé:ézii) (E3j2j8§ 533233») |

In each game defined above, Player 1 chooses rows, Player 2 chooses columns and
Player 3 chooses matrices.

First, we define the transition probabilities from the vetrices to the other vertices
of the graph. If in game I'(zg) action profile (1,1,1) is played, then stochastic game
G(20) transits to the vertex z; with probability 1/3 and to the vertex zy with
probability 2/3. Otherwise, if any action profile different from (1,1,1) is played
(arrow = means the deterministic transition), then the game G(zp) transits to
the vertex z;. If action profile (2,1,2) is realised at vertex zs, stochastic game G(zo)
transits to the vertex z3 and z4 with probabilities 1/3, 2/3 respectively. If any other
action profile different from (2,1,2) is realised, game G(zp) transits to vertex z5 with
probability 1.

The probabilities g that stochastic game G(zp) ends at stage k are given:

qg1=05, ¢@=0, ¢g=1

Let players choose the Shapley value as a solution of the game. We start solving
the game with the vertices of the graph which belong to the set {z : L(z) = @}. We
calculate the values of characteristic function and the Shapley value for subgame
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C_v'(23). Similar calculations are made for the vertices z1, z5, 24, and then for the
vertices zo and zp using formula (7). The calculations are presented in Tables 4 and
5.

Table 4. Characteristic functions for subgames G(z)7 z € {z0, 21, 22, 23, 24, 25 }

2 VAL 2|V ({2E 2)|[V(E3Y 2) V(L 23, 2)[V({2,3), 2) VL 3}, 2) [V {1, 2,3}, 2)
Z0| 2 1 3/2 11/2 9/2 2 83/9

21 2 0 1 3 4 3 6

22 3 1 4/3 7 6 7 47/3

23 1 1 1 4 4 3 6

24 0 1 0 8 9 b} 13

25 2 0 1 3 4 3 6

Table 5. The Shapley values of subgames G(z), z € {zo, 21, 22, 23, 24, z5}.

z |Shi(z)| Sha(z) | Sha(z)
20(193/54(305/108|305/108
x| 8/3 | 7/6 | 13/6
2| 37/6 | 14/3 | 29/6
2| 11/6 | 7/3 | 11/6
21| 10/3 | 35/6 | 23/6
x| 8/3 | 7/6 | 13/6

The set of vertices of the cooperative subtree is CZ = {zo, 21, 22, 23, 24}. We
regularize the Shapley value:
31 .89 _ 89
h =(3—,2—,2—
Shzo) (354’ 108’ 108)
and verify if the imputation distribution procedure is non-negative. For this, we

find values f;(z) for vertices zp € CZ and zp € CZ using formula (19) and verify if
imputation distribution procedure (;(z) is non-negative:

Bi(ax) = Shz2) ~ (1= an) ( gShaCea) + 35muCan) )

Bi(eo) = Shilaa) = (1= ) (3Smu(en) + 3milea) )

3
obtaining
1 2
Bi(z2) = 35’ Ba2(22) =0, B3(z2) = 15;
frlen) = 1z, Bale) = 12 o) = 2.

For z € {z0,22} the following conditions: f;(z) > 0 and },_y Bi(z2) = 5 are
satisfied, and ..y Bi(20) = 3.

In all vertices of the cooperative subtree, conditions of subgame consistency
and non-negativity of the Shapley value are satisfied. Therefore, we state that the
Shapley value is subgame-consistent imputation in game G(zo).



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 155

Now we repeat calculations assuming that players adopt the nucleolus as a so-
lution of the game G(zo). The nucleolus was initially proposed by D. Schmeidler
(Schmeidler, 1969). The definition and some usefull theorems and lemmas about
the properties of the nucleolus may be found in (Pecherski and Yanovskaya, 2004,
Driessen et al., 1992, Kohlberg, 1971). The works (Kohlberg, 1972, Montero, 2005)
are devoted to the calculation of the nucleolus which contains the unique vector.
For the calculation of the nucleolus, one may use Matlab (Mathworks, 2017) and
program TUGlab (TUGlab), written for calculation in cooperative game theory, or
Mathematica (MATHEMATICA) and program TUGames (Meinhardt) written for
the same tasks.

The characteristic function was calculated above. The nucleolus of the subgame
G(z), 2 € CZ, is denoted by n(z) = (n;(z) : i € N).

We calculate the nucleoli for all subgames of the game G(zg). The results are
presented in Table 6.

Table 6. The nucleoli of subgames G(z)7 z € {z0,21, 22, 23, 24, 25 }

z |n1(2)|n2(z)|ns(z)
z0| 35 | 3% | 21
21| 23 | 13 | 23
z| 63 | 43 | 42
zs| 12 | 22 | 12
za| 22 | 62 | 32
zs| 23 | 13 | 23

Now we verify the subgame consistency of the nucleolus using formula (17) and
calculate f3;(z2) for vertex zo by formula:

ni(z2) = Bi(z2) + (1 — q2)(p(z3]22, @ )ni(23) + p(zal22, @ )ni(za)).

We obtain: - -
Bl(z2)24a ﬂQ(ZQ):_g, 53(22):16

The nucleolus of the cooperative stochastic game G(z) is not subgame-consistent, if
the non-negativity of the imputation distribution procedure is required. For exam-
ple, B2(z2) < 0. We won’t verify existence of non-negative imputation distribution
procedure (17), but we will make the regularization of the nucleolus.

Calculate «new» nucleolus for each vertex z € CZ by formula (21) with initial
condition (22). For vertex zo2, we use the following formula:

> Ki(a™)
fi(22) = %ni(zz) +(1—q) Y, pylz,a™)i(y),
2 yEL(z2)

for vertex zp, we use formula:

> Ki(a™)

fi(z0) = SrmNiCzo) + (1 - a1) y€§o)p<y|20, a* )i (y).
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Table 7. The nucleoli of subgames G(z), z € {20, 21, 22, 23, 24, 25 }

3487 128867 |5 69149

0|3 140436 3 280872 2 93624
2| 2% 17 | 23
50 217 51
z2| 4oy | O | 4G
23| 12 22 | 12
za| 22 62 | 32
z5| 2% 17 | 23

«New» nucleoli for the vertices of set C'Z are given in Table 7.

Calculate characteristic function V(S, 2) for each vertex z € CZ by formulas
(23) and (24). Moreover, V(S,z3) = V(5,23), V(S,21) = V(S,21), V(5,21) =
V(S,z5) =V (S, 21) = V (S, z5). For the calculation of V (S, z2) we use formula:

> Ki(@*)
V()= Fmy VS o) 3 plia VS,
Yy z2

and for V (S, z):
> K@)
9 S
V(S,z) = 7V(N, py V (S, z0)+

+ (1= a) (plar]z0, @)V (S, 21) + pl2a]20,a)V (S, 22) )
The values of the function V (S, ) are given in Table 8.

Table 8. Characteristic function V (S, 2), z € {20, 21, 22, 23, 74, Z5 }

2 |V{1}, 2)[V({2}, 2)|V({3}, 2) [V ({1,2}, 2) [V ({2,3}, 2)|V({1, 3}, )| V({1, 2,3}, 2)
W 135 | S| & | 4 3% 12 92
2| 2 0 1 3 4 3 6
2| 145 13 197 8427 935 62> 152
2| 1 1 1 4 4 3 6
za| 0 1 0 8 9 5 13
zs| 2 0 1 3 4 3 6

Notice that the “new” nucleolus 7(z2) of subgame G(z2) belongs to the impu-
tation set with characteristic function V(S, 22) (the nucleolus 7i(z2) also belongs to
the set I(z2), which is not true in general), but it is not the nucleolus of the coop-
erative game. The nucleolus of cooperative game defined by characteristic function
V(S, 22), is denoted by 7i(z2) = (71 (22),72(22), i3(22)). It equals to the following
one:

fi(z2) ~ (4.213,6.894, 4.560) # 1(22).

The «new» nucleolus 7(zg) calculated for the game G(2g), belongs to the im-
putation set of the cooperative game defined by characteristic function V'(S, zo)
(7(zo) also belongs to the imputation set I(2p)), but it does not coincide with the
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nucleolus of this cooperative game. The nucleolus of the cooperative game defined
by characteristic function V' (S, zp), given above, is denoted by 7(2¢) and it equals

7i(z0) ~ (3.621,2.720,2.881) # A(z).

2.9. Strongly subgame consistency of the core

In this section we consider the case when solution of the cooperative stochastic game
is the set and contains more than one point. As an example of such a solution we ex-
amine the core. First, we describe the problem of subgame consistency and then find
the sufficient conditions of strongly subgame consistency of the core. This problem
was initially examined by Leon Petrosyan for differential games (Petrosyan, 1992)
and then for multicriteria problems of optimal control (Petrosyan, 1993).

Suppose that the cores of stochastic game G (zo) and any subgame G(z), z € CZ,
are non-empty. When players cooperate they come to an agreement about the real-
ization of the cooperative strategy profile ¢ and expect to receive the components
of the imputation belonging to the core CO(zp). Reaching the intermediate ver-
tex z € CZ \ {20} of the cooperative subtree, player i € N chooses an action a@?
in accordance with the cooperative strategy @; and receives the payoft K7(a*). If
the players recalculate the cooperative solution, i.e., find the solution of the coop-
erative subgame starting from vertex z, the recalculated solution will be the core
CO(z). It will be rational to require that the payoff received by the player in vertex
z summarized with the expected sum of any imputations from solutions CO(y),
y € L(z), of the games of the cooperative subtrees following game I'(z), is equal to
the imputation from solution CO(z). If this property is satisfied for any vertex z of
the cooperative subtree, the core of cooperative stochastic game G(z) is strongly
subgame-consistent.

To introduce the mathematically strict definition of strongly subgame-consistent
core, it is necessary to define the so-called expected core. For any non-terminal vertex
of the cooperative subtree we define the set of expected imputations belonging to
the cores which are the solutions of the subgames following the considered vertex.
For any vertex z € CZ, L(z) # &, define the expected core:

EC(L(z)) = { o(L(z)) = Y p(ylz,a)aly) |aly) € COy) p . (33)

yEL(2)

The set EC(L(z)) consists of the vectors a(L(z)) which are the mathematical expec-
tations of the possible collection of the imputations from the cores of the subgames
beginning from the vertices following vertex z with respect to the probability dis-
tribution {p(y|z,a*),y € L(z)}.

We also define the distribution procedure of the players’ payoffs in the vertices
of the cooperative subtree. Refine Definition 10 of the imputation distribution pro-
cedure. The first condition in Definition 10 maybe called the condition of “feasibility
of the imputation distribution procedure” because it guarantees that in any vertex
of the cooperative subtree the sum of the payments to the players equals the sum
of the payoffs received by the players when they realize cooperative strategies. The
second condition guarantees to the players that they receive the components of the
initially chosen imputation from the core of cooperative game G(z() in the sense
of mathematical expectation, if the payments to the players along the game are
realized in accordance with imputation distribution procedure {38(z) : z € CZ}.
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Now we need to define the distribution procedure of the imputation «(zg) from
the core CO(zp) in a way that the core is strongly subgame-consistent.

Definition 16. We call the core CO(zp) of the cooperative stochastic game G(2)
strongly subgame-consistent if there exists the distribution procedure {8(2)}.ccz
of the imputation from the core CO(zp) such that for each vertex z € CZ the
inclusions take place:

B(z) @ (1 = ar) EC(L(2)) € CO(2), (34)
B(z0) € CO(2), (35)

where

ﬂwwaa—quc@@»—{ﬁw»+u—quLw»:MLw»eEO@w»}

And the imputation distribution procedure {3(z)}.ccz is called strongly subgame-
consistent. 3

Condition (34) means that the set of vectors which are equal to the sum of the
imputation distribution procedure of the player at vertex z and the imputation from
the expected core of the vertex z, belongs to the core of the subgame beginning from
vertex z. This condition provides the restrictions on the payments to the players
in the games defined at vertices and often it is not satisfied for any game if the
payments to the players are realised in accordance with initially defined payoff
functions.

We impose additional restrictions on characteristic functions of subgames start-
ing from the vertices of the cooperative subtree to obtain sufficient conditions of
strongly subgame consistency of the core. Denote by EV (S, L(z)) the expected val-
ues of characteristic function calculated for coalition S C NN at the vertices following
the vertex z:

EV(S,L(z)) = Y plylz,a*)V(S,y).
yEL(2)
Denote by
AV(S,2) =V (S,2) — (1 — qx)EV (S, L(2))

the difference between the value of characteristic function at vertex z and expected
value of characteristic function on condition that the game does not finish at vertex
z. Denote by ACO(z) analogue of the core calculated using function AV(S, z).
Now define sufficient condition of strongly subgame consistency of the imputation
distribution procedure and the core CO(zy).

Theorem 6. Let for each vertex z € CZ the core CO(z) and the set ACO(z) be
non-empty. For each vertex z € CZ distribution procedure {f(z) : z € CZ} of the
imputation from the core CO(zg) satisfies the conditions:

B(:) € ACO(2), (36)

then the core CO(zp) and distribution procedure {5(z) : z € CZ} are strongly
subgame-consistent.

3 The sum denoted by sign @ is called Minkowski sum (see (Schneider), in which some
properties of this operator are proved).



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 159

Proof. We need to prove that any vector 8(z) € ACO(z) satistying conditions (36)
and (37) is strongly subgame-consistent distribution procedure of the imputation
a(zg) € CO(zp). So, the conditions (34) and (35) from Definition 16 hold. Condition
(37) coincides with (35), therefore, it remains to show that the inclusion (34) holds
for any vertex z € CZ. Consider any vector a(L(z)) € EC(L(z)) for vertex z and
calculate the sum £(z) + (1 — qr)a(L(z)). Verify if the latter vector belongs to the
core CO(z). Now calculate the sum of all components of the vector:

DB+ —a) Y plylza) Y aily) =

€N yeL(z) €N

=V(N,z) = (1—qx) > p(ylz,a*)V(N,y)+

y€L(z)
+A =) > pylza) ) aly) =V(N,z2),
yEL(z) i€EN

which carries out the property of collective rationality.
Now consider S C N, S # N:

YA +1—a) Y pylear) Y ay) >

€S yeL(z) €S
>V(S,2)+(1—a) Y plylza)V(S,y)-
y€L(2)
- (1 - qk) Z p(y|Z,ZLZ)V(S, y) = V(S,Z)
yeL(2)

By virtue of the arbitrariness of vertex z € CZ, we make a conclusion that
the core of cooperative game G(zp) and procedure {3(z) : z € CZ} are strongly
subgame-consistent.

When analogue of the core ACO(z) is non-empty for each vertex z of the cooper-
ative subtree, Theorem 6 provides the method of construction of strongly subgame-
consistent distribution procedure of the imputations from the core, equal B;(zg) by
condition (37). Notice that in a general case not all the imputations from the core
can be realised using distribution procedure {3(z) : z € CZ} defined above.

Example 1.3 Consider stochastic game G(zo) defined on graph ¥ (zo) depicted
on Fig. 3.

The set of the vertices of graph ¥(zo) is Z = {zo, ..., 25 }. The set of the players
is N ={1,2,3}. In each vertex of graph G(zp) the three-person normal-form game
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Fig. 3. The tree ¥(zo).

I'(2), z € Z, is defined. The payoff matrices are

reo+ (30650 (LD ED))
res (a0 o) (53 E00))
e (G0 603) (220619))
re: (G i) (Gonein))
reo (9 608) (G50 652))

In each game the first player chooses rows, the second one chooses columns, the third
one chooses matrices. The strategy set of player ¢ € N in game I'(z) is A7 = {1,2}.

Define the probabilities of transition from all vertices to the following ones. If in
game I'(zg) the action profile (1, 1,1) is realised, stochastic game G(z() transits to
vertex z; with a probability of 1/3 and to vertex zo with a probability of 2/3. If any
action profile different from (1,1,1) is realised (arrow = means the deterministic
transition), the game G(zy) transits to vertex z;. If at vertex zo action profile (2,1,2)
is realised, stochastic game G(zg) transits to vertices z3 and z4 with probabilities
of 1/3, 2/3 respectively. The game G(zp) transits to vertex z; with a probability of
1 from any other vertices.

The probabilities ¢ that stochastic game G(zg) ends at stage k are given:

g1 =05, =0, g=1

To construct the cooperative version of stochastic game we find the cooperative
strategy profile ¢. This profile ¢ prescribes to play action profile (1,1, 1) at vertex zo.
The game ends at stage zo with probability 0.5 and transits to the next stage with a
probability of 0.5. If the game does not end, it transits to stage z; with a probability
of 1/3, at which the players should realise any of action profiles (2,1,1) or (2,2,1), or
with a probability of 2/3 the game transits to vertex zo, at which the players should
play action profile (2,1,2). At vertex zo the game does not end because ¢; = 0 and
transits to the vertices z3 and z4 with probabilities of 1/3 and 2/3 respectively. At
vertices z3 and z4 the game terminates. Therefore, the set of the vertices of the
cooperative subtree represented on Fig. 4 is ¥(2g) = {20, 21, 22, 23, 24 }-



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 161

0

7O\

e

=1

[}

= [

\

Fig. 4. Cooperative subtree ¥(2o) of the game G(z0).

Find the values of characteristic function using formulas (5) with boundary
condition (6) for S = N, (7) with boundary condition (8) for S C N and (9) for
S = @. Calculations are given in Table 9. For further calculations we use package
TUGlab of program Matlab [16].

Table 9. Characteristic functions v(S, z) for G(z), z € {20, 21, 22, 23, 24, 25 } .

z N S{H{23{3} {1, 2}1{2, 3}[{1, 3} {1, 2, 3}
20 | 2|1]15]55 45| 6 |110/9
s 20|13 | 4|3 6
2 |3 1|4/3| T | 6 | 7 | 47/3
s |1 [1|1| 4 | 4| 3 6
2 |Of1]0| 8 | 9 | 5 | 13
z | 2|0]1] 3 | 4| 3 6

Now we define the cores of subgames beginning from the vertices of cooperative
subtree ¥(zp). We also assure that they all are non-empty to use the core as a
cooperative solution of a stochastic game. The systems of linear inequalities and
equities which determines the cores and their graphical representations are given
in Tables 10 and 11. On the figures, the imputation set is depicted as a light-gray
triangle and the cores are dark-grey sets. Notice that at vertices z; and z5 condition
a1 = 2 holds for each element of the core. And the core is the segment connecting
points (2,1,3) and (2,3,1).

For each vertex of the cooperative subtree ¥(z) we define the analogues of the
cores denoted by ACO(z). Remind that for terminal vertices z1, 23, 24 of set ACO(")
coincide with the core CO(-). Systems of linear inequalities and equities determining
sets ACO(zg) and ACO(z2) and also their graphs are presented in Tables 12. Notice
that analogues of the cores ACO(+) are non-empty for all vertices of the cooperative
subtree. First, verify if the core is strongly subgame-consistent if the payments to
the players are realised according to initially defined payoff functions, i. e., verify if
payoff vectors in the vertices of the cooperative subtree belong to the corresponding
sets ACO(+) when the players realise cooperative strategy profile:

K*(1,1,1) = (2,2,2) € ACO(2),
K#(2,2,1) = (2,2,2) € CO(z1) = ACO(z,),
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Table 10. The core for vertices 2o, 21,25 € CZ.

z Core Graph of the core

(2,1,9.2222)

%0 a1+ az

(9.7222,1,1.5) (2,8.7222,1.5)

(20,4)

zZ1,

Z5

a1 +ar+az3 =6

(5,0,1) (2,3,1)

K*(2,1,2) = (1,3,1) ¢ ACO(z2),
K*(1,2,1) = (2,2,2) € CO(z3) = ACO(z3),
K*(2,2,1) = (3,6,4) € CO(z1) = ACO(zy).

We can easily see that at vertex zo the condition of inclusion is not satisfied and we
can’t guarantee strongly subgame consistency of an imputation from the core if the
payments to the players are realised according to initially defined payoff functions.

We show that condition (34) does not hold at vertex zo. Following Definition 16
players may choose any imputation from expected core of vertex z. Let they choose
the imputations: (1.5,3,1.5) € CO(z3) and (0,8,5) € CO(z4), then the sum at the
left-handed term of inclusion (34) takes form:

1 2 3 28 29

(1,3,1) + 3(1.5,3,1.5)+ 3(0,8,5) = (2, 36 > )

and this vector does not belong to the core CO(zz2), which means that condition
(34) does not hold and the core is not subgame-consistent.

Following Theorem 6, the set of vectors 8(z) belonging to ACO(z), z € CZ, is
the distribution procedure of an imputation from the core CO(zp) of initially defined
game. By Theorem 6 we may also conclude that collection of vectors (8(z) : z € CZ)
is not strongly subgame-consistent. For example, consider element from the set
AC(z), z € CZ: B(z0) = (4,1,1), B(z1) = (2,2,2), B(z2) = (3,1,1), B(z3) =
(2,2,2), B(z4) = (3,6,4). Calculate the mathematical expectations of the players’
payoffs if in the vertices of cooperative subtree they are paid in accordance with
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Table 11. The core for the vertices z2, 23,24 € CZ.

(3,1,11.6667)

%2 a1 + a2

(13.3333,1,1.3333) (3,11.3333,1.3333)

(,1,4)

3 ay + az

(4,1,1) (1.4,1)

(0,1,12)

4 a1+ a2

a1+ a2 +az =13

(12,1,0) (0,13,0)

{BC)}:

B@@:(£Ln+ns{§@gay+

_ (362925
“\97979 )"

Obviously, B(zg) € CO(z).

So, we have proposed a method of construction of strongly subgame-consistent
imputation distribution procedure when the core is chosen by the players as a set-
valued optimality principle.

[SVRN )

O&LU+§@zm+§@ﬁAQ}:
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Table 12. Sets ACO(z) for vertices zo and z2.

z  |AC(z) Graphs of ACO(z)

(0.66667,0.66667,4.6667)

%0 a1+ a2

(4.4444,0.66667,0.88889) (0.66667,4.4444,0.88889)

(2.6667,0,2.3333)

05128/3
05220
ag > 1

z2 a1—|—a221/3
[e%1 +053>8/3
052+053>—4/3
ar+az2+az3 =5

(4.0,1) (2.6667,1.3333,1)

3. Cooperative stochastic games with infinite duration

3.1. Noncooperative stochastic games with infinite duration

In this section we consider stochastic games with infinite duration de-
fined by Shapley in the paper (Shapley, 1953a). The main classical results
on noncooperative stochastic games are presented in (Filar and Vrieze, 1997,
Neyman and Sorin, 2003). Similar to the previous section, the game is realised in
a discrete time. The significant difference of this stochastic game from the game
considered in Section 2 is that now the game has an infinite duration, the set of
states which can be realised at any stage is finite and does not change over time.
We define first a stochastic game and then describe the set of strategies and the
payoff function of the player. Notice that the notations of this section which are
widely used in modern literature on stochastic games are a bit different from the
notations of Section 2.
Consider stochastic game G defined by

1. The finite set of players N = {1,...,n}.

. The finite non-empty set of states 2 ={1,...,@};

3. The finite, non-empty set of available actions AY of player i € N in state w € (2.
The action of player ¢ € N in state w € {2 is element ay € A¥. The action profile
in state w € 2 is a vector of players’ actions a¥ = (a¥ : i € N). The set of
action profiles in state w is A% = Ay x ... x A%.

4. The finite payoff function K : [, .y A% — R, for every player i € N and every
state w € (2.

[N]
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5. The transition function p(-|lw,a”) : 2 x AY — A(L) from state w € 2 and
action profile a* € J[,cy AY. Here A(§2) is probability distribution over set 2.
6. The initial state is determined by probability distribution

o = (Tgy ey Ty oo TS,

where 7§’ is the probability that state w is realised at the first stage of the game,
Zweﬂ 5 = 1.

Time is discrete and game G lasts for an infinite number of stages denoted by
t. Stochastic game G is realised in the following way:

1. Prior to the game, an initial state w’ is chosen along the probability distribution
To, i. €., with probability 7§’ stochastic game starts with state w.

2. At the first stage, state w is realised and players simultaneously choose their
actions. Player i chooses action ay € AY, i € N. Thus the action profile a¥ =
(@Y i€ N) e AY x ... x A% is realised at the first stage. Player i receives
payoff K¥(a*). Once a* is announced for all players, then the game transits to
the next state w’ € 2 with probability p(w’|w,a®).

3. At the second stage, player i € N chooses action a¥” € A¥". Thus, at the second
stage the action profile ¥’ = (0¥ :i € N) € AY x ... x A% is played and
player i receives payoff KZ-WI (a“/).

4. The game further is played in the way described above.

Finally, let a¥ € A(AY) be a mixed action of player 7 in state w, where A(AY) is a
probability measure over A¥.

Definition 17. A discounted stochastic game G is defined as

G = <N’ 1, {AT}iGNa{K;U}iGN’W(Jv{p(wnlwlvaw/)} W Ww'en ,6> , (38>
weN wen W’ W’
a* €]];en A7

where § € (0,1) is a discount factor, the same for all players.

Every state w is determined by n-person normal-form game
(N AAY Yen A K Yien)-

A change of state may correspond to the presence of (positive or negative) shocks
of different size. They will be reflected on the players’ payoffs.

The subgame of noncooperative stochastic game G beginning from stage k is
denoted by G(k).

To solve a stochastic game, we need to define the class of players’ strategies and
the calculation method of players’ payoffs in the whole game. First, define players’
strategies and distinguish two classes of strategies:

e The behavior strategy of player i € N is a function ¢; = {¢;(k)}?2, and
wi(k) = h(k) x 2 — A(AY), where h(k) is a history of stage k, which is
given by a collection of pairs consisting of states and action profiles which
were realised at the previous stages until stage k: ((w(1),a(1)), (w(1),a(2)),

. (w(k—=1),a(k —1))). Denote the set of behavior strategies of player i by
@, and behavior strategy profile in stochastic game by ¢ = (p; : i € N).
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e We also consider the subset of behavior strategies set, that is, the set of sta-
tionary strategies. A stationary strategy prescribes a player to choose the
same strategy in the same state independently of the history of the stage.
Denote a stationary strategy to distinguish behavior (not necessarily sta-
tionary) and stationary strategies. Denote a stationary strategy of player i
by n = {mi(k)}32q, ni(k) : 2 — A(AY). Denote the profile of stationary
strategies in a stochastic game by n = (1; : ¢ € N), and the set of stationary
strategies of player ¢ by H;, while H; C &;.

Now we determine players’ payoffs in stochastic game (1):

e For the finite number of stages ¢ a payoff of player 7 in a stochastic game is
determined as a mathematical expectation:

t
w 1 w(k
Ei(p)=E (1)#}2 ZKz ®(a(k)),
k=1

i. e., a mathematical expectation of a payoff with respect to the initial state
w(1) and strategy profile ¢, while Kf(k)(a(k)) is a payoff of player 7 in state
w(k) realised at stage k, a(k) is a strategy profile in state w(k) realised at
stage k in accordance with strategy profile .

e In case of infinite game G, a discounted payoff of player 7 is given by

Ei(p) = E“1V)? i oF K (alk)) (39)
k=1

as a mathematical expectation of the payoff with respect to the initial state
w(1) and profile .
We formulate the main results on the existence of the values of stochastic games
with two and more than two players which are used in the present work.

Theorem 7. (Shapley, 1953a) A two-person zero-sum stochastic game with dis-
count factor § € (0,1) has a value for any initial state. Moreover, players’ optimal
strategies are stationary.

This result was extended on the case of nonzero-sum games with more than two
players by Fink and Takahashi in 1964:

Theorem 8. (Fink, 1964, Takahashi, 1964) A nonzero-sum stochastic game with
many players with discount factor § € (0,1) and finite set of states and strategies
has a value for any initial state. Moreover, there exist optimal stationary strategies
of the players.

3.2. Stochastic games in stationary strategies

In this section we provide formulas to calculate players’ payoffs in a stochastic
game when players use stationary strategies. Since the set of states (2 is finite, there
are only @ subgames G“*,..., G, each with initial states wi,...,w respectively,
because stationary strategies prescribe the same behavior in the same states even
with different histories of the current stage. We denote a non-cooperative stochastic
subgame in stationary strategies with initial state w € {2 by G¥.
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We now define the @ x w-matrix of transition probabilities in G:

p(wi|wr,a*) ... p(@|wr,a*")

w2 T w2
) = | Pl v ) 40

p(w1|<D, aG)) ce p(@|(;), a@)
which is a function p(w'|w,a”) of a stationary strategy profile n = (n; : i € N)
such that 7;(w) = a¥ € A(A¥), w € 2,7 € N, and a* = (a“{, ...,a¥) for any state
w € £2. Matrix entry (40) which is the element of the j* row and the j** column
is the probability to transit from state 5" to state j*" when players use strategy

profile n = (n; : i € N).

We simplify equation (39) for player i’s payoff, i.e., we calculate his expected
payoff in an explicit form. Let E¥(n) be the expected payoff of player ¢ in subgame
G*“ when profile n = (m1,...,7n,) in stationary strategies is adopted. The vectorial
form of the expected payoffs is E;(n) = (ES* (1), ..., EX(n)T

Hence a player i’s indirect utility function in subgame G satisfies the following
recurrent equation:

Ef(n) = Y)Y p(|w,a)EL (). (41)
w'enN
Given a matrix form of transition probabilities (40), rewrite equation (41) in a
matrix form:
Ei(n) = Ki(a) + 011 (n) Ei(n), (42)
where K;(a) = (K (al), ..., K¥(a®))T. Equation (3) is equivalent to the equation

Ei(n) = (18I (n)"" Ki(a),

where I is an identity matrix of size @ x @. Matrix (I — 611(n))” " always exists for
discount factor § € (0,1). The payoff of player i in game G taking into account the
initial state with distributed with 7y in stationary strategies is

Ei(n) = moBi(n) = mo (1= 011 (1))~ Ki(a). (43)
3.3. Cooperative stochastic games with infinite duration

We now develop the cooperative version of stochastic game G. Suppose that players
decide to cooperate by forming a grand coalition N with the aim to maximise
total payoff. The existence of maximum of the discounted joint payoff follows from
theorem proved in (Shapley, 1953a), according to which the cooperative strategy of
the grand coalition that yields the maximal payoff is stationary. Denote the profile
of pure stationary strategies of player i as 1; € H;, where H; C @;.* The mixed
stationary strategy is denoted as 7); € I—L-, with H; C H;.

A cooperative strategy profile or cooperative solution maximising the sum of the
expected players’ payoffs in G is denoted as n* = (77’{, . ,77;*1), where®

E E 44
e, =y (44)
ieN €N i€EN

4 From now on we use the notation 7; if player i uses the stationary strategy in the
game. When a player ¢ uses a behaviour strategy (not necessarily stationary), we use
the notation ;.

® Without loss of generality we may find the maximum in equation (6) over the set of
pure actions of coalition V.
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In order to define the cooperative solution of the stochastic game, we deter-
mine the values of a characteristic function for any coalition S C N. This func-
tion describes how much collective payoff players can gain by forming a coalition.
We denote the characteristic function as V(S) = (V«1(S),...,V¥(S)). Following
(Kohlberg and Neyman, 2015), let V(S) be the minmax value of two-person zero-
sum game Gg between coalition S and coalition N\S.® Before introducing char-
acteristic function, we first define the pure stationary strategies of coalition S and
N\S as ns € Hs = [[;c5 Hi and nn\s € Hy\g = HieN\S H;, respectively.

Remark 5. When we determine the characteristic function V(S), S C N, we as-
sume that players in S play in the interests of the coalition. Therefore, the actions
and strategies of the players in S are correlated (Aumann, 1974).

In state w € 2, the correlated actions of the players from coalition S are a% €
A(A%) where A% = [[,cq A7. The correlated stationary strategy of players from
coalition S and N\S are 7s(w) € A(Ag) and 7y s(w) € A(A‘J“V\S), respectively.
Let the set of correlated stationary strategies of coalition S and N\S be Hg and
H N\s, respectively.

Begin the construction of the characteristic function by examining the grand
coalition, S = N. The Bellman equation for the characteristic function V(N) rep-
resents the discounted payoff of N:

V(N):neml_?xHZEi =Y Ki(a") + I (n")V(N), (45)
ieN  iEN

i€EN

where n* is the cooperative strategy profile satisfying condition (6) and n* (w) = a“*,
w € 2, and K;(a*) = (K (a“1), ..., K¥(a®*))T. From (4), we can infer the matrix
form of V(N):
V(N) = (I—=6I(n")"" Y Ki( (46)
ieEN

where T is an identity @ x @-matrix and IT(n*) is the @ x @-matrix of transition
probabilities in G when players use the strategy profile n*. Matrix IT(n*) is described
in details by (40).

We define next the value of V¥(S) of coalition S as the minmax payoff in the
subgame G% starting from state w:

V¥(S) = min maxz EY (ns,Mn\s) = max min ZE (Ns, NN\ 5)- (47)

771\7\5 ns s UN\S

In equation (9), the maximum in min max ) E¥ (ns,nN\S) is found over the set
invs 1S jes

of pure strategies of coalition S, while the minimum in max min ) E(ns,naz\s)
fNs MN\S icS

is found over the set of pure strategies of coalition N\S.
The Bellman equation for the characteristic function V¢ (S) is

Ve(S)= min  max » EP(ns,ins) =) EY(ns,in\s)
fin\sE€Hn\s 15 EHs ics \ ; \
=Y K a5e) +0 Y p (Wl (@%,a%05) ) V(S), (48)
€S w'en

5 The existence of the minmax value of two-player discounted stochastic game is proved
by Shapley (1953a).
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where (a§, a3 5) is a profile in correlated actions in state w € {2 such that ng(w) =
agv ﬁN\S(w) = é(fv\sv and Kl(agvéuj\)[\s) = (K:J] (agl ) éb]?\s)a e aKi@(aga é?v\s))
We then rewrite equation (48) in a matrix form:

V(S) = (I— 0 (ns,ins)) Y Ki(a%, 4% 5)- (49)
€S

Finally, we define the characteristic function V(S) for the whole stochastic game
as:
V(8) =mV(S), (50)

for any coalition S C N, where V(S) = (V¥ (S),...,V?(S)), and V¥(S) is the
value of the characteristic function of subgame G* for S.
The characteristic function satisfies two properties. First, for any state w € (2:

V(@) = 0. (51)

Second, the characteristic functions V(S) and V*(S) determined by (10) and (7)-
(51), respectively, are superadditive (Aumann and Peleg, 1960). In other words, for
any disjoint coalitions S, T C N, and SN T = @, the inequality V(S) + V(T') <
V(S UT) holds. Superadditivity implies that the value of two disjoint coalitions is
at least as great when they play together as when they act non-cooperatively. If
superadditivity is not satisfied, then the coalition S U T is not profitable, thus it
will not be formed.”

We are now in a position to define the cooperative version of stochastic game
17 and its subgames.

Definition 18. A cooperative stochastic game G, corresponding to a stochastic
game G, is a set (N, V), where N is the set of players and V : 2 — R is the
characteristic function calculated by (10). A cooperative stochastic subgame G¥
starting from state w is a set (N, V%), where V¥ : 2V — R is the characteristic
function calculated by (7), (9) and (51).

When forming the grand coalition, players should decide not only what strategies
to use to maximise the joint payoff but also how to allocate the total payoff. The
next definitions display the allocation rule or solution (also called imputation) of
GY and G, respectively. To determine an imputation of the joint payoff (6) we need
to determine the values of the characteristic function for any coalition S C N.

Definition 19. An imputation in the subgame GY¥, w € {2, is a vector ¢¥ =

(0f,...,0%) satisfying: (i) > ,cy0f = V¥(N), and (ii) oy > V¥({i}) for any

n A

i € N. The set of imputations in G¥ is denoted as X“.

Definition 20. An imputation in the game G, is a vector ¢ = (71, ..., ), where
G; = Ty, 0p = (0P, ..., 08)T, and (of,...,00) = 0% € X w € 2. The set of

imputations in G, is denoted as X

” The property of superadditivity is not needed and it is often omitted in cooperative game
theory, because in real life there are a lot of motivations to consider both profitable and
non-profitable coalitions. As Aumann and Dreze (1974, p. 233) note, there are arguments
for superadditivity that are quite persuasive, but, as they also note, superadditivity is
quite problematic in some economic applications.
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By Definition 19, an imputation satisfies the following conditions: (i) any player
should obtain no less than she may get by non-cooperative play (individual rationa-
lity condition) and (ii) the sum of components of the imputation equals the value
of the characteristic function corresponding to grand coalition (group rationality
condition). The set of imputations is non-empty in any subgame G¥, w € {2 and in

the whole cooperative stochastic game G., since the characteristic function deter-
mined by equations (4)-(51) is superadditive.

3.4. Principles of stable cooperation

In cooperative games, the solution of a game is determined by an optimality prin-
ciple. The optimality principle is assumed to be the subset of the imputation set.
Therefore, the optimality principle contains one or more than one imputations or so-
lutions of a cooperative game but sometimes it maybe empty. For example, the core
may be empty, then the solution of a cooperative game does not exist according to
this optimality principle. The Shapley value as an optimality principle always exists
and contains a unique imputation. Therefore, the solution of a cooperative game
always exists and it is unique according to this optimality principle. The solution
of cooperative stochastic game means an imputation.® Now we do not consider the
problem of choosing a unique imputation from the set but assume that the optimal-
ity principle contains the only one imputation. The examples of one-point solutions
are the Shapley value (Shapley, 1953b), the Von Neumann-Morgenstern solution
(von Neumann and Morgenstern, 1944) and the nucleolus (Schmeidler, 1969). The
realisation of an imputation in a cooperative stochastic game requires the satisfac-
tion of some principles, which in turn ensure stable cooperation in a game. Following
(Petrosyan and Zenkevich, 2015), we formulate the main principles of stable coop-
eration including subgame consistency, strategic support (or strategic stability) and
irrational-behaviour-proof of the solution of a cooperative stochastic game. Each
principle of stable cooperation is defined and analysed separately.

Subgame consistency. The principle of subgame consistency ensures that in any
subgame cooperative solution is determined according to the initially chosen alloca-
tion rule. This concept deserves a detailed explanation. Players agree on cooperation
before the game and adopt an imputation following the allocation mechanism. Dur-
ing the game, they play a cooperative strategy profile a}, ¢ € N which maximises
their total payoff. In any subgame beginning in a certain state, a player is able to
derive her expected payoff for the remainder of the game. If at some intermediate
stage of the game players decide to calculate their expected payoffs in the subgame
according to the initially defined payoff functions, then most often these expected
discounted payoffs do not coincide with an imputation calculated in accordance
with the initially chosen optimality principle. This means subgame inconsistency
of a cooperative solution (or optimality principle). If for any subgame discounted
players’ payoffs coincide with the imputations calculated in accordance with initial
optimality principle, cooperative solution (or optimality principle) is subgame con-
sistent (see Petrosyan, 1977). To make cooperative solution subgame consistent, we

8 We further consider the case when the solution of a cooperative stochastic game is an
imputation set consisting of more than one imputation.
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propose the transfer mechanism, called imputation distribution procedure (IDP).?
Originally, the idea of IDP was proposed by L. A. Petrosyan for differential games
(Petrosyan and Danilov, 1979).

This mechanism leads to a modification of the players’ payoffs in a dynamic
game. We call the modified game as o-regularisation, where o is an initially chosen
imputation in cooperative game G.. This modified game ensures several advantages
to the players. First, subgame consistency is ensured through the “new” payoff func-
tions. Second, the expected payoffs in the regularised game will be equal to the
components of the chosen imputation . Moreover, the sum of the stage payoffs in
the regularised game is equal to the sum of the payoffs in the correspondent state
of the initial game. For instance, suppose that players choose the Shapley value at
the beginning of the game as an allocation rule. In this case, subgame consistency
guarantees that, in each subgame, the vector of the players’ payoff for the remaining
stages is the Shapley value calculated for this subgame.

Let players adopt cooperative solution in stochastic game, i.e., they choose impu-
tation 0% = (0%,...,0%)T € X% for every subgame G*. The problem is to determine
the transfers that ensure the expected payoff o for player ¢ in every subgame GY%.
If transfers are based on the payoff functions in every state, then players can hardly
expect to get the payoff based on the initially chosen allocation rule. To overcome
this, we propose a rule to transfer the players’ total payoff, based on the method
for differential games (Petrosyan and Danilov, 1979).

Since strategies are stationary, the number of states corresponds to the num-
ber of relevant “different” histories. In turn, when players implement cooperative
strategies in the stochastic game (1), the number of relevant subgames is equal to
the number of possible states. Therefore, we need to determine a vector of transfers
Bi = (B, ... ,Bf’)T for where B¢ is the transfer of player i € N in state w € (2.

Definition 21. The set of transfers {5; }i;en is IDP if the following conditions are
satisfied:

1. In each state w € (2, the sum of the transfers is equal to the sum of players’
payoffs in cooperative strategy profile n*:

S OBy =D Ky (a). (52)

i€EN i€EN

2. The expected sum of transfers to player i € N in the game G is equal to the i*"
component of the initially chosen imputation &.

We then define the conditions of subgame consistency for the imputation and
IDP.

Definition 22. Imputation ¢ = (71, ...,,) and corresponding IDP {j;};cn are
called subgame consistent if the expected sum of transfers to player ¢ in each sub-
game G is equal to the i component of the initially chosen imputation in subgame
G¥ (in accordance with the principle imputation & of the whole game is calculated).

9 Imputation distribution procedure was adapted for the class of discounted stochas-
tic games in (Baranova and Petrosjan, 2006). See Petrosjan and Danilov (1979), and
Baranova and Petrosjan (2006).
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The following statement suggests the method of IDP construction for imputa-
tion o.
Lemma 2. Let imputation & be such that (71,...,5,) € X where 6; = T0;, 0; =
(0t )T and (0%,...,0%) = 0¥ € X¥. Then the collection {B;}icn where B;
calculated by
Bi = (1= 61 (n*))o;, (53)
is an imputation distribution procedure'® in game G.

Proof. Verify the IDP condition:
Y By = Ki(a),
iEN iEN

where a“* is an action profile adopted under cooperative profile n* in state w.
It is easy to show that 3; from (53) satisfies (52). Since ),y ff is equal to
(L—o0l(n*)) > enoi = (I—=08II(n*))V(N), and V(N) is determined by (7), then
equation (52) holds.

The second IDP condition is satisfied since the expected total payoff of player i,
denoted as B;, with new transfer 5 in state w € {2 satisfies the recurrent equation:

BY =Y +6 Z p(w’|w,a”*)Bf/,

w'en
or, in vectorial form:
B; =, +0II(n*)B;, (54)

where B; = (B, ..., B¥)T. Equation (54) is equivalent to:

Bi = (1= 61(n") " Bi. (55)

Given the second condition of IDP and equation (55) we obtain:

o= (1=381I(n") " B, (56)
where 0; = (05,...,09)T, (0¥,...,0%) = 0% € X*. Equation (56) can be rewritten
equivalently as:

Finally, equation (53) equals to:
o; =B + 6 (n")o;. (58)

The second item in the right part of (16) is the expected value of the transfers
calculated for the subgame from the next stage onwards. Suppose that the impu-
tation for each subgame is chosen following the same allocation rule that has been
chosen by the players at the beginning of the game. If players maintain cooperative
strategy profile n*, then the expected payoff of player i with new transfers is equal
to the correspondent component of imputation & in cooperative stochastic game G..

10 Notice that IDP is uniquely defined by formula (53) if optimality principle provides
unique cooperative solution & (e.g., if the solution is nucleolus, the Shapley value or
another single-valued solution). If the cooperative solution is the set of imputations
containing more than one imputation, the method of IDP construction should be mod-
ified (see Parilina and Zaccour, 2015).
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Given Definition 21, for every imputation & = (&1,...,5,) € X, where 5; =
mooi, 0 = (0P, .09 (0%, ..., 0%) = 0% € X%, we can define the regularization
of stochastic game G as follows:

Definition 23. A o-regularisation of stochastic game G (subgame G*, w € (2) is

non-cooperative stochastic game G, (subgame G¥) if, for any player i € N in state
w, payoff function K7 “(a*) is defined as:

bt if a¥ = a“*

K7“(av) =70 ’ 59

) {Ké”(a“), if 0¥ £ 0", (59)

where 3¢ is a component of PDP of player i defined by (53) and a** = n*(w).
Equation (59) determines the modified payoff function for game G.

Remark 6. The o-regularisation changes the payoff functions in any state w € 2
only when action profiles a“* = n*(w) are adopted. We may expect that players
agree to modify the initial payoff functions to be sure that their cooperative solution
satisfies the principle of subgame consistency.

The following theorem shows that the players’ payoffs in o- regularization of initial
stochastic game G satisfy the principle of subgame consistency.

Theorem 9. Let 6 = (51,...,0,) € X be the initially chosen imputation in game
G, where 5; = mooi, 0; = (07,...,09), (o%,...,0%) = 0¥ € X%, then o-

reqularization of stochastic game G satisfies the principle of subgame consistency,
i.e., the cooperative solution & is subgame consistent in game G.

Proof. At the beginning of the game, players choose the following imputation: & =

(G1,...,0,) € X, where &; = w0y, 0; = (07" o (0%,...,0%) = o¥ €

o
X%, A cooperative strategy profile is n*. Consider the o-regularization of game G
determined by Definition 23, thus the set of transfers {8;}ien defined by (53) is a
IDP which follows from Lemma 2. To prove that the o-regularisation of the game G
satisfies the principle of subgame consistency, we need to calculate the discounted
payoffs in every subgame of the game G, when a cooperative strategy profile n*
occurs. Consider any subgame G starting from state w € §2. The discounted payoff

of player 7 in this subgame is:
By () =B7 +6 Y p(w|w,a)Ei(n7), (60)
w'efN

where E;(n*) = (E*(n%),...,E¥(n*))T and E¥(n*) is the discounted payoff of
player ¢ in subgame GY starting from state w when players adopt n*. Equation (60)
can be rewritten in a vector form:

Ei(n") = Bi + 0II(n" ) Es(n"),
or
Ei(n") = (1-611(n")) " Bi.
Since f; satisfies (53), we obtain
Ei(n*) = (=3I (n*)) " (1= 61 (n*)) 03 = 0.

This equation proves that o-regularization of game G satisfies the principle of sub-
game consistency.
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Definition 23 and Theorem 9 provide a method of constructing subgame consis-
tent transfers in every state of a stochastic game. The imputation distribution pro-
cedure S, ..., 3¢ in states wi,...,w ensures that a player i receives the same
expected payoff in game G, (subgame G¥), as she planned to receive in cooperative
stochastic game G. (subgame G%). Moreover, the expected payoff from future trans-
fers is in line with the same allocation rule chosen by the players at the beginning
of the game.

Strategic support. The principle of strategic support ensures that, along the
whole game, an individual deviation from cooperative strategy profile in a regu-
larized game does not yield a higher payoff than cooperation. In other words, it
guarantees the existence of the Nash equilibrium in a regularized game with the
same payoffs that players expect to receive with the cooperative solution (which
was the basis of regularization). This principle was proposed in (Petrosyan, 1998).
We reformulate the principle and then find conditions under which Nash equilib-
rium is subgame perfect (see Selten, 1975) in a regularized game with the payoffs
described above.

The subgame perfectness is important for dynamic games because it allows to
guarantee the existence of the Nash equilibrium in any subgame with which the
players’ payoffs coincide with the cooperative ones. Comparing our approach with
the standard analysis of deterministic (repeated) games, the condition of strategic
support for stochastic (or dynamic) games corresponds to the condition of the ex-
istence of subgame perfect Nash equilibrium in grim-trigger strategies. The main
difference is that, in our setting, players first regularize the initial game by adapting
the IDP to achieve subgame consistency.

Suppose players come to a cooperative agreement, i. e., find a cooperative strat-
egy profile n* that maximises the expected total payoff in the whole game. If a
player deviates from the cooperative strategy profile, then the other players switch
to trigger strategy from the next stage until forever to punish the deviating player.
The strict definition of a behavior strategy used by players in Nash equilibrium is
given below (see formula (63)). Here we assume that a stochastic game is the game
with perfect monitoring, that is, all players know the state of a current stage and
the history of the stage.

To begin with, we define the Nash equilibrium in a regularized stochastic game.
Denote the expected payoff of player i in o-regularisation of subgame G“ starting
from state w as E;”7.

Definition 24. A Nash equilibrium in the regularised game G, is a behaviour
strategy profile o* = (o7, ..., ¢} ) such that, for any player i € N and for any state
w € §2, the condition

EP7 (07 o) = B (9i o) (61)
holds for any behaviour strategy of player i: p; € ®;.

We assume that the behaviour strategy exhibits the following structure. If, in the
history of stage k, all players use their cooperative strategies, then they implement
the cooperative correlated actions also in stage k. Conversely, if before stage k the
individual deviation of a player z € N is observed, then the coalition N\ z punishes
player z. We assume that the punishment ensures that player z’s payoff is at most her



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 175

minimax value in any subgame.!! Notice that, since we focus on a Nash equilibrium,
we need to consider only individual deviations from this profile.'2 If deviation occurs
by more than one member of the coalition, the player may implement any strategy
from the her set of strategies.

We now outline the condition under which the Nash equilibrium with players’
payoffs equal the cooperative ones exists. For convenience, define

F({i}) = (F ({i}), ..., F*({i})",
Fei) = e {0 E oo @2 asi )V (D)}
The following inequality:
o; = (1= 6 (n") "B = F({i}), (62)

compares two payoffs for each subgame: (i) the payoff when players adopt the co-
operative strategy profile in the left hand side, and (ii) the payoff of deviation plus
future punishment in the right hand side. If the first payoff is greater or equal to
the second one, the player gets no benefit from deviation. If this is true for any
player and any state, then the principle of strategic stability is satisfied. This result
is summarised in the following proposition.

Proposition 1. If in an o-regularisation G, such that ¢ = moo, inequality (14)
holds for any player i € N, then there exists behaviour strategy profile © such that
it is the Nash equilibrium with players’ payoffs (G1,...,01)-

Proof. We determine the behaviour strategy profile $ = (@1, ..., $,) where strate-
gies @;, i € N are:

* if w(k) = w, h(k) C h*;

(2), fwk)=w,and Il e[l,k—1],
z€N,i#z: h(l) Ch*, and
(w(l),a(l)) ¢ h*, but
(w(), (aZ(1),an\2(1)) € h*;

any otherwise,

w*x

where a¥* corresponds to the player i’s cooperative action, while a¥(z) € A(AY)
is the player i’s punishment that, together with actions a¥(z) € A(AY), of players
i" # i, i € N\z, forms the action (either in pure or mixed strategies) of coali-
tion N\z against player 2.!3 The proof of the proposition follows from the folk
theorem for stochastic games (Dutta, 1995) using the structure of the behaviour
strategy (63). Notice that we do not define the reaction of players when they ob-
serve the deviations of more than one player. This because we focus here on the

11 The strict definition of the behaviour strategy is given in the proof of Proposition 1.

12 Things change for subgame perfectness. In this case, we need to prove that eq. (13) holds
for all possible histories and all stages. Therefore, we need to determine the strategy of
a player even if more than one player deviates. Strategy (71) defines the behaviour of
the player given any history.

13 Notice that the actions of the players from coalition N\z are correlated.
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Nash equilibrium (not subgame perfect). When more than one player deviates, the
player chooses any strategy from the player’s set of strategies. We now prove that
o() = (P1(4), -+, ®n(+)) determined in (63) is a NE in the stochastic game G,.
Given strategy (63) and provided that all players do not deviate from a cooperative
strategy profile n*, the discounted payoff of player ¢ in the subgame G¥, w € 2, is:

E7 (@) = E¥ ().

Let E;($) be equal to the vector (ES* (), ..., E®())T. Then for any player i € N
the next equation holds:

Ey(@) = (1 3II(n")""B;. (64)

Consider next the profile of strategies (¢.,®Pn\.), when some player z deviates
from strategy .. For any k, there exists I € [1,k — 1] such that h(l) C h* but
(w(k),a(k)) ¢ h* and (w(k), (a}(k),an\-(k))) € h*. Without loss of generality, we
simplify w(k) = w. In words, the first individual deviation of player z occurs at
stage k. We are now able to determine the total payoff of player z in the game G,
with strategy profiles (¢, Pn\.) by

Eza((pm @N\z) = FOEZ(()DZ’ @N\z)a

where

EZ (02, 8n\z) = BP0, Ba) + 057U (02, B ) BT (2, @V\z(). |
65

The first term in the right hand side of (65) is the expected payoff of player z in
the first k£ — 1 stages of the game G,, the second term is the expected payoff of
player z in the subgame of G, beginning from stage k, where EZ’[k"OO)(goz, ON\z)
is the vector (E1 (., On\z)s - BT (2, @N\z))T, with EZ“(¢., P\ -) being the
player z’s expected payoff in the regularised subgame G% beginning at state w. Since
there are no deviations from a cooperative strategy profile n* up to stage k — 1, the
following equalities hold:

Eg,[l,kfl]((pm@N\z) = Ezgv[l,kfl] (),

Iz, One) = T ().

We now find the discounted payoff of player z in the subgame G% beginning with
stage k and when state w(k) is equal to w. The following formula takes place:

EZ°(¢2, @az) = K2(02,050,) + 0 Y plw'w, (a2, a5V ({z)),  (66)
w'efn

where a¢ € A(AY). Players from the coalition N \ z punish player z by playing
the strategies which allow player z to obtain her minmax payoff according to the
definition of strategy profile @. In (66), the value of the characteristic function
V' ({2}) is determined by (9). Since the expected payoffs of player z in the strategy
profiles @ and (¢, ®n\-) do not change up to stage & — 1, then a deviation may
increase player z’s payoff only at the expenses of the expected payoff in the subgame



A Survey on Cooperative Stochastic Games with Finite and Infinite Duration 177
G¥, w € £2. In particular, the strategy profile (¢.,Pn\.) ensures the following
expected payoff of player z from stage k:

F({z}) =  max ){K?(d?aa%\z )46 Y p|w, (@5, a3 )V ({Z})}- (67)

awveA(Ay e

According to the definition of PDP, the expected payoff of player z in the regularised
subgame G with a profile of strategies @(-) can be found from:

EZ(3) = (I— 8 (n"))"'B: = 0, (68)

where E9(p) = (E2“1($),...,E2%($))T. Taking into account (14) from (67), (68)
and the above discussion we get

E7 (@ ) E?7 (‘pzacpN\z)

which is satisfied when inequality
= ([ =611 (") ™" B. > F({z}) (69)

is true. In inequality (69) is satisfied for any player z € N, a player is not willing to
deviate from the cooperative strategy profile in any subgame of the o-regularisation
of game G.

Thus the behaviour strategy profile (63) is a NE in the o-regularisation of game
G. The discounted payoff of 7 in the game G, with profile of strategies @ is equal to
i, where &; = mo;, while o; = (07, ... ,crf’)T consists of i** components of impu-
tations 0“1, ..., 0 derived from the cooperative subgames G, ..., G* accordingly.
Notice that the players’ strategies used in a punishing regime of the behaviour
strategies (63) are not individually rational, i.e., player ¢ punishing the deviated
player z needs to implement the strategies minimizing the payoff of player z in a
subgame which may be not profitable for player ¢ and may motivate player i to devi-
ate from strategy profile formed by (63). Therefore, the strategy profile determined
by strategies (63) is not subgame perfect.

We investigate now the conditions to obtain a subgame perfect Nash equilibrium
(SPNE) of the o-regularisation of G. To do so, we need to determine the behaviour
strategy profile such that, for any state occurring in any period with any history,
individual deviation is not profitable.

We assume that, if the history of the stage differs from the cooperative history,
then all players implement a Nash equilibrium of the game G denoted by 7"¢ =
(npe, ..., 7€) such that 77'¢(w) € A(A¥).1* Again for convenience, define

Q({i}) = (@ ({i}),...,Q“({i})",

w > — K(—U AL{J’ w* . 5 ! , EUJ ne ,
(i) =, mwx (K x40 T ptlonat,ai B () |

and
= ([ =3I (n") "' B = Q{i}). (70)

14 In the case of multiple Nash equilibria, one of them should be chosen for the realisation
of the punishment. Notice that this can be implemented because players use correlated
strategies.




178 FElena Parilina

The condition of existence of a SPNE are summarised in the following proposition.
The validity of inequality (70) implies that the principle of strategic stability holds
when the Nash equilibrium is subgame perfect.

Proposition 2. If, in an o-regqularisation G, such that 6 = moo, inequality (70)
holds for any player i € N, then there exists behaviour strategy profile ¢ which is a
SPNE with players’ payoffs (G1,...,0n)-

Proof. The proof is similar to the proof of Proposition 1 using the structure of the
“new” strategy profile. Determine this behaviour strategy profile as ¢ = (@1,...,9n)
where strategies ¢;, ¢ € N are:

71(h(k)) = { if w(k) = w, h(k) C A"

71
a;’"e, if h(k) € h*, (71)

where a;" € A(AY) is player’s i’s punishment, which can be either in pure or
mixed strategies. Notice that, if a multi-player deviation is observed in the history,
all players implement 7™°.

Irrational-behaviour-proof. Subgame consistency and strategic support assume
that the players are fully rational. However, in reality cooperation may be broken
down by irrational reasons. For instance, a player may use irrational acts to extort
additional gains if some circumstances allow it. Refusal of other players to yield to
his extortion would result in the dissolution of the cooperative scheme. Thus in this
case, a deviation would imply an “irrational behaviour.”!?

D.W.K. Yeung proposed a condition'® under which, even if an irrational be-
haviour emerges in the game, a player is certain to obtain at least her individual
payoff (Yeung, 2006). This procedure can be explained as follows. Suppose two dif-
ferent scenarios. In the first scenario, a player cooperates until a certain period, and
then the cooperation breaks up. In the second scenario, a player plays individually
during the whole game. If the payoff in the first scenario is not less than the payoff
in the second scenario, then the principle of irrational behaviour proof is satisfied.
The following definition provides the condition to satisfy this principle.

Definition 25. Cooperative solution ¢ and the corresponding IDP satisfy the prin-
ciple of irrational-behaviour-proof if

EZ[1, k] + 6" I (" )V ({i}) = V({i}), for every i € N and any k = 1,2,..., (72)

where E?[1, k] is the expected player i’s payoff at the first k stages in o-regularisa-
tion G .

The underlying assumption is that, before the beginning of each stage, players
know if the cooperation has broken down or not, so that the information is not
delayed. In the left hand side of inequality (15), the first term is equal to the
expected value of player i’s payoff if, in the first k£ stages, players play cooperative
strategy profile n* and o-regularization of game G, is made. The second term is
the expected payoff of player i from stage k + 1, when the cooperation breaks up.
The right hand side of (15) is the payoff of player i if she plays individually from
the start onwards.

15 Note that it is possible to formulate an analogous condition for repeated games.
16 The so-called Yeung’s condition or principle of irrational- behaviour-proof was adopted
for linear-quadratic games in (Tur, 2014, Markovkin, 2006).
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Theorem 10. If inequality
(I—oII(n"))(oi = V({i})) 2 0 (73)

holds for any i € N, then the cooperative solution & and the corresponding IDP
{Bi}ien satisfy the principle of irrational-behaviour-proof.

Proof. In what follows, we show that condition (73) is sufficient for inequality (15)
to hold for any k£ = 1,2,.... The proof is based on the mathematical induction
method. First, we rewrite (15) for & = 1. Then we transform (73) by considering
definition o; and using IDP (56). We get

V({i}) < Bi + 1 (n")V ({i}). (74)

The inequalities coincide and it proves Theorem for k£ = 1.
Suppose that (73) implies (15) for & = I. Rewriting (15) for k£ = [ we yield:

V({i}) < Bi+ ...+ 8 I ) B + 0U T (") V ({i)). (75)
We adopt the same procedure for k = [ + 1. Inequality (15) for k =1+ 1 is:
V({i}) < Bit ...+ 8T () Bi + 8T () V ({4}). (76)

Next we need to prove that, if (73) holds, then (15) holds for & = [ + 1. After
transformation the right hand side of (76) is:

Bi+ 61 (n*) {Bi + 6 I (n*)Bi + ...+ 6" I (n*)B; + ' 1T (n*)V ({i}) } .

Taking into account (75), the expression in braces is not less than V' ({i}). Therefore
the right part of (76) is not less than §; + 611 (n*)V ({i}). From equation (53) and
(73), we get (15) for k =1 + 1, which proves the theorem.

Corollary 1. For irrational-behaviour-proof principle it is sufficient that for each
i € N the following inequality is true:

Ki(a) = B; <6 (o — v ({i})) (77)
T
where K;(a) = [ max K'(a**|af"),..., max KZ(a“*|a?) | , and
aleAst af €AY

max K¢ (a¥*||a¥) is the mazimal payoff of player i which he obtains deviating

ay €AY

from action profile a®* which is the part of cooperative strategy profile n* satisfying

condition (6), and a = arg max K¢ (a“*||a¥) for each state w € 2 and each player
ay €AY

i€ N:

T
oMt = <Inin oY, ..., min U‘i") ,

*

v wen wen

wes? wel?

ymax ({7}) = (max Ve ({i}), ..., max V® ({i}))T .

Proof. Let sufficient condition (77) be satisfied. It can be rewritten in the following
way: .
Bi + 607 = Ky(a) + oV™*™ ({i}) . (78)
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Estimate the left- and right- hand parts of inequality (78). As matrix of transition
probabilities IT(n*) is stochastic, we obtain:

Bi+ 00" = B + 611 (n")o™™ < B; + 611 (0" )0 (79)
For the right-hand side of inequality (78), the equity is true:
K;(@) + 0V ({i}) = Ki(a) + S (V™™ ({i}), (80)

where H(czz) is a stochastic matrix, and 77 = (ﬁz :4 € N) is a profile in stationary
strategies such that

- arg max II(n*|[n;)V ({i}), ifj =i
nj = ni€H; o '
77;7 if J 7é (3
Therefore, we have the inequality:

Ki(a) + 01 (V™™ ({i}) = max Ki(a” i) +0 max {IT(n"|ln:)V ({i})} >

Jnax {Ki(a™lai) + 01T (n"[[n:)V ({i})}- (81)
The inequalities (78), (79), (80) and (81) implies condition (73). Therefore, by
Theorem 1 the principle of irrational-behaviour-proof is satisfied.

3.5. Existence of stable cooperative solution

In this section we discuss the conditions guaranteeing the existence of a stable
cooperative solution. First, we need to mention that the allocation rule adopted
should give a non-empty subset of the imputation set. Cooperative solutions such
as the Shapley value or the nucleolus always exist and we may calculate them for
any subgame using the values of the characteristic function given by (7), (9) and
(51).

The existence of a subgame consistent, cooperative solution follows from Theorem
9 and the method of construction of IDP for &. For a given cooperative solution &,
the regularisation of a stochastic game determines new payoff functions to players in
order to satisfy the principle of subgame consistency. Hence, the players’ discounted
payoffs in o-regularisation of the initial game are equal to the components of coope-
rative solution &, which is subgame consistent.

Thus, if the payments to the players are modified through o-regularisation, then
subgame consistent cooperative solution ¢ exists in general.

To verify whether cooperative solution & satisfies the principle of strategic sta-
bility and irrational-behaviour-proof, we need to check that the following system of
inequalities holds:
0s = (1= 311(r") ™ i > F({i}), i € N, )
(I 51I(n*))(o: — V({i}) > 0, i € N.

These conditions on discount factor § are similar to those necessary to prove that a
cooperative strategy profile is SPNE in repeated games. This system is non-linear
with respect to  and the solution of the system cannot be obtained in an explicit
form.
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However, we may state the existence of a stable cooperative solution for the
class of stochastic games in which the cooperative strategy profile coincides with
the Nash equilibrium and the players are symmetric. In this case, the Shapley value
satisfies the principles of stable cooperation. Further, we examine the solution of
system (82) on a specific class of stochastic games with two states and two players.

Example 3. Stochastic game of competition between asymmetric firms.

Noncooperative game. Consider Cournot duopoly with asymmetric firms. De-
scribe it with a stochastic game setting like Prisoners’ Dilemma. Let the set of states
be 2 = {wy,ws}, where w; = (N, A7, AS7 K7, Ky7), j = 1,2,and A}’ = {C;, D;}
is the set of actions of player i = 1, 2. Strategies C; and D; stands for “collude” and
“deviate”, respectively. For state wy, players’ payoffs are:

C1 Dy
C1 ((7, 7) (1,8))
D1\ (8,1) (4,5)

whereas for state wo players’ payoffs are:

Cy D
Cyf (9,9) (1,10)
Dy ((16.5, 1) (6, 5))

State wy can be interpreted as a market with a low demand, and state wy as a mar-
ket with a high demand. Both one-shot games have the unique Nash equilibrium
when both firms deviate with outcomes (4,5) and (6,5) in states wq and ws re-
spectively. Conversely, the cooperative action profile that maximizes the sum of the
payoffs are “to collude” with outcomes (7,7) and (9,9) respectively. When playing
the cooperative action profile, players get equal payoffs, but in the Nash equilib-
rium outcome they obtain asymmetric payoffs. In particular, with a low demand
Firm 1 has a lower payoff than Firm 2, and with a high demand Firm 2 has lower
payoff than Firm 1. This scenario could be interpreted as the result of technical fea-
tures of firms’ production. For instance, Firm 2 can be endowed with a production
technology being more efficient in producing low levels of output.

In state ws, players also differ in the profiles when one firm “colludes” and the
competitor “deviates”. In particular, Firm 1’s deviation payoff is larger than Firm 2’s
one. Hence the asymmetry of the players influences the cooperative payoff imputa-
tion. Another feature of state ws is that, when both firms collude, their summarized
payoff is not much larger the one in action profile (Dz, C2) (18 against 17.5). There-
fore, if the probability of transiting from profile (D2, C3) to state w; is larger than
from profile (Cq, Cs), then players may agree on playing profile (D, Cs) to avoid
transition from high to low demand state.

Let transition probabilities from states w; and ws be

(0.3,0.7) (0.9,0.1) (0.9,0.1) (0.4,0.6)
((0.4,0.6) (0.3,0.7)> : <(0.1,0.9) (0.3,0.7))

where the element (k,[) of the matrix consists of transition probabilities from state
wj to states wi, w2, on condition that player 1 chooses actions k' and player 2
chooses [*". We may mention that the probability of transiting to state w; in action
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profile (Cy, C5) is much higher than the probability to transit to this state in action
profile (D3, Cs), that is 0.9 contrary to 0.1. Let the discount factor be § = 0.99 and
the vector of the initial distribution over the set of states be mg = (0.5,0.5).

Cooperative game. Determine cooperative game G, based on stochastic game G.
For it, we compute cooperative solution n* = (n},n3) in stationary strategies using
(5) and (6). We obtain a unique stationary strategy ni = (C1, D2) for player 1,
and 13 = (C4, Cy) for player 2 which give maximal total players’ payoff V ({1,2}) =
moV ({1,2}) = 1704.61. Following this profile, in state w; the profile of cooperative
strategies (when both players collude) gives payoff 7 for each firm. In state wq, with
a cooperative strategy profile, Firm 1 deviates and Firm 2 colludes, and the payoff
of firm 2 is less than its payoff in the Nash equilibrium. But this will be compensated
by Firm 1 when they apply an imputation of their joint payoff. Therefore, the values
of a characteristic function for a grand coalition are

E(idl( *)+E§"1( *) . 1702.43

By definition (51) the values of characteristic function for the empty set are zero:

V(g) = (8) .

Calculate the values of characteristic function V(S) = (V¥1(S), V«2(S5)) for coali-
tions S = {1} and S = {2} using (7):

538.60 500.00
V({1 = (540.60) » V({2h = (500.00) ‘
These are Firms’ payoffs in the Nash equilibrium when both firms deviate in all

states, i.e., they adopt strategy profiles (D1, D1) and (D2, D2).
Using (10), we may calculate V' (S) for the whole game and all coalitions:

V() =0.00, V({1}) = 539.60, V({2}) = 500.00, V({1,2}) = 1704.61.

Thus, we determine cooperative stochastic subgame G’ as the set (N,V«i(.)),
j = 1,2, and cooperative stochastic game G, as the set (N, V(-)).

Cooperative solution: the Shapley value. We suppose that players choose the
Shapley value as a cooperative solution of their total payoff in cooperative stochastic
game G, and in all subgames G’ , j = 1, 2. For two-player game the Shapley value
is calculated by formula:

Vert,2h) - ver({1}) - V“”({Q})’

ot = Vi) + 5

where i = 1,2 and j € {1,2}, j # i. The Shapley values in subgames are
~(870.516 ~(831.916
717 \873.698)° 727 (833.098)°
Then taking into account the vector of initial distribution 7y, we are able to deter-
mine the Shapley value & in the whole game G, by Definition 20:

& = (51,02) = (872.107,832.507).
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Subgame consistency. Now we verify if the Shapley value satisfies the principles
of stable cooperation and begin with subgame consistency. If firms receive stage
payoffs according to their initially defined payoffs, then their discounted payoffs
in the whole game will be equal 1526.809 and 177.805 which are different from
the components of the Shapley value which are 872.107 and 832.507. Define the
imputation distribution procedure or transfer payments to the players such that they
finally receive the components of the Shapley value and the imputation distribution
procedure is subgame-consistent. Using that & equals mpo and equation (53), we
obtain IDP:

1= (1= a1 o = (g )« e = (11167 )0 = (150).

Define o-regularisation of initial stochastic game G using IDP and Definition 23. We
redefine payoff functions of the players in the initial game in all states when players
adopt cooperative strategy profile substituting the payoffs by corresponding com-
ponents of the IDP. Therefore, players’ payoffs in states w; and wy correspondingly
equal:

)

(1,8)
(8,1) (4,5))’
1,10

( (9,9) (1,1 )>
(9.052,8.448) (6,5) /-
In a regularized game in the state with a low demand (state wi), both firms adopt
action “to collude” and receive payoffs (6.5,7.5). Notice that their payoffs in the
initial game are (7,7). Therefore, Firm 1 gives 0.5 to Firm 2. In the state with a
high demand (state ws) Firm 1 plays action “to deviate” while Firm 2 “colludes”.
This behavior is prescribed by the cooperative strategy profile. In state ws players’
payoffs are (9.052,8.448). Notice that the payoffs in the initial game are (16.5,1).
Therefore, Firm 1 gets 16.5 — 9.052 = 7.448 from Firm 2. If the regularization of
the initial game is made by the above described method, the Shapley value and the
corresponding IDP are subgame-consistent.

Strategic support. We now check for strategic support of the Shapley value, i.
e., we check if Firms have benefits from individual deviations from the cooperative
strategy profile. First, consider state w;. As the action profile played in cooperation
is not the Nash equilibrium, then the players may have benefits from deviation. We
verify if the inequality is true:

((6.500, 7.500) (1,8

oyt = Fr({i}),

for each i = 1,2, where

P = o, {K:% 9 D P, (@ RV (1 }}
aftalt” “

Inequality (14) for Firm 1 is written in this way:

538.60

870.516 > 8 +0.99 (0.4 0.6) <54o 60

) = 542.402,
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and for Firm 2:

831.916 > 8 4 0.99 (0.9 0.1) (288'88) = 503.

In state wsy, cooperative action profile (D, Cs) is the Nash equilibrium. Therefore,
players can’t increase their payoffs by deviations. Therefore, we may conclude that
inequality (14) holds for state ws. The condition of strategic support is satisfied.

Irrational-behavior-proof. To verify the condition of irrational behavior proof, we
need to compare players’ payoffs in two cases:

1) A firm plays individually during the whole game,

2) A firm cooperates with the other firm until some step, and after this it starts
playing individually.

Notice that in the second case, when the firms cooperate, they receive payoffs in
accordance with IDP, constructed on the basis of thee initially chosen cooperative
solution.

If the player’s payoff in case 1) is not greater than his payoff in case 2), then the
principle of irrational behavior proof against irrational behavior is satisfied. This
has been proved in Proposition 1, since

(L= 311 (")) (o1 = V({1})) = (1= 61T (")) (02 = V({2})) = @ZZQ) >0

3.6. Strong transferable equilibrium

Theorem 1 can be generalized to the case when several players deviate, i. e., we may
prove that if the condition similar to inequality (14) is satisfied in o-regularization
G, of stochastic game G, there exists a strong transferable equilibrium with payoffs
(G1,...,0n)- In this case, players can implement a specially constructed profile in
trigger strategies, where as a punishment for deviated coalition, not deviated players
will implement trigger strategies that allow a deviated coalition to obtain a minimax
payoff in any subgame. Define a strong transferable equilibrium and prove a theorem
similar to Theorem 1.

Definition 26. (Petrosyan and Kuzutin, 2000) We call profile ¢ = (¢1,...,¢n)
strong transferable equilibrium in regularized game G, if for any coalition S C N,
S # @, inequality
STEN@) =D EN($ ] ¢s) (83)
i€S =
holds for any behaviour strategy of coalition S: w5 = (¢i : i € S) € [[;c4P:. Here
E?(-) is a discounted payoft of player ¢ in o-regularisation of game G.

We will prove a theorem allowing us to obtain a condition on the game param-
eters for which in regularized game G, there exists a transferable equilibrium with
players’ payoffs equal to the corresponding components of the cooperative solution
according to which the initial stochastic game is regularized.

Theorem 11. If in regularized game G, such that cooperative solution satisfies
condition ¢ = myo, the inequality holds:

Y Bz (I8 (n")F(S) (84)

€S
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for any coalition S C N, S # &, where F(S) = (F““ (9),... ,F‘D(S))T,

F(8) = max K¢ (a** || a%)+ 0 W'lw, a* )V (S }, then in re-
) azegsamw{% @ 1 6§) 45 5 pwlona )V (8)
ag#ag”

gularized game G, there etists a strong transferable equilibrium with players’ payoffs
(617 cey 6'77.)

Proof. The proof of the theorem is close the proof of Theorem 1 but instead of
strategy (63) we use the following behaviour strategy ¢., i € N:

as*, if w(k) = w, h(k) C h*;
ay’(S), ifw(k)=wand I e€[l,k—1],
SCN,i¢S:h(l)Ch* and
(w(l),a(l)) ¢ h*, but
(), (a3(0), axrs (D) € b
any otherwise,

w*

where a¥* is an action of player i in a cooperative mode, while a¥’(S) € A(AY) is
an action of player 7 in a trigger mode which jointly with actions a%’(S) € A(AY)
of players i’ # i, i € N\S forms an action of coalition N\S against coalition S and
allows coalition S to obtain minmax value V¥ (S) in subgame G“.

3.7. Strongly subgame consistency of the core

Now suppose that the solution of a cooperative stochastic game is the subset of
the imputation set that contains more than one point. For definiteness, let such a
solution be the core. We formulate the problem of strongly subgame consistency of
the core and propose sufficient conditions for strongly subgame consistency of the
core for stochastic games with infinite duration given by (1).

Suppose that the cores of stochastic game G, and any subgame G¥, w € {2, are
nonempty. In cooperation, players agree on the joint implementation of cooperative
strategy profile n* and expect to obtain the components of the imputation belonging
to the core CO. Reaching intermediate states w € (2, playeri € N chooses action a*
in accordance with cooperative strategy n; and gets payoftf K¢ (a**). If the players
recalculate the solution, i.e., they find a solution of cooperative subgame G¥, then
the current solution will be the core CO%. It would be reasonable to require that
the payoff received by a player in state w summarized with the expected sum of any
imputations from the cores C’O”/, w' € 02, following state w, would be an imputation
from the core COY. If this property holds for any state w € (2, then the core of
cooperative stochastic game G, is strongly subgame-consistent.

To determine a strongly subgame-consistent core, we define the so-called ex-
pected core in state w, i.e., we define the set of expected imputations belonging to
the cores which are the solutions of the following subgames. For each state w € (2,
we define the expected core:

EC(w) = {cr(w) = Z p(W'|w,a* )0 | 0¥ € C'O“’/} . (86)

w'enN

Set FC(w) contains vectors o(w) which are mathematical expectations of all possible
sets of the imputations from the cores of subgames starting in states which are
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realised after the current state with respect to probability distribution
{p(w'|w, a“*),w’ € 2}.

Remind Definition 21 of the imputation distribution procedure. The first condi-
tion (52) in a definition can be called the condition of “attainability of the imputation
distribution procedure” because it allows to ensure that in any realized state the
sum of payments to the players is equal to the sum of their payoffs when they imple-
ment cooperative strategies. The second condition guarantees players to receive the
components of the initially chosen imputation from the core of cooperative game
G, in the sense of mathematical expectation, if payments to the players throughout
the game will be made in accordance with distribution procedure {8“ : w € 2}.

We now define the distribution procedure of imputation & = (51, . ..,7,), where
g; = w0, (0¢,...,0%) = 0¥ € CO¥, such that the core is strongly subgame-
consistent.

Definition 27. We call the core CO of cooperative stochastic game G. strongly
subgame-consistent if there exists a distribution procedure {8* : w € 2} of the
imputation from the core CO such that for any state w € {2 the following inclusions
hold:

BY @ SEC(w) C CO¥, (87)
BYeCO¥, we (88)

where

3% @ SEC(w) = {5“ +oo(w) : o(w) € EC(w)}.

And distribution procedure {8 : w € 2} is called strongly subgame-consistent.

Condition (87) means that the set of vectors equal to the sum of the imputation
distribution procedure of the player in state w and an imputation from the expected
core for this state, is contained in the core of subgame starting from state w. This
condition imposes restrictions on payments to the players in the realized states, and
very often is not satisfied for an arbitrary game, if payments to the players are made
in accordance with the initially defined payoff functions.

We impose additional restrictions on the characteristic functions of subgames
starting from the states of set {2 in order to obtain sufficient conditions for strongly
subgame consistency of the core. Denote by EV¥(S) the expected value of the
characteristic function calculated for coalition S C N for subgames following state
w:

EVE(S) = Y plw|w,a“ )V (S).

w'efN

Denote by
AV¥(S) = V¥(S) —SEV¥(S)

the difference between the values of a characteristic function in state w and the
expected value of the characteristic function. We denote by ACO“ an analog of
the core constructed with function AV (S). We formulate a sufficient condition for
strongly subgame consistency of IDP and the core CO.
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Theorem 12. Let for each state w € (2 the core CO¥ and the set ACO¥ be
nonempty. If for every state w € §2 distribution procedure {3“ : w € 2} of the
imputation from the core CO satisfies conditions:

BY € ACOY, (89)
B¥ € CO%, w e, (90)

then the core CO and procedure {B% : w € 2} are strongly subgame-consistent.

Proof. We prove that any vector ¥ € ACOY satisfying conditions (89) and (90)
is a strongly subgame-consistent distribution procedure of imputation & € CO, i.
e., conditions (87) and (88) from Definition 27 hold. Condition (90) coincides with
(88), so, we need to prove that inclusion (87) holds for each state w € (2. In state w
consider any vector o(w) € EC(w) and find sum $“ + do(w). Now we verify if the
latter vector belongs to the core CO. First, calculate the sum of all components of

the vector:
SNBE 46 > p|w,a) > o =

€N w'enN ieEN

=VU(N) =6 > pw'lw, a* )V (N)+

w'efN

+0 Y pf|w,a) Y o = VE(N)

w'en i€EN

which means that property of collective rationality holds.
Next, consider S C N, S # N:

DB pww a) > oy >

€S w'en €S
S)+¢ Z W |w, a* )V (S)—
w'en
-4 Z W' |w, a” )V (S) = V¥(9).
w'eNn

Since the choice of state w € (2 is random, we conclude that the core of the
game G. and procedure {8% : w € 2} are strongly subgame-consistent.

When analogs of the cores ACO% are nonempty for any state w, Theorem 12
provides a method of construction of a strongly subgame-consistent distribution
procedure of imputations from the core. Notice that generally not all imputations
from the core can be realised with distribution procedure {8 : w € 2} described
above.

3.8. Stochastic game with one absorbing state

Noncooperative game. In this section we consider a two-player game with two
states. The set of players is N = {1,2}. Let state w; be given by:

C D

. C((a,a+1 ¢, b)
Wi D(( (b, ¢) )(d(Jrl,d)) oD
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Players have two pure actions, C' (to cooperate) and D (to defect). The constants
satisfy the inequalities:

b>a+1, a>d+1, d>c>0.

We also assume
2a+1>b+c. (92)

From inequality (92) it follows that players receive a larger total payoff by coop-
erating than defecting. The game represents Prisoners’ Dilemma with asymmetric
players: in action profile (C, C') the payoff of player 1 is less than the payoff of player
2, but in profile (D, D) the payoff of player 2 is less than the payoff of player 1. If
action profiles (C,C) and (D, D) are chosen in state w1, a stochastic game remains
in this state with probability 1. But if profiles (C, D) or (D, C) are chosen, the
game transits to state wo which is “absorbing”, i.e. this state will be realised in all
following stages of the game with probability 1. In state we both players have a
unique action D and their payoffs will be equal to d:

D
wo : D(d,d) (93)

The matrices of transition probabilities from states wi and wo are

(1,0) (0, 1)
((0,1) (1,0)) . (0,1).

The discount factor is € (0, 1) and the vector of the initial distribution on the set
of states is mo = (1,0), i.e., a game starts with state w;.

Cooperative game. For this game we construct a cooperative game by determin-
ing the characteristic functions for all subgames and the whole game. We then show
how we need to redistribute the stage payoffs adopting IDP to obtain the subgame
consistency of the Shapley value. The condition of strategic stability gives the lower
bound of the discount factor.

The first step is to determine cooperative form G, of non-cooperative stochastic
game G. In particular, we need to find a cooperative strategy profile and then
calculate the values of characteristic functions for each subgame (starting from
states w1 and wq) and for the whole game.

We compute cooperative strategy profile n* = (07, n;) using (5) and (6). In a
cooperative strategy profile both players choose C in state wy and D in state ws.
The total players’ payoff with profile n* is equal to the value of the characteristic
function of coalition N:

2a+1

VH{1,2}) = Ei(n*)+ Ea(n*) =2a+1+5(2a+1) +...= s (94)

In particular, the values of characteristic function V«({1,2}) for both subgames are
2a +1
(VL2 [ 16

v = (yof3l) = | |- (95)
1-6
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We can now calculate the values of characteristic functions of coalitions {1} and
{2} for both states using (9):

d+1
V1({1}) = maxmin E{* (1, 72) = minmax E} (n1,12) = a+l ,
m n2 2 1 1-— 5

d
V¢ ({2}) = maxmin E3* (1, 72) = minmax E3* (1, n2) = —,
2 1 m 72 1-— 5

Ve () = ve((e) = -

By equation (51), the values of the characteristic functions for the empty set are
Zero:

Using (10), we then calculate the values of the characteristic function V(-) for all
possible coalitions taking into account the initial distribution of states mo = (1,0):

V) =0, V(1) = {5, V2N = 1 V({1,2) =

2a+1
1-6°

In this way, we determine cooperative stochastic subgames G&’ as the set
(N,V¥i(.)), = 1,2, and cooperative stochastic game G. as the set (N, V(-)).

The Shapley value. We assume that players choose the Shapley value as an im-
putation of their total payoff in cooperative stochastic game G, and in all subgames
G¢?, j =1,2. For a two-person game, this is given by:

ver(fn,2)) = ver({1y) = Ve ({2))
2 3

o =V ({i}) +

where i = 1,2 and j # i. The Shapley values for the subgames are:

a+1 a

O.UJI 1_ O-W1 1_6
n= (k)= |12 = (k)= 12’
1-6 1-96

Taking into account the vector of initial distribution my, we are able to determine
the Shapley value ¢ in game G. by Definition 20:

_ o a+1l a
7= =15 175)

Subgame consistency of the Shapley value. We are now in a position to verify
the principles of stable cooperation. Begin with subgame consistency. If players get

payoffs according to the initially defined payoff functions, their total payoffs will
be 1% and %tL in contrast to the components of the Shapley value %% and 7%.

In order to obtain subgame consistency, we compute IDP by equating ¢ to mpo by
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using (53):
a+1
. 1—6 0 - +1
R G | EFTE B G
1-46
a

—_

Bo = (I—6I(n"))o2 = (156125)

‘&I
(%Y
I
N
QU
N———

H
|
>

We then determine o-regularisation of the initial stochastic game G using the IDP
and Definition 23. We re-establish the payoff functions of the initial game in state wq
when players adopt the cooperative action profiles. Therefore, the players’ payoffs
in state wy are:
(a+1,a) (cb)
( (b, c) (d—i—l,d)) '

In state wy, when both players adopt the cooperative strategy profile (both players
use action C in state wi), their payoffs are (a 4+ 1,a). Since their payoffs in the
initial game were (a,a + 1), player 2 transfers 1 to player 1. If the initial game is
regularised by the method described above, the Shapley value and the corresponding
PDP satisfy the principle of subgame consistency (see Theorem 9).

Strategic support of the Shapley value. We now evaluate the strategic sup-
port of the Shapley value by checking if players may deviate from the cooperative
strategy profile. We consider the possible deviations of players in state wy (in state
w9 players have the unique action). In this state the cooperative action profile is not
the Nash equilibrium, thus players may benefit from deviation. We should check if
the following inequality

ot = F ({i}), (96)

is true for any i = 1,2, where

F({i}) = _ max {K:“( Lan) 48 3 plwfwr, (8, i)V ({i})}.

a%? w1
€A(A) e

For player 1, inequality (96) yields:

a+1 2 od
> .= —
1_5/b+6d+5d+ b+1_5,
for player 2:
© S btdd4de... b+ 20
1-67 T 1=6

These two inequalities give the condition on § when the principle of strategic support
is satisfied:
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Principle of irrational-behaviour-proof. In order to verify irrational-behaviour
proof, we need to compare the payoffs of each player when:
1) A player acts as an “individual player” during the whole game.
2) A player cooperates with a competitor until some stage and then plays indi-
vidually.

If the payoff of 2) is not less than the payoff of 1), then this principle is satisfied.
This is confirmed by Theorem 1, since:

a—i—l_ﬂ
@—5ﬂ0ﬁ»@1—vqu):(165125> =5 19 ::<a6d)>07

1-6 1-0

o __d_
@—5H0fnwa—VT&D)_(165185> =3 123 __(a6d>>0

-6 1-0

Both players benefit from cooperation even if IDP is adopted initially at some stages
and then the game is played as a non-cooperative one with initially defined payoff
functions as compared with a game played individually by both players during the
whole game.

Results. To sum up, we can formulate the conditions under which the Shapley value
in the described stochastic game satisfies the three principles of stable cooperation
(subgame consistency, strategic support, irrational-behavior-proof):

1. A discount factor is to be § > g:—g.

2. A stochastic game is o-regularised, i. e., the players’ payoffs in state w; are:

c D

C{((a+1,a) (cb)
D( (b, c) (d+1,d))

and in state wo they must not be changed.

4. Conclusion

The paper summarizes the results on cooperative stochastic games with finite and
infinite duration based on the author’s and coauthors’ publications. Section 2 is
devoted to describing cooperative stochastic games with finite duration and con-
sidering some properties of cooperative solutions applying in dynamics. Section
3 contains a method of construction of a cooperative stochastic game with in-
finite duration. The principles of stable cooperation in these class of games are
examined in this section. There are several numerical examples representing theo-
retical results. For the applications of theoretical results see the following publica-
tions (Bure and Parilina, 2017, Parilina, 2009, Parilina, 2008, Parilina and Sedakov,
2015).
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