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Abstrat The paper is a survey on ooperative stohasti games with �-

nite and in�nite duration whih based on the author's and oauthors' pub-

liations. We assume that the non-ooperative stohasti game is initially

de�ned. The ooperative version of the game is onstruted, the oopera-

tive solutions are found. The properties of ooperative solutions of the game

whih are realised in dynamis are onsidered. Several numerial examples

of stohasti games illustrate theoretial results.
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1. Introdution

The paper is an overview of the results obtained in the theory of ooperative

stohasti games by the author and her oauthors (Baranova, 2006, Parilina, 2014,

Parilina, 2015, Parilina, 2016, Baranova and Petrosjan, 2006, Parilina and Petro-

syan, 2017, Parilina and Tampieri, 2018, Petrosyan et al., 2004, Petrosjan and

Baranova, 2005, Petrosyan and Baranova, 2003, Petrosyan and Baranova, 2005a,

Petrosyan and Baranova, 2005b).

The starting point of stohasti game theory is a publiation of L. Shapley

(Shapley, 1953a), in whih the existene of value of a zero-sum stohasti game

with a �nite set of players' strategies is proved. A generalization of this result

for the ase of n-person stohasti game was obtained in the papers (Fink, 1964)

and (Takahashi, 1964), in whih it was proved that equilibrium exists in stationary

strategies in a stohasti game with a ompat set of strategies and a �nite set of

states. Many papers are devoted to the proof of the existene of the Nash equilibrium

in various lasses of strategies, studying stohasti games with inomplete informa-

tion, asymmetri players, stohasti games of a speial strutures (see the following

publiations: (Solan and Vieille, 2002, Vieille, 2000, Mertens and Neyman, 1981a,

Mertens and Neyman, 1981b, Neyman, 2008, Neyman, 2013, Nowak, 1985, Nowak,

1999, Nowak and Radzik, H�orner et al., 2010, Solan, 1998, J�askiewiz and Nowak,

2016, Neyman and Sorin, 2003, Solan, 2009, Solan and Vieille, 2015)).

The method of onstruting a ooperative version of stohasti game realized on

a �nite tree was �rst proposed by L. A. Petrosyan in the paper (Petrosjan, 2006),

where the problem of time onsisteny of the Shapley value was formulated and

a method of regularization of time-inonsistent Shapley value is introdued. Then

the method of onstruting a ooperative version of stohasti game with in�nite

duration was proposed in the paper (Baranova and Petrosjan, 2006). Cooperative

stohasti games of in�nite duration with a �nite set of strategies were later studied

⋆
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in (Kohlberg and Neyman, 2015, Parilina, 2015, Parilina and Tampieri, 2018). The

priniples of stable ooperation are formulated for dynami and di�erential games

in (Petrosyan and Zenkevih, 2015). The �rst priniple is time onsisteny (or sub-

game onsisteny) of ooperative solutions whih was initially proposed by L. A.

Petrosyan (Petrosyan, 1977) for di�erential games.

The mehanism for determining payments to the players for regularization of

time-inonsistent ooperative solutions using the so-alled imputation distribution

proedure was introdued by L. A. Petrosyan and V. V. Danilov (Petrosyan and

Danilov, 1979). Further, the problem of onstruting time-onsistent ooperative

solutions was studied in the paper (Petrosyan and Shevkoplyas, 2000) for di�eren-

tial games with random duration, and in (Yeung and Petrosyan, 2011) for dynami

games with random duration.

The seond priniple of stable ooperation in dynami and di�erential games

is strategi onsisteny of a ooperative solution whih was initially proposed in

(Petrosyan, 1998). This priniple is relevant and an be adapted for various lasses

of di�erential and dynami games (Shevkoplyas, 2010, Petrosjan and Grauer, 2002,

Petrosyan and Chistyakov, 2013, Petrosyan and Sedakov, 2015).

The third priniple of stable ooperation is irrational-behavior-proof whih was

formulated by D. W. K. Yeung (Yeung, 2006) and then was applied for linear-

quadrati games (Tur, 2014, Markovkin, 2006). The onditions for stable oopera-

tion with Markov proesses, whih allow players' ooperation, inluding irrational-

behavior-proof ondition, are formulated in (Avrahenkov et al., 2013).

Time onsisteny ondition was extended for the ase when the ooperative

solution is a set (ontaining more than one imputation) in (Petrosyan, 1993) and

was alled strongly time onsisteny. Reently, this ondition is investigated in vari-

ous lasses of games (Gromova and Petrosyan, 2015, Sedakov, 2015, Chistyakov and

Petrosyan, 2011, Parilina and Pet ro syan, 2017).

The paper is organized as follows. Setion 2 ontains results on ooperative

stohasti games with �nite duration while Setion 3 is devoted to ooperative

stohasti games with in�nite duration. We brie�y onlude in Setion 4.

2. Cooperative stohasti games with �nite duration

2.1. Non-ooperative stohasti games

We de�ne a �nite stohasti game played on a graph. Let Ψ = (Z,L) be a �nite

graph of a tree struture, where Z is the set of verties of the graph, and L : Z −→ Z
is a point-set mapping de�ned on the set Z, with values in the set of the subsets

of set Z. The vertex z0 is the initial vertex of the tree graph Ψ . We denote the

terminal verties of graph Ψ by ZT ⊂ Z, that is, the verties z for whih L(z) = ∅.
The �nite tree graph with initial vertex z0 is denoted by Ψ(z0).

Let at eah vertex z ∈ Z of the graph Ψ(z0) the normal form game of n players

Γ (z) = 〈N,Az1, . . . , Azn,Kz
1 , . . . ,K

z
n〉 ,

be given, and N = {1, 2, . . . , n} is a �nite set of players, the same for all verties

z ∈ Z; Azi is a �nite set of ations of player i ∈ N , Kz
i (a

z
1, . . . , a

z
n) :

∏
j∈N A

z
j → R

is a payo� funtion of player i, azi ∈ Azi . The olletion of ations a
z = (az1, . . . , a

z
n),

azi ∈ Azi , i ∈ N , is alled an ation pro�le in the game Γ (z). And az ∈ Az =
∏
i∈N

Azi ,

Az is the set of ation pro�les in game Γ (z).
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For eah vertex z ∈ Z we de�ne the transition probabilities to the verties

y ∈ L(z) of the graph Ψ(z0) following the vertex z. These probabilities depend on

the ation pro�le az realized in the game Γ (z). Thus, for eah vertex z ∈ Z we de�ne

a funtion p(·|z, az) : Az → ∆(L(z)), where ∆(L(z)) is a probability distribution

over the set L(z):

p(y|z, az) > 0,
∑

y∈L(z)

p(y|z, az) = 1

for any ation pro�le az ∈ Az. The value p(y|z, az) is the probability that at the

next stage, the game Γ (y) will be played, y ∈ L(z), if at the previous stage in the

game Γ (z), the ation pro�le az = (az1, . . . , a
z
n) has been realized.

We also suppose that the duration of the game is random whih values are 0, 1,

. . ., l, and l is the length of the game (by the length of the game we mean the number
of stages in the game of maximal possible path). De�ne probabilities qk of the event
that the game will end at stage k. Notie that 0 6 qk 6 1, k = 0, . . . , l − 1, ql = 1,
where l is the length of the game (by the length of the game we mean the number of
stages in the game of maximal possible path); stage k at vertex z ∈ Z in a stohasti

game with random duration is determined from the ondition: z ∈ (L(z0))
k
.

Remark 1. Notie that the probabilities qk, k = 0, . . . , l are onditional probabili-
ties and do not form probability distribution of the game duration. In ase when all

paths in graph Ψ(z0) have the same length l, the disrete distribution of a random

variable equal to the game duration, determined by the onditional probabilities qk,
is presented in Table 1, in whih Pk is the probability that the game will end at

stage k.

Table 1. Probability distribution of the game duration.

k Pk

0 q0
1 (1− q0)q1
2 (1− q0)(1− q1)q2
.

.

.

.

.

.

l (1− q0)(1− q1) · . . . · (1− ql−1)

De�nition 1. Stohasti game with random duration G(z0), where z0 is an initial
vertex of a tree graph Ψ(z0), is a set

G(z0) =
〈
N,Ψ(z0), {Γ (z)}z∈Z, {qk}lk=0, {p(·|z, az)}z∈Z,az∈Az

〉
. (1)

From the de�nition of a stohasti game with a random duration it is lear that

the transitions from some verties of the graph Ψ(z0) to the others, as well as the
�nal stage of the game are random.

Stohasti game with random duration G(z0) is played in the following way:

1. At vertex z0 of the graph Ψ(z0), a simultaneous game Γ (z0) is played. Suppose
that in this game ation pro�le az0 ∈ Az0 is realized by the players. Eah
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player i ∈ N reeives a payo� Kz0
i (az0). The stohasti game G(z0) either

terminates with probability q0, 0 6 q0 6 1, or ontinues with probability 1− q0
and transmits to the vertex y ∈ L(z0) of the graph Ψ(z0) with probability

p(y|z0, az0), depending on the ation pro�le az0 realized in the game Γ (z0). In
ase when the set L(z0) is empty, the game ends at the vertex z0 with probability
1.

2. Suppose that at stage k the game proess is at the vertex zk ∈ Z, at whih
the game in a normal form Γ (zk) is given. Let the ation pro�le azk ∈ Azk is

realized in this game. Eah player i ∈ N reeives a payo� Kzk
i (azk). Stohasti

game either ends with probability qk, 0 6 qk 6 1, or ontinues with probability

1− qk and transits to the vertex zk+1 ∈ L(zk) with probability p(zk+1|zk, azk),
whih depending on the ation pro�le azk realized in game Γ (zk). In ase when
the set L(zk) is empty, the game terminates at the vertex zk with probability 1.

3. The stohasti game ontinues until the terminal vertex is reahed or it may

end aording to the realizations of probabilities q0, . . ., ql.

We denote by G(zk) the subgame (see (Kuhn, 1950, Kuhn, 1953)) of the gameG(z0)
starting at the vertex zk ∈ Z of graph the Ψ(z0) (starting with the game Γ (zk)),
whih is also a stohasti game with random duration. Subgame G(zk) is de�ned on
the subgraph Ψ(zk) with the set of verties Z(zk) ⊂ Z and is given by the quintuple

G(zk) =
〈
N,Ψ(zk), {Γ (z)}z∈Z′, {qs}ls=k, {p(·|z, az)}z∈Z(zk),az∈Az

〉
.

To solve the game you need to determine the set of players' strategies. We denote

by ϕi : Z → ∏
z∈Z ∆(Azi ) the behavior strategy of player i in game G(z0), where

∆(Azi ) is the set of mixed ations of the player i at the vertex z ∈ Z. The strategy
pro�le in stohasti game G(z0) is a olletion of the players' strategies given by

ϕ = (ϕi : i ∈ N). Denote by Σi the set of behavior strategies of player i in the

stohasti game G(z0), then Σ =
∏
i∈N Σi is the set of behavior strategy pro�les

in game G(z0). Obviously, the restrition of the strategy ϕi on subgraph Ψ(zk) of
graph Ψ(z0) is a strategy in subgame G(zk). Denote this restrition of a strategy

by ϕzki .

2.2. Main funtional equations

Assume that in stohasti game G(z0) players implement strategies ϕi, i ∈ N .

De�ne the payo� of the player i as mathematial expetation of his payo� relative

to a random variable equal to the game duration, and e. g., for the realized path

z1 ∈ L(z0), z2 ∈ L(z1), . . ., zl ∈ L(zl−1), L(zl) = ∅, we obtain

Ei(z0) =

l∑

k=0

Pk

k∑

j=0

K
zj
i (azj) =

l∑

k=0

qk



k−1∏

j=0

(1− qj)



(

k∑

m=0

Kzm
i (azm)

)
,

where az0 ∈ Az0 , az1 ∈ Az1 , . . ., azl ∈ Azl is a sequene of realized ation pro�les

when players adopt strategies (ϕi : i ∈ N).

Sine transitions from the verties to the following verties are stohasti, we

onsider mathematial expetation of the player's payo� relative to random tran-

sitions from verties to the following verties as a player's payo� in the stohasti

game. The mathematial expetation Ei(z0, ϕ) of player i's payo� in the game sat-
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is�es the funtional equation

Ei(z0, ϕ) = q0K
z0
i (az0) + (1− q0)


Kz0

i (az0) +
∑

y∈L(z0)

p(y|z0, az0)Ei(y, ϕy)




(2)

= Kz0
i (az0) + (1− q0)

∑

y∈L(z0)

p(y|z0, az0)Ei(y, ϕy),

where Ei(y, ϕ
y) is the mathematial expetation of player i's payo� in the subgame

G(y) starting at the vertex y ∈ L(z0) of graph G(z0).

Assume that z ∈ (L(z0))
k
, that is, the game proess enters the vertex z ∈ Z

at stage k, then the mathematial expetation of player i's payo� in the subgame

G(z) satis�es the funtional equation

Ei(z, ϕ
z) = qkK

z
i (a

z) + (1 − qk)


Kz

i (a
z) +

∑

y∈L(z)

p(y|z, az)Ei(y, ϕy)




= Kz
i (a

z) + (1 − qk)
∑

y∈L(z)

p(y|z, xz)Ei(y, ϕy).

To de�ne a ooperative version of the game, it is neessary to determine a

ooperative path (one of the ooperative paths, if there are several ones), that is,

the path that maximizes the total players' payo�s. In the ase of stohasti games,

this is a subtree with the given transition probabilities, at whih the maximum of

the mathematial expetation of the total players' payo�s in the whole game is

ahieved. However, the maximum mathematial expetation of the total players'

payo�s in mixed strategies is equal to the maximum mathematial expetation

of the summarized players' payo�s in pure strategies. Therefore, we an restrit

ourselves and onsider the lass of pure strategies to �nd ooperative strategies in

the stohasti game.

2.3. Cooperative stohasti games with �nite duration

Denote by ϕ̄ = (ϕ̄1, . . . , ϕ̄n) the pure strategy pro�le in gameG(z0)whih maximizes
the total mathematial expetations of the players' payo�s:

V (N, z0) = max
ϕ∈Σ

[∑

i∈N

Ei(z0, ϕ)

]
=
∑

i∈N

Ei(z0, ϕ̄).

We all this strategy pro�le as a ooperative one. Let strategy pro�le ϕ̄ be suh

that ϕ̄i(z) = āzi , i ∈ N , z ∈ Z. We an determine the ooperative strategy pro�le

for any subgame G(z), z ∈ Z, starting with simultaneous game Γ (z).
We onstrut a ooperative version of a stohasti game on the basis of a non-

ooperative stohasti game with random duration G(z0) desribed above. For this
purpose it is neessary to de�ne the harateristi funtion for eah subset S (oali-

tion) of the set of players N . The harateristi funtion alulated for the subgame

G(z), z ∈ Z, is denoted by V (S, z), where S ⊂ N .

Charateristi funtion V (S, z) shows whih total payo� an be obtained by

the players joining into oalition S. There are di�erent approahes to de�ning the
harateristi funtion that determines the ooperative game on the basis of a non-

ooperative one. We introdue some of these approahes:
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1. α-approah. In this ase, V (S, z) is the maxmin value of the zero-sum game be-

tween oalitions S and N\S. Moreover, the maxmin is found in the pure strate-

gies of oalition S. This approah an be desribed as �pessimisti�, sine V (S, z)
is equal to the minimum total payo� of oalition S whih oalition S an obtain

regardless of how oalition N\S behaves. This approah was proposed in the

book of Neumann and Morgenstern (von Neumann and Morgenstern, 1944).

2. β-approah. Following this approah, V (S, z) is the minmax value of the zero-

sum game GS between oalitions S and N\S. Moreover, the minimax is found

in pure strategies. This approah an be onsidered as �optimisti�. Comparison

of α- and β-approahes an be found in (Aumann and Peleg, 1960).

3. The value of game GS . In this ase, value V (S) is equal to the value of the zero-
sum game GS game between oalitions S and N\S. Moreover, this value always

exists in mixed strategies, while it is equal to the maxmin and minimax of GS .
In ase the minmax and maxmin are found in mixed strategies, the values of α-
and β-harateristi funtions oinide.

4. γ-approah. Aording to this approah, V (S, z) is equal to the payo� of oali-

tion S in the Nash equilibrium, when all the players who do not belong to

oalition S play individually (Chander and Tulkens, 1997).

5. δ-approah. Value V (S, z) is equal to the maximum payo� of oalition S in the

strategy pro�le when the players who do not belong to oalition S adopt the

Nash equilibrium strategies optimal in the n-person game when all players at

individually. This approah was proposed in (Petrosjan and Zaour, 2003) and

further onsidered in detail in the paper (Reddy and Zaour, 2016).

6. ζ-approah. In this ase, V (S, z) is equal to the payo� of oalition S in the

strategy pro�le when the players from oalition S use strategies that maximize

the total payo� of oalition N , and the players who do not belong to oalition

S minimize the total payo� of the players from oalition S (the idea is proposed

in (Gromova and Petrosyan, 2016)).

In this hapter we will use the α-approah and assume that the �power� of oali-
tion S is equal to the maxmin value of a two-person zero-sum stohasti gameGS be-
tween oalitions S and N\S. This approah was used in the paper (Petrosjan, 2006),
in whih for the �rst time a ooperative stohasti game was onstruted on the

basis of a non-ooperative one and the problem of time-inonsisteny of the Shapley

value is onsidered.

We determine the values of the harateristi funtion. First we onsider the ase

when S = N and �nd the maximum of the total payo� of the oalition N in stohas-

ti game G(z0). For this purpose, we write Bellman's equation (see Bellman, 1957)
for the maximum sum of the mathematial expetations of players' payo�s:

V (N, z0) = max
a
z0
i

∈A
z0
i

i∈N


∑

i∈N

Kz0
i (az0) + (1− q0)

∑

y∈L(z0)

p(y|z0, az0)V (N, y)


 = (3)

=
∑

i∈N

Kz0
i (āz0) + (1− q0)

∑

y∈L(z0)

p(y|z0, āz0)V (N, y)

with boundary ondition

V (N, z) = max
azi∈A

z
i

i∈N

∑

i∈N

Kz
i (a

z), z ∈ {z : L(z) = ∅ or qk = 1} . (4)
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Later on in this hapter, we suppose that z ∈ (L(z0))
k
.

For the subgame of G(z), z ∈ Z, the equation (3) with the initial ondition (4)

takes the form:

V (N, z) = max
azi∈A

z
i

i∈N


∑

i∈N

Kz
i (a

z) + (1− qk)
∑

y∈L(z)

(p(y|z, az)V (N, y))


 = (5)

=
∑

i∈N

Kz
i (ā

z) + (1− qk)
∑

y∈L(z)

(p(y|z, āz)V (N, y))

with boundary ondition

V (N, z) = max
azi∈A

z
i

i∈N

∑

i∈N

Kz
i (a

z), z ∈ {z : L(z) = ∅ or qk = 1} . (6)

Strategy pro�le (ϕ̄i : i ∈ N) in stohasti game G(z0) generates the probability

distributions over set Z of the verties of graph Ψ(z0).

De�nition 2. A subgraph of graph Ψ(z0), whih onsists of the verties z ∈ Z of

the graph Ψ(z0), having positive realization probabilities, generated by the ooper-
ative strategy pro�le ϕ̄(·), is alled a ooperative subtree and denoted by Ψ̄(z0).

Obviously, subgraph Ψ̄(z0) is a �nite tree graph. The set of verties in graph Ψ̄(z0)
is denoted by CZ ⊂ Z.

Let S ⊂ N , S 6= N . For eah vertex z ∈ CZ we de�ne the auxiliary zero-sum

game denoted by GS(z). It is a zero-sum game between oalition S ⊂ N ating

as a maximizing player, and oalition N \ S ating as a minimizing player. In this

ase, the payo� of oalition S is alulated as the sum of the payo�s of the players

belonging to oalition S. Then, the value of the harateristi funtion V (S, z) is
given by the lower value of zero-sum game GS(z) in pure strategies (similar to the

lower value of the matrix game)

1

.

Funtion V (S, z), z ∈ CZ, satis�es the following funtional equation

V (S, z) = max
az
S
∈Az

S

min
az
N\S

∈Az
N\S

[∑

i∈S

Kz
i (a

z
S , a

z
N\S)+

+(1− qk)
∑

y∈L(z)

p(y|z, (azS, azN\S))V (S, y)




(7)

with boundary ondition

V (S, z) = max
az
S
∈Az

S

min
az
N\S

∈Az
N\S

∑

i∈S

Kz
i (a

z
S , a

z
N\S), z ∈ {z : L(z) = ∅ or qk = 1} , (8)

where azS = (azi : i ∈ S) is an ation of oalition S; AzS =
∏
i∈S

Azi is the ation set of

oalition S; azN\S = (azj : j ∈ N\S) is an ation of oalition N\S; AzN\S =
∏

j∈N\S

Azj

is the ation set of oalition N\S.
1

In this hapter we use the α-approah for onstrution of the harateristi funtion,

proposed by Neumann and Morgenstern (von Neumann and Morgenstern, 1944).
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For all z ∈ CZ it is natural to suppose that

V (∅, z) = 0. (9)

Thus, for eah subgame G(z), z ∈ CZ, we have determined the harateristi

funtion V (S, z), S ⊂ N . The harateristi funtion V (S, z) is determined by the

equation (5) with the boundary ondition (6), and also the equation (7) with the

boundary ondition (8) and equation (9).

The harateristi funtion V (S, z) de�ned by formulas (5) � (9) is superadditive
on S, i. e., for any vertex z ∈ CZ and any oalitions S, P ⊂ N , S ∩ P = ∅, the
inequality

V (S ∪ P, z) > V (S, z) + V (P, z).

holds.

De�nition 3. A ooperative stohasti game with random duration Ḡ(z0) onst-
ruted on the basis of non-ooperative stohasti gameG(z0) is a tuple 〈N, V (S, z0)〉,
where V (S, z0) is a harateristi funtion de�ned by equation (5) with boundary

ondition (6) for oalition N , by equation (7) with boundary ondition (8) for

oalition S 6= N , S 6= ∅, and by formula (9) for oalition S = ∅.

De�nition 4. An imputation in ooperative stohasti game Ḡ(z0) is a vetor

ξ(z0) = (ξ1(z0), . . . , ξn(z0)), satisfying two properties:

1. Colletive rationality:

∑
i∈N ξi(z0) = V (N, z0);

2. Individual rationality: ξi(z0) > V ({i}, z0) for any i ∈ N .

The set of imputations (see (Vilkas, 1990, Vorobiev, 1960, Vorobiev, 1967) and

also (Vorobiev, 1985, Peherski and Yanovskaya, 2004) for de�nitions of ooperative

games) of ooperative stohasti game Ḡ(z0) is denoted by I(z0).

De�nition 5. A solution of ooperative stohasti game Ḡ(z0) is a subset C(z0)
of the set of imputations I(z0).

The solutions of a ooperative game an be onventionally divided into single-

valued and multi-valued ones. The well-known single-valued solutions are the Shap-

ley value (Shapley, 1953b), the nuleolus (Shmeidler, 1969). The most well-known

multi-valued solution is the ore (Gillies, 1959). Suppose that solution C(z0) of o-
operative stohasti game Ḡ(z0) is a non-empty subset of the imputation set I(z0).

De�nition 6. A ooperative stohasti subgame Ḡ(z), z ∈ Z, of game Ḡ(z0),
onstruted on the basis of non-ooperative stohasti subgame G(z), is a pair

〈N, V (S, z)〉, where V (S, z) is the harateristi funtion de�ned by equation (5)
with boundary ondition (6) for oalition N , by equation (7) with boundary ondi-
tion (8) for oalition S 6= N , S 6= ∅, and by formula (9) for oalition S = ∅.

Determine the imputation, the imputation set and the solution for any ooper-

ative subgame Ḡ(z), z ∈ Z.

De�nition 7. An imputation in ooperative stohasti subgame Ḡ(z) is vetor

ξ(z) = (ξ1(z), . . . , ξn(z)), satisfying two properties:

1.

∑
i∈N ξi(z) = V (N, z);
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2. ξi(z) > V ({i}, z) for any i ∈ N .

The set of imputations of ooperative stohasti subgame Ḡ(z) is denoted by I(z).

De�nition 8. The solution of a ooperative stohasti subgame Ḡ(z) is a subset

C(z) of the set of imputations I(z).

Suppose that solution C(z) of any ooperative subgame Ḡ(z) is non-empty sub-
set of the imputation set I(z) for any z ∈ CZ.

2.4. The Shapley value, ore and nuleolus

In this setion we de�ne some ooperative solutions whih will be used further in

the work. The Shapley value of a ooperative stohasti game or subgame Ḡ(z),
z ∈ CZ, is a vetor Sh(z) = (Sh1(z), . . ., Shn(z)), where an element Shi(z), i ∈ N ,

is alulated by the formula

Shi(z) =
∑

S⊆N
S∋i

(|S| − 1)! (n− |S|)!
n!

(V (S, z)− V (S \ {i}, z)) ,

where |S| is the ardinality of S. The de�nition of the Shapley value is introdued

in Shapley's paper (Shapley, 1953b).

A ore of a ooperative stohasti game or subgame Ḡ(z), z ∈ CZ, is a set

denoted by CO(z), and it is the set

CO(z) =

{
ξ(z) ∈ I(z) :

∑

i∈S

ξi(z) > V (S, z) for ∀S ⊂ N,
∑

i∈N

ξi(z) = V (N, z)

}
.

(10)

For the ooperative stohasti game or subgame Ḡ(z) and any vetor ξ(z) ∈ I(z),
by θ(ξ(z)) we denote the vetor of the values of exesses e(S, ξ(z)) = V (S, z) −∑
i∈S

ξi(z) loated in a desending order:

θ(ξ(z)) = (e(S1, ξ(z)), e(S2, ξ(z)), . . . , e(S2n−1, ξ(z))),

where oalitions are numbers that e(S1, ξ(z)) > e(S2, ξ(z)) > . . . > e(S2n−1, ξ(z)).
On the set of exesses {θ(ξ(z)) : ξ(z) ∈ I(z)} we onsider the lexiographi or-

dering ≻lex:
θ(ξ(z)) ≻lex θ(ψ(z)) ⇐⇒ ∃ l ∈ {1, . . . , 2n} ,

suh that {
θk(ξ(z)) = θk(ψ(z)), for all k = 1, . . . , l − 1;

θl(ξ(z)) > θl(ψ(z)),

where ψ(z) ∈ I(z).
The de�nition of the nuleolus is �rst introdued in (Shmeidler, 1969). The

nuleolus of a ooperative stohasti game or subgame Ḡ(z), z ∈ CZ, is a subset of
the imputation set on whih min

θ(ξ(z))
ξ(z)∈I(z)

≻lex is reahed.

If C(z0) is the solution of ooperative stohasti game Ḡ(z0), then later on in the
work by solution C(z) of ooperative subgame Ḡ(z) we mean a solution onstruted
aording to the same �rules� as C(z0). For example, if C(z0) is the Shapley value
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in stohasti game Ḡ(z0), then C(z) is the Shapley value, alulated for ooperative
subgame Ḡ(z), z ∈ CZ.

Here we assume that the players hoose some �xed subset of the imputation

set whih ontains the imputations satis�ng �optimal� properties, i. e., the players

forming oalition N , are going to follow some �rule� distributing the payo�s of oali-

tion N throughout the game proess. Set C(z) may onsist of a single imputation,
if, e. g., the players have deided to use the Shapley value or the nuleolus, or it

may be empty if, e. g., they have hosen the ore and it is empty. The solution of

the game or subgame Ḡ(z) an be any other imputations from the lassial �stati�

ooperative theory, suh as von Neumann-Morgenstern solution (or the so-alled

stable set), the kernel, M-stable sets (see Peherski and Yanovskaya, 2004).

Further in the work we will suppose that C(z) is a nonempty subset of set I(z)
for any z ∈ CZ, that is, for eah vertex z ∈ CZ there exists at least one imputation

ξ(z) = (ξ1(z), . . . , ξn(z)) ∈ C(z) ⊂ I(z).

2.5. Imputation distribution proedure

In this setion we introdue the de�nition of an imputation distribution proedure

of the ooperative stohasti game solution, whih has been hosen by the players.

The imputation distribution proedure determines the payments to the players at

eah vertex of the ooperative subtree Ψ̄(z0).

De�nition 9. A path in a stohasti game is the sequene of ation pro�les az0 ,
az1 , . . ., azl , where azi is the ation pro�le realized in the game Γ (zi), zi ∈ L(zi−1),
i = 1, . . . , l.

Consider any vertex z ∈ CZ, z ∈ (L(z0))
k
, of the ooperative subtree. Eah

player reeives some payments implementing a ooperative agreement

2

. Let at

the vertex z ∈ CZ the payment to player i ∈ N be βi(z). In any ooperative

subgame Ḡ(z), the player an alulate the sum of the payments along the path

āz, . . . , āzl = āz,...,zl , and this sum is a random variable. We denote by Bi(z) the
mathematial expetation of the sum of suh payments, alulated along the path

segment āz,...,zl in ooperative subgame Ḡ(z). The value Bi(z) satis�es the following
funtional equation:

Bi(z) = βi(z) + (1− qk)
∑

y∈L(z)

p(y|z, xz)Bi(y) (11)

with boundary ondition

Bi(z) = βi(z) for z ∈ {z : L(z) = ∅ or qk = 1} . (12)

Now we de�ne the distribution proedure of the imputation belonging to the

ooperative solution C(z0), hosen by the players at the beginning of the game.

De�nition 10. Let ξ(z0) be the vetor (ξ1(z0), . . . , ξn(z0)) ∈ C(z0). The set of

vetors {β(z) = (β1(z), . . . , βn(z)) : z ∈ CZ} is alled a distribution proedure of

the imputation ξ(z0) if the following onditions are satis�ed:

2

Obviously, all z, . . . , zl ∈ CZ, sine CZ is the set of verties of the ooperative subtree,

and the strategy pro�le ϕ̄ is determined.
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1. For eah vertex z ∈ CZ:
∑

i∈N

βi(z) =
∑

i∈N

Kz
i (ā

z).

2. The omponents ξi(z0), i ∈ N , of imputation ξ oinide with the mathemati-

al expetation of the orresponding omponents of the imputation distribution

proedure with respet to the probability distribution of transitions and the end

of the game, i. e., ξi(z0) = Bi(z0), where Bi(z0) satis�es the funtional equation
(11) with the boundary ondition (12).

For eah ooperative subgame Ḡ(z), z ∈ CZ, we write the funtional equation
for the omponents ξi(z) of the imputation ξ(z) ∈ C(z) ⊂ I(z) of type (11) and
de�ne the values γi(z) from equation:

ξi(z) = γi(z) + (1− qk)
∑

y∈L(z)

p(y|z, xz)ξi(y), (13)

where ξ(y) = (ξi(y) : i ∈ N) is an imputation belonging to the solution C(y) of the
ooperative subgame Ḡ(y). The boundary ondition for γi(z) is as follows:

γi(z) = ξi(z) for z ∈ {z : L(z) = ∅ or qk = 1} . (14)

Lemma 1. The vetor γ(z) = (γi(z) : i ∈ N) given by equation (13) with the bound-
ary ondition (14) is an imputation distribution proedure.

Proof. It is obvious that for terminal verties and the verties at whih the proba-

bility of the game end equals one, and the equality (14) holds, onditions 1 and 2

of De�nition 10 are satis�ed.

Now we prove that these onditions are satis�ed for the remaining verties of

the ooperative subtree. From (13) we express the values γi(z) and summing them

up over i ∈ N , and obtain

∑

i∈N

γi(z) =
∑

i∈N

ξi(z)− (1− qk)
∑

i∈N


 ∑

y∈L(z)

p(y|z, xz)ξi(y)


 . (15)

As we have

ξ(z) = (ξi(z) : i ∈ N) ∈ C(z) ⊂ I(z),

ξ(y) = (ξi(y) : i ∈ N) ∈ C(y) ⊂ I(y),

then from (15) we obtain:

∑

i∈N

γi(z) = V (N, z)− (1 − qk)
∑

y∈L(z)

p(y|z, xz)V (N, y). (16)

From (16) and (5) it follows that

∑
i∈N γi(z) =

∑
i∈N

Kz
i (ā

z) for ation pro�le

āz = (āzi : i ∈ N), whih has been realized in game Γ (z) when the players used a

ooperative strategy pro�le ϕ̄. Therefore, γi(z) satis�es Condition 1 of De�nition

10.
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Now we verify if Condition 2 of De�nition 10 is satis�ed. Spei�ally, we �nd

the mathematial expetation of the sums γi(z), de�ned by formula (13), along the
verties of the ooperative subtree. For the verties z ∈ {z : L(z) = ∅ or qk = 1},
Condition 2 is satis�ed. Continue with the verties of the ooperative subtree, from

whih the verties mentioned above are reahed with one stage. For these verties,

we obtain the equality:

Bi(zl) = ξi(zl)− (1 − ql)
∑

y∈L(zl)

p(y|zl, xzl)ξi(y) + (1− ql)
∑

y∈L(zl)

p(y|zl, xzl)γi(y)

= ξi(zl),

beause ξi(y) = γi(y). Following from the terminal verties to the initial one, we

prove that ondition 2 of De�nition 10 is satis�ed. Lemma is proved.

2.6. Subgame onsisteny of ooperative stohasti game solution

Before the game starts, players ome to an agreement about ooperation, i. e., they

agree to maximize the mathematial expetation of the total payo� of oalition N
and expet to reeive the imputation ξ(z0) ∈ C(z0). The game proess takes plae
along the verties of the ooperative subtree Ψ̄(z0). But sine the stohasti stru-
ture of the game implies unertainty in realization of the verties of the ooperative

subtree, then moving along a ertain path, that is, along the verties of the oopera-

tive subtree, does not yet ensure the support of ooperation. Indeed, players moving

along the ooperative path get into ooperative subgames with the urrent initial

states in whih the same player may have di�erent opportunities. Conditions of a

on�it and players' opportunities involved in the on�it hange over time. And

it will be natural to require maintenane of the optimality priniple or "approah"

in the hoie of solutions of ooperative subgames. But at some moment, at vertex

z ∈ CZ, the sum of the remaining payments to player i may not be equal to the ith
omponent of the imputation from solution C(z) of a ooperative subgame Ḡ(z).
Therefore, at vertex z ∈ CZ player i may ask a question whether it is worth keep-

ing the ooperative agreement to at �jointly optimally� proposed before the game

starts. Thus, player i may wish to deviate from the ooperative strategy pro�le. If

this deviation is bene�ial for at least one player, it means subgame inonsisteny

of imputation ξ(z0) ∈ C(z0) and, aordingly, the motion along the verties of the

ooperative subtree.

De�nition 11. An imputation ξ(z0) ∈ C(z0) is alled subgame-onsistent in oop-
erative stohasti game Ḡ(z0) if for eah vertexz ∈ CZ ∩ (L(z0))

k
there exists the

imputation distribution proedure β(z) = (βi(z) : i ∈ N) suh that

ξi(z) = βi(z) + (1− qk)
∑

y∈L(z)

p(y|z, xz)ξi(y), (17)

and

ξi(z) = βi(z), z ∈ {z : L(z) = ∅ or qk = 1} , (18)

where ξ(y) = (ξi(y) : i ∈ N) is an imputation belonging to solution C(y) of ooper-
ative subgame Ḡ(y).

Remark 2. If C(z0) onsists of more than one imputation, then the hoie of

the imputation ξ(z0) is inde�nite. If players have hosen a ertain imputation
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ξ(z0) ∈ C(z0) and deided to verify if it is subgame onsistent, �rst it is nees-

sary to hek the ondition (17) for the vertex z0. This means to verify if there

exists the imputation distribution proedure β(z0) = (βi(z0) : i ∈ N), satisfying
ondition (17) for some imputation ξ(y) ∈ C(y), where y ∈ L(z0). Obviously, there
is inde�niteness in the hoie of imputation ξ(y) ∈ C(y), whih in its turn should

also be subgame onsistent in ooperative subgame Ḡ(y). This means that ondition
(17) should be satis�ed for imputation imputation ξ(y) ∈ C(y). From De�nition 11

it follows that this ondition should be satis�ed for all z from the set of verties of

the ooperative subtree.

De�nition 12. We say that ooperative stohasti game Ḡ(z0) has subgame on-
sistent solution C(z0) if all imputations ξ(z0) ∈ C(z0) are subgame onsistent.

Obviously, if the payments to the players are made at the verties of the o-

operative subtree in aordane with the initially de�ned payo� funtions, it is

impossible in general to ahieve subgame onsisteny of the ooperative solution.

This may lead to the breakup of the ooperative agreement. In this onnetion, the

problem of �nding a sheme or proedure of payments to the players at the verties

of the ooperative subtree in order to satisfy the property of subgame onsisteny

of a ooperative solution. For this we need to �nd suh an imputation distribution

proedure (βi(z) : i ∈ N) for all verties z ∈ CZ, for whih the onditions (17) and

(18) are satis�ed.

Theorem 1. Let in the ooperative stohasti game Ḡ(z0) and eah subgame the

ooperative solutions C(z0) and C(z), z ∈ CZ, be nonempty. If for eah ξ(z) =
(ξi(z) : i ∈ N) ∈ C(z) the imputation distribution proedure is de�ned by the

formula

βi(z) = ξi(z)− (1− qk)
∑

y∈L(z)

p(y|z, xz)ξi(y), (19)

for eah z ∈ CZ, z /∈ {z : L(z) = ∅}, where ξ(y) = (ξi(y) : i ∈ N) ∈ C(y), and by

formula (18) for any z ∈ {z : L(z) = ∅}, then ooperative solution C(z0) is subgame
onsistent.

Proof. To prove subgame onsisteny of the ooperative solution C(z0), it is required
to prove that for eah vetor ξ(z0) ∈ C(z0) onditions (17) and (18) are satis�ed.

From Lemma 1 it follows that the payments, determined by formulas (19) and

(18), are the omponents of the imputation distribution proedure. Condition (17)

follows from (19) taking into aount that ξ(y) = (ξi(y) : i ∈ N) belongs to the

ooperative solution of the subgame Ḡ(y).

The proposed method of implementing the imputation has an important prop-

erty: at eah vertex of the ooperative path, players are guided by the same �op-

timality priniple� (property of subgame onsisteny) and, in this sense, have no

reasons for interruption of the previously adopted ooperative agreement and de-

viation from the ooperative strategy pro�le. The sum of payments to the players

at eah vertex of the ooperative subtree is also equal to the sum of the payo�s

reeived by the players at that vertex (ondition 1 of De�nition 10 of an imputation

distribution proedure). The latter ondition may be alled a ondition of attain-

ability of the payments, sine players redistribute the sum whih they obtain in the

game and do not take any funds outside.
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Notie that De�nition 11 does not require the nonnegativity of funtions βi(z),
where z ∈ CZ. All imputations belonging to the solution C(z) will be subgame

onsistent if solution is suh that C(z) 6= ∅ for all verties z ∈ CZ. This is possi-
ble if the payments to the players are not made aording to their initially de�ned

payo�s in games along whih the ooperative path realizes, but aording to the

imputation distribution proedure β(z) = (β1(z), . . . , βn(z)) de�ned by (17), (18)

for all z ∈ CZ, where βi(z) is the payment to player i at the vertex z ∈ CZ. More-

over, the mathematial expetation of all payments to player i oinides with the

mathematial expetation of the ith omponent of the imputation belonging to the
solution hosen by the players. It follows from Theorem 1. Thus, players an agree

on getting negative payments at some verties to ensure that the ooperation is sup-

ported throughout the whole game in order to guarantee reeiving the omponents

of initially seleted imputation ξ(z0) partition belonging to the solution C(z0) of
the ooperative stohasti game Ḡ(z0).

2.7. Nonnegative omponents of imputation distribution proedure.

Regularization of imputations

In this setion, we onsider the ase when for any player i ∈ N payo� funtion

is non-negative: Ki(x
z) > 0 for all verties z ∈ CZ. Assume that the players are

interested in reeiving non-negative payments at eah vertex of the ooperative

subtree and at the same time they want to guarantee subgame onsisteny of the

ooperative solution. In ase when non-negativity of βi(z) annot be guaranteed

for all verties z ∈ CZ, one an onstrut new subgame-onsistent solution based

on the solution initially hosen by the players from the set C(z0). We present how

this is done when the set C(z0) ⊂ I(z0) is onsidered as the solution. Notie that

this proedure an be applied to the imputations well-known in the lassial �stati�

ooperative game theory (ore, nuleolus, von Neumann-Morgenstern solution).

For eah vertex z ∈ CZ de�ne new imputation distribution proedure by

βi(z) =

∑
i∈N

Ki(ā
z
1, . . . , ā

z
n)

V (N, z)
ξi(z), (20)

where ξ(z) = (ξ1(z), . . . , ξn(z)) ∈ C(z), and āz = (āz1, . . . , ā
z
n) is the realization of

the ooperative strategy pro�le ϕ̄ = (ϕ̄1(·), . . . , ϕ̄n(·)) at vertex z ∈ CZ maximizing

the sum of mathematial expetations of the players' payo�s in stohasti game

Ḡ(z0), V (N, z) is the value of harateristi funtion of oalition N alulated for

ooperative subgame Ḡ(z).

As Ki(a
z) > 0 for eah vertex z ∈ CZ and eah player i ∈ N , then βi(z) > 0 for

eah vertex z ∈ CZ. Taking into aount equation (20) and equity

∑
i∈N ξi(z) =

V (N, z), we obtain that the urrent payment βi(z) to player i in game Γ (z) should
be proportional to the ith omponent of the imputation ξ(z) ∈ C(z) in ooperative
subgame Ḡ(z) of stohasti game Ḡ(z0).

Determine a new imputation for ooperative subgame Ḡ(z), where z ∈ CZ, and

z ∈ (L(z0))
k
on the basis of the �old� imputation ξ(z) as a solution of the funtional

equation

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1 − qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y) (21)
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with boundary ondition

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) = ξi(z) (22)

for z ∈ {z : L(z) = ∅ or qk = 1}.
Construt a new harateristi funtion V̂ (S, z) for eah ooperative subgame

Ḡ(z) for all z ∈ CZ using funtional equation

V̂ (S, z) =

∑
i∈N

Ki(ā
z)

V (N, z)
V (S, z) + (1 − qk)

∑

y∈L(z)

p(y|z, āz)V̂ (S, y) (23)

with boundary ondition

V̂ (S, z) = V (S, z) for z ∈ {z : L(z) = ∅ or qk = 1} . (24)

Funtions V̂ (S, z) and V (S, z) are superadditive, and V̂ (N, z) = V (N, z) beause
V̂ (N, z) and V (N, z) satisfy the funtional equation (5) with boundary ondition

(6).

For all verties of z ∈ CZ and all subgame-inonsistent imputations ξ(z) ∈ C(z),

we ompute the regularized imputations ξ̂(z) and de�ne the set of solutions Ĉ(z)
as follows:

Ĉ(z) =

{
ξ̂(z) : ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y), (25)

ξ̂i(z) = ξi(z) for z ∈ {z : L(z) = ∅ or qk = 1} , ξ(z) ∈ C(z)

}
.

De�nition 13. The set Ĉ(z0) de�ned by formula (25), is alled the regularized

solution of the ooperative stohasti game Ḡ(z0).

Therefore, players have an opportunity to regularize the solution hosen at the

beginning of the game so that at eah vertex of the stohasti game Ḡ(z0) �new�
solution Ĉ(z0) is subgame onsistent. But the imputation belonging to the new

regularized solution Ĉ(z0), generally speaking, will not be an imputation for oop-

erative game with the harateristi funtion V (S, z0), de�ned by (7) and (8). It
will be an imputation for a ooperative stohasti game with a new harateristi

funtion V̂ (S, z0) de�ned by formulas (23), (24).

Theorem 2. An imputation ξ̂(z) = (ξ̂1(z), . . . , ξ̂n(z)), de�ned by formula (21)
with boundary ondition (22), is subgame onsistent imputation in ooperative game

〈N, V̂ 〉 where harateristi funtion V̂ (S, z) is de�ned by funtional equation (23)
with boundary ondition (24).

Proof. Subgame onsisteny follows from the method of onstrution of a �new�

imputation ξ̂(z). Comparing the funtional equations (17) and (21), we obtain that
for the proof it is neessary to show the non-negativity of the omponent

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z),
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whih is obvious beause

Kz
i (a

z
1, . . . , a

z
n) > 0

for all z ∈ Z and eah player i ∈ N .

Now we prove that ξ̂(z) = (ξ̂1(z), . . . , ξ̂n(z)) has the properties of an imputation
in ooperative game with harateristi funtion V̂ (S, z), whih is given by the

funtional equation (23) with the boundary ondition (24). To do this, for any

player i ∈ N and eah vertex z ∈ CZ, it is neessary to prove satisfation of two

properties:

1.

∑
i∈N

ξ̂i(z) = V̂ (N, z),

2. ξ̂i(z) > V̂ ({i}, z).

The �rst property is obviously satis�ed for verties z ∈ {z : L(z) = ∅ or qk = 1}
and z ∈ CZ. Now prove these properties for verties z ∈ {z : L(z) ∋ y and

L(y) = ∅} and suh that z ∈ CZ:

∑

i∈N

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)

∑

i∈N

ξi(z) + (1 − qk)
∑

y∈L(z)

(
p(y|z, āz)

∑

i∈N

ξ̂i(y)

)
=

=

∑
i∈N

Ki(ā
z)

V (N, z)
V (N, z) + (1− qk)

∑

y∈L(z)

(
p(y|z, āz)V̂ (N, z)

)
=

= V (N, z) = V̂ (N, z),

beause y ∈ {y : L(y) = ∅}.
The seond property is also obviously satis�ed for the verties z ∈ {z : L(z) = ∅

or qk = 1}. We show that ξ̂i(z) − V̂ ({i}, z) > 0 for the verties z ∈ {z : L(z) ∋ y
and L(y) = ∅}, using formulas (21) and (23):

ξ̂i(z)− V̂ ({i}, z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y)−

−





∑
i∈N

Ki(ā
z)

V (N, z)
V ({i}, z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)V̂ ({i}, y)



 =

=

∑
i∈N

Ki(ā
z)

V (N, z)
(ξi(z)− V ({i}, z))+

+ (1− qk)
∑

y∈L(z)

p(y|z, āz)
(
ξ̂i(y)− V̂ ({i}, y)

)
> 0.

The �rst term is non-negative sine ξ(z) is an imputation of ooperative subgame

Ḡ(z), and the seond term is non-negative, beause y ∈ {y : L(y) = ∅}. We prove

reursively for the previous verties z ∈ CZ and so on until vertex z0.

It is important to know in what relation the set Ĉ(z) whih is a regularized

solution de�ned by the formula (25), and the set C̃(z) whih is the solution found
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for the ooperative subgame Ḡ(z) with the harateristi funtionV̂ (S, z) (i. e.,

the solution onstruted using the same rules as the solution C(z) ⊂ I(z) for the
ooperative subgame Ḡ(z)). Now we �nd the sets C̃(z) and Ĉ(z) for the ooperative
stohasti subgame Ḡ(z) if when the solutions of the stohasti game Ḡ(z0) are the
imputations (the Shapley value and the ore) from the lassial �stati� theory of

ooperative games.

2.8. Regularization of the Shapley value and the ore

We start with the ase when players hoose the single-point optimality priniple�

Shapley value�as a ooperative solution. The Shapley value alulated in ooper-

ative stohasti game Ḡ(z0), is denoted by Sh(z0) = (Shi(z0) : i ∈ N), and in

ooperative subgame Ḡ(z), where z ∈ CZ, by Sh(z) = (Shi(z) : i ∈ N).
De�ne the regularized Shapley value in ooperative subgame Ḡ(z), where z ∈

CZ, and z ∈ (L(z0))
k
based on the Shapley value of the initially given game as a

solution of the funtional equation

Ŝhi(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
Shi(z) + (1 − qk)

∑

y∈L(z)

p(y|z, āz)Ŝhi(y) (26)

with boundary ondition

Ŝhi(z) = Shi(z) (27)

for z ∈ {z : L(z) = ∅ or qk = 1}.
The following theorem holds.

Theorem 3. Vetor satisfying the funtional equation (26) with boundary ondition
(27), is subgame-onsistent and it is the Shapley value of the ooperative subgame

〈N, V̂ (·, z)〉, z ∈ CZ of stohasti game 〈N, V̂ (·, z0)〉, where the values of harate-

risti funtion V̂ (·, z) are alulated by formulas (23) and (24).

Remark 3. Theorem 3 provides the relation between the sets C̃(z) and Ĉ(z), whih
are mentioned at the end of the previous paragraph. If the Shapley value is hosen

as a solution of the stohasti game Ḡ(z0), then C̃(z) = Ĉ(z) for any z ∈ CZ.
Therefore, we may reformulate Theorem 2 in the following way.

Theorem 4. Vetor satisfying the funtional equation (26) with boundary ondi-

tion (27), is subgame-onsistent, and Ŝh(z0) = Ĉ(z0) = C̃(z0), where Ĉ(z0) is

a regularized solution satisfying equation (25), and C̃(z0) is the Shapley value of

the ooperative stohasti game 〈N, V̂ (·, z0)〉 with harateristi funtion given by

formulas (23), (24).

Proof. The fat that the vetor satisfying the funtional equation (26) with initial

ondition (27) is subgame-onsistent, follows from Theorem 1 whih is formulated

for a general ase, i. e. , for any solution C(z).
Calulate the Shapley value of ooperative stohasti game 〈N, V̂ (·, z)〉, z ∈ CZ,

with regularized harateristi funtion given by formulas (23), (24):

Ŝhi(z) =
∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

(
V̂ (S, z)− V̂ (S \ {i}, z)

)
.
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Rewrite (23) for oalition S \ {i} and obtain

V̂ (S \ {i}, z) =

∑
i∈N

Ki(ā
z)

V (N, z)
V (S \ {i}, z)+

+ (1− qk)
∑

y∈L(z)

p(y|z, āz)V̂ (S \ {i}, y). (28)

Subtrating (28) from (23), multiplying by (|S|−1)!(n−|S|)!
n! and summing up over the

all possible oalitions S ⊂ N suh that S ∋ i, we obtain

∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ {i}, z)

]
= (29)

=




∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

[V (S, z)− V (S \ {i}, z)]





∑
i∈N

Ki(ā
z)

V (N, z)
+

+ (1− qk)
∑

y∈L(z)

p(y|z, āz)×

×




∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

[
V̂ (S, y)− V̂ (S \ {i}, y)

]




=

= Shi(z)

∑
i∈N

Ki(ā
z)

V (N, z)
+ (1− qk)

∑

y∈L(z)

p(y|z, āz)Ŝhi(y).

The result of the theorem follows from (29) and (26).

Now we assume that the players hoose the ore as a solution of ooperative

stohasti game Ḡ(z0). As before, we suppose that CO(z) 6= ∅ for any vertex

z ∈ CZ. We also assume that CO(z0) is not subgame-onsistent, i. e., there exists at
least one imputation ξ(z0) ∈ CO(z0) for whih the ondition of subgame onsisteny
is not satis�ed.

De�nition 14. The regularized ore of stohasti game Ḡ(z0) is the set:

ĈO(z0) =

{
ξ̂(z0) : ξ̂i(z0) =

∑
i∈N

Ki(ā
z0)

V (N, z0)
ξi(z0) + (1− q0)

∑

y∈L(z0)

(p(y|z0, āz0)ξ̂i(y)),

ξ̂i(z0) = ξi(z0), z0 ∈ {z : L(z) = ∅ or qk = 1} , ξ(z0) ∈ CO(z0)

}
. (30)

De�nition 15. The regularized ore of ooperative subgame Ḡ(z) is the set ĈO(z)
de�ned as:

ĈO(z) =

{
ξ̂(z) : ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y)

ξ̂i(z) = ξi(z) for z ∈ {z : L(z) = ∅ or qk = 1} , ξ(z) ∈ CO(z)

}
. (31)
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Denote by C̃O(z) the ore alulated for ooperative subgame 〈N, V̂ (·, z)〉, z ∈ CZ,
with harateristi funtion V̂ (S, z), de�ned by formulas (23), (24). We prove the

theorem providing the relation between C̃O(z) and ĈO(z).

Theorem 5. The regularized ore de�ned by formula (30) is subgame-onsistent

solution. Moreover, ĈO(z0) ⊂ C̃O(z0), where C̃O(z0) is the ore of ooperative

stohasti game 〈N, V̂ (·, z)〉 with harateristi funtion de�ned by formulas (23),
(24).

Proof. Subgame onsisteny of the ore follows from Theorem 1. To prove that

ĈO(z0) ⊂ C̃O(z), we need to prove that any imputation ξ̂(z0) ∈ ĈO(z0) belongs to

the set C̃O(z0), whih is equivalent to the following: for any ξ̂(z) ∈ ĈO(z), z ∈ CZ
and S ⊂ N the inequality ∑

i∈S

ξ̂i(z) > V̂ (S, z) (32)

is true.

The proof is obvious for the verties z ∈ {z : L(z) = ∅ or qk = 1}. Now we prove

this inequality for the verties z ∈ {z : L(z) ∋ y and L(y) = ∅}:

∑

i∈S

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)

∑

i∈S

ξi(z) + (1− qk)
∑

y∈L(z)

(
p(y|z, āz)

∑

i∈S

ξ̂i(y)

)
>

> V̂ (S, z),

whih is true beause y ∈ {z : L(z) = ∅ or qk = 1} and

∑
i∈S ξi(z) > V (S, z), as

ξ(z) is the imputation belonging to the ore CO(z).

The following part of the proof is made for the next verties up to the initial

vertex z0 like in the proof of Theorem 1.

Now we onsider examples of onstrution and regularization of the solution in

ooperative stohasti games de�ned on the graphs.

Example 1.1. (Petrosyan et al., 2004) Consider stohasti game G(z0) de-
�ned on graph Ψ(z0) whih is represented on Fig. 1.

Fig. 1. Graph of Example 1.1.

The set of verties of graph Ψ(z0) is Z = {z0, . . . , z9}. The set of players is

N = {1, 2}. In eah vertex of graph Ψ(z0) two-player normal-form game Γ (z),
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z ∈ Z, is given and the payo�s in these games are the following:

Γ (z0) :

(
(5, 5) (0, 8)
(8, 0) (1, 1)

)
, Γ (z2) :

(
(3, 0) (6, 4)
(5, 6) (2, 2)

)
,

Γ (z3) :

(
(1, 11) (4, 2)
(1, 3) (1, 1)

)
, Γ (z7) :

(
(1, 1) (0, 2)
(2, 0) (1, 2)

)
,

Γ (z8) :

(
(5, 5) (6, 1)
(1, 6) (6, 6)

)
, Γ (z9) :

(
(4, 2) (3, 4)
(5, 6) (1, 5)

)
,

Γ (z1), Γ (z4), Γ (z5), Γ (z6) :

(
(0, 0) (1, 0)
(1, 0) (0, 1)

)
.

To determine non-ooperative stohasti game G(z0) we need to de�ne transition

probabilities and probabilities of the game duration. First, de�ne the transition

probabilities from the verties of the graph to the next verties. If in game Γ (z0)
the ation pro�le (2, 2) is realised, then stohasti game G(z0) transits to the vertex
z2 with probability 1/3 and to the vertex z3 with probability 2/3. If any other

ation pro�le di�erent from (2, 2) is realised (arrow =⇒ means the deterministi

transition), then the game G(z0) transits to vertex z1. At verties z1, z2 when

any ation pro�le is played, stohasti game G(z0) transits to verties z4 and z5
respetively. If in the game Γ (z3) the ation pro�le (2, 2) is played, then stohasti

game G(z0) transits to verties z8 and z9 with equal probabilities 1/2. And if in the
game Γ (z3) the ation pro�le (2, 1) is played, the game G(z0) transits to vertex z7
with probability 1. The deterministi transition (with probability 1) is made from

other ation pro�les to vertex z6 (arrow =⇒ means the deterministi transition).

Let probabilities qk that the game ends at stage k be given:

q1 =
1

8
, q2 = 0, q3 = 1.

Let players hoose the Shapley value as the ooperative solution of the game.

For two-player game, it is alulated by formulas:

Sh1(z) = V ({1}, z) + V ({1, 2} , z)− V ({1}, z)− V ({2}, z)
2

,

Sh2(z) = V ({2}, z) + V ({1, 2} , z)− V ({1}, z)− V ({2}, z)
2

,

where V ({1}, z) and V ({2}, z) are the values of harateristi funtion for the sub-

game beginning at vertex z alulated for oalitions {1} and {2} respetively.
The above desribed sets and values determine stohasti game with random

duration G(z0) (see (1)).
We start to �nd the solution of the ooperative game from the terminal verties

of the graph, i. e., the verties from whih it is impossible to transmit to any

other verties of the graph. First, alulate V ({1}, z9) and V ({2}, z9) as maximum
guaranteed players' payo�s in the game Γ (z9) using formula (8):

V ({1}, z9) = 3, V ({2}, z9) = 4, V ({1, 2}, z9) = 11.
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Then, we may alulate the Shapley value of the subgame Ḡ(z9) of the game Ḡ(z0)
starting from game Γ (z9):

Sh1(z9) = 5, Sh2(z9) = 6.

We make the similar alulations for the subgames starting from the games Γ (z4),
Γ (z5), Γ (z6), Γ (z7) and Γ (z8) using formula (8) while these games are realised

at the verties belonging to the set {z : L(z) = ∅}. The values of harateristi
funtions for these subgames and orresponding Shapley values are given in the

Table 2.

Table 2. Charateristi funtions and the Shapley values of subgames Ḡ(z), z ∈
{z4, z5, z6, z7, z8, z9}.

Vertex z V ({1}, z) V ({2}, z) V ({1, 2}, z) Sh1(z) Sh2(z)

z4 0 0 1 1/2 1/2

z5 0 0 1 1/2 1/2

z6 0 0 1 1/2 1/2

z7 1 2 3 1 2

z8 5 5 12 6 6

z9 3 4 11 5 6

Now onsider the verties from the set {z : (L(z))2 = ∅}. We start from vertex

z3. As stohasti game may transit to the other verties of the graph, we need to

transform the payo�matrix of the game to alulate the Shapley value of ooperative

subgame Ḡ(z3). With ation pro�le (2,2) the mathematial expetations of the

players' payo�s we �nd in the following way:

• for Player 1:

1 + (1 − q2)

(
1

2
V ({1}, z8) +

1

2
V ({1}, z9)

)
= 5,

• for Player 2:

1 + (1− q2)

(
1

2
V ({2}, z8) +

1

2
V ({2}, z9)

)
= 5.5.

With ation pro�le (2,1) they are

• for Player 1:

1 + (1− q2)V ({1}, z7) = 2,

• for Player 2:

1 + (1− q2)V ({2}, z7) = 3.

Similarly, with ation pro�le (1,1) the mathematial expetations of the players'

payo�s are

• for Player 1:

1 + (1− q2)V ({1}, z6) = 1,

• for Player 2:

11 + (1− q2)V ({2}, z6) = 11;



150 Elena Parilina

and with ation pro�le (1,2) the mathematial expetations of the players' payo�s

are

• for Player 1:

4 + (1− q2)V ({1}, z6) = 4,

• for Player 2:

2 + (1− q2)V ({2}, z6) = 2.

Then the bi-matrix game written for the alulations of the values of harateristi

funtions V ({1}, z3) and V ({2}, z3) looks like
(
(1, 11) (4, 2)
(2, 5) (5, 5.5)

)
.

The values of harateristi funtion of ooperative subgame Ḡ(z3) of the game
Ḡ(z0) for oalitions {1}, {2} are

V ({1}, z3) = 2, V ({2}, z3) = 5.

To alulate V ({1, 2}, z3) we use formula (7) and obtain the bi-matrix game:

(
12 + (1− q2)V ({1, 2}, z6) 6 + (1− q2)V ({1, 2}, z6)
4 + (1 − q2)V ({1, 2}, z7) 2 + (1 − q2)(0.5V ({1, 2}, z8) + 0.5V ({1, 2}, z9))

)

or in numeri form: (
13 7
7 13.5

)
.

Therefore,

V ({1, 2}, z3) = 13, 5,

Sh1(z3) = 5.25, Sh2(z3) = 8.25.

We make similar alulations for the ooperative subgame Ḡ(z1):

V ({1}, z1) = 0, V ({2}, z1) = 0, V ({1, 2}, z1) = 2,

Sh1(z1) = Sh2(z1) = 1,

and for subgame Ḡ(z2):

V ({1}, z2) = 3, V ({2}, z2) = 2, V ({1, 2}, z2) = 12,

Sh1(z2) = 6.5, Sh2(z2) = 5.5.

For ooperative stohasti game Ḡ(z0), the matrix game for the alulation of the

values of harateristi funtion for oalitions {1}, {2} an be found by formula

(7). With ation pro�le (2,2) the mathematial expetations of the players' payo�s

are

• for Player 1:

1 + (1 − q1)

(
1

3
V ({1}, z2) +

2

3
V ({1}, z3)

)
= 3

1

24
,
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• for Player 2:

1 + (1− q1)

(
1

3
V ({2}, z2) +

2

3
V ({2}, z3)

)
= 4

1

2
.

With ation pro�le (2,1) the mathematial expetations of the players' payo�s

are

• for Player 1:

8 + (1− q1)V ({1}, z1) = 8,

• for Player 2:

0 + (1− q1)V ({2}, z1) = 0.

Similarly, with ation pro�le (1,1) the mathematial expetations of the players'

payo�s are

• for Player 1:

5 + (1− q1)V ({1}, z1) = 5,

• for Player 2:

5 + (1− q1)V ({2}, z1) = 5.

With ation pro�le (1,2) the mathematial expetations of the players' payo�s

are

• for Player 1:

0 + (1− q1)V ({1}, z1) = 0,

• for Player 2:

8 + (1− q1)V ({2}, z1) = 8.

Finally, we obtain the matrix:

(
(5, 5) (0, 8)
(8, 0) (3 1

24 , 4
1
2 )

)
,

V ({1}, z0) = 3
1

24
, V ({2}, z0) = 4

1

2
.

For the alulation of V ({1, 2}, z0) we form matrix game using formula (7):

(
10 + (1− q1)V ({1, 2}, z1) 8 + (1 − q1)V ({1, 2}, z1)
8 + (1− q1)V ({1, 2}, z1) 2 + (1− q1)(

1
3V ({1, 2}, z2) + 2

3V ({1, 2}, z3))

)

or in a numeri form: (
11 3

4 9 3
4

9 3
4 13 3

8

)
.

Calulating V ({1, 2}, z0) and Sh1(z0), Sh2(z0), we obtain:

V ({1, 2}, z0) = 13
3

8
, Sh1(z0) = 5

23

24
, Sh2(z0) = 7

5

12
.

The set of verties forming the ooperative subtree onsists of the verties z0,
z2, z3, z5, z8, z9.
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Now we verify if the imputation distribution proedure is non-negative. It is

negative at vertex z3 that follows from equation (17), in whih the vertex z3 is

used:

Sh1(z3) = β1(z3) + (1− q1)

[
1

2
· Sh1(z8) +

1

2
· Sh1(z9)

]
,

5.25 = β1(z3) + (1− 0)

[
1

2
· 5 + 1

2
· 6
]
,

β1(z3) = −0.25.

As β1(z3) is negative, we make the regularization of the Shapley value to onstrut
a ¾new¿ non-negative Shapley value.

Determine the new Shapley value for the verties of the ooperative subtree with

verties z0, z2, z3, z5, z8, z9 by formulas (26) and (27):

Ŝh1(z5) = 0.5, Ŝh1(z8) = 6, Ŝh1(z9) = 5,

Ŝh2(z5) = 0.5, Ŝh2(z8) = 6, Ŝh2(z9) = 6,

Ŝh1(z2) =
11

12
· 6.5 + 1

2
= 6

11

24
,

Ŝh2(z2) =
11

12
· 5.5 + 1

2
= 5

13

24
,

Ŝh1(z3) =
2

13.5
· 5.25 +

[
1

2
· 5 + 1

2
· 6
]
= 6

5

18
,

Ŝh2(z3) =
2

13.5
· 8.25 +

[
1

2
· 6 + 1

2
· 6
]
= 7

2

9
,

Ŝh1(z0) =
2

13 3
8

· 523
24

+

(
1− 1

8

)[
1

3
· 611

24
+

2

3
· 6 5

18

]
= 6

80741

184896
≈ 6.437,

Ŝh2(z0) =
2

13 3
8

· 7 5

12
+

(
1− 1

8

)[
1

3
· 513

24
+

2

3
· 72

9

]
= 6

173491

184896
≈ 6.938.

The ¾new¿ vetor is the Shapley value of the ooperative game with harateristi

funtion de�ned by formulas (23), (24). It is subgame-onsistent whih follows from
Theorem 4.

For the games Γ (z5), Γ (z8) and Γ (z9) the new harateristi funtions are pre-

sented in Table 3.

Table 3. ¾New¿ harateristi funtions.

Vertex z V̂ ({1}, z) V̂ ({2}, z) V̂ ({1, 2}, z)

z0 3.763 4.265 13.375

z2 2.750 1.833 12.000

z3 4.296 5.574 13.500

z5 0.000 0.000 1.000

z8 5.000 5.000 12.000

z9 3.000 4.000 11.000

Remark 4. The nuleolus may be hosen by the players as a solution of the o-

operative game (see Shmeidler, 1969). Notie that the nuleolus onsists of one
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vetor, so there are no problems with the hoie of a unique imputation from the

imputation set. We also notie that the nuleolus belongs to the ore when the latter

is non-empty.

Example 1.2.Consider stohasti gameG(z0) de�ned on the graph Ψ(z0) whih
is presented on Fig. 3. The set of verties of graph Ψ(z0) is Z = {z0, . . . , z5}. The set

Fig. 2. Graph of Example 1.2.

of players is N = {1, 2, 3}. At eah vertex of graph G(z0) three-player normal-form
game Γ (z), z ∈ Z, is given. The payo� matrix are the following:

Γ (z0), Γ (z2) :

((
(1, 1, 1) (2, 2, 0)
(2, 2, 0) (0, 0, 3)

) (
(1, 1, 2) (2, 2, 1)
(1, 3, 1) (3, 0, 1)

))
,

Γ (z1), Γ (z5) :

((
(2, 0, 1) (1, 0, 1)
(3, 1, 2) (2, 2, 2)

) (
(2, 2, 1) (1, 1, 3)
(2, 1, 1) (2, 1, 2)

))
,

Γ (z3) :

((
(1, 1, 1) (2, 2, 2)
(3, 2, 0) (1, 4, 1)

) (
(2, 0, 1) (2, 1, 1)
(4, 0, 1) (0, 4, 1)

))
,

Γ (z4) :

((
(2, 1, 0) (2, 1, 3)
(3, 1, 2) (3, 6, 4)

) (
(4, 5, 0) (0, 5, 4)
(2, 8, 0) (0, 8, 2)

))
.

In eah game de�ned above, Player 1 hooses rows, Player 2 hooses olumns and

Player 3 hooses matries.

First, we de�ne the transition probabilities from the vetries to the other verties

of the graph. If in game Γ (z0) ation pro�le (1,1,1) is played, then stohasti game

G(z0) transits to the vertex z1 with probability 1/3 and to the vertex z2 with

probability 2/3. Otherwise, if any ation pro�le di�erent from (1,1,1) is played

(arrow =⇒ means the deterministi transition), then the game G(z0) transits to
the vertex z1. If ation pro�le (2,1,2) is realised at vertex z2, stohasti game G(z0)
transits to the vertex z3 and z4 with probabilities 1/3, 2/3 respetively. If any other
ation pro�le di�erent from (2,1,2) is realised, game G(z0) transits to vertex z5 with
probability 1.

The probabilities qk that stohasti game G(z0) ends at stage k are given:

q1 = 0.5, q2 = 0, q3 = 1.

Let players hoose the Shapley value as a solution of the game. We start solving

the game with the verties of the graph whih belong to the set {z : L(z) = ∅}. We

alulate the values of harateristi funtion and the Shapley value for subgame
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Ḡ(z3). Similar alulations are made for the verties z1, z5, z4, and then for the

verties z2 and z0 using formula (7). The alulations are presented in Tables 4 and
5.

Table 4. Charateristi funtions for subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z V ({1}, z) V ({2}, z) V ({3}, z) V ({1, 2}, z) V ({2, 3}, z) V ({1, 3}, z) V ({1, 2, 3}, z)

z0 2 1 3/2 11/2 9/2 2 83/9

z1 2 0 1 3 4 3 6

z2 3 1 4/3 7 6 7 47/3

z3 1 1 1 4 4 3 6

z4 0 1 0 8 9 5 13

z5 2 0 1 3 4 3 6

Table 5. The Shapley values of subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z Sh1(z) Sh2(z) Sh3(z)

z0 193/54 305/108 305/108

z1 8/3 7/6 13/6

z2 37/6 14/3 29/6

z3 11/6 7/3 11/6

z4 10/3 35/6 23/6

z5 8/3 7/6 13/6

The set of verties of the ooperative subtree is CZ = {z0, z1, z2, z3, z4}. We

regularize the Shapley value:

Sh(z0) =

(
3
31

54
, 2

89

108
, 2

89

108

)

and verify if the imputation distribution proedure is non-negative. For this, we

�nd values βi(z) for verties z0 ∈ CZ and z2 ∈ CZ using formula (19) and verify if

imputation distribution proedure βi(z) is non-negative:

βi(z2) = Shi(z2)− (1− q2)

(
1

3
Shi(z3) +

2

3
Shi(z4)

)
,

βi(z0) = Shi(z0)− (1− q1)

(
1

3
Shi(z1) +

2

3
Shi(z2)

)
,

obtaining

β1(z2) = 3
1

3
, β2(z2) = 0, β3(z2) = 1

2

3
;

β1(z0) = 1
2

27
, β2(z0) = 1

2

27
, β3(z0) =

23

27
.

For z ∈ {z0, z2} the following onditions: βi(z) > 0 and

∑
i∈N βi(z2) = 5 are

satis�ed, and

∑
i∈N βi(z0) = 3.

In all verties of the ooperative subtree, onditions of subgame onsisteny

and non-negativity of the Shapley value are satis�ed. Therefore, we state that the

Shapley value is subgame-onsistent imputation in game Ḡ(z0).
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Now we repeat alulations assuming that players adopt the nuleolus as a so-

lution of the game Ḡ(z0). The nuleolus was initially proposed by D. Shmeidler

(Shmeidler, 1969). The de�nition and some usefull theorems and lemmas about

the properties of the nuleolus may be found in (Peherski and Yanovskaya, 2004,

Driessen et al., 1992, Kohlberg, 1971). The works (Kohlberg, 1972, Montero, 2005)

are devoted to the alulation of the nuleolus whih ontains the unique vetor.

For the alulation of the nuleolus, one may use Matlab (Mathworks, 2017) and

program TUGlab (TUGlab), written for alulation in ooperative game theory, or

Mathematia (MATHEMATICA) and program TUGames (Meinhardt) written for

the same tasks.

The harateristi funtion was alulated above. The nuleolus of the subgame

Ḡ(z), z ∈ CZ, is denoted by n(z) = (ni(z) : i ∈ N).
We alulate the nuleoli for all subgames of the game Ḡ(z0). The results are

presented in Table 6.

Table 6. The nuleoli of subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z n1(z) n2(z) n3(z)

z0 3 5

9
3 1

18
2 11

18

z1 2 1

2
1 1

4
2 1

4

z2 6 1

3
4 1

2
4 2

3

z3 1 2

3
2 2

3
1 2

3

z4 2 2

3
6 2

3
3 2

3

z5 2 1

2
1 1

4
2 1

4

Now we verify the subgame onsisteny of the nuleolus using formula (17) and
alulate βi(z2) for vertex z2 by formula:

ni(z2) = βi(z2) + (1− q2)(p(z3|z2, āz2)ni(z3) + p(z4|z2, āz2)ni(z4)).

We obtain:

β1(z2) = 4, β2(z2) = −5

6
, β3(z2) = 1

5

6
.

The nuleolus of the ooperative stohasti game Ḡ(z0) is not subgame-onsistent if
the non-negativity of the imputation distribution proedure is required. For exam-

ple, β2(z2) < 0. We won't verify existene of non-negative imputation distribution

proedure (17), but we will make the regularization of the nuleolus.
Calulate ¾new¿ nuleolus for eah vertex z ∈ CZ by formula (21) with initial

ondition (22). For vertex z2, we use the following formula:

n̂i(z2) =

∑
i∈N

Ki(ā
z2)

V (N, z2)
ni(z2) + (1− q2)

∑

y∈L(z2)

p(y|z2, āz2)n̂i(y),

for vertex z0, we use formula:

n̂i(z0) =

∑
i∈N

Ki(ā
z0)

V (N, z0)
Ni(z0) + (1− q1)

∑

y∈L(z0)

p(y|z0, āz0)n̂i(y).
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Table 7. The nuleoli of subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z n̂1(z) n̂2(z) n̂3(z)

z0 3 3487

140436
3 128867

280872
2 69149

93624

z1 2 1

2
1 1

4
2 1

4

z2 4 50

141
6 217

282
4 51

94

z3 1 2

3
2 2

3
1 2

3

z4 2 2

3
6 2

3
3 2

3

z5 2 1

2
1 1

4
2 1

4

¾New¿ nuleoli for the verties of set CZ are given in Table 7.

Calulate harateristi funtion V̂ (S, z) for eah vertex z ∈ CZ by formulas

(23) and (24). Moreover, V̂ (S, z3) = V (S, z3), V̂ (S, z4) = V (S, z4), V̂ (S, z1) =
V̂ (S, z5) = V (S, z1) = V (S, z5). For the alulation of V̂ (S, z2) we use formula:

V̂ (S, z2) =

∑
i∈N

Ki(ā
z2)

V (N, z2)
V (S, z2) + (1− q2)

∑

y∈L(z2)

p(y|z2, āz2)V̂ (S, y),

and for V̂ (S, z0):

V̂ (S, z0) =

∑
i∈N

Ki(ā
z0)

V (N, z0)
V (S, z0)+

+ (1− q1)
(
p(z1|z0, āz0)V̂ (S, z1) + p(z2|z0, āz0)V̂ (S, z2)

)
.

The values of the funtion V̂ (S, ·) are given in Table 8.

Table 8. Charateristi funtion V̂ (S, z), z ∈ {z0, z1, z2, z3, z4, z5}.

z V̂ ({1}, z) V̂ ({2}, z) V̂ ({3}, z) V̂ ({1, 2}, z) V̂ ({2, 3}, z) V̂ ({1, 3}, z) V̂ ({1, 2, 3}, z)

z0 1 245

249

164

249
1 74

747
4 155

249
3 80

83
4 52

83
9 2

9

z1 2 0 1 3 4 3 6

z2 1 41

141
1 15

47

107

141
8 127

141
9 35

141
6 80

141
15 2

3

z3 1 1 1 4 4 3 6

z4 0 1 0 8 9 5 13

z5 2 0 1 3 4 3 6

Notie that the �new� nuleolus n̂(z2) of subgame Ḡ(z2) belongs to the impu-

tation set with harateristi funtion V̂ (S, z2) (the nuleolus n̂(z2) also belongs to
the set I(z2), whih is not true in general), but it is not the nuleolus of the oop-

erative game. The nuleolus of ooperative game de�ned by harateristi funtion

V̂ (S, z2), is denoted by ñ(z2) = (ñ1(z2), ñ2(z2), ñ3(z2)). It equals to the following

one:

ñ(z2) ≈ (4.213, 6.894, 4.560) 6= n̂(z2).

The ¾new¿ nuleolus n̂(z0) alulated for the game Ḡ(z0), belongs to the im-

putation set of the ooperative game de�ned by harateristi funtion V̂ (S, z0)
(n̂(z0) also belongs to the imputation set I(z0)), but it does not oinide with the
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nuleolus of this ooperative game. The nuleolus of the ooperative game de�ned

by harateristi funtion V̂ (S, z0), given above, is denoted by ñ(z0) and it equals

ñ(z0) ≈ (3.621, 2.720, 2.881) 6= n̂(z0).

2.9. Strongly subgame onsisteny of the ore

In this setion we onsider the ase when solution of the ooperative stohasti game

is the set and ontains more than one point. As an example of suh a solution we ex-

amine the ore. First, we desribe the problem of subgame onsisteny and then �nd

the su�ient onditions of strongly subgame onsisteny of the ore. This problem

was initially examined by Leon Petrosyan for di�erential games (Petrosyan, 1992)

and then for multiriteria problems of optimal ontrol (Petrosyan, 1993).

Suppose that the ores of stohasti game Ḡ(z0) and any subgame Ḡ(z), z ∈ CZ,
are non-empty. When players ooperate they ome to an agreement about the real-

ization of the ooperative strategy pro�le ϕ̄ and expet to reeive the omponents

of the imputation belonging to the ore CO(z0). Reahing the intermediate ver-

tex z ∈ CZ \ {z0} of the ooperative subtree, player i ∈ N hooses an ation āzi
in aordane with the ooperative strategy ϕ̄i and reeives the payo� Kz

i (ā
z). If

the players realulate the ooperative solution, i.e., �nd the solution of the oop-

erative subgame starting from vertex z, the realulated solution will be the ore

CO(z). It will be rational to require that the payo� reeived by the player in vertex
z summarized with the expeted sum of any imputations from solutions CO(y),
y ∈ L(z), of the games of the ooperative subtrees following game Γ (z), is equal to
the imputation from solution CO(z). If this property is satis�ed for any vertex z of
the ooperative subtree, the ore of ooperative stohasti game Ḡ(z0) is strongly
subgame-onsistent.

To introdue the mathematially strit de�nition of strongly subgame-onsistent

ore, it is neessary to de�ne the so-alled expeted ore. For any non-terminal vertex

of the ooperative subtree we de�ne the set of expeted imputations belonging to

the ores whih are the solutions of the subgames following the onsidered vertex.

For any vertex z ∈ CZ, L(z) 6= ∅, de�ne the expeted ore:

EC(L(z)) =



α(L(z)) =

∑

y∈L(z)

p(y|z, āz)α(y) | α(y) ∈ CO(y)



 . (33)

The set EC(L(z)) onsists of the vetors α(L(z)) whih are the mathematial expe-
tations of the possible olletion of the imputations from the ores of the subgames

beginning from the verties following vertex z with respet to the probability dis-

tribution {p(y|z, āz), y ∈ L(z)}.
We also de�ne the distribution proedure of the players' payo�s in the verties

of the ooperative subtree. Re�ne De�nition 10 of the imputation distribution pro-

edure. The �rst ondition in De�nition 10 maybe alled the ondition of �feasibility

of the imputation distribution proedure� beause it guarantees that in any vertex

of the ooperative subtree the sum of the payments to the players equals the sum

of the payo�s reeived by the players when they realize ooperative strategies. The

seond ondition guarantees to the players that they reeive the omponents of the

initially hosen imputation from the ore of ooperative game Ḡ(z0) in the sense

of mathematial expetation, if the payments to the players along the game are

realized in aordane with imputation distribution proedure {β(z) : z ∈ CZ}.
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Now we need to de�ne the distribution proedure of the imputation α(z0) from
the ore CO(z0) in a way that the ore is strongly subgame-onsistent.

De�nition 16. We all the ore CO(z0) of the ooperative stohasti game Ḡ(z0)
strongly subgame-onsistent if there exists the distribution proedure {β(z)}z∈CZ
of the imputation from the ore CO(z0) suh that for eah vertex z ∈ CZ the

inlusions take plae:

β(z)⊕ (1− qk)EC(L(z)) ⊂ CO(z), (34)

B(z0) ∈ CO(z0), (35)

where

β(z) ⊕ (1 − qk)EC(L(z)) =

{
β(z) + (1 − qk)α(L(z)) : α(L(z)) ∈ EC(L(z))

}
.

And the imputation distribution proedure {β(z)}z∈CZ is alled strongly subgame-

onsistent.

3

Condition (34) means that the set of vetors whih are equal to the sum of the

imputation distribution proedure of the player at vertex z and the imputation from
the expeted ore of the vertex z, belongs to the ore of the subgame beginning from
vertex z. This ondition provides the restritions on the payments to the players

in the games de�ned at verties and often it is not satis�ed for any game if the

payments to the players are realised in aordane with initially de�ned payo�

funtions.

We impose additional restritions on harateristi funtions of subgames start-

ing from the verties of the ooperative subtree to obtain su�ient onditions of

strongly subgame onsisteny of the ore. Denote by EV (S,L(z)) the expeted val-
ues of harateristi funtion alulated for oalition S ⊆ N at the verties following

the vertex z:
EV (S,L(z)) =

∑

y∈L(z)

p(y|z, āz)V (S, y).

Denote by

∆V (S, z) = V (S, z)− (1− qk)EV (S,L(z))

the di�erene between the value of harateristi funtion at vertex z and expeted
value of harateristi funtion on ondition that the game does not �nish at vertex

z. Denote by ∆CO(z) analogue of the ore alulated using funtion ∆V (S, z).
Now de�ne su�ient ondition of strongly subgame onsisteny of the imputation

distribution proedure and the ore CO(z0).

Theorem 6. Let for eah vertex z ∈ CZ the ore CO(z) and the set ∆CO(z) be
non-empty. For eah vertex z ∈ CZ distribution proedure {β(z) : z ∈ CZ} of the

imputation from the ore CO(z0) satis�es the onditions:

β(z) ∈ ∆CO(z), (36)

B(z0) ∈ CO(z0). (37)

then the ore CO(z0) and distribution proedure {β(z) : z ∈ CZ} are strongly

subgame-onsistent.

3

The sum denoted by sign ⊕ is alled Minkowski sum (see (Shneider), in whih some

properties of this operator are proved).
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Proof. We need to prove that any vetor β(z) ∈ ∆CO(z) satisfying onditions (36)
and (37) is strongly subgame-onsistent distribution proedure of the imputation

α(z0) ∈ CO(z0). So, the onditions (34) and (35) from De�nition 16 hold. Condition

(37) oinides with (35), therefore, it remains to show that the inlusion (34) holds

for any vertex z ∈ CZ. Consider any vetor α(L(z)) ∈ EC(L(z)) for vertex z and
alulate the sum β(z) + (1− qk)α(L(z)). Verify if the latter vetor belongs to the
ore CO(z). Now alulate the sum of all omponents of the vetor:

∑

i∈N

βi(z) + (1 − qk)
∑

y∈L(z)

p(y|z, āz)
∑

i∈N

αi(y) =

= V (N, z)− (1− qk)
∑

y∈L(z)

p(y|z, āz)V (N, y)+

+ (1 − qk)
∑

y∈L(z)

p(y|z, āz)
∑

i∈N

αi(y) = V (N, z),

whih arries out the property of olletive rationality.

Now onsider S ⊂ N , S 6= N :

∑

i∈S

βi(z) + (1− qk)
∑

y∈L(z)

p(y|z, āz)
∑

i∈S

αi(y) >

> V (S, z) + (1− qk)
∑

y∈L(z)

p(y|z, āz)V (S, y)−

− (1− qk)
∑

y∈L(z)

p(y|z, āz)V (S, y) = V (S, z).

By virtue of the arbitrariness of vertex z ∈ CZ, we make a onlusion that

the ore of ooperative game Ḡ(z0) and proedure {β(z) : z ∈ CZ} are strongly

subgame-onsistent.

When analogue of the ore∆CO(z) is non-empty for eah vertex z of the ooper-
ative subtree, Theorem 6 provides the method of onstrution of strongly subgame-

onsistent distribution proedure of the imputations from the ore, equal Bi(z0) by
ondition (37). Notie that in a general ase not all the imputations from the ore

an be realised using distribution proedure {β(z) : z ∈ CZ} de�ned above.

Example 1.3 Consider stohasti game G(z0) de�ned on graph Ψ(z0) depited
on Fig. 3.

The set of the verties of graph Ψ(z0) is Z = {z0, . . . , z5}. The set of the players
is N = {1, 2, 3}. In eah vertex of graph G(z0) the three-person normal-form game
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Fig. 3. The tree Ψ(z0).

Γ (z), z ∈ Z, is de�ned. The payo� matries are

Γ (z0) :

((
(2, 2, 2) (2, 2, 0)
(2, 2, 0) (0, 0, 3)

) (
(1, 1, 2) (2, 2, 1)
(1, 3, 1) (3, 0, 1)

))
,

Γ (z2) :

((
(1, 1, 1) (2, 2, 0)
(2, 2, 0) (0, 0, 3)

) (
(1, 1, 2) (2, 2, 1)
(1, 3, 1) (3, 0, 1)

))
,

Γ (z1), Γ (z5) :

((
(2, 0, 1) (1, 0, 1)
(3, 1, 2) (2, 2, 2)

) (
(2, 2, 1) (1, 1, 3)
(2, 1, 1) (2, 1, 2)

))
,

Γ (z3) :

((
(1, 1, 1) (2, 2, 2)
(3, 2, 0) (1, 4, 1)

) (
(2, 0, 1) (2, 1, 1)
(4, 0, 1) (0, 4, 1)

))
,

Γ (z4) :

((
(2, 1, 0) (2, 1, 3)
(3, 1, 2) (3, 6, 4)

) (
(4, 5, 0) (0, 5, 4)
(2, 8, 0) (0, 8, 2)

))
.

In eah game the �rst player hooses rows, the seond one hooses olumns, the third

one hooses matries. The strategy set of player i ∈ N in game Γ (z) is Azi = {1, 2}.
De�ne the probabilities of transition from all verties to the following ones. If in

game Γ (z0) the ation pro�le (1, 1, 1) is realised, stohasti game G(z0) transits to
vertex z1 with a probability of 1/3 and to vertex z2 with a probability of 2/3. If any
ation pro�le di�erent from (1,1,1) is realised (arrow =⇒ means the deterministi

transition), the game G(z0) transits to vertex z1. If at vertex z2 ation pro�le (2,1,2)
is realised, stohasti game G(z0) transits to verties z3 and z4 with probabilities

of 1/3, 2/3 respetively. The game G(z0) transits to vertex z5 with a probability of

1 from any other verties.

The probabilities qk that stohasti game G(z0) ends at stage k are given:

q1 = 0.5, q2 = 0, q3 = 1.

To onstrut the ooperative version of stohasti game we �nd the ooperative

strategy pro�le ϕ̄. This pro�le ϕ̄ presribes to play ation pro�le (1, 1, 1) at vertex z0.
The game ends at stage z0 with probability 0.5 and transits to the next stage with a
probability of 0.5. If the game does not end, it transits to stage z1 with a probability
of 1/3, at whih the players should realise any of ation pro�les (2, 1, 1) or (2, 2, 1), or
with a probability of 2/3 the game transits to vertex z2, at whih the players should
play ation pro�le (2, 1, 2). At vertex z2 the game does not end beause q1 = 0 and
transits to the verties z3 and z4 with probabilities of 1/3 and 2/3 respetively. At
verties z3 and z4 the game terminates. Therefore, the set of the verties of the

ooperative subtree represented on Fig. 4 is Ψ̄(z0) = {z0, z1, z2, z3, z4}.
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Fig. 4. Cooperative subtree Ψ̄(z0) of the game Ḡ(z0).

Find the values of harateristi funtion using formulas (5) with boundary

ondition (6) for S = N , (7) with boundary ondition (8) for S ⊂ N and (9) for

S = ∅. Calulations are given in Table 9. For further alulations we use pakage

TUGlab of program Matlab [16℄.

Table 9. Charateristi funtions v(S, z) for Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z � S {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}

z0 2 1 1.5 5.5 4.5 6 110/9

z1 2 0 1 3 4 3 6

z2 3 1 4/3 7 6 7 47/3

z3 1 1 1 4 4 3 6

z4 0 1 0 8 9 5 13

z5 2 0 1 3 4 3 6

Now we de�ne the ores of subgames beginning from the verties of ooperative

subtree Ψ̄(z0). We also assure that they all are non-empty to use the ore as a

ooperative solution of a stohasti game. The systems of linear inequalities and

equities whih determines the ores and their graphial representations are given

in Tables 10 and 11. On the �gures, the imputation set is depited as a light-gray

triangle and the ores are dark-grey sets. Notie that at verties z1 and z5 ondition
α1 = 2 holds for eah element of the ore. And the ore is the segment onneting

points (2, 1, 3) and (2, 3, 1).

For eah vertex of the ooperative subtree Ψ̄(z0) we de�ne the analogues of the
ores denoted by∆CO(z). Remind that for terminal verties z1, z3, z4 of set∆CO(·)
oinide with the ore CO(·). Systems of linear inequalities and equities determining
sets∆CO(z0) and∆CO(z2) and also their graphs are presented in Tables 12. Notie
that analogues of the ores ∆CO(·) are non-empty for all verties of the ooperative
subtree. First, verify if the ore is strongly subgame-onsistent if the payments to

the players are realised aording to initially de�ned payo� funtions, i. e., verify if

payo� vetors in the verties of the ooperative subtree belong to the orresponding

sets ∆CO(·) when the players realise ooperative strategy pro�le:

Kz0(1, 1, 1) = (2, 2, 2) ∈ ∆CO(z0),

Kz1(2, 2, 1) = (2, 2, 2) ∈ CO(z1) = ∆CO(z1),



162 Elena Parilina

Table 10. The ore for verties z0, z1, z5 ∈ CZ.

z Core Graph of the ore

z0



















































α1 > 2

α2 > 1

α3 > 1.5

α1 + α2 > 5.5

α1 + α3 > 6

α2 + α3 > 4.5

α1 + α2 + α3 = 110/9

(2,1,9.2222)

(9.7222,1,1.5) (2,8.7222,1.5)

z1,

z5



















































α1 > 2

α2 > 0

α3 > 1

α1 + α2 > 3

α1 + α3 > 3

α2 + α3 > 4

α1 + α2 + α3 = 6

(2,0,4)

(5,0,1) (2,3,1)

Kz2(2, 1, 2) = (1, 3, 1) /∈ ∆CO(z2),

Kz3(1, 2, 1) = (2, 2, 2) ∈ CO(z3) = ∆CO(z3),

Kz4(2, 2, 1) = (3, 6, 4) ∈ CO(z4) = ∆CO(z4).

We an easily see that at vertex z2 the ondition of inlusion is not satis�ed and we
an't guarantee strongly subgame onsisteny of an imputation from the ore if the

payments to the players are realised aording to initially de�ned payo� funtions.

We show that ondition (34) does not hold at vertex z2. Following De�nition 16
players may hoose any imputation from expeted ore of vertex z. Let they hoose
the imputations: (1.5, 3, 1.5) ∈ CO(z3) and (0, 8, 5) ∈ CO(z4), then the sum at the

left-handed term of inlusion (34) takes form:

(1, 3, 1) +
1

3
(1.5, 3, 1.5) +

2

3
(0, 8, 5) =

(
3

2
,
28

3
,
29

6

)
,

and this vetor does not belong to the ore CO(z2), whih means that ondition

(34) does not hold and the ore is not subgame-onsistent.

Following Theorem 6, the set of vetors β(z) belonging to ∆CO(z), z ∈ CZ, is
the distribution proedure of an imputation from the ore CO(z0) of initially de�ned
game. By Theorem 6 we may also onlude that olletion of vetors (β(z) : z ∈ CZ)
is not strongly subgame-onsistent. For example, onsider element from the set

∆C(z), z ∈ CZ: β(z0) = (4, 1, 1), β(z1) = (2, 2, 2), β(z2) = (3, 1, 1), β(z3) =
(2, 2, 2), β(z4) = (3, 6, 4). Calulate the mathematial expetations of the players'
payo�s if in the verties of ooperative subtree they are paid in aordane with
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Table 11. The ore for the verties z2, z3, z4 ∈ CZ.

z2



















































α1 > 3

α2 > 1

α3 > 4/3

α1 + α2 > 7

α1 + α3 > 7

α2 + α3 > 6

α1 + α2 + α3 = 47/3

(3,1,11.6667)

(13.3333,1,1.3333) (3,11.3333,1.3333)

z3



















































α1 > 1

α2 > 1

α3 > 1

α1 + α2 > 4

α1 + α3 > 3

α2 + α3 > 4

α1 + α2 + α3 = 6

(1,1,4)

(4,1,1) (1,4,1)

z4



















































α1 > 0

α2 > 1

α3 > 0

α1 + α2 > 8

α1 + α3 > 5

α2 + α3 > 9

α1 + α2 + α3 = 13

(0,1,12)

(12,1,0) (0,13,0)

{β(·)}:

B(z0) = (4, 1, 1) + 0.5

{
1

3
(2, 2, 2) +

2

3

(
(3, 1, 1) +

1

3
(2, 2, 2) +

2

3
(3, 6, 4)

)}
=

=

(
56

9
,
29

9
,
25

9

)
.

Obviously, B(z0) ∈ CO(z0).

So, we have proposed a method of onstrution of strongly subgame-onsistent

imputation distribution proedure when the ore is hosen by the players as a set-

valued optimality priniple.
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Table 12. Sets ∆CO(z) for verties z0 and z2.

z ∆C(z) Graphs of ∆CO(z)

z0



















































α1 > 2/3

α2 > 2/3

α3 > 8/9

α1 + α2 > 8/3

α1 + α3 > 19/6

α2 + α3 > 11/6

α1 + α2 + α3 = 6

(0.66667,0.66667,4.6667)

(4.4444,0.66667,0.88889) (0.66667,4.4444,0.88889)

z2



















































α1 > 8/3

α2 > 0

α3 > 1

α1 + α2 > 1/3

α1 + α3 > 8/3

α2 + α3 > −4/3

α1 + α2 + α3 = 5

(2.6667,0,2.3333)

(4,0,1) (2.6667,1.3333,1)

3. Cooperative stohasti games with in�nite duration

3.1. Nonooperative stohasti games with in�nite duration

In this setion we onsider stohasti games with in�nite duration de-

�ned by Shapley in the paper (Shapley, 1953a). The main lassial results

on nonooperative stohasti games are presented in (Filar and Vrieze, 1997,

Neyman and Sorin, 2003). Similar to the previous setion, the game is realised in

a disrete time. The signi�ant di�erene of this stohasti game from the game

onsidered in Setion 2 is that now the game has an in�nite duration, the set of

states whih an be realised at any stage is �nite and does not hange over time.

We de�ne �rst a stohasti game and then desribe the set of strategies and the

payo� funtion of the player. Notie that the notations of this setion whih are

widely used in modern literature on stohasti games are a bit di�erent from the

notations of Setion 2.

Consider stohasti game G de�ned by

1. The �nite set of players N = {1, . . . , n}.
2. The �nite non-empty set of states Ω = {1, . . . , ω̄};
3. The �nite, non-empty set of available ations Aωi of player i ∈ N in state ω ∈ Ω.

The ation of player i ∈ N in state ω ∈ Ω is element aωi ∈ Aωi . The ation pro�le
in state ω ∈ Ω is a vetor of players' ations aω = (aωi : i ∈ N). The set of
ation pro�les in state ω is Aω = Aω1 × . . .×Aωn .

4. The �nite payo� funtion Kω
i :
∏
k∈N A

ω
k → R, for every player i ∈ N and every

state ω ∈ Ω.
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5. The transition funtion p(·|ω, aω) : Ω × Aω → ∆(Ω) from state ω ∈ Ω and

ation pro�le aω ∈∏i∈N A
ω
i . Here ∆(Ω) is probability distribution over set Ω.

6. The initial state is determined by probability distribution

π0 = (π1
0 , . . . , π

ω
0 , . . . , π

ω̄
0 ),

where πω0 is the probability that state ω is realised at the �rst stage of the game,∑
ω∈Ω π

ω
0 = 1.

Time is disrete and game G lasts for an in�nite number of stages denoted by

t. Stohasti game G is realised in the following way:

1. Prior to the game, an initial state ω′
is hosen along the probability distribution

π0, i. e., with probability πω0 stohasti game starts with state ω.
2. At the �rst stage, state ω is realised and players simultaneously hoose their

ations. Player i hooses ation aωi ∈ Aωi , i ∈ N . Thus the ation pro�le aω =
(aωi : i ∈ N) ∈ Aω1 × . . . × Aωn is realised at the �rst stage. Player i reeives
payo� Kω

i (a
ω). One aω is announed for all players, then the game transits to

the next state ω′ ∈ Ω with probability p(ω′|ω, aω).
3. At the seond stage, player i ∈ N hooses ation aω

′

i ∈ Aω
′

i . Thus, at the seond

stage the ation pro�le aω
′

= (aω
′

i : i ∈ N) ∈ Aω
′

1 × . . . × Aω
′

n is played and

player i reeives payo� Kω′

i (aω
′

).
4. The game further is played in the way desribed above.

Finally, let âωi ∈ ∆(Aωi ) be a mixed ation of player i in state ω, where ∆(Aωi ) is a
probability measure over Aωi .

De�nition 17. A disounted stohasti game G is de�ned as

G =

〈
N,Ω, {Aωi } i∈N

ω∈Ω
, {Kω

i } i∈N
ω∈Ω

, π0,
{
p(ω′′|ω′, aω

′

)
}

ω′,ω′′∈Ω

aω
′
∈
∏

i∈N
Aω′

i

, δ

〉
, (38)

where δ ∈ (0, 1) is a disount fator, the same for all players.

Every state ω is determined by n-person normal-form game

〈N, {Aωi }i∈N , {Kω
i }i∈N 〉.

A hange of state may orrespond to the presene of (positive or negative) shoks

of di�erent size. They will be re�eted on the players' payo�s.

The subgame of nonooperative stohasti game G beginning from stage k is

denoted by G(k).
To solve a stohasti game, we need to de�ne the lass of players' strategies and

the alulation method of players' payo�s in the whole game. First, de�ne players'

strategies and distinguish two lasses of strategies:

• The behavior strategy of player i ∈ N is a funtion ϕi = {ϕi(k)}∞k=1 and

ϕi(k) : h(k) × Ω 7−→ ∆(Aωi ), where h(k) is a history of stage k, whih is

given by a olletion of pairs onsisting of states and ation pro�les whih

were realised at the previous stages until stage k: ((ω(1), a(1)), (ω(1), a(2)),
. . ., (ω(k− 1), a(k− 1))). Denote the set of behavior strategies of player i by
Φi and behavior strategy pro�le in stohasti game by ϕ = (ϕi : i ∈ N).
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• We also onsider the subset of behavior strategies set, that is, the set of sta-

tionary strategies. A stationary strategy presribes a player to hoose the

same strategy in the same state independently of the history of the stage.

Denote a stationary strategy to distinguish behavior (not neessarily sta-

tionary) and stationary strategies. Denote a stationary strategy of player i
by ηi = {ηi(k)}∞k=1, ηi(k) : Ω 7−→ ∆(Aωi ). Denote the pro�le of stationary
strategies in a stohasti game by η = (ηi : i ∈ N), and the set of stationary

strategies of player i by Hi, while Hi ⊂ Φi.

Now we determine players' payo�s in stohasti game (1):

• For the �nite number of stages t a payo� of player i in a stohasti game is

determined as a mathematial expetation:

Ei(ϕ) = Eω(1),ϕ
1

t

t∑

k=1

K
ω(k)
i (a(k)),

i. e., a mathematial expetation of a payo� with respet to the initial state

ω(1) and strategy pro�le ϕ, while K
ω(k)
i (a(k)) is a payo� of player i in state

ω(k) realised at stage k, a(k) is a strategy pro�le in state ω(k) realised at

stage k in aordane with strategy pro�le ϕ.

• In ase of in�nite game G, a disounted payo� of player i is given by

Ei(ϕ) = Eω(1),ϕ
∞∑

k=1

δk−1K
ω(k)
i (a(k)) (39)

as a mathematial expetation of the payo� with respet to the initial state

ω(1) and pro�le ϕ.

We formulate the main results on the existene of the values of stohasti games

with two and more than two players whih are used in the present work.

Theorem 7. (Shapley, 1953a) A two-person zero-sum stohasti game with dis-

ount fator δ ∈ (0, 1) has a value for any initial state. Moreover, players' optimal

strategies are stationary.

This result was extended on the ase of nonzero-sum games with more than two

players by Fink and Takahashi in 1964:

Theorem 8. (Fink, 1964, Takahashi, 1964) A nonzero-sum stohasti game with

many players with disount fator δ ∈ (0, 1) and �nite set of states and strategies

has a value for any initial state. Moreover, there exist optimal stationary strategies

of the players.

3.2. Stohasti games in stationary strategies

In this setion we provide formulas to alulate players' payo�s in a stohasti

game when players use stationary strategies. Sine the set of states Ω is �nite, there

are only ω̄ subgames Gω1 , . . . , Gω̄, eah with initial states ω1, . . . , ω̄ respetively,

beause stationary strategies presribe the same behavior in the same states even

with di�erent histories of the urrent stage. We denote a non-ooperative stohasti

subgame in stationary strategies with initial state ω ∈ Ω by Gω.
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We now de�ne the ω̄ × ω̄-matrix of transition probabilities in G:

Π(η) =




p(ω1|ω1, a
ω1) . . . p(ω̄|ω1, a

ω1)
p(ω1|ω2, a

ω2) . . . p(ω̄|ω2, a
ω2)

. . . . . . . . .
p(ω1|ω̄, aω̄) . . . p(ω̄|ω̄, aω̄)


 (40)

whih is a funtion p(ω′|ω, aω) of a stationary strategy pro�le η = (ηi : i ∈ N)
suh that ηi(ω) = aωi ∈ ∆(Aωi ), ω ∈ Ω, i ∈ N , and aω = (aω1 , . . . , a

ω
n) for any state

ω ∈ Ω. Matrix entry (40) whih is the element of the jth row and the j′th olumn

is the probability to transit from state jth to state j′th when players use strategy

pro�le η = (ηi : i ∈ N).
We simplify equation (39) for player i's payo�, i.e., we alulate his expeted

payo� in an expliit form. Let Eωi (η) be the expeted payo� of player i in subgame
Gω when pro�le η = (η1, . . . , ηn) in stationary strategies is adopted. The vetorial

form of the expeted payo�s is Ei(η) = (Eω1

i (η), . . . , Eω̄i (η))
T
.

Hene a player i's indiret utility funtion in subgame Gω satis�es the following

reurrent equation:

Eωi (η) = Kω
i (a

ω) + δ
∑

ω′∈Ω

p(ω′|ω, aω)Eω′

i (η). (41)

Given a matrix form of transition probabilities (40), rewrite equation (41) in a

matrix form:

Ei(η) = Ki(a) + δΠ(η)Ei(η), (42)

where Ki(a) = (Kω1

i (a1), . . . ,K ω̄
i (a

ω̄))T . Equation (3) is equivalent to the equation

Ei(η) = (I− δΠ(η))−1Ki(a),

where I is an identity matrix of size ω̄ × ω̄. Matrix (I− δΠ(η))
−1

always exists for

disount fator δ ∈ (0, 1). The payo� of player i in game G taking into aount the

initial state with distributed with π0 in stationary strategies is

Ēi(η) = π0Ei(η) = π0 (I− δΠ(η))
−1
Ki(a). (43)

3.3. Cooperative stohasti games with in�nite duration

We now develop the ooperative version of stohasti game G. Suppose that players
deide to ooperate by forming a grand oalition N with the aim to maximise

total payo�. The existene of maximum of the disounted joint payo� follows from

theorem proved in (Shapley, 1953a), aording to whih the ooperative strategy of

the grand oalition that yields the maximal payo� is stationary. Denote the pro�le

of pure stationary strategies of player i as ηi ∈ Hi, where Hi ⊂ Φi.
4

The mixed

stationary strategy is denoted as η̂i ∈ Ĥi, with Hi ⊂ Ĥi.

A ooperative strategy pro�le or ooperative solution maximising the sum of the

expeted players' payo�s in G is denoted as η∗ = (η∗1 , . . . , η
∗
n), where

5

max
η∈

∏

i∈N

Hi

∑

i∈N

Ēi(η) =
∑

i∈N

Ēi(η
∗). (44)

4

From now on we use the notation ηi if player i uses the stationary strategy in the

game. When a player i uses a behaviour strategy (not neessarily stationary), we use

the notation ϕi.

5

Without loss of generality we may �nd the maximum in equation (6) over the set of

pure ations of oalition N .
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In order to de�ne the ooperative solution of the stohasti game, we deter-

mine the values of a harateristi funtion for any oalition S ⊆ N . This fun-

tion desribes how muh olletive payo� players an gain by forming a oalition.

We denote the harateristi funtion as V (S) = (V ω1(S), . . . , V ω̄(S)). Following
(Kohlberg and Neyman, 2015), let V (S) be the minmax value of two-person zero-

sum game GS between oalition S and oalition N\S.6 Before introduing har-

ateristi funtion, we �rst de�ne the pure stationary strategies of oalition S and

N\S as ηS ∈ HS =
∏
i∈S Hi and ηN\S ∈ HN\S =

∏
i∈N\S Hi, respetively.

Remark 5. When we determine the harateristi funtion V(S), S ⊆ N , we as-

sume that players in S play in the interests of the oalition. Therefore, the ations

and strategies of the players in S are orrelated (Aumann, 1974).

In state ω ∈ Ω, the orrelated ations of the players from oalition S are âωS ∈
∆(AωS) where A

ω
S =

∏
i∈S A

ω
i . The orrelated stationary strategy of players from

oalition S and N\S are η̂S(ω) ∈ ∆(AωS) and η̂N\S(ω) ∈ ∆(AωN\S), respetively.

Let the set of orrelated stationary strategies of oalition S and N\S be ĤS and

ĤN\S , respetively.

Begin the onstrution of the harateristi funtion by examining the grand

oalition, S = N . The Bellman equation for the harateristi funtion V (N) rep-
resents the disounted payo� of N :

V (N) = max
η∈

∏

i∈N

Hi

∑

i∈N

Ēi(η) =
∑

i∈N

Ki(a
∗) + δΠ(η∗)V (N), (45)

where η∗ is the ooperative strategy pro�le satisfying ondition (6) and η∗(ω) = aω∗,
ω ∈ Ω, andKi(a

∗) = (Kω1

i (aω1∗), . . . ,K ω̄
i (a

ω̄∗))T . From (4), we an infer the matrix

form of V (N):

V (N) = (I− δΠ(η∗))
−1
∑

i∈N

Ki(a
∗), (46)

where I is an identity ω̄ × ω̄-matrix and Π(η∗) is the ω̄ × ω̄-matrix of transition

probabilities in G when players use the strategy pro�le η∗. MatrixΠ(η∗) is desribed
in details by (40).

We de�ne next the value of V ω(S) of oalition S as the minmax payo� in the

subgame GωS starting from state ω:

V ω(S) = min
η̂N\S

max
ηS

∑

i∈S

Eωi (ηS , η̂N\S) = max
η̂S

min
ηN\S

∑

i∈S

Eωi (η̂S , ηN\S). (47)

In equation (9), the maximum in min
η̂N\S

max
ηS

∑
i∈S

Eωi (ηS , ηN\S) is found over the set

of pure strategies of oalition S, while the minimum in max
η̂S

min
ηN\S

∑
i∈S

Eωi (ηS , ηN\S)

is found over the set of pure strategies of oalition N\S.
The Bellman equation for the harateristi funtion V ω(S) is

V ω(S) = min
η̂N\S∈ĤN\S

max
ηS∈HS

∑

i∈S

Eωi (ηS , η̂N\S) =
∑

i∈S

Eωi (ηS , η̂N\S)

=
∑

i∈S

Kω
i (a

ω
S , â

ω
N\S) + δ

∑

ω′∈Ω

p
(
ω′|ω, (aωS , âωN\S)

)
V ω

′

(S), (48)

6

The existene of the minmax value of two-player disounted stohasti game is proved

by Shapley (1953a).
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where (aωS , â
ω
N\S) is a pro�le in orrelated ations in state ω ∈ Ω suh that ηS(ω) =

aωS , η̂N\S(ω) = âωN\S , and Ki(a
ω
S , â

ω
N\S) = (Kω1

i (aω1

S , âω1

N\S), . . . ,K
ω̄
i (a

ω̄
S , â

ω̄
N\S)).

We then rewrite equation (48) in a matrix form:

V (S) =
(
I− δΠ(ηS , η̂N\S)

)−1∑

i∈S

Ki(a
ω
S , â

ω
N\S). (49)

Finally, we de�ne the harateristi funtion V̄ (S) for the whole stohasti game
as:

V̄ (S) = π0V (S), (50)

for any oalition S ⊆ N, where V (S) = (V ω1(S), . . . , V ω̄(S)), and V ω(S) is the
value of the harateristi funtion of subgame Gω for S.

The harateristi funtion satis�es two properties. First, for any state ω ∈ Ω:

V ω(∅) = 0. (51)

Seond, the harateristi funtions V̄ (S) and V ω(S) determined by (10) and (7)-

(51), respetively, are superadditive (Aumann and Peleg, 1960). In other words, for

any disjoint oalitions S, T ⊂ N , and S ∩ T = ∅, the inequality V (S) + V (T ) 6

V (S ∪ T ) holds. Superadditivity implies that the value of two disjoint oalitions is

at least as great when they play together as when they at non-ooperatively. If

superadditivity is not satis�ed, then the oalition S ∪ T is not pro�table, thus it

will not be formed.

7

We are now in a position to de�ne the ooperative version of stohasti game

17 and its subgames.

De�nition 18. A ooperative stohasti game Gc, orresponding to a stohasti

game G, is a set 〈N, V̄ 〉, where N is the set of players and V̄ : 2N −→ R is the

harateristi funtion alulated by (10). A ooperative stohasti subgame Gωc
starting from state ω is a set 〈N, V ω〉, where V ω : 2N −→ R is the harateristi

funtion alulated by (7), (9) and (51).

When forming the grand oalition, players should deide not only what strategies

to use to maximise the joint payo� but also how to alloate the total payo�. The

next de�nitions display the alloation rule or solution (also alled imputation) of

Gωc and Gc, respetively. To determine an imputation of the joint payo� (6) we need

to determine the values of the harateristi funtion for any oalition S ⊂ N .

De�nition 19. An imputation in the subgame Gωc , ω ∈ Ω, is a vetor σω =
(σω1 , . . . , σ

ω
n ) satisfying: (i)

∑
i∈N σ

ω
i = V ω(N), and (ii) σωi > V ω({i}) for any

i ∈ N . The set of imputations in Gωc is denoted as Σω
.

De�nition 20. An imputation in the game Gc is a vetor σ̄ = (σ̄1, . . . , σ̄n), where
σ̄i = π0σi, σi = (σω1

i , . . . , σω̄i )
T
, and (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

, ω ∈ Ω. The set of
imputations in Gc is denoted as Σ̄.

7

The property of superadditivity is not needed and it is often omitted in ooperative game

theory, beause in real life there are a lot of motivations to onsider both pro�table and

non-pro�table oalitions. As Aumann and Dreze (1974, p. 233) note, there are arguments

for superadditivity that are quite persuasive, but, as they also note, superadditivity is

quite problemati in some eonomi appliations.
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By De�nition 19, an imputation satis�es the following onditions: (i) any player

should obtain no less than she may get by non-ooperative play (individual rationa-

lity ondition) and (ii) the sum of omponents of the imputation equals the value

of the harateristi funtion orresponding to grand oalition (group rationality

ondition). The set of imputations is non-empty in any subgame Gωc , ω ∈ Ω and in

the whole ooperative stohasti game Gc, sine the harateristi funtion deter-

mined by equations (4)-(51) is superadditive.

3.4. Priniples of stable ooperation

In ooperative games, the solution of a game is determined by an optimality prin-

iple. The optimality priniple is assumed to be the subset of the imputation set.

Therefore, the optimality priniple ontains one or more than one imputations or so-

lutions of a ooperative game but sometimes it maybe empty. For example, the ore

may be empty, then the solution of a ooperative game does not exist aording to

this optimality priniple. The Shapley value as an optimality priniple always exists

and ontains a unique imputation. Therefore, the solution of a ooperative game

always exists and it is unique aording to this optimality priniple. The solution

of ooperative stohasti game means an imputation.

8

Now we do not onsider the

problem of hoosing a unique imputation from the set but assume that the optimal-

ity priniple ontains the only one imputation. The examples of one-point solutions

are the Shapley value (Shapley, 1953b), the Von Neumann-Morgenstern solution

(von Neumann and Morgenstern, 1944) and the nuleolus (Shmeidler, 1969). The

realisation of an imputation in a ooperative stohasti game requires the satisfa-

tion of some priniples, whih in turn ensure stable ooperation in a game. Following

(Petrosyan and Zenkevih, 2015), we formulate the main priniples of stable oop-

eration inluding subgame onsisteny, strategi support (or strategi stability) and

irrational-behaviour-proof of the solution of a ooperative stohasti game. Eah

priniple of stable ooperation is de�ned and analysed separately.

Subgame onsisteny. The priniple of subgame onsisteny ensures that in any

subgame ooperative solution is determined aording to the initially hosen alloa-

tion rule. This onept deserves a detailed explanation. Players agree on ooperation

before the game and adopt an imputation following the alloation mehanism. Dur-

ing the game, they play a ooperative strategy pro�le a∗i , i ∈ N whih maximises

their total payo�. In any subgame beginning in a ertain state, a player is able to

derive her expeted payo� for the remainder of the game. If at some intermediate

stage of the game players deide to alulate their expeted payo�s in the subgame

aording to the initially de�ned payo� funtions, then most often these expeted

disounted payo�s do not oinide with an imputation alulated in aordane

with the initially hosen optimality priniple. This means subgame inonsisteny

of a ooperative solution (or optimality priniple). If for any subgame disounted

players' payo�s oinide with the imputations alulated in aordane with initial

optimality priniple, ooperative solution (or optimality priniple) is subgame on-

sistent (see Petrosyan, 1977). To make ooperative solution subgame onsistent, we

8

We further onsider the ase when the solution of a ooperative stohasti game is an

imputation set onsisting of more than one imputation.
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propose the transfer mehanism, alled imputation distribution proedure (IDP).

9

Originally, the idea of IDP was proposed by L. A. Petrosyan for di�erential games

(Petrosyan and Danilov, 1979).

This mehanism leads to a modi�ation of the players' payo�s in a dynami

game. We all the modi�ed game as σ-regularisation, where σ is an initially hosen

imputation in ooperative game Gc. This modi�ed game ensures several advantages
to the players. First, subgame onsisteny is ensured through the �new� payo� fun-

tions. Seond, the expeted payo�s in the regularised game will be equal to the

omponents of the hosen imputation σ. Moreover, the sum of the stage payo�s in

the regularised game is equal to the sum of the payo�s in the orrespondent state

of the initial game. For instane, suppose that players hoose the Shapley value at

the beginning of the game as an alloation rule. In this ase, subgame onsisteny

guarantees that, in eah subgame, the vetor of the players' payo� for the remaining

stages is the Shapley value alulated for this subgame.

Let players adopt ooperative solution in stohasti game, i.e., they hoose impu-

tation σω = (σω1 , . . . , σ
ω
n )
T ∈ Σω

for every subgameGωc . The problem is to determine

the transfers that ensure the expeted payo� σωi for player i in every subgame Gωc .
If transfers are based on the payo� funtions in every state, then players an hardly

expet to get the payo� based on the initially hosen alloation rule. To overome

this, we propose a rule to transfer the players' total payo�, based on the method

for di�erential games (Petrosyan and Danilov, 1979).

Sine strategies are stationary, the number of states orresponds to the num-

ber of relevant �di�erent� histories. In turn, when players implement ooperative

strategies in the stohasti game (1), the number of relevant subgames is equal to

the number of possible states. Therefore, we need to determine a vetor of transfers

βi = (βω1

i , . . . , βω̄i )
T
for where βωi is the transfer of player i ∈ N in state ω ∈ Ω.

De�nition 21. The set of transfers {βi}i∈N is IDP if the following onditions are

satis�ed:

1. In eah state ω ∈ Ω, the sum of the transfers is equal to the sum of players'

payo�s in ooperative strategy pro�le η∗:

∑

i∈N

βωi =
∑

i∈N

Kω
i (a

ω∗). (52)

2. The expeted sum of transfers to player i ∈ N in the game Ḡ is equal to the ith

omponent of the initially hosen imputation σ̄.

We then de�ne the onditions of subgame onsisteny for the imputation and

IDP.

De�nition 22. Imputation σ̄ = (σ̄1, . . . , σ̄n) and orresponding IDP {βi}i∈N are

alled subgame onsistent if the expeted sum of transfers to player i in eah sub-

gameGω is equal to the ith omponent of the initially hosen imputation in subgame
Gωc (in aordane with the priniple imputation σ̄ of the whole game is alulated).

9

Imputation distribution proedure was adapted for the lass of disounted stohas-

ti games in (Baranova and Petrosjan, 2006). See Petrosjan and Danilov (1979), and

Baranova and Petrosjan (2006).
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The following statement suggests the method of IDP onstrution for imputa-

tion σ̄.

Lemma 2. Let imputation σ̄ be suh that (σ̄1, . . . , σ̄n) ∈ Σ̄ where σ̄i = π0σi, σi =
(σω1

i , . . ., σω̄i )
T
and (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

. Then the olletion {βi}i∈N where βi
alulated by

βi = (I− δΠ(η∗))σi, (53)

is an imputation distribution proedure

10

in game G.

Proof. Verify the IDP ondition:

∑

i∈N

βωi =
∑

i∈N

Kω
i (a

ω∗),

where aω∗ is an ation pro�le adopted under ooperative pro�le η∗ in state ω.
It is easy to show that βi from (53) satis�es (52). Sine

∑
i∈N β

ω
i is equal to

(I − δΠ(η∗))
∑

i∈N σi = (I − δΠ(η∗))V (N), and V (N) is determined by (7), then

equation (52) holds.

The seond IDP ondition is satis�ed sine the expeted total payo� of player i,
denoted as Bi, with new transfer βωi in state ω ∈ Ω satis�es the reurrent equation:

Bωi = βωi + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)Bω′

i ,

or, in vetorial form:

Bi = βi + δΠ(η∗)Bi, (54)

where Bi = (Bω1

i , . . . , Bω̄i )
T
. Equation (54) is equivalent to:

Bi = (I− δΠ(η∗))
−1
βi. (55)

Given the seond ondition of IDP and equation (55) we obtain:

σi = (I− δΠ(η∗))
−1
βi, (56)

where σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

. Equation (56) an be rewritten

equivalently as:

βi = (I− δΠ(η∗))σi. (57)

Finally, equation (53) equals to:

σi = βi + δΠ(η∗)σi. (58)

The seond item in the right part of (16) is the expeted value of the transfers

alulated for the subgame from the next stage onwards. Suppose that the impu-

tation for eah subgame is hosen following the same alloation rule that has been

hosen by the players at the beginning of the game. If players maintain ooperative

strategy pro�le η∗, then the expeted payo� of player i with new transfers is equal

to the orrespondent omponent of imputation σ̄ in ooperative stohasti game Gc.

10

Notie that IDP is uniquely de�ned by formula (53) if optimality priniple provides

unique ooperative solution σ̄ (e.g., if the solution is nuleolus, the Shapley value or

another single-valued solution). If the ooperative solution is the set of imputations

ontaining more than one imputation, the method of IDP onstrution should be mod-

i�ed (see Parilina and Zaour, 2015).
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Given De�nition 21, for every imputation σ̄ = (σ̄1, . . . , σ̄n) ∈ Σ̄, where σ̄i =
π0σi, σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈ Σω, we an de�ne the regularization

of stohasti game G as follows:

De�nition 23. A σ-regularisation of stohasti game G (subgame Gω, ω ∈ Ω) is
non-ooperative stohasti game Gσ (subgame Gωσ) if, for any player i ∈ N in state

ω, payo� funtion Kσ,ω
i (aω) is de�ned as:

Kσ,ω
i (aω) =

{
βωi , if aω = aω∗,

Kω
i (a

ω), if aω 6= aω∗,
(59)

where βωi is a omponent of PDP of player i de�ned by (53) and aω∗ = η∗(ω).

Equation (59) determines the modi�ed payo� funtion for game G.

Remark 6. The σ-regularisation hanges the payo� funtions in any state ω ∈ Ω
only when ation pro�les aω∗ = η∗(ω) are adopted. We may expet that players

agree to modify the initial payo� funtions to be sure that their ooperative solution

satis�es the priniple of subgame onsisteny.

The following theorem shows that the players' payo�s in σ- regularization of initial
stohasti game G satisfy the priniple of subgame onsisteny.

Theorem 9. Let σ̄ = (σ̄1, . . . , σ̄n) ∈ Σ̄ be the initially hosen imputation in game

G, where σ̄i = π0σi, σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

, then σ-
regularization of stohasti game G satis�es the priniple of subgame onsisteny,

i.e., the ooperative solution σ̄ is subgame onsistent in game Gσ.

Proof. At the beginning of the game, players hoose the following imputation: σ̄ =
(σ̄1, . . . , σ̄n) ∈ Σ̄, where σ̄i = π0σi, σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈

Σω
. A ooperative strategy pro�le is η∗. Consider the σ-regularization of game G

determined by De�nition 23, thus the set of transfers {βi}i∈N de�ned by (53) is a

IDP whih follows from Lemma 2. To prove that the σ-regularisation of the game G
satis�es the priniple of subgame onsisteny, we need to alulate the disounted

payo�s in every subgame of the game Gσ when a ooperative strategy pro�le η∗

ours. Consider any subgame Gωσ starting from state ω ∈ Ω. The disounted payo�
of player i in this subgame is:

Eωi (η
∗) = βωi + δ

∑

ω′∈Ω

p(ω′|ω, aω∗)Ei(η∗), (60)

where Ei(η
∗) = (Eω1

i (η∗), . . . , Eω̄i (η
∗))T and Eωi (η

∗) is the disounted payo� of

player i in subgame Gωσ starting from state ω when players adopt η∗. Equation (60)
an be rewritten in a vetor form:

Ei(η
∗) = βi + δΠ(η∗)Ei(η

∗),

or

Ei(η
∗) = (I− δΠ(η∗))

−1
βi.

Sine βi satis�es (53), we obtain

Ei(η
∗) = (I− δΠ(η∗))

−1
(I− δΠ(η∗)) σi = σi.

This equation proves that σ-regularization of game G satis�es the priniple of sub-

game onsisteny.
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De�nition 23 and Theorem 9 provide a method of onstruting subgame onsis-

tent transfers in every state of a stohasti game. The imputation distribution pro-

edure βω1

i , . . . , βω̄i in states ω1, . . . , ω̄ ensures that a player i reeives the same

expeted payo� in game Gσ (subgame G
ω
σ), as she planned to reeive in ooperative

stohasti gameGc (subgame G
ω
c ). Moreover, the expeted payo� from future trans-

fers is in line with the same alloation rule hosen by the players at the beginning

of the game.

Strategi support. The priniple of strategi support ensures that, along the

whole game, an individual deviation from ooperative strategy pro�le in a regu-

larized game does not yield a higher payo� than ooperation. In other words, it

guarantees the existene of the Nash equilibrium in a regularized game with the

same payo�s that players expet to reeive with the ooperative solution (whih

was the basis of regularization). This priniple was proposed in (Petrosyan, 1998).

We reformulate the priniple and then �nd onditions under whih Nash equilib-

rium is subgame perfet (see Selten, 1975) in a regularized game with the payo�s

desribed above.

The subgame perfetness is important for dynami games beause it allows to

guarantee the existene of the Nash equilibrium in any subgame with whih the

players' payo�s oinide with the ooperative ones. Comparing our approah with

the standard analysis of deterministi (repeated) games, the ondition of strategi

support for stohasti (or dynami) games orresponds to the ondition of the ex-

istene of subgame perfet Nash equilibrium in grim-trigger strategies. The main

di�erene is that, in our setting, players �rst regularize the initial game by adapting

the IDP to ahieve subgame onsisteny.

Suppose players ome to a ooperative agreement, i. e., �nd a ooperative strat-

egy pro�le η∗ that maximises the expeted total payo� in the whole game. If a

player deviates from the ooperative strategy pro�le, then the other players swith

to trigger strategy from the next stage until forever to punish the deviating player.

The strit de�nition of a behavior strategy used by players in Nash equilibrium is

given below (see formula (63)). Here we assume that a stohasti game is the game

with perfet monitoring, that is, all players know the state of a urrent stage and

the history of the stage.

To begin with, we de�ne the Nash equilibrium in a regularized stohasti game.

Denote the expeted payo� of player i in σ-regularisation of subgame Gω starting

from state ω as Eω,σi .

De�nition 24. A Nash equilibrium in the regularised game Gσ is a behaviour

strategy pro�le ϕ∗ = (ϕ∗
1, . . . , ϕ

∗
n) suh that, for any player i ∈ N and for any state

ω ∈ Ω, the ondition

Eω,σi (ϕ∗
i , ϕ

∗
N\i) > Eω,σi (ϕi, ϕ

∗
N\i) (61)

holds for any behaviour strategy of player i: ϕi ∈ Φi.

We assume that the behaviour strategy exhibits the following struture. If, in the

history of stage k, all players use their ooperative strategies, then they implement

the ooperative orrelated ations also in stage k. Conversely, if before stage k the

individual deviation of a player z ∈ N is observed, then the oalition N\z punishes
player z. We assume that the punishment ensures that player z's payo� is at most her
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minimax value in any subgame.

11

Notie that, sine we fous on a Nash equilibrium,

we need to onsider only individual deviations from this pro�le.

12

If deviation ours

by more than one member of the oalition, the player may implement any strategy

from the her set of strategies.

We now outline the ondition under whih the Nash equilibrium with players'

payo�s equal the ooperative ones exists. For onveniene, de�ne

F ({i}) ≡ (Fω1({i}), . . . , F ω̄({i}))T ,
Fω({i}) = max

âω
i
∈∆(Aω

i
)

{
Kω
i (â

ω
i , a

ω∗
N\i) + δ

∑
ω′∈Ω

p(ω′|ω, (âωi , aω∗N\i))V
ω′

({i})
}
.

The following inequality:

σi = (I− δΠ(η∗))−1βi > F ({i}), (62)

ompares two payo�s for eah subgame: (i) the payo� when players adopt the o-

operative strategy pro�le in the left hand side, and (ii) the payo� of deviation plus

future punishment in the right hand side. If the �rst payo� is greater or equal to

the seond one, the player gets no bene�t from deviation. If this is true for any

player and any state, then the priniple of strategi stability is satis�ed. This result

is summarised in the following proposition.

Proposition 1. If in an σ-regularisation Gσ suh that σ̄ = π0σ, inequality (14)

holds for any player i ∈ N , then there exists behaviour strategy pro�le ϕ̂ suh that

it is the Nash equilibrium with players' payo�s (σ̄1,. . .,σ̄n).

Proof. We determine the behaviour strategy pro�le ϕ̂ = (ϕ̂1, . . . , ϕ̂n) where strate-
gies ϕ̂i, i ∈ N are:

ϕ̂i(h(k)) =





aω∗i , if ω(k) = ω, h(k) ⊂ h∗;

âωi (z), if ω(k) = ω, and ∃ l ∈ [1, k − 1],

z ∈ N , i 6= z: h(l) ⊂ h∗, and

(ω(l), a(l)) /∈ h∗, but

(ω(l), (a∗z(l), aN\z(l)) ∈ h∗;

any otherwise,

(63)

where aω∗i orresponds to the player i's ooperative ation, while âωi (z) ∈ ∆(Aωi )
is the player i's punishment that, together with ations âωi′(z) ∈ ∆(Aωi′ ), of players
i′ 6= i, i′ ∈ N\z, forms the ation (either in pure or mixed strategies) of oali-

tion N\z against player z.13 The proof of the proposition follows from the folk

theorem for stohasti games (Dutta, 1995) using the struture of the behaviour

strategy (63). Notie that we do not de�ne the reation of players when they ob-

serve the deviations of more than one player. This beause we fous here on the

11

The strit de�nition of the behaviour strategy is given in the proof of Proposition 1.

12

Things hange for subgame perfetness. In this ase, we need to prove that eq. (13) holds

for all possible histories and all stages. Therefore, we need to determine the strategy of

a player even if more than one player deviates. Strategy (71) de�nes the behaviour of

the player given any history.

13

Notie that the ations of the players from oalition N\z are orrelated.
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Nash equilibrium (not subgame perfet). When more than one player deviates, the

player hooses any strategy from the player's set of strategies. We now prove that

ϕ̂(·) = (ϕ̂1(·), . . . , ϕ̂n(·)) determined in (63) is a NE in the stohasti game Gσ.
Given strategy (63) and provided that all players do not deviate from a ooperative

strategy pro�le η∗, the disounted payo� of player i in the subgame Gωσ , ω ∈ Ω, is:

Eωi (ϕ̂) = Eωi (η
∗).

Let Ei(ϕ̂) be equal to the vetor (E
ω1

i (ϕ̂), . . . , Eω̄i (ϕ̂))
T . Then for any player i ∈ N

the next equation holds:

Ei(ϕ̂) = (I− δΠ(η∗))−1βi. (64)

Consider next the pro�le of strategies (ϕz , ϕ̂N\z), when some player z deviates

from strategy ϕ̂z . For any k, there exists l ∈ [1, k − 1] suh that h(l) ⊂ h∗ but

(ω(k), a(k)) /∈ h∗ and (ω(k), (a∗z(k), aN\z(k))) ∈ h∗. Without loss of generality, we

simplify ω(k) = ω. In words, the �rst individual deviation of player z ours at

stage k. We are now able to determine the total payo� of player z in the game Gσ
with strategy pro�les (ϕz , ϕ̂N\z) by

Ēσz (ϕz , ϕ̂N\z) = π0E
σ
z (ϕz, ϕ̂N\z),

where

Eσz (ϕz , ϕ̂N\z) = Eσ,[1,k−1]
z (ϕz , ϕ̂N\z) + δk−1Πk−1(ϕz , ϕ̂N\z)E

σ,[k,∞)
z (ϕz , ϕ̂N\z).

(65)

The �rst term in the right hand side of (65) is the expeted payo� of player z in

the �rst k − 1 stages of the game Gσ, the seond term is the expeted payo� of

player z in the subgame of Gσ beginning from stage k, where E
σ,[k,∞)
z (ϕz , ϕ̂N\z)

is the vetor (Eσ,1z (ϕz, ϕ̂N\z), . . . , E
σ,ω̄
z (ϕz , ϕ̂N\z))

T , with Eσ,ωz (ϕz , ϕ̂N\z) being the
player z's expeted payo� in the regularised subgame Gωσ beginning at state ω. Sine
there are no deviations from a ooperative strategy pro�le η∗ up to stage k− 1, the
following equalities hold:

Eσ,[1,k−1]
z (ϕz, ϕ̂N\z) = Eσ,[1,k−1]

z (η∗),

Πk−1(ϕz, ϕ̂N\z) = Πk−1(η∗).

We now �nd the disounted payo� of player z in the subgame Gωσ beginning with

stage k and when state ω(k) is equal to ω. The following formula takes plae:

Eσ,ωz (ϕz , ϕ̂N\z) = Kω
z (â

ω
z , a

ω∗
N\z) + δ

∑

ω′∈Ω

p(ω′|ω, (âωz , aω∗N\z))V
ω′

({z}) , (66)

where âωz ∈ ∆(Aωz ). Players from the oalition N \ z punish player z by playing

the strategies whih allow player z to obtain her minmax payo� aording to the

de�nition of strategy pro�le ϕ̂. In (66), the value of the harateristi funtion

V ω
′

({z}) is determined by (9). Sine the expeted payo�s of player z in the strategy
pro�les ϕ̂ and (ϕz , ϕ̂N\z) do not hange up to stage k − 1, then a deviation may

inrease player z's payo� only at the expenses of the expeted payo� in the subgame
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Gωσ , ω ∈ Ω. In partiular, the strategy pro�le (ϕz, ϕ̂N\z) ensures the following

expeted payo� of player z from stage k:

F ({z}) = max
âωz ∈∆(Aω

z )

{
Kω
z (â

ω
z , a

ω∗
N\z) + δ

∑

ω′∈Ω

p(ω′|ω, (âωz , aω∗N\z))V
ω′

({z})
}
. (67)

Aording to the de�nition of PDP, the expeted payo� of player z in the regularised
subgame Gωσ with a pro�le of strategies ϕ̂(·) an be found from:

Eσz (ϕ̂) = (I− δΠ(η∗))−1βz = σz , (68)

where Eσz (ϕ̂) = (Eσ,ω1
z (ϕ̂), . . . , Eσ,ω̄z (ϕ̂))T . Taking into aount (14) from (67), (68)

and the above disussion we get

Eσz (ϕ̂) > Eσz (ϕz , ϕ̂N\z),

whih is satis�ed when inequality

σz = (I− δΠ (η∗))
−1
βz ≥ F ({z}) (69)

is true. In inequality (69) is satis�ed for any player z ∈ N , a player is not willing to

deviate from the ooperative strategy pro�le in any subgame of the σ-regularisation
of game G.

Thus the behaviour strategy pro�le (63) is a NE in the σ-regularisation of game
G. The disounted payo� of i in the game Gσ with pro�le of strategies ϕ̂ is equal to

σ̄i, where σ̄i = π0σi, while σi = (σω1

i , . . . , σω̄i )
T
onsists of ith omponents of impu-

tations σω1
, . . ., σω̄ derived from the ooperative subgames G1

, . . ., Gω̄ aordingly.

Notie that the players' strategies used in a punishing regime of the behaviour

strategies (63) are not individually rational, i.e., player i punishing the deviated

player z needs to implement the strategies minimizing the payo� of player z in a

subgame whih may be not pro�table for player i and may motivate player i to devi-
ate from strategy pro�le formed by (63). Therefore, the strategy pro�le determined

by strategies (63) is not subgame perfet.

We investigate now the onditions to obtain a subgame perfet Nash equilibrium

(SPNE) of the σ-regularisation of G. To do so, we need to determine the behaviour
strategy pro�le suh that, for any state ourring in any period with any history,

individual deviation is not pro�table.

We assume that, if the history of the stage di�ers from the ooperative history,

then all players implement a Nash equilibrium of the game G denoted by η̂ne =
(η̂ne1 , . . . , η̂nen ) suh that η̂nei (ω) ∈ ∆(Aωi ).

14

Again for onveniene, de�ne

Q({i}) ≡ (Qω1({i}), . . . , Qω̄({i}))T ,
Qω({i}) = max

âω
i
∈∆(Aω

i
)

{
Kω
i (â

ω
i , a

ω∗
N\i) + δ

∑
ω′∈Ω

p(ω′|ω, (âωi , aω∗N\i))E
ω′

i (ηne)

}
,

and

σi = (I− δΠ(η∗))−1βi > Q({i}). (70)

14

In the ase of multiple Nash equilibria, one of them should be hosen for the realisation

of the punishment. Notie that this an be implemented beause players use orrelated

strategies.
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The ondition of existene of a SPNE are summarised in the following proposition.

The validity of inequality (70) implies that the priniple of strategi stability holds

when the Nash equilibrium is subgame perfet.

Proposition 2. If, in an σ-regularisation Gσ suh that σ̄ = π0σ, inequality (70)

holds for any player i ∈ N , then there exists behaviour strategy pro�le ϕ̃ whih is a

SPNE with players' payo�s (σ̄1,. . .,σ̄n).

Proof. The proof is similar to the proof of Proposition 1 using the struture of the

�new� strategy pro�le. Determine this behaviour strategy pro�le as ϕ̃ = (ϕ̃1, . . . , ϕ̃n)
where strategies ϕ̃i, i ∈ N are:

ϕ̃i(h(k)) =

{
aω∗i , if ω(k) = ω, h(k) ⊂ h∗;

âω,nei , if h(k) * h∗,
(71)

where âω,nei ∈ ∆(Aωi ) is player's i's punishment, whih an be either in pure or

mixed strategies. Notie that, if a multi-player deviation is observed in the history,

all players implement η̂ne.

Irrational-behaviour-proof. Subgame onsisteny and strategi support assume

that the players are fully rational. However, in reality ooperation may be broken

down by irrational reasons. For instane, a player may use irrational ats to extort

additional gains if some irumstanes allow it. Refusal of other players to yield to

his extortion would result in the dissolution of the ooperative sheme. Thus in this

ase, a deviation would imply an �irrational behaviour.�

15

D.W.K. Yeung proposed a ondition

16

under whih, even if an irrational be-

haviour emerges in the game, a player is ertain to obtain at least her individual

payo� (Yeung, 2006). This proedure an be explained as follows. Suppose two dif-

ferent senarios. In the �rst senario, a player ooperates until a ertain period, and

then the ooperation breaks up. In the seond senario, a player plays individually

during the whole game. If the payo� in the �rst senario is not less than the payo�

in the seond senario, then the priniple of irrational behaviour proof is satis�ed.

The following de�nition provides the ondition to satisfy this priniple.

De�nition 25. Cooperative solution σ̄ and the orresponding IDP satisfy the prin-

iple of irrational-behaviour-proof if

Eσi [1, k] + δkΠk(η∗)V ({i}) > V ({i}), for every i ∈ N and any k = 1, 2, . . . , (72)

where Eσi [1, k] is the expeted player i's payo� at the �rst k stages in σ-regularisa-
tion Gσ.

The underlying assumption is that, before the beginning of eah stage, players

know if the ooperation has broken down or not, so that the information is not

delayed. In the left hand side of inequality (15), the �rst term is equal to the

expeted value of player i's payo� if, in the �rst k stages, players play ooperative

strategy pro�le η∗ and σ-regularization of game Gσ is made. The seond term is

the expeted payo� of player i from stage k + 1, when the ooperation breaks up.

The right hand side of (15) is the payo� of player i if she plays individually from

the start onwards.

15

Note that it is possible to formulate an analogous ondition for repeated games.

16

The so-alled Yeung's ondition or priniple of irrational- behaviour-proof was adopted

for linear-quadrati games in (Tur, 2014, Markovkin, 2006).
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Theorem 10. If inequality

(I− δΠ(η∗))(σi − V ({i})) > 0 (73)

holds for any i ∈ N , then the ooperative solution σ̄ and the orresponding IDP

{βi}i∈N satisfy the priniple of irrational-behaviour-proof.

Proof. In what follows, we show that ondition (73) is su�ient for inequality (15)
to hold for any k = 1, 2, . . .. The proof is based on the mathematial indution

method. First, we rewrite (15) for k = 1. Then we transform (73) by onsidering

de�nition σi and using IDP (56). We get

V ({i}) 6 βi + δΠ(η∗)V ({i}). (74)

The inequalities oinide and it proves Theorem for k = 1.
Suppose that (73) implies (15) for k = l. Rewriting (15) for k = l we yield:

V ({i}) 6 βi + . . .+ δl−1Π l−1(η∗)βi + δlΠ l(η∗)V ({i}). (75)

We adopt the same proedure for k = l + 1. Inequality (15) for k = l + 1 is:

V ({i}) 6 βi + . . .+ δlΠ l(η∗)βi + δl+1Π l+1(η∗)V ({i}). (76)

Next we need to prove that, if (73) holds, then (15) holds for k = l + 1. After
transformation the right hand side of (76) is:

βi + δΠ(η∗)
{
βi + δΠ(η∗)βi + . . .+ δl−1Π l−1(η∗)βi + δlΠ l(η∗)V ({i})

}
.

Taking into aount (75), the expression in braes is not less than V ({i}). Therefore
the right part of (76) is not less than βi + δΠ(η∗)V ({i}). From equation (53) and
(73), we get (15) for k = l + 1, whih proves the theorem.

Corollary 1. For irrational-behaviour-proof priniple it is su�ient that for eah

i ∈ N the following inequality is true:

Ki(ã)− βi 6 δ
(
σmin
i − V max ({i})

)
, (77)

where Ki(ã) =

(
max

a
ω1
i

∈A
ω1
i

Kω1

i (aω1∗‖aω1

i ), . . . , max
aω̄
i
∈Aω̄

i

K ω̄
i (a

ω̄∗‖aω̄i )
)T

, and

max
aω
i
∈Aω

i

Kω
i (a

ω∗‖aωi ) is the maximal payo� of player i whih he obtains deviating

from ation pro�le aω∗ whih is the part of ooperative strategy pro�le η∗ satisfying

ondition (6), and ã = arg max
aω
i
∈Aω

i

Kω
i (a

ω∗‖aωi ) for eah state ω ∈ Ω and eah player

i ∈ N :

σmin
i =

(
min
ω∈Ω

σωi , . . . ,min
ω∈Ω

σωi

)T
,

V max ({i}) =
(
max
ω∈Ω

V ω ({i}) , . . . ,max
ω∈Ω

V ω ({i})
)T

.

Proof. Let su�ient ondition (77) be satis�ed. It an be rewritten in the following
way:

βi + δσmin
i > Ki(ã) + δV max ({i}) . (78)
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Estimate the left- and right- hand parts of inequality (78). As matrix of transition
probabilities Π(η∗) is stohasti, we obtain:

βi + δσmin
i = βi + δΠ(η∗)σmin

i 6 βi + δΠ(η∗)σi. (79)

For the right-hand side of inequality (78), the equity is true:

Ki(ã) + δV max ({i}) = Ki(ã) + δΠ(˜̃η)V max ({i}) , (80)

where Π(˜̃a) is a stohasti matrix, and

˜̃η = (˜̃ηi : i ∈ N) is a pro�le in stationary

strategies suh that

˜̃ηj =

{
arg max

ηi∈Hi

Π(η∗‖ηi)V ({i}), if j = i

η∗j , if j 6= i

Therefore, we have the inequality:

Ki(ã) + δΠ(˜̃η)V max ({i}) = max
ai∈Ai

Ki(a
∗‖ai) + δ max

ηi∈Ξi

{Π(η∗‖ηi)V ({i})} >

max
ηi∈Hi

{Ki(a
∗‖ai) + δΠ(η∗‖ηi)V ({i})} . (81)

The inequalities (78), (79), (80) and (81) implies ondition (73). Therefore, by

Theorem 1 the priniple of irrational-behaviour-proof is satis�ed.

3.5. Existene of stable ooperative solution

In this setion we disuss the onditions guaranteeing the existene of a stable

ooperative solution. First, we need to mention that the alloation rule adopted

should give a non-empty subset of the imputation set. Cooperative solutions suh

as the Shapley value or the nuleolus always exist and we may alulate them for

any subgame using the values of the harateristi funtion given by (7), (9) and

(51).

The existene of a subgame onsistent ooperative solution follows from Theorem

9 and the method of onstrution of IDP for σ̄. For a given ooperative solution σ̄,
the regularisation of a stohasti game determines new payo� funtions to players in

order to satisfy the priniple of subgame onsisteny. Hene, the players' disounted

payo�s in σ-regularisation of the initial game are equal to the omponents of oope-
rative solution σ̄, whih is subgame onsistent.

Thus, if the payments to the players are modi�ed through σ-regularisation, then
subgame onsistent ooperative solution σ̄ exists in general.

To verify whether ooperative solution σ̄ satis�es the priniple of strategi sta-

bility and irrational-behaviour-proof, we need to hek that the following system of

inequalities holds:

{
σi = (I− δΠ(η∗))−1βi > F ({i}), i ∈ N,

(I− δΠ(η∗))(σi − V ({i})) > 0, i ∈ N.
(82)

These onditions on disount fator δ are similar to those neessary to prove that a
ooperative strategy pro�le is SPNE in repeated games. This system is non-linear

with respet to δ and the solution of the system annot be obtained in an expliit

form.
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However, we may state the existene of a stable ooperative solution for the

lass of stohasti games in whih the ooperative strategy pro�le oinides with

the Nash equilibrium and the players are symmetri. In this ase, the Shapley value

satis�es the priniples of stable ooperation. Further, we examine the solution of

system (82) on a spei� lass of stohasti games with two states and two players.

Example 3. Stohasti game of ompetition between asymmetri �rms.

Nonooperative game. Consider Cournot duopoly with asymmetri �rms. De-

sribe it with a stohasti game setting like Prisoners' Dilemma. Let the set of states

be Ω = {ω1, ω2}, where ωj = 〈N,Aωj

1 , A
ωj

2 ,K
ωj

1 ,K
ωj

2 〉, j = 1, 2, and A
ωj

i = {Cj , Dj}
is the set of ations of player i = 1, 2. Strategies Cj and Dj stands for �ollude� and

�deviate�, respetively. For state ω1, players' payo�s are:

C1 D1( )
C1 (7, 7) (1, 8)
D1 (8, 1) (4, 5)

whereas for state ω2 players' payo�s are:

C2 D2( )
C2 (9, 9) (1, 10)
D2 (16.5, 1) (6, 5)

State ω1 an be interpreted as a market with a low demand, and state ω2 as a mar-

ket with a high demand. Both one-shot games have the unique Nash equilibrium

when both �rms deviate with outomes (4, 5) and (6, 5) in states ω1 and ω2 re-

spetively. Conversely, the ooperative ation pro�le that maximizes the sum of the

payo�s are �to ollude� with outomes (7, 7) and (9, 9) respetively. When playing

the ooperative ation pro�le, players get equal payo�s, but in the Nash equilib-

rium outome they obtain asymmetri payo�s. In partiular, with a low demand

Firm 1 has a lower payo� than Firm 2, and with a high demand Firm 2 has lower

payo� than Firm 1. This senario ould be interpreted as the result of tehnial fea-

tures of �rms' prodution. For instane, Firm 2 an be endowed with a prodution

tehnology being more e�ient in produing low levels of output.

In state ω2, players also di�er in the pro�les when one �rm �olludes� and the

ompetitor �deviates�. In partiular, Firm 1's deviation payo� is larger than Firm 2's

one. Hene the asymmetry of the players in�uenes the ooperative payo� imputa-

tion. Another feature of state ω2 is that, when both �rms ollude, their summarized

payo� is not muh larger the one in ation pro�le (D2, C2) (18 against 17.5). There-
fore, if the probability of transiting from pro�le (D2, C2) to state ω1 is larger than

from pro�le (C2, C2), then players may agree on playing pro�le (D2, C2) to avoid

transition from high to low demand state.

Let transition probabilities from states ω1 and ω2 be

(
(0.3, 0.7) (0.9, 0.1)
(0.4, 0.6) (0.3, 0.7)

)
,

(
(0.9, 0.1) (0.4, 0.6)
(0.1, 0.9) (0.3, 0.7)

)

where the element (k, l) of the matrix onsists of transition probabilities from state

ωj to states ω1, ω2, on ondition that player 1 hooses ations kth and player 2

hooses lth. We may mention that the probability of transiting to state ω1 in ation
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pro�le (C2, C2) is muh higher than the probability to transit to this state in ation
pro�le (D2, C2), that is 0.9 ontrary to 0.1. Let the disount fator be δ = 0.99 and
the vetor of the initial distribution over the set of states be π0 = (0.5, 0.5).

Cooperative game. Determine ooperative game Gc based on stohasti game G.
For it, we ompute ooperative solution η∗ = (η∗1 , η

∗
2) in stationary strategies using

(5) and (6). We obtain a unique stationary strategy η∗1 = (C1, D2) for player 1,
and η∗2 = (C1, C2) for player 2 whih give maximal total players' payo� V̄ ({1, 2}) =
π0V ({1, 2}) = 1704.61. Following this pro�le, in state ω1 the pro�le of ooperative

strategies (when both players ollude) gives payo� 7 for eah �rm. In state ω2, with

a ooperative strategy pro�le, Firm 1 deviates and Firm 2 olludes, and the payo�

of �rm 2 is less than its payo� in the Nash equilibrium. But this will be ompensated

by Firm 1 when they apply an imputation of their joint payo�. Therefore, the values

of a harateristi funtion for a grand oalition are

V ({1, 2}) =
(
Eω1

1 (η∗) + Eω1
2 (η∗)

Eω2
1 (η∗) + Eω2

2 (η∗)

)
=

(
1702.43
1706.80

)
.

By de�nition (51) the values of harateristi funtion for the empty set are zero:

V (∅) =

(
0
0

)
.

Calulate the values of harateristi funtion V (S) = (V ω1(S), V ω2(S)) for oali-
tions S = {1} and S = {2} using (7):

V ({1}) =
(
538.60
540.60

)
, V ({2}) =

(
500.00
500.00

)
.

These are Firms' payo�s in the Nash equilibrium when both �rms deviate in all

states, i.e., they adopt strategy pro�les (D1, D1) and (D2, D2).
Using (10), we may alulate V̄ (S) for the whole game and all oalitions:

V̄ (∅) = 0.00, V̄ ({1}) = 539.60, V̄ ({2}) = 500.00, V̄ ({1, 2}) = 1704.61.

Thus, we determine ooperative stohasti subgame G
ωj
c as the set 〈N, V ωj (·)〉,

j = 1, 2, and ooperative stohasti game Gc as the set 〈N, V̄ (·)〉.
Cooperative solution: the Shapley value. We suppose that players hoose the

Shapley value as a ooperative solution of their total payo� in ooperative stohasti

game Gc and in all subgames G
ωj
c , j = 1, 2. For two-player game the Shapley value

is alulated by formula:

σ
ωj

i = V ωj ({i}) + V ωj ({1, 2})− V ωj ({1})− V ωj ({2})
2

,

where i = 1, 2 and j ∈ {1, 2}, j 6= i. The Shapley values in subgames are

σ1 =

(
870.516
873.698

)
, σ2 =

(
831.916
833.098

)
.

Then taking into aount the vetor of initial distribution π0, we are able to deter-
mine the Shapley value σ̄ in the whole game Gc by De�nition 20:

σ̄ = (σ̄1, σ̄2) = (872.107, 832.507).
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Subgame onsisteny. Now we verify if the Shapley value satis�es the priniples

of stable ooperation and begin with subgame onsisteny. If �rms reeive stage

payo�s aording to their initially de�ned payo�s, then their disounted payo�s

in the whole game will be equal 1526.809 and 177.805 whih are di�erent from

the omponents of the Shapley value whih are 872.107 and 832.507. De�ne the

imputation distribution proedure or transfer payments to the players suh that they

�nally reeive the omponents of the Shapley value and the imputation distribution

proedure is subgame-onsistent. Using that σ̄ equals π0σ and equation (53), we

obtain IDP:

β1 = (I− δΠ(η∗))σ1 =

(
6.500
9.052

)
, β2 = (I − δΠ(η∗))σ2 =

(
7.500
8.448

)
.

De�ne σ-regularisation of initial stohasti game G using IDP and De�nition 23. We

rede�ne payo� funtions of the players in the initial game in all states when players

adopt ooperative strategy pro�le substituting the payo�s by orresponding om-

ponents of the IDP. Therefore, players' payo�s in states ω1 and ω2 orrespondingly

equal: (
(6.500, 7.500) (1, 8)

(8, 1) (4, 5)

)
,

(
(9, 9) (1, 10)

(9.052, 8.448) (6, 5)

)
.

In a regularized game in the state with a low demand (state ω1), both �rms adopt

ation �to ollude� and reeive payo�s (6.5, 7.5). Notie that their payo�s in the

initial game are (7, 7). Therefore, Firm 1 gives 0.5 to Firm 2. In the state with a

high demand (state ω2) Firm 1 plays ation �to deviate� while Firm 2 �olludes�.

This behavior is presribed by the ooperative strategy pro�le. In state ω2 players'

payo�s are (9.052, 8.448). Notie that the payo�s in the initial game are (16.5, 1).
Therefore, Firm 1 gets 16.5 − 9.052 = 7.448 from Firm 2. If the regularization of

the initial game is made by the above desribed method, the Shapley value and the

orresponding IDP are subgame-onsistent.

Strategi support. We now hek for strategi support of the Shapley value, i.

e., we hek if Firms have bene�ts from individual deviations from the ooperative

strategy pro�le. First, onsider state ω1. As the ation pro�le played in ooperation

is not the Nash equilibrium, then the players may have bene�ts from deviation. We

verify if the inequality is true:

σω1

i > Fω1({i}),

for eah i = 1, 2, where

Fω1({i}) = max
a
ω1
i

∈A
ω1
i

a
ω1
i

6=a
ω1∗
i

{
Kω1

i (aω1

i , a
ω1∗
N\i) + δ

∑

ω′∈Ω

p(ω′|ω1, (a
ω1

i , a
ω1∗
N\i))V

ω′

({i})
}
.

Inequality (14) for Firm 1 is written in this way:

870.516 > 8 + 0.99
(
0.4 0.6

)(538.60
540.60

)
= 542.402,
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and for Firm 2:

831.916 > 8 + 0.99
(
0.9 0.1

)(500.00
500.00

)
= 503.

In state ω2, ooperative ation pro�le (D2, C2) is the Nash equilibrium. Therefore,

players an't inrease their payo�s by deviations. Therefore, we may onlude that

inequality (14) holds for state ω2. The ondition of strategi support is satis�ed.

Irrational-behavior-proof. To verify the ondition of irrational behavior proof, we

need to ompare players' payo�s in two ases:

1) A �rm plays individually during the whole game,

2) A �rm ooperates with the other �rm until some step, and after this it starts

playing individually.

Notie that in the seond ase, when the �rms ooperate, they reeive payo�s in

aordane with IDP, onstruted on the basis of thee initially hosen ooperative

solution.

If the player's payo� in ase 1) is not greater than his payo� in ase 2), then the

priniple of irrational behavior proof against irrational behavior is satis�ed. This

has been proved in Proposition 1, sine

(I− δΠ(η∗))(σ1 − V ({1})) = (I− δΠ(η∗))(σ2 − V ({2})) =
(
2.500
3.448

)
> 0.

3.6. Strong transferable equilibrium

Theorem 1 an be generalized to the ase when several players deviate, i. e., we may

prove that if the ondition similar to inequality (14) is satis�ed in σ-regularization
Gσ of stohasti game G, there exists a strong transferable equilibrium with payo�s

(σ̄1, . . . , σ̄n). In this ase, players an implement a speially onstruted pro�le in

trigger strategies, where as a punishment for deviated oalition, not deviated players

will implement trigger strategies that allow a deviated oalition to obtain a minimax

payo� in any subgame. De�ne a strong transferable equilibrium and prove a theorem

similar to Theorem 1.

De�nition 26. (Petrosyan and Kuzutin, 2000) We all pro�le ϕ̃ = (ϕ̃1, . . . , ϕ̃n)
strong transferable equilibrium in regularized game Gσ if for any oalition S ⊆ N ,

S 6= ∅, inequality ∑

i∈S

Ēσi (ϕ̃) >
∑

i∈S

Ēσi (ϕ̃ ‖ ϕS) (83)

holds for any behaviour strategy of oalition S: ϕS = (ϕi : i ∈ S) ∈ ∏i∈S Φi. Here
Ēσi (·) is a disounted payo� of player i in σ-regularisation of game G.

We will prove a theorem allowing us to obtain a ondition on the game param-

eters for whih in regularized game Gσ there exists a transferable equilibrium with

players' payo�s equal to the orresponding omponents of the ooperative solution

aording to whih the initial stohasti game is regularized.

Theorem 11. If in regularized game Gσ suh that ooperative solution satis�es

ondition σ̄ = π0σ, the inequality holds:

∑

i∈S

βi > (I− δΠ(η∗))F̃ (S) (84)
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for any oalition S ⊆ N , S 6= ∅, where F̃ (S) = (F̃ω1(S), . . . , F̃ ω̄(S))T ,

F̃ω(S) = max
aωS∈

∏

i∈S

∆(Aω
i )

aωS 6=aω∗
S

{∑
i∈S

Kω
i (a

ω∗ ‖ aωS) + δ
∑
ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S)

}
, then in re-

gularized game Gσ there exists a strong transferable equilibrium with players' payo�s

(σ̄1, . . ., σ̄n).

Proof. The proof of the theorem is lose the proof of Theorem 1 but instead of

strategy (63) we use the following behaviour strategy ϕ′
i, i ∈ N :

ϕ′
i(h(k)) =





aω∗i , if ω(k) = ω, h(k) ⊂ h∗;

aω′i (S), if ω(k) = ω and ∃ l ∈ [1, k − 1],

S ⊂ N , i /∈ S: h(l) ⊂ h∗ and

(ω(l), a(l)) /∈ h∗, but

(ω(l), (a∗S(l), aN\S(l)) ∈ h∗;

any otherwise,

(85)

where aω∗i is an ation of player i in a ooperative mode, while aω′i (S) ∈ ∆(Aωi ) is
an ation of player i in a trigger mode whih jointly with ations aω′i′ (S) ∈ ∆(Aωi′ )
of players i′ 6= i, i′ ∈ N\S forms an ation of oalition N\S against oalition S and

allows oalition S to obtain minmax value V ω(S) in subgame Gω.

3.7. Strongly subgame onsisteny of the ore

Now suppose that the solution of a ooperative stohasti game is the subset of

the imputation set that ontains more than one point. For de�niteness, let suh a

solution be the ore. We formulate the problem of strongly subgame onsisteny of

the ore and propose su�ient onditions for strongly subgame onsisteny of the

ore for stohasti games with in�nite duration given by (1).

Suppose that the ores of stohasti game Gc and any subgame G
ω
c , ω ∈ Ω, are

nonempty. In ooperation, players agree on the joint implementation of ooperative

strategy pro�le η∗ and expet to obtain the omponents of the imputation belonging
to the ore CO. Reahing intermediate states ω ∈ Ω, player i ∈ N hooses ation aω∗i
in aordane with ooperative strategy η∗i and gets payo� Kω

i (a
ω∗). If the players

realulate the solution, i.e., they �nd a solution of ooperative subgame Gωc , then
the urrent solution will be the ore COω . It would be reasonable to require that

the payo� reeived by a player in state ω summarized with the expeted sum of any

imputations from the ores COω
′

, ω′ ∈ Ω, following state ω, would be an imputation
from the ore COω . If this property holds for any state ω ∈ Ω, then the ore of

ooperative stohasti game Gc is strongly subgame-onsistent.
To determine a strongly subgame-onsistent ore, we de�ne the so-alled ex-

peted ore in state ω, i.e., we de�ne the set of expeted imputations belonging to

the ores whih are the solutions of the following subgames. For eah state ω ∈ Ω,
we de�ne the expeted ore:

EC(ω) =

{
σ(ω) =

∑

ω′∈Ω

p(ω′|ω, aω∗)σω′ | σω′ ∈ COω
′

}
. (86)

Set EC(ω) ontains vetors σ(ω) whih are mathematial expetations of all possible
sets of the imputations from the ores of subgames starting in states whih are
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realised after the urrent state with respet to probability distribution

{p(ω′|ω, aω∗), ω′ ∈ Ω}.
Remind De�nition 21 of the imputation distribution proedure. The �rst ondi-

tion (52) in a de�nition an be alled the ondition of �attainability of the imputation

distribution proedure� beause it allows to ensure that in any realized state the

sum of payments to the players is equal to the sum of their payo�s when they imple-

ment ooperative strategies. The seond ondition guarantees players to reeive the

omponents of the initially hosen imputation from the ore of ooperative game

Gc in the sense of mathematial expetation, if payments to the players throughout
the game will be made in aordane with distribution proedure {βω : ω ∈ Ω}.

We now de�ne the distribution proedure of imputation σ̄ = (σ̄1, . . . , σ̄n), where
σ̄i = π0σi, (σ

ω
1 , . . . , σ

ω
n ) = σω ∈ COω , suh that the ore is strongly subgame-

onsistent.

De�nition 27. We all the ore CO of ooperative stohasti game Gc strongly
subgame-onsistent if there exists a distribution proedure {βω : ω ∈ Ω} of the

imputation from the ore CO suh that for any state ω ∈ Ω the following inlusions

hold:

βω ⊕ δEC(ω) ⊂ COω , (87)

Bω ∈ COω , ω ∈ Ω (88)

where

βω ⊕ δEC(ω) =

{
βω + δσ(ω) : σ(ω) ∈ EC(ω)

}
.

And distribution proedure {βω : ω ∈ Ω} is alled strongly subgame-onsistent.

Condition (87) means that the set of vetors equal to the sum of the imputation

distribution proedure of the player in state ω and an imputation from the expeted

ore for this state, is ontained in the ore of subgame starting from state ω. This
ondition imposes restritions on payments to the players in the realized states, and

very often is not satis�ed for an arbitrary game, if payments to the players are made

in aordane with the initially de�ned payo� funtions.

We impose additional restritions on the harateristi funtions of subgames

starting from the states of set Ω in order to obtain su�ient onditions for strongly

subgame onsisteny of the ore. Denote by EV ω(S) the expeted value of the

harateristi funtion alulated for oalition S ⊆ N for subgames following state

ω:

EV ω(S) =
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S).

Denote by

∆V ω(S) = V ω(S)− δEV ω(S)

the di�erene between the values of a harateristi funtion in state ω and the

expeted value of the harateristi funtion. We denote by ∆COω an analog of

the ore onstruted with funtion ∆V ω(S). We formulate a su�ient ondition for

strongly subgame onsisteny of IDP and the ore CO.
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Theorem 12. Let for eah state ω ∈ Ω the ore COω and the set ∆COω be

nonempty. If for every state ω ∈ Ω distribution proedure {βω : ω ∈ Ω} of the

imputation from the ore CO satis�es onditions:

βω ∈ ∆COω , (89)

Bω ∈ COω , ω ∈ Ω, (90)

then the ore CO and proedure {βω : ω ∈ Ω} are strongly subgame-onsistent.

Proof. We prove that any vetor βω ∈ ∆COω satisfying onditions (89) and (90)

is a strongly subgame-onsistent distribution proedure of imputation σ̄ ∈ CO, i.
e., onditions (87) and (88) from De�nition 27 hold. Condition (90) oinides with

(88), so, we need to prove that inlusion (87) holds for eah state ω ∈ Ω. In state ω
onsider any vetor σ(ω) ∈ EC(ω) and �nd sum βω + δσ(ω). Now we verify if the

latter vetor belongs to the ore CO. First, alulate the sum of all omponents of

the vetor:

∑

i∈N

βωi + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)
∑

i∈N

σω
′

i =

= V ω(N)− δ
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(N)+

+ δ
∑

ω′∈Ω

p(ω′|ω, aω∗)
∑

i∈N

σω
′

i = V ω(N),

whih means that property of olletive rationality holds.

Next, onsider S ⊂ N , S 6= N :

∑

i∈S

βωi + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)
∑

i∈S

σω
′

i >

> V ω(S) + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S)−

− δ
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S) = V ω(S).

Sine the hoie of state ω ∈ Ω is random, we onlude that the ore of the

game Gc and proedure {βω : ω ∈ Ω} are strongly subgame-onsistent.

When analogs of the ores ∆COω are nonempty for any state ω, Theorem 12

provides a method of onstrution of a strongly subgame-onsistent distribution

proedure of imputations from the ore. Notie that generally not all imputations

from the ore an be realised with distribution proedure {βω : ω ∈ Ω} desribed

above.

3.8. Stohasti game with one absorbing state

Nonooperative game. In this setion we onsider a two-player game with two

states. The set of players is N = {1, 2}. Let state ω1 be given by:

ω1 :

C D( )
C (a, a+ 1) (c, b)
D (b, c) (d+ 1, d)

(91)
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Players have two pure ations, C (to ooperate) and D (to defet). The onstants

satisfy the inequalities:

b > a+ 1, a > d+ 1, d > c > 0.

We also assume

2a+ 1 > b+ c. (92)

From inequality (92) it follows that players reeive a larger total payo� by oop-

erating than defeting. The game represents Prisoners' Dilemma with asymmetri

players: in ation pro�le (C,C) the payo� of player 1 is less than the payo� of player
2, but in pro�le (D,D) the payo� of player 2 is less than the payo� of player 1. If

ation pro�les (C,C) and (D,D) are hosen in state ω1, a stohasti game remains

in this state with probability 1. But if pro�les (C,D) or (D,C) are hosen, the

game transits to state ω2 whih is �absorbing�, i.e. this state will be realised in all

following stages of the game with probability 1. In state ω2 both players have a

unique ation D and their payo�s will be equal to d:

ω2 :
D

( )D d, d (93)

The matries of transition probabilities from states ω1 and ω2 are

(
(1, 0) (0, 1)
(0, 1) (1, 0)

)
,
(
0, 1
)
.

The disount fator is δ ∈ (0, 1) and the vetor of the initial distribution on the set
of states is π0 = (1, 0), i.e., a game starts with state ω1.

Cooperative game. For this game we onstrut a ooperative game by determin-

ing the harateristi funtions for all subgames and the whole game. We then show

how we need to redistribute the stage payo�s adopting IDP to obtain the subgame

onsisteny of the Shapley value. The ondition of strategi stability gives the lower

bound of the disount fator.

The �rst step is to determine ooperative form Gc of non-ooperative stohasti
game G. In partiular, we need to �nd a ooperative strategy pro�le and then

alulate the values of harateristi funtions for eah subgame (starting from

states ω1 and ω2) and for the whole game.

We ompute ooperative strategy pro�le η∗ = (η∗1 , η
∗
2) using (5) and (6). In a

ooperative strategy pro�le both players hoose C in state ω1 and D in state ω2.

The total players' payo� with pro�le η∗ is equal to the value of the harateristi

funtion of oalition N :

V̄ ({1, 2}) = Ē1(η
∗) + Ē2(η

∗) = 2a+ 1 + δ(2a+ 1) + . . . =
2a+ 1

1− δ
. (94)

In partiular, the values of harateristi funtion V ω({1, 2}) for both subgames are

V ({1, 2}) =
(
V ω1({1, 2})
V ω2({1, 2})

)
=



2a+ 1

1− δ
2d

1− δ


 . (95)
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We an now alulate the values of harateristi funtions of oalitions {1} and

{2} for both states using (9):

V ω1({1}) = max
η1

min
η2

Eω1
1 (η1, η2) = min

η2
max
η1

Eω1
1 (η1, η2) =

d+ 1

1− δ
,

V ω1({2}) = max
η2

min
η1

Eω1
2 (η1, η2) = min

η1
max
η2

Eω1
2 (η1, η2) =

d

1− δ
,

V ω2({1}) = V ω2({2}) = d

1− δ
.

By equation (51), the values of the harateristi funtions for the empty set are

zero:

V (∅) =

(
0
0

)
.

Using (10), we then alulate the values of the harateristi funtion V̄ (·) for all
possible oalitions taking into aount the initial distribution of states π0 = (1, 0):

V̄ (∅) = 0, V̄ ({1}) = d+ 1

1− δ
, V̄ ({2}) = d

1− δ
, V̄ ({1, 2}) = 2a+ 1

1− δ
.

In this way, we determine ooperative stohasti subgames G
ωj
c as the set

〈N, V ωj (·)〉, j = 1, 2, and ooperative stohasti game Gc as the set 〈N, V̄ (·)〉.

The Shapley value. We assume that players hoose the Shapley value as an im-

putation of their total payo� in ooperative stohasti game Gc and in all subgames
G
ωj
c , j = 1, 2. For a two-person game, this is given by:

σ
ωj

i = V ωj ({i}) + V ωj ({1, 2})− V ωj ({1})− V ωj ({2})
2

,

where i = 1, 2 and j 6= i. The Shapley values for the subgames are:

σ1 =

(
σω1
1

σω2

1

)
=



a+ 1

1− δ
d

1− δ


 , σ2 =

(
σω1
2

σω2

2

)
=




a

1− δ
d

1− δ


 .

Taking into aount the vetor of initial distribution π0, we are able to determine
the Shapley value σ̄ in game Gc by De�nition 20:

σ̄ = (σ̄1, σ̄2) =

(
a+ 1

1− δ
,

a

1− δ

)
.

Subgame onsisteny of the Shapley value. We are now in a position to verify

the priniples of stable ooperation. Begin with subgame onsisteny. If players get

payo�s aording to the initially de�ned payo� funtions, their total payo�s will

be

a
1−δ and

a+1
1−δ in ontrast to the omponents of the Shapley value

a+1
1−δ and

a
1−δ .

In order to obtain subgame onsisteny, we ompute IDP by equating σ̄ to π0σ by
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using (53):

β1 = (I− δΠ(η∗))σ1 =

(
1− δ 0
0 1− δ

)


a+ 1

1− δ
d

1− δ


 =

(
a+ 1
d

)
,

β2 = (I− δΠ(η∗))σ2 =

(
1− δ 0
0 1− δ

)



a

1− δ
d

1− δ


 =

(
a
d

)
.

We then determine σ-regularisation of the initial stohasti game G using the IDP

and De�nition 23. We re-establish the payo� funtions of the initial game in state ω1

when players adopt the ooperative ation pro�les. Therefore, the players' payo�s

in state ω1 are: (
(a+ 1, a) (c, b)
(b, c) (d+ 1, d)

)
.

In state ω1, when both players adopt the ooperative strategy pro�le (both players

use ation C in state ω1), their payo�s are (a+ 1, a). Sine their payo�s in the

initial game were (a, a+ 1), player 2 transfers 1 to player 1. If the initial game is

regularised by the method desribed above, the Shapley value and the orresponding

PDP satisfy the priniple of subgame onsisteny (see Theorem 9).

Strategi support of the Shapley value. We now evaluate the strategi sup-

port of the Shapley value by heking if players may deviate from the ooperative

strategy pro�le. We onsider the possible deviations of players in state ω1 (in state

ω2 players have the unique ation). In this state the ooperative ation pro�le is not

the Nash equilibrium, thus players may bene�t from deviation. We should hek if

the following inequality

σω1

i > Fω1({i}), (96)

is true for any i = 1, 2, where

Fω1({i}) = max
a
ω1
i

∈∆(A
ω1
i

)

{
Kω1

i (aω1

i , aω1∗
N\i) + δ

∑

ω′∈Ω

p(ω′|ω1, (a
ω1

i , a
ω1∗
N\i))V

ω′

({i})
}
.

For player 1, inequality (96) yields:

a+ 1

1− δ
> b+ δd+ δ2d+ . . . = b +

δd

1− δ
,

for player 2:

a

1− δ
> b+ δd+ δ2d+ . . . = b+

δd

1− δ
.

These two inequalities give the ondition on δ when the priniple of strategi support
is satis�ed:

δ >
b− a

b− d
.



A Survey on Cooperative Stohasti Games with Finite and In�nite Duration 191

Priniple of irrational-behaviour-proof. In order to verify irrational-behaviour

proof, we need to ompare the payo�s of eah player when:

1) A player ats as an �individual player� during the whole game.

2) A player ooperates with a ompetitor until some stage and then plays indi-

vidually.

If the payo� of 2) is not less than the payo� of 1), then this priniple is satis�ed.

This is on�rmed by Theorem 1, sine:

(I − δΠ(η∗))(σ1 − V ({1})) =
(
1− δ 0
0 1− δ

)


a+ 1

1− δ
− d+ 1

1− δ
d

1− δ
− d

1− δ


 =

(
a− d
0

)
> 0,

(I − δΠ(η∗))(σ2 − V ({2})) =
(
1− δ 0
0 1− δ

)



a

1− δ
− d

1− δ
d

1− δ
− d

1− δ


 =

(
a− d
0

)
> 0.

Both players bene�t from ooperation even if IDP is adopted initially at some stages

and then the game is played as a non-ooperative one with initially de�ned payo�

funtions as ompared with a game played individually by both players during the

whole game.

Results. To sum up, we an formulate the onditions under whih the Shapley value

in the desribed stohasti game satis�es the three priniples of stable ooperation

(subgame onsisteny, strategi support, irrational-behavior-proof):

1. A disount fator is to be δ > b−a
b−d .

2. A stohasti game is σ-regularised, i. e., the players' payo�s in state ω1 are:

C D( )
C (a+ 1, a) (c, b)
D (b, c) (d+ 1, d)

and in state ω2 they must not be hanged.

4. Conlusion

The paper summarizes the results on ooperative stohasti games with �nite and

in�nite duration based on the author's and oauthors' publiations. Setion 2 is

devoted to desribing ooperative stohasti games with �nite duration and on-

sidering some properties of ooperative solutions applying in dynamis. Setion

3 ontains a method of onstrution of a ooperative stohasti game with in-

�nite duration. The priniples of stable ooperation in these lass of games are

examined in this setion. There are several numerial examples representing theo-

retial results. For the appliations of theoretial results see the following publia-

tions (Bure and Parilina, 2017, Parilina, 2009, Parilina, 2008, Parilina and Sedakov,

2015).
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