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ooperative sto
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h based on the author's and 
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li
ations. We assume that the non-
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hasti
 game is initially
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ooperative version of the game is 
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ted, the 
oopera-
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ooperative solutions of the game
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s are 
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al examples

of sto
hasti
 games illustrate theoreti
al results.
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1. Introdu
tion

The paper is an overview of the results obtained in the theory of 
ooperative

sto
hasti
 games by the author and her 
oauthors (Baranova, 2006, Parilina, 2014,

Parilina, 2015, Parilina, 2016, Baranova and Petrosjan, 2006, Parilina and Petro-

syan, 2017, Parilina and Tampieri, 2018, Petrosyan et al., 2004, Petrosjan and

Baranova, 2005, Petrosyan and Baranova, 2003, Petrosyan and Baranova, 2005a,

Petrosyan and Baranova, 2005b).

The starting point of sto
hasti
 game theory is a publi
ation of L. Shapley

(Shapley, 1953a), in whi
h the existen
e of value of a zero-sum sto
hasti
 game

with a �nite set of players' strategies is proved. A generalization of this result

for the 
ase of n-person sto
hasti
 game was obtained in the papers (Fink, 1964)

and (Takahashi, 1964), in whi
h it was proved that equilibrium exists in stationary

strategies in a sto
hasti
 game with a 
ompa
t set of strategies and a �nite set of

states. Many papers are devoted to the proof of the existen
e of the Nash equilibrium

in various 
lasses of strategies, studying sto
hasti
 games with in
omplete informa-

tion, asymmetri
 players, sto
hasti
 games of a spe
ial stru
tures (see the following

publi
ations: (Solan and Vieille, 2002, Vieille, 2000, Mertens and Neyman, 1981a,

Mertens and Neyman, 1981b, Neyman, 2008, Neyman, 2013, Nowak, 1985, Nowak,

1999, Nowak and Radzik, H�orner et al., 2010, Solan, 1998, J�askiewi
z and Nowak,

2016, Neyman and Sorin, 2003, Solan, 2009, Solan and Vieille, 2015)).

The method of 
onstru
ting a 
ooperative version of sto
hasti
 game realized on

a �nite tree was �rst proposed by L. A. Petrosyan in the paper (Petrosjan, 2006),

where the problem of time 
onsisten
y of the Shapley value was formulated and

a method of regularization of time-in
onsistent Shapley value is introdu
ed. Then

the method of 
onstru
ting a 
ooperative version of sto
hasti
 game with in�nite

duration was proposed in the paper (Baranova and Petrosjan, 2006). Cooperative

sto
hasti
 games of in�nite duration with a �nite set of strategies were later studied
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in (Kohlberg and Neyman, 2015, Parilina, 2015, Parilina and Tampieri, 2018). The

prin
iples of stable 
ooperation are formulated for dynami
 and di�erential games

in (Petrosyan and Zenkevi
h, 2015). The �rst prin
iple is time 
onsisten
y (or sub-

game 
onsisten
y) of 
ooperative solutions whi
h was initially proposed by L. A.

Petrosyan (Petrosyan, 1977) for di�erential games.

The me
hanism for determining payments to the players for regularization of

time-in
onsistent 
ooperative solutions using the so-
alled imputation distribution

pro
edure was introdu
ed by L. A. Petrosyan and V. V. Danilov (Petrosyan and

Danilov, 1979). Further, the problem of 
onstru
ting time-
onsistent 
ooperative

solutions was studied in the paper (Petrosyan and Shevkoplyas, 2000) for di�eren-

tial games with random duration, and in (Yeung and Petrosyan, 2011) for dynami


games with random duration.

The se
ond prin
iple of stable 
ooperation in dynami
 and di�erential games

is strategi
 
onsisten
y of a 
ooperative solution whi
h was initially proposed in

(Petrosyan, 1998). This prin
iple is relevant and 
an be adapted for various 
lasses

of di�erential and dynami
 games (Shevkoplyas, 2010, Petrosjan and Grauer, 2002,

Petrosyan and Chistyakov, 2013, Petrosyan and Sedakov, 2015).

The third prin
iple of stable 
ooperation is irrational-behavior-proof whi
h was

formulated by D. W. K. Yeung (Yeung, 2006) and then was applied for linear-

quadrati
 games (Tur, 2014, Markovkin, 2006). The 
onditions for stable 
oopera-

tion with Markov pro
esses, whi
h allow players' 
ooperation, in
luding irrational-

behavior-proof 
ondition, are formulated in (Avra
henkov et al., 2013).

Time 
onsisten
y 
ondition was extended for the 
ase when the 
ooperative

solution is a set (
ontaining more than one imputation) in (Petrosyan, 1993) and

was 
alled strongly time 
onsisten
y. Re
ently, this 
ondition is investigated in vari-

ous 
lasses of games (Gromova and Petrosyan, 2015, Sedakov, 2015, Chistyakov and

Petrosyan, 2011, Parilina and Pet ro syan, 2017).

The paper is organized as follows. Se
tion 2 
ontains results on 
ooperative

sto
hasti
 games with �nite duration while Se
tion 3 is devoted to 
ooperative

sto
hasti
 games with in�nite duration. We brie�y 
on
lude in Se
tion 4.

2. Cooperative sto
hasti
 games with �nite duration

2.1. Non-
ooperative sto
hasti
 games

We de�ne a �nite sto
hasti
 game played on a graph. Let Ψ = (Z,L) be a �nite

graph of a tree stru
ture, where Z is the set of verti
es of the graph, and L : Z −→ Z
is a point-set mapping de�ned on the set Z, with values in the set of the subsets

of set Z. The vertex z0 is the initial vertex of the tree graph Ψ . We denote the

terminal verti
es of graph Ψ by ZT ⊂ Z, that is, the verti
es z for whi
h L(z) = ∅.
The �nite tree graph with initial vertex z0 is denoted by Ψ(z0).

Let at ea
h vertex z ∈ Z of the graph Ψ(z0) the normal form game of n players

Γ (z) = 〈N,Az1, . . . , Azn,Kz
1 , . . . ,K

z
n〉 ,

be given, and N = {1, 2, . . . , n} is a �nite set of players, the same for all verti
es

z ∈ Z; Azi is a �nite set of a
tions of player i ∈ N , Kz
i (a

z
1, . . . , a

z
n) :

∏
j∈N A

z
j → R

is a payo� fun
tion of player i, azi ∈ Azi . The 
olle
tion of a
tions a
z = (az1, . . . , a

z
n),

azi ∈ Azi , i ∈ N , is 
alled an a
tion pro�le in the game Γ (z). And az ∈ Az =
∏
i∈N

Azi ,

Az is the set of a
tion pro�les in game Γ (z).



A Survey on Cooperative Sto
hasti
 Games with Finite and In�nite Duration 131

For ea
h vertex z ∈ Z we de�ne the transition probabilities to the verti
es

y ∈ L(z) of the graph Ψ(z0) following the vertex z. These probabilities depend on

the a
tion pro�le az realized in the game Γ (z). Thus, for ea
h vertex z ∈ Z we de�ne

a fun
tion p(·|z, az) : Az → ∆(L(z)), where ∆(L(z)) is a probability distribution

over the set L(z):

p(y|z, az) > 0,
∑

y∈L(z)

p(y|z, az) = 1

for any a
tion pro�le az ∈ Az. The value p(y|z, az) is the probability that at the

next stage, the game Γ (y) will be played, y ∈ L(z), if at the previous stage in the

game Γ (z), the a
tion pro�le az = (az1, . . . , a
z
n) has been realized.

We also suppose that the duration of the game is random whi
h values are 0, 1,

. . ., l, and l is the length of the game (by the length of the game we mean the number
of stages in the game of maximal possible path). De�ne probabilities qk of the event
that the game will end at stage k. Noti
e that 0 6 qk 6 1, k = 0, . . . , l − 1, ql = 1,
where l is the length of the game (by the length of the game we mean the number of
stages in the game of maximal possible path); stage k at vertex z ∈ Z in a sto
hasti


game with random duration is determined from the 
ondition: z ∈ (L(z0))
k
.

Remark 1. Noti
e that the probabilities qk, k = 0, . . . , l are 
onditional probabili-
ties and do not form probability distribution of the game duration. In 
ase when all

paths in graph Ψ(z0) have the same length l, the dis
rete distribution of a random

variable equal to the game duration, determined by the 
onditional probabilities qk,
is presented in Table 1, in whi
h Pk is the probability that the game will end at

stage k.

Table 1. Probability distribution of the game duration.

k Pk

0 q0
1 (1− q0)q1
2 (1− q0)(1− q1)q2
.

.

.

.

.

.

l (1− q0)(1− q1) · . . . · (1− ql−1)

De�nition 1. Sto
hasti
 game with random duration G(z0), where z0 is an initial
vertex of a tree graph Ψ(z0), is a set

G(z0) =
〈
N,Ψ(z0), {Γ (z)}z∈Z, {qk}lk=0, {p(·|z, az)}z∈Z,az∈Az

〉
. (1)

From the de�nition of a sto
hasti
 game with a random duration it is 
lear that

the transitions from some verti
es of the graph Ψ(z0) to the others, as well as the
�nal stage of the game are random.

Sto
hasti
 game with random duration G(z0) is played in the following way:

1. At vertex z0 of the graph Ψ(z0), a simultaneous game Γ (z0) is played. Suppose
that in this game a
tion pro�le az0 ∈ Az0 is realized by the players. Ea
h
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player i ∈ N re
eives a payo� Kz0
i (az0). The sto
hasti
 game G(z0) either

terminates with probability q0, 0 6 q0 6 1, or 
ontinues with probability 1− q0
and transmits to the vertex y ∈ L(z0) of the graph Ψ(z0) with probability

p(y|z0, az0), depending on the a
tion pro�le az0 realized in the game Γ (z0). In

ase when the set L(z0) is empty, the game ends at the vertex z0 with probability
1.

2. Suppose that at stage k the game pro
ess is at the vertex zk ∈ Z, at whi
h
the game in a normal form Γ (zk) is given. Let the a
tion pro�le azk ∈ Azk is

realized in this game. Ea
h player i ∈ N re
eives a payo� Kzk
i (azk). Sto
hasti


game either ends with probability qk, 0 6 qk 6 1, or 
ontinues with probability

1− qk and transits to the vertex zk+1 ∈ L(zk) with probability p(zk+1|zk, azk),
whi
h depending on the a
tion pro�le azk realized in game Γ (zk). In 
ase when
the set L(zk) is empty, the game terminates at the vertex zk with probability 1.

3. The sto
hasti
 game 
ontinues until the terminal vertex is rea
hed or it may

end a

ording to the realizations of probabilities q0, . . ., ql.

We denote by G(zk) the subgame (see (Kuhn, 1950, Kuhn, 1953)) of the gameG(z0)
starting at the vertex zk ∈ Z of graph the Ψ(z0) (starting with the game Γ (zk)),
whi
h is also a sto
hasti
 game with random duration. Subgame G(zk) is de�ned on
the subgraph Ψ(zk) with the set of verti
es Z(zk) ⊂ Z and is given by the quintuple

G(zk) =
〈
N,Ψ(zk), {Γ (z)}z∈Z′, {qs}ls=k, {p(·|z, az)}z∈Z(zk),az∈Az

〉
.

To solve the game you need to determine the set of players' strategies. We denote

by ϕi : Z → ∏
z∈Z ∆(Azi ) the behavior strategy of player i in game G(z0), where

∆(Azi ) is the set of mixed a
tions of the player i at the vertex z ∈ Z. The strategy
pro�le in sto
hasti
 game G(z0) is a 
olle
tion of the players' strategies given by

ϕ = (ϕi : i ∈ N). Denote by Σi the set of behavior strategies of player i in the

sto
hasti
 game G(z0), then Σ =
∏
i∈N Σi is the set of behavior strategy pro�les

in game G(z0). Obviously, the restri
tion of the strategy ϕi on subgraph Ψ(zk) of
graph Ψ(z0) is a strategy in subgame G(zk). Denote this restri
tion of a strategy

by ϕzki .

2.2. Main fun
tional equations

Assume that in sto
hasti
 game G(z0) players implement strategies ϕi, i ∈ N .

De�ne the payo� of the player i as mathemati
al expe
tation of his payo� relative

to a random variable equal to the game duration, and e. g., for the realized path

z1 ∈ L(z0), z2 ∈ L(z1), . . ., zl ∈ L(zl−1), L(zl) = ∅, we obtain

Ei(z0) =

l∑

k=0

Pk

k∑

j=0

K
zj
i (azj) =

l∑

k=0

qk



k−1∏

j=0

(1− qj)



(

k∑

m=0

Kzm
i (azm)

)
,

where az0 ∈ Az0 , az1 ∈ Az1 , . . ., azl ∈ Azl is a sequen
e of realized a
tion pro�les

when players adopt strategies (ϕi : i ∈ N).

Sin
e transitions from the verti
es to the following verti
es are sto
hasti
, we


onsider mathemati
al expe
tation of the player's payo� relative to random tran-

sitions from verti
es to the following verti
es as a player's payo� in the sto
hasti


game. The mathemati
al expe
tation Ei(z0, ϕ) of player i's payo� in the game sat-
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is�es the fun
tional equation

Ei(z0, ϕ) = q0K
z0
i (az0) + (1− q0)


Kz0

i (az0) +
∑

y∈L(z0)

p(y|z0, az0)Ei(y, ϕy)




(2)

= Kz0
i (az0) + (1− q0)

∑

y∈L(z0)

p(y|z0, az0)Ei(y, ϕy),

where Ei(y, ϕ
y) is the mathemati
al expe
tation of player i's payo� in the subgame

G(y) starting at the vertex y ∈ L(z0) of graph G(z0).

Assume that z ∈ (L(z0))
k
, that is, the game pro
ess enters the vertex z ∈ Z

at stage k, then the mathemati
al expe
tation of player i's payo� in the subgame

G(z) satis�es the fun
tional equation

Ei(z, ϕ
z) = qkK

z
i (a

z) + (1 − qk)


Kz

i (a
z) +

∑

y∈L(z)

p(y|z, az)Ei(y, ϕy)




= Kz
i (a

z) + (1 − qk)
∑

y∈L(z)

p(y|z, xz)Ei(y, ϕy).

To de�ne a 
ooperative version of the game, it is ne
essary to determine a


ooperative path (one of the 
ooperative paths, if there are several ones), that is,

the path that maximizes the total players' payo�s. In the 
ase of sto
hasti
 games,

this is a subtree with the given transition probabilities, at whi
h the maximum of

the mathemati
al expe
tation of the total players' payo�s in the whole game is

a
hieved. However, the maximum mathemati
al expe
tation of the total players'

payo�s in mixed strategies is equal to the maximum mathemati
al expe
tation

of the summarized players' payo�s in pure strategies. Therefore, we 
an restri
t

ourselves and 
onsider the 
lass of pure strategies to �nd 
ooperative strategies in

the sto
hasti
 game.

2.3. Cooperative sto
hasti
 games with �nite duration

Denote by ϕ̄ = (ϕ̄1, . . . , ϕ̄n) the pure strategy pro�le in gameG(z0)whi
h maximizes
the total mathemati
al expe
tations of the players' payo�s:

V (N, z0) = max
ϕ∈Σ

[∑

i∈N

Ei(z0, ϕ)

]
=
∑

i∈N

Ei(z0, ϕ̄).

We 
all this strategy pro�le as a 
ooperative one. Let strategy pro�le ϕ̄ be su
h

that ϕ̄i(z) = āzi , i ∈ N , z ∈ Z. We 
an determine the 
ooperative strategy pro�le

for any subgame G(z), z ∈ Z, starting with simultaneous game Γ (z).
We 
onstru
t a 
ooperative version of a sto
hasti
 game on the basis of a non-


ooperative sto
hasti
 game with random duration G(z0) des
ribed above. For this
purpose it is ne
essary to de�ne the 
hara
teristi
 fun
tion for ea
h subset S (
oali-

tion) of the set of players N . The 
hara
teristi
 fun
tion 
al
ulated for the subgame

G(z), z ∈ Z, is denoted by V (S, z), where S ⊂ N .

Chara
teristi
 fun
tion V (S, z) shows whi
h total payo� 
an be obtained by

the players joining into 
oalition S. There are di�erent approa
hes to de�ning the

hara
teristi
 fun
tion that determines the 
ooperative game on the basis of a non-


ooperative one. We introdu
e some of these approa
hes:
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1. α-approa
h. In this 
ase, V (S, z) is the maxmin value of the zero-sum game be-

tween 
oalitions S and N\S. Moreover, the maxmin is found in the pure strate-

gies of 
oalition S. This approa
h 
an be des
ribed as �pessimisti
�, sin
e V (S, z)
is equal to the minimum total payo� of 
oalition S whi
h 
oalition S 
an obtain

regardless of how 
oalition N\S behaves. This approa
h was proposed in the

book of Neumann and Morgenstern (von Neumann and Morgenstern, 1944).

2. β-approa
h. Following this approa
h, V (S, z) is the minmax value of the zero-

sum game GS between 
oalitions S and N\S. Moreover, the minimax is found

in pure strategies. This approa
h 
an be 
onsidered as �optimisti
�. Comparison

of α- and β-approa
hes 
an be found in (Aumann and Peleg, 1960).

3. The value of game GS . In this 
ase, value V (S) is equal to the value of the zero-
sum game GS game between 
oalitions S and N\S. Moreover, this value always

exists in mixed strategies, while it is equal to the maxmin and minimax of GS .
In 
ase the minmax and maxmin are found in mixed strategies, the values of α-
and β-
hara
teristi
 fun
tions 
oin
ide.

4. γ-approa
h. A

ording to this approa
h, V (S, z) is equal to the payo� of 
oali-

tion S in the Nash equilibrium, when all the players who do not belong to


oalition S play individually (Chander and Tulkens, 1997).

5. δ-approa
h. Value V (S, z) is equal to the maximum payo� of 
oalition S in the

strategy pro�le when the players who do not belong to 
oalition S adopt the

Nash equilibrium strategies optimal in the n-person game when all players a
t

individually. This approa
h was proposed in (Petrosjan and Za

our, 2003) and

further 
onsidered in detail in the paper (Reddy and Za

our, 2016).

6. ζ-approa
h. In this 
ase, V (S, z) is equal to the payo� of 
oalition S in the

strategy pro�le when the players from 
oalition S use strategies that maximize

the total payo� of 
oalition N , and the players who do not belong to 
oalition

S minimize the total payo� of the players from 
oalition S (the idea is proposed

in (Gromova and Petrosyan, 2016)).

In this 
hapter we will use the α-approa
h and assume that the �power� of 
oali-
tion S is equal to the maxmin value of a two-person zero-sum sto
hasti
 gameGS be-
tween 
oalitions S and N\S. This approa
h was used in the paper (Petrosjan, 2006),
in whi
h for the �rst time a 
ooperative sto
hasti
 game was 
onstru
ted on the

basis of a non-
ooperative one and the problem of time-in
onsisten
y of the Shapley

value is 
onsidered.

We determine the values of the 
hara
teristi
 fun
tion. First we 
onsider the 
ase

when S = N and �nd the maximum of the total payo� of the 
oalition N in sto
has-

ti
 game G(z0). For this purpose, we write Bellman's equation (see Bellman, 1957)
for the maximum sum of the mathemati
al expe
tations of players' payo�s:

V (N, z0) = max
a
z0
i

∈A
z0
i

i∈N


∑

i∈N

Kz0
i (az0) + (1− q0)

∑

y∈L(z0)

p(y|z0, az0)V (N, y)


 = (3)

=
∑

i∈N

Kz0
i (āz0) + (1− q0)

∑

y∈L(z0)

p(y|z0, āz0)V (N, y)

with boundary 
ondition

V (N, z) = max
azi∈A

z
i

i∈N

∑

i∈N

Kz
i (a

z), z ∈ {z : L(z) = ∅ or qk = 1} . (4)
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Later on in this 
hapter, we suppose that z ∈ (L(z0))
k
.

For the subgame of G(z), z ∈ Z, the equation (3) with the initial 
ondition (4)

takes the form:

V (N, z) = max
azi∈A

z
i

i∈N


∑

i∈N

Kz
i (a

z) + (1− qk)
∑

y∈L(z)

(p(y|z, az)V (N, y))


 = (5)

=
∑

i∈N

Kz
i (ā

z) + (1− qk)
∑

y∈L(z)

(p(y|z, āz)V (N, y))

with boundary 
ondition

V (N, z) = max
azi∈A

z
i

i∈N

∑

i∈N

Kz
i (a

z), z ∈ {z : L(z) = ∅ or qk = 1} . (6)

Strategy pro�le (ϕ̄i : i ∈ N) in sto
hasti
 game G(z0) generates the probability

distributions over set Z of the verti
es of graph Ψ(z0).

De�nition 2. A subgraph of graph Ψ(z0), whi
h 
onsists of the verti
es z ∈ Z of

the graph Ψ(z0), having positive realization probabilities, generated by the 
ooper-
ative strategy pro�le ϕ̄(·), is 
alled a 
ooperative subtree and denoted by Ψ̄(z0).

Obviously, subgraph Ψ̄(z0) is a �nite tree graph. The set of verti
es in graph Ψ̄(z0)
is denoted by CZ ⊂ Z.

Let S ⊂ N , S 6= N . For ea
h vertex z ∈ CZ we de�ne the auxiliary zero-sum

game denoted by GS(z). It is a zero-sum game between 
oalition S ⊂ N a
ting

as a maximizing player, and 
oalition N \ S a
ting as a minimizing player. In this


ase, the payo� of 
oalition S is 
al
ulated as the sum of the payo�s of the players

belonging to 
oalition S. Then, the value of the 
hara
teristi
 fun
tion V (S, z) is
given by the lower value of zero-sum game GS(z) in pure strategies (similar to the

lower value of the matrix game)

1

.

Fun
tion V (S, z), z ∈ CZ, satis�es the following fun
tional equation

V (S, z) = max
az
S
∈Az

S

min
az
N\S

∈Az
N\S

[∑

i∈S

Kz
i (a

z
S , a

z
N\S)+

+(1− qk)
∑

y∈L(z)

p(y|z, (azS, azN\S))V (S, y)




(7)

with boundary 
ondition

V (S, z) = max
az
S
∈Az

S

min
az
N\S

∈Az
N\S

∑

i∈S

Kz
i (a

z
S , a

z
N\S), z ∈ {z : L(z) = ∅ or qk = 1} , (8)

where azS = (azi : i ∈ S) is an a
tion of 
oalition S; AzS =
∏
i∈S

Azi is the a
tion set of


oalition S; azN\S = (azj : j ∈ N\S) is an a
tion of 
oalition N\S; AzN\S =
∏

j∈N\S

Azj

is the a
tion set of 
oalition N\S.
1

In this 
hapter we use the α-approa
h for 
onstru
tion of the 
hara
teristi
 fun
tion,

proposed by Neumann and Morgenstern (von Neumann and Morgenstern, 1944).
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For all z ∈ CZ it is natural to suppose that

V (∅, z) = 0. (9)

Thus, for ea
h subgame G(z), z ∈ CZ, we have determined the 
hara
teristi


fun
tion V (S, z), S ⊂ N . The 
hara
teristi
 fun
tion V (S, z) is determined by the

equation (5) with the boundary 
ondition (6), and also the equation (7) with the

boundary 
ondition (8) and equation (9).

The 
hara
teristi
 fun
tion V (S, z) de�ned by formulas (5) � (9) is superadditive
on S, i. e., for any vertex z ∈ CZ and any 
oalitions S, P ⊂ N , S ∩ P = ∅, the
inequality

V (S ∪ P, z) > V (S, z) + V (P, z).

holds.

De�nition 3. A 
ooperative sto
hasti
 game with random duration Ḡ(z0) 
onst-
ru
ted on the basis of non-
ooperative sto
hasti
 gameG(z0) is a tuple 〈N, V (S, z0)〉,
where V (S, z0) is a 
hara
teristi
 fun
tion de�ned by equation (5) with boundary


ondition (6) for 
oalition N , by equation (7) with boundary 
ondition (8) for


oalition S 6= N , S 6= ∅, and by formula (9) for 
oalition S = ∅.

De�nition 4. An imputation in 
ooperative sto
hasti
 game Ḡ(z0) is a ve
tor

ξ(z0) = (ξ1(z0), . . . , ξn(z0)), satisfying two properties:

1. Colle
tive rationality:

∑
i∈N ξi(z0) = V (N, z0);

2. Individual rationality: ξi(z0) > V ({i}, z0) for any i ∈ N .

The set of imputations (see (Vilkas, 1990, Vorobiev, 1960, Vorobiev, 1967) and

also (Vorobiev, 1985, Pe
herski and Yanovskaya, 2004) for de�nitions of 
ooperative

games) of 
ooperative sto
hasti
 game Ḡ(z0) is denoted by I(z0).

De�nition 5. A solution of 
ooperative sto
hasti
 game Ḡ(z0) is a subset C(z0)
of the set of imputations I(z0).

The solutions of a 
ooperative game 
an be 
onventionally divided into single-

valued and multi-valued ones. The well-known single-valued solutions are the Shap-

ley value (Shapley, 1953b), the nu
leolus (S
hmeidler, 1969). The most well-known

multi-valued solution is the 
ore (Gillies, 1959). Suppose that solution C(z0) of 
o-
operative sto
hasti
 game Ḡ(z0) is a non-empty subset of the imputation set I(z0).

De�nition 6. A 
ooperative sto
hasti
 subgame Ḡ(z), z ∈ Z, of game Ḡ(z0),

onstru
ted on the basis of non-
ooperative sto
hasti
 subgame G(z), is a pair

〈N, V (S, z)〉, where V (S, z) is the 
hara
teristi
 fun
tion de�ned by equation (5)
with boundary 
ondition (6) for 
oalition N , by equation (7) with boundary 
ondi-
tion (8) for 
oalition S 6= N , S 6= ∅, and by formula (9) for 
oalition S = ∅.

Determine the imputation, the imputation set and the solution for any 
ooper-

ative subgame Ḡ(z), z ∈ Z.

De�nition 7. An imputation in 
ooperative sto
hasti
 subgame Ḡ(z) is ve
tor

ξ(z) = (ξ1(z), . . . , ξn(z)), satisfying two properties:

1.

∑
i∈N ξi(z) = V (N, z);
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2. ξi(z) > V ({i}, z) for any i ∈ N .

The set of imputations of 
ooperative sto
hasti
 subgame Ḡ(z) is denoted by I(z).

De�nition 8. The solution of a 
ooperative sto
hasti
 subgame Ḡ(z) is a subset

C(z) of the set of imputations I(z).

Suppose that solution C(z) of any 
ooperative subgame Ḡ(z) is non-empty sub-
set of the imputation set I(z) for any z ∈ CZ.

2.4. The Shapley value, 
ore and nu
leolus

In this se
tion we de�ne some 
ooperative solutions whi
h will be used further in

the work. The Shapley value of a 
ooperative sto
hasti
 game or subgame Ḡ(z),
z ∈ CZ, is a ve
tor Sh(z) = (Sh1(z), . . ., Shn(z)), where an element Shi(z), i ∈ N ,

is 
al
ulated by the formula

Shi(z) =
∑

S⊆N
S∋i

(|S| − 1)! (n− |S|)!
n!

(V (S, z)− V (S \ {i}, z)) ,

where |S| is the 
ardinality of S. The de�nition of the Shapley value is introdu
ed

in Shapley's paper (Shapley, 1953b).

A 
ore of a 
ooperative sto
hasti
 game or subgame Ḡ(z), z ∈ CZ, is a set

denoted by CO(z), and it is the set

CO(z) =

{
ξ(z) ∈ I(z) :

∑

i∈S

ξi(z) > V (S, z) for ∀S ⊂ N,
∑

i∈N

ξi(z) = V (N, z)

}
.

(10)

For the 
ooperative sto
hasti
 game or subgame Ḡ(z) and any ve
tor ξ(z) ∈ I(z),
by θ(ξ(z)) we denote the ve
tor of the values of ex
esses e(S, ξ(z)) = V (S, z) −∑
i∈S

ξi(z) lo
ated in a des
ending order:

θ(ξ(z)) = (e(S1, ξ(z)), e(S2, ξ(z)), . . . , e(S2n−1, ξ(z))),

where 
oalitions are numbers that e(S1, ξ(z)) > e(S2, ξ(z)) > . . . > e(S2n−1, ξ(z)).
On the set of ex
esses {θ(ξ(z)) : ξ(z) ∈ I(z)} we 
onsider the lexi
ographi
 or-

dering ≻lex:
θ(ξ(z)) ≻lex θ(ψ(z)) ⇐⇒ ∃ l ∈ {1, . . . , 2n} ,

su
h that {
θk(ξ(z)) = θk(ψ(z)), for all k = 1, . . . , l − 1;

θl(ξ(z)) > θl(ψ(z)),

where ψ(z) ∈ I(z).
The de�nition of the nu
leolus is �rst introdu
ed in (S
hmeidler, 1969). The

nu
leolus of a 
ooperative sto
hasti
 game or subgame Ḡ(z), z ∈ CZ, is a subset of
the imputation set on whi
h min

θ(ξ(z))
ξ(z)∈I(z)

≻lex is rea
hed.

If C(z0) is the solution of 
ooperative sto
hasti
 game Ḡ(z0), then later on in the
work by solution C(z) of 
ooperative subgame Ḡ(z) we mean a solution 
onstru
ted
a

ording to the same �rules� as C(z0). For example, if C(z0) is the Shapley value
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in sto
hasti
 game Ḡ(z0), then C(z) is the Shapley value, 
al
ulated for 
ooperative
subgame Ḡ(z), z ∈ CZ.

Here we assume that the players 
hoose some �xed subset of the imputation

set whi
h 
ontains the imputations satis�ng �optimal� properties, i. e., the players

forming 
oalition N , are going to follow some �rule� distributing the payo�s of 
oali-

tion N throughout the game pro
ess. Set C(z) may 
onsist of a single imputation,
if, e. g., the players have de
ided to use the Shapley value or the nu
leolus, or it

may be empty if, e. g., they have 
hosen the 
ore and it is empty. The solution of

the game or subgame Ḡ(z) 
an be any other imputations from the 
lassi
al �stati
�


ooperative theory, su
h as von Neumann-Morgenstern solution (or the so-
alled

stable set), the kernel, M-stable sets (see Pe
herski and Yanovskaya, 2004).

Further in the work we will suppose that C(z) is a nonempty subset of set I(z)
for any z ∈ CZ, that is, for ea
h vertex z ∈ CZ there exists at least one imputation

ξ(z) = (ξ1(z), . . . , ξn(z)) ∈ C(z) ⊂ I(z).

2.5. Imputation distribution pro
edure

In this se
tion we introdu
e the de�nition of an imputation distribution pro
edure

of the 
ooperative sto
hasti
 game solution, whi
h has been 
hosen by the players.

The imputation distribution pro
edure determines the payments to the players at

ea
h vertex of the 
ooperative subtree Ψ̄(z0).

De�nition 9. A path in a sto
hasti
 game is the sequen
e of a
tion pro�les az0 ,
az1 , . . ., azl , where azi is the a
tion pro�le realized in the game Γ (zi), zi ∈ L(zi−1),
i = 1, . . . , l.

Consider any vertex z ∈ CZ, z ∈ (L(z0))
k
, of the 
ooperative subtree. Ea
h

player re
eives some payments implementing a 
ooperative agreement

2

. Let at

the vertex z ∈ CZ the payment to player i ∈ N be βi(z). In any 
ooperative

subgame Ḡ(z), the player 
an 
al
ulate the sum of the payments along the path

āz, . . . , āzl = āz,...,zl , and this sum is a random variable. We denote by Bi(z) the
mathemati
al expe
tation of the sum of su
h payments, 
al
ulated along the path

segment āz,...,zl in 
ooperative subgame Ḡ(z). The value Bi(z) satis�es the following
fun
tional equation:

Bi(z) = βi(z) + (1− qk)
∑

y∈L(z)

p(y|z, xz)Bi(y) (11)

with boundary 
ondition

Bi(z) = βi(z) for z ∈ {z : L(z) = ∅ or qk = 1} . (12)

Now we de�ne the distribution pro
edure of the imputation belonging to the


ooperative solution C(z0), 
hosen by the players at the beginning of the game.

De�nition 10. Let ξ(z0) be the ve
tor (ξ1(z0), . . . , ξn(z0)) ∈ C(z0). The set of

ve
tors {β(z) = (β1(z), . . . , βn(z)) : z ∈ CZ} is 
alled a distribution pro
edure of

the imputation ξ(z0) if the following 
onditions are satis�ed:

2

Obviously, all z, . . . , zl ∈ CZ, sin
e CZ is the set of verti
es of the 
ooperative subtree,

and the strategy pro�le ϕ̄ is determined.
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1. For ea
h vertex z ∈ CZ:
∑

i∈N

βi(z) =
∑

i∈N

Kz
i (ā

z).

2. The 
omponents ξi(z0), i ∈ N , of imputation ξ 
oin
ide with the mathemati-


al expe
tation of the 
orresponding 
omponents of the imputation distribution

pro
edure with respe
t to the probability distribution of transitions and the end

of the game, i. e., ξi(z0) = Bi(z0), where Bi(z0) satis�es the fun
tional equation
(11) with the boundary 
ondition (12).

For ea
h 
ooperative subgame Ḡ(z), z ∈ CZ, we write the fun
tional equation
for the 
omponents ξi(z) of the imputation ξ(z) ∈ C(z) ⊂ I(z) of type (11) and
de�ne the values γi(z) from equation:

ξi(z) = γi(z) + (1− qk)
∑

y∈L(z)

p(y|z, xz)ξi(y), (13)

where ξ(y) = (ξi(y) : i ∈ N) is an imputation belonging to the solution C(y) of the

ooperative subgame Ḡ(y). The boundary 
ondition for γi(z) is as follows:

γi(z) = ξi(z) for z ∈ {z : L(z) = ∅ or qk = 1} . (14)

Lemma 1. The ve
tor γ(z) = (γi(z) : i ∈ N) given by equation (13) with the bound-
ary 
ondition (14) is an imputation distribution pro
edure.

Proof. It is obvious that for terminal verti
es and the verti
es at whi
h the proba-

bility of the game end equals one, and the equality (14) holds, 
onditions 1 and 2

of De�nition 10 are satis�ed.

Now we prove that these 
onditions are satis�ed for the remaining verti
es of

the 
ooperative subtree. From (13) we express the values γi(z) and summing them

up over i ∈ N , and obtain

∑

i∈N

γi(z) =
∑

i∈N

ξi(z)− (1− qk)
∑

i∈N


 ∑

y∈L(z)

p(y|z, xz)ξi(y)


 . (15)

As we have

ξ(z) = (ξi(z) : i ∈ N) ∈ C(z) ⊂ I(z),

ξ(y) = (ξi(y) : i ∈ N) ∈ C(y) ⊂ I(y),

then from (15) we obtain:

∑

i∈N

γi(z) = V (N, z)− (1 − qk)
∑

y∈L(z)

p(y|z, xz)V (N, y). (16)

From (16) and (5) it follows that

∑
i∈N γi(z) =

∑
i∈N

Kz
i (ā

z) for a
tion pro�le

āz = (āzi : i ∈ N), whi
h has been realized in game Γ (z) when the players used a


ooperative strategy pro�le ϕ̄. Therefore, γi(z) satis�es Condition 1 of De�nition

10.
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Now we verify if Condition 2 of De�nition 10 is satis�ed. Spe
i�
ally, we �nd

the mathemati
al expe
tation of the sums γi(z), de�ned by formula (13), along the
verti
es of the 
ooperative subtree. For the verti
es z ∈ {z : L(z) = ∅ or qk = 1},
Condition 2 is satis�ed. Continue with the verti
es of the 
ooperative subtree, from

whi
h the verti
es mentioned above are rea
hed with one stage. For these verti
es,

we obtain the equality:

Bi(zl) = ξi(zl)− (1 − ql)
∑

y∈L(zl)

p(y|zl, xzl)ξi(y) + (1− ql)
∑

y∈L(zl)

p(y|zl, xzl)γi(y)

= ξi(zl),

be
ause ξi(y) = γi(y). Following from the terminal verti
es to the initial one, we

prove that 
ondition 2 of De�nition 10 is satis�ed. Lemma is proved.

2.6. Subgame 
onsisten
y of 
ooperative sto
hasti
 game solution

Before the game starts, players 
ome to an agreement about 
ooperation, i. e., they

agree to maximize the mathemati
al expe
tation of the total payo� of 
oalition N
and expe
t to re
eive the imputation ξ(z0) ∈ C(z0). The game pro
ess takes pla
e
along the verti
es of the 
ooperative subtree Ψ̄(z0). But sin
e the sto
hasti
 stru
-
ture of the game implies un
ertainty in realization of the verti
es of the 
ooperative

subtree, then moving along a 
ertain path, that is, along the verti
es of the 
oopera-

tive subtree, does not yet ensure the support of 
ooperation. Indeed, players moving

along the 
ooperative path get into 
ooperative subgames with the 
urrent initial

states in whi
h the same player may have di�erent opportunities. Conditions of a


on�i
t and players' opportunities involved in the 
on�i
t 
hange over time. And

it will be natural to require maintenan
e of the optimality prin
iple or "approa
h"

in the 
hoi
e of solutions of 
ooperative subgames. But at some moment, at vertex

z ∈ CZ, the sum of the remaining payments to player i may not be equal to the ith

omponent of the imputation from solution C(z) of a 
ooperative subgame Ḡ(z).
Therefore, at vertex z ∈ CZ player i may ask a question whether it is worth keep-

ing the 
ooperative agreement to a
t �jointly optimally� proposed before the game

starts. Thus, player i may wish to deviate from the 
ooperative strategy pro�le. If

this deviation is bene�
ial for at least one player, it means subgame in
onsisten
y

of imputation ξ(z0) ∈ C(z0) and, a

ordingly, the motion along the verti
es of the


ooperative subtree.

De�nition 11. An imputation ξ(z0) ∈ C(z0) is 
alled subgame-
onsistent in 
oop-
erative sto
hasti
 game Ḡ(z0) if for ea
h vertexz ∈ CZ ∩ (L(z0))

k
there exists the

imputation distribution pro
edure β(z) = (βi(z) : i ∈ N) su
h that

ξi(z) = βi(z) + (1− qk)
∑

y∈L(z)

p(y|z, xz)ξi(y), (17)

and

ξi(z) = βi(z), z ∈ {z : L(z) = ∅ or qk = 1} , (18)

where ξ(y) = (ξi(y) : i ∈ N) is an imputation belonging to solution C(y) of 
ooper-
ative subgame Ḡ(y).

Remark 2. If C(z0) 
onsists of more than one imputation, then the 
hoi
e of

the imputation ξ(z0) is inde�nite. If players have 
hosen a 
ertain imputation
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ξ(z0) ∈ C(z0) and de
ided to verify if it is subgame 
onsistent, �rst it is ne
es-

sary to 
he
k the 
ondition (17) for the vertex z0. This means to verify if there

exists the imputation distribution pro
edure β(z0) = (βi(z0) : i ∈ N), satisfying

ondition (17) for some imputation ξ(y) ∈ C(y), where y ∈ L(z0). Obviously, there
is inde�niteness in the 
hoi
e of imputation ξ(y) ∈ C(y), whi
h in its turn should

also be subgame 
onsistent in 
ooperative subgame Ḡ(y). This means that 
ondition
(17) should be satis�ed for imputation imputation ξ(y) ∈ C(y). From De�nition 11

it follows that this 
ondition should be satis�ed for all z from the set of verti
es of

the 
ooperative subtree.

De�nition 12. We say that 
ooperative sto
hasti
 game Ḡ(z0) has subgame 
on-
sistent solution C(z0) if all imputations ξ(z0) ∈ C(z0) are subgame 
onsistent.

Obviously, if the payments to the players are made at the verti
es of the 
o-

operative subtree in a

ordan
e with the initially de�ned payo� fun
tions, it is

impossible in general to a
hieve subgame 
onsisten
y of the 
ooperative solution.

This may lead to the breakup of the 
ooperative agreement. In this 
onne
tion, the

problem of �nding a s
heme or pro
edure of payments to the players at the verti
es

of the 
ooperative subtree in order to satisfy the property of subgame 
onsisten
y

of a 
ooperative solution. For this we need to �nd su
h an imputation distribution

pro
edure (βi(z) : i ∈ N) for all verti
es z ∈ CZ, for whi
h the 
onditions (17) and

(18) are satis�ed.

Theorem 1. Let in the 
ooperative sto
hasti
 game Ḡ(z0) and ea
h subgame the


ooperative solutions C(z0) and C(z), z ∈ CZ, be nonempty. If for ea
h ξ(z) =
(ξi(z) : i ∈ N) ∈ C(z) the imputation distribution pro
edure is de�ned by the

formula

βi(z) = ξi(z)− (1− qk)
∑

y∈L(z)

p(y|z, xz)ξi(y), (19)

for ea
h z ∈ CZ, z /∈ {z : L(z) = ∅}, where ξ(y) = (ξi(y) : i ∈ N) ∈ C(y), and by

formula (18) for any z ∈ {z : L(z) = ∅}, then 
ooperative solution C(z0) is subgame

onsistent.

Proof. To prove subgame 
onsisten
y of the 
ooperative solution C(z0), it is required
to prove that for ea
h ve
tor ξ(z0) ∈ C(z0) 
onditions (17) and (18) are satis�ed.

From Lemma 1 it follows that the payments, determined by formulas (19) and

(18), are the 
omponents of the imputation distribution pro
edure. Condition (17)

follows from (19) taking into a

ount that ξ(y) = (ξi(y) : i ∈ N) belongs to the


ooperative solution of the subgame Ḡ(y).

The proposed method of implementing the imputation has an important prop-

erty: at ea
h vertex of the 
ooperative path, players are guided by the same �op-

timality prin
iple� (property of subgame 
onsisten
y) and, in this sense, have no

reasons for interruption of the previously adopted 
ooperative agreement and de-

viation from the 
ooperative strategy pro�le. The sum of payments to the players

at ea
h vertex of the 
ooperative subtree is also equal to the sum of the payo�s

re
eived by the players at that vertex (
ondition 1 of De�nition 10 of an imputation

distribution pro
edure). The latter 
ondition may be 
alled a 
ondition of attain-

ability of the payments, sin
e players redistribute the sum whi
h they obtain in the

game and do not take any funds outside.
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Noti
e that De�nition 11 does not require the nonnegativity of fun
tions βi(z),
where z ∈ CZ. All imputations belonging to the solution C(z) will be subgame


onsistent if solution is su
h that C(z) 6= ∅ for all verti
es z ∈ CZ. This is possi-
ble if the payments to the players are not made a

ording to their initially de�ned

payo�s in games along whi
h the 
ooperative path realizes, but a

ording to the

imputation distribution pro
edure β(z) = (β1(z), . . . , βn(z)) de�ned by (17), (18)

for all z ∈ CZ, where βi(z) is the payment to player i at the vertex z ∈ CZ. More-

over, the mathemati
al expe
tation of all payments to player i 
oin
ides with the

mathemati
al expe
tation of the ith 
omponent of the imputation belonging to the
solution 
hosen by the players. It follows from Theorem 1. Thus, players 
an agree

on getting negative payments at some verti
es to ensure that the 
ooperation is sup-

ported throughout the whole game in order to guarantee re
eiving the 
omponents

of initially sele
ted imputation ξ(z0) partition belonging to the solution C(z0) of
the 
ooperative sto
hasti
 game Ḡ(z0).

2.7. Nonnegative 
omponents of imputation distribution pro
edure.

Regularization of imputations

In this se
tion, we 
onsider the 
ase when for any player i ∈ N payo� fun
tion

is non-negative: Ki(x
z) > 0 for all verti
es z ∈ CZ. Assume that the players are

interested in re
eiving non-negative payments at ea
h vertex of the 
ooperative

subtree and at the same time they want to guarantee subgame 
onsisten
y of the


ooperative solution. In 
ase when non-negativity of βi(z) 
annot be guaranteed

for all verti
es z ∈ CZ, one 
an 
onstru
t new subgame-
onsistent solution based

on the solution initially 
hosen by the players from the set C(z0). We present how

this is done when the set C(z0) ⊂ I(z0) is 
onsidered as the solution. Noti
e that

this pro
edure 
an be applied to the imputations well-known in the 
lassi
al �stati
�


ooperative game theory (
ore, nu
leolus, von Neumann-Morgenstern solution).

For ea
h vertex z ∈ CZ de�ne new imputation distribution pro
edure by

βi(z) =

∑
i∈N

Ki(ā
z
1, . . . , ā

z
n)

V (N, z)
ξi(z), (20)

where ξ(z) = (ξ1(z), . . . , ξn(z)) ∈ C(z), and āz = (āz1, . . . , ā
z
n) is the realization of

the 
ooperative strategy pro�le ϕ̄ = (ϕ̄1(·), . . . , ϕ̄n(·)) at vertex z ∈ CZ maximizing

the sum of mathemati
al expe
tations of the players' payo�s in sto
hasti
 game

Ḡ(z0), V (N, z) is the value of 
hara
teristi
 fun
tion of 
oalition N 
al
ulated for


ooperative subgame Ḡ(z).

As Ki(a
z) > 0 for ea
h vertex z ∈ CZ and ea
h player i ∈ N , then βi(z) > 0 for

ea
h vertex z ∈ CZ. Taking into a

ount equation (20) and equity

∑
i∈N ξi(z) =

V (N, z), we obtain that the 
urrent payment βi(z) to player i in game Γ (z) should
be proportional to the ith 
omponent of the imputation ξ(z) ∈ C(z) in 
ooperative
subgame Ḡ(z) of sto
hasti
 game Ḡ(z0).

Determine a new imputation for 
ooperative subgame Ḡ(z), where z ∈ CZ, and

z ∈ (L(z0))
k
on the basis of the �old� imputation ξ(z) as a solution of the fun
tional

equation

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1 − qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y) (21)
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with boundary 
ondition

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) = ξi(z) (22)

for z ∈ {z : L(z) = ∅ or qk = 1}.
Constru
t a new 
hara
teristi
 fun
tion V̂ (S, z) for ea
h 
ooperative subgame

Ḡ(z) for all z ∈ CZ using fun
tional equation

V̂ (S, z) =

∑
i∈N

Ki(ā
z)

V (N, z)
V (S, z) + (1 − qk)

∑

y∈L(z)

p(y|z, āz)V̂ (S, y) (23)

with boundary 
ondition

V̂ (S, z) = V (S, z) for z ∈ {z : L(z) = ∅ or qk = 1} . (24)

Fun
tions V̂ (S, z) and V (S, z) are superadditive, and V̂ (N, z) = V (N, z) be
ause
V̂ (N, z) and V (N, z) satisfy the fun
tional equation (5) with boundary 
ondition

(6).

For all verti
es of z ∈ CZ and all subgame-in
onsistent imputations ξ(z) ∈ C(z),

we 
ompute the regularized imputations ξ̂(z) and de�ne the set of solutions Ĉ(z)
as follows:

Ĉ(z) =

{
ξ̂(z) : ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y), (25)

ξ̂i(z) = ξi(z) for z ∈ {z : L(z) = ∅ or qk = 1} , ξ(z) ∈ C(z)

}
.

De�nition 13. The set Ĉ(z0) de�ned by formula (25), is 
alled the regularized

solution of the 
ooperative sto
hasti
 game Ḡ(z0).

Therefore, players have an opportunity to regularize the solution 
hosen at the

beginning of the game so that at ea
h vertex of the sto
hasti
 game Ḡ(z0) �new�
solution Ĉ(z0) is subgame 
onsistent. But the imputation belonging to the new

regularized solution Ĉ(z0), generally speaking, will not be an imputation for 
oop-

erative game with the 
hara
teristi
 fun
tion V (S, z0), de�ned by (7) and (8). It
will be an imputation for a 
ooperative sto
hasti
 game with a new 
hara
teristi


fun
tion V̂ (S, z0) de�ned by formulas (23), (24).

Theorem 2. An imputation ξ̂(z) = (ξ̂1(z), . . . , ξ̂n(z)), de�ned by formula (21)
with boundary 
ondition (22), is subgame 
onsistent imputation in 
ooperative game

〈N, V̂ 〉 where 
hara
teristi
 fun
tion V̂ (S, z) is de�ned by fun
tional equation (23)
with boundary 
ondition (24).

Proof. Subgame 
onsisten
y follows from the method of 
onstru
tion of a �new�

imputation ξ̂(z). Comparing the fun
tional equations (17) and (21), we obtain that
for the proof it is ne
essary to show the non-negativity of the 
omponent

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z),



144 Elena Parilina

whi
h is obvious be
ause

Kz
i (a

z
1, . . . , a

z
n) > 0

for all z ∈ Z and ea
h player i ∈ N .

Now we prove that ξ̂(z) = (ξ̂1(z), . . . , ξ̂n(z)) has the properties of an imputation
in 
ooperative game with 
hara
teristi
 fun
tion V̂ (S, z), whi
h is given by the

fun
tional equation (23) with the boundary 
ondition (24). To do this, for any

player i ∈ N and ea
h vertex z ∈ CZ, it is ne
essary to prove satisfa
tion of two

properties:

1.

∑
i∈N

ξ̂i(z) = V̂ (N, z),

2. ξ̂i(z) > V̂ ({i}, z).

The �rst property is obviously satis�ed for verti
es z ∈ {z : L(z) = ∅ or qk = 1}
and z ∈ CZ. Now prove these properties for verti
es z ∈ {z : L(z) ∋ y and

L(y) = ∅} and su
h that z ∈ CZ:

∑

i∈N

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)

∑

i∈N

ξi(z) + (1 − qk)
∑

y∈L(z)

(
p(y|z, āz)

∑

i∈N

ξ̂i(y)

)
=

=

∑
i∈N

Ki(ā
z)

V (N, z)
V (N, z) + (1− qk)

∑

y∈L(z)

(
p(y|z, āz)V̂ (N, z)

)
=

= V (N, z) = V̂ (N, z),

be
ause y ∈ {y : L(y) = ∅}.
The se
ond property is also obviously satis�ed for the verti
es z ∈ {z : L(z) = ∅

or qk = 1}. We show that ξ̂i(z) − V̂ ({i}, z) > 0 for the verti
es z ∈ {z : L(z) ∋ y
and L(y) = ∅}, using formulas (21) and (23):

ξ̂i(z)− V̂ ({i}, z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y)−

−





∑
i∈N

Ki(ā
z)

V (N, z)
V ({i}, z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)V̂ ({i}, y)



 =

=

∑
i∈N

Ki(ā
z)

V (N, z)
(ξi(z)− V ({i}, z))+

+ (1− qk)
∑

y∈L(z)

p(y|z, āz)
(
ξ̂i(y)− V̂ ({i}, y)

)
> 0.

The �rst term is non-negative sin
e ξ(z) is an imputation of 
ooperative subgame

Ḡ(z), and the se
ond term is non-negative, be
ause y ∈ {y : L(y) = ∅}. We prove

re
ursively for the previous verti
es z ∈ CZ and so on until vertex z0.

It is important to know in what relation the set Ĉ(z) whi
h is a regularized

solution de�ned by the formula (25), and the set C̃(z) whi
h is the solution found
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for the 
ooperative subgame Ḡ(z) with the 
hara
teristi
 fun
tionV̂ (S, z) (i. e.,

the solution 
onstru
ted using the same rules as the solution C(z) ⊂ I(z) for the

ooperative subgame Ḡ(z)). Now we �nd the sets C̃(z) and Ĉ(z) for the 
ooperative
sto
hasti
 subgame Ḡ(z) if when the solutions of the sto
hasti
 game Ḡ(z0) are the
imputations (the Shapley value and the 
ore) from the 
lassi
al �stati
� theory of


ooperative games.

2.8. Regularization of the Shapley value and the 
ore

We start with the 
ase when players 
hoose the single-point optimality prin
iple�

Shapley value�as a 
ooperative solution. The Shapley value 
al
ulated in 
ooper-

ative sto
hasti
 game Ḡ(z0), is denoted by Sh(z0) = (Shi(z0) : i ∈ N), and in


ooperative subgame Ḡ(z), where z ∈ CZ, by Sh(z) = (Shi(z) : i ∈ N).
De�ne the regularized Shapley value in 
ooperative subgame Ḡ(z), where z ∈

CZ, and z ∈ (L(z0))
k
based on the Shapley value of the initially given game as a

solution of the fun
tional equation

Ŝhi(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
Shi(z) + (1 − qk)

∑

y∈L(z)

p(y|z, āz)Ŝhi(y) (26)

with boundary 
ondition

Ŝhi(z) = Shi(z) (27)

for z ∈ {z : L(z) = ∅ or qk = 1}.
The following theorem holds.

Theorem 3. Ve
tor satisfying the fun
tional equation (26) with boundary 
ondition
(27), is subgame-
onsistent and it is the Shapley value of the 
ooperative subgame

〈N, V̂ (·, z)〉, z ∈ CZ of sto
hasti
 game 〈N, V̂ (·, z0)〉, where the values of 
hara
te-

risti
 fun
tion V̂ (·, z) are 
al
ulated by formulas (23) and (24).

Remark 3. Theorem 3 provides the relation between the sets C̃(z) and Ĉ(z), whi
h
are mentioned at the end of the previous paragraph. If the Shapley value is 
hosen

as a solution of the sto
hasti
 game Ḡ(z0), then C̃(z) = Ĉ(z) for any z ∈ CZ.
Therefore, we may reformulate Theorem 2 in the following way.

Theorem 4. Ve
tor satisfying the fun
tional equation (26) with boundary 
ondi-

tion (27), is subgame-
onsistent, and Ŝh(z0) = Ĉ(z0) = C̃(z0), where Ĉ(z0) is

a regularized solution satisfying equation (25), and C̃(z0) is the Shapley value of

the 
ooperative sto
hasti
 game 〈N, V̂ (·, z0)〉 with 
hara
teristi
 fun
tion given by

formulas (23), (24).

Proof. The fa
t that the ve
tor satisfying the fun
tional equation (26) with initial


ondition (27) is subgame-
onsistent, follows from Theorem 1 whi
h is formulated

for a general 
ase, i. e. , for any solution C(z).
Cal
ulate the Shapley value of 
ooperative sto
hasti
 game 〈N, V̂ (·, z)〉, z ∈ CZ,

with regularized 
hara
teristi
 fun
tion given by formulas (23), (24):

Ŝhi(z) =
∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

(
V̂ (S, z)− V̂ (S \ {i}, z)

)
.
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Rewrite (23) for 
oalition S \ {i} and obtain

V̂ (S \ {i}, z) =

∑
i∈N

Ki(ā
z)

V (N, z)
V (S \ {i}, z)+

+ (1− qk)
∑

y∈L(z)

p(y|z, āz)V̂ (S \ {i}, y). (28)

Subtra
ting (28) from (23), multiplying by (|S|−1)!(n−|S|)!
n! and summing up over the

all possible 
oalitions S ⊂ N su
h that S ∋ i, we obtain

∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ {i}, z)

]
= (29)

=




∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

[V (S, z)− V (S \ {i}, z)]





∑
i∈N

Ki(ā
z)

V (N, z)
+

+ (1− qk)
∑

y∈L(z)

p(y|z, āz)×

×




∑

S⊂N
S∋i

(|S| − 1)! (n− |S|)!
n!

[
V̂ (S, y)− V̂ (S \ {i}, y)

]




=

= Shi(z)

∑
i∈N

Ki(ā
z)

V (N, z)
+ (1− qk)

∑

y∈L(z)

p(y|z, āz)Ŝhi(y).

The result of the theorem follows from (29) and (26).

Now we assume that the players 
hoose the 
ore as a solution of 
ooperative

sto
hasti
 game Ḡ(z0). As before, we suppose that CO(z) 6= ∅ for any vertex

z ∈ CZ. We also assume that CO(z0) is not subgame-
onsistent, i. e., there exists at
least one imputation ξ(z0) ∈ CO(z0) for whi
h the 
ondition of subgame 
onsisten
y
is not satis�ed.

De�nition 14. The regularized 
ore of sto
hasti
 game Ḡ(z0) is the set:

ĈO(z0) =

{
ξ̂(z0) : ξ̂i(z0) =

∑
i∈N

Ki(ā
z0)

V (N, z0)
ξi(z0) + (1− q0)

∑

y∈L(z0)

(p(y|z0, āz0)ξ̂i(y)),

ξ̂i(z0) = ξi(z0), z0 ∈ {z : L(z) = ∅ or qk = 1} , ξ(z0) ∈ CO(z0)

}
. (30)

De�nition 15. The regularized 
ore of 
ooperative subgame Ḡ(z) is the set ĈO(z)
de�ned as:

ĈO(z) =

{
ξ̂(z) : ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)
ξi(z) + (1− qk)

∑

y∈L(z)

p(y|z, āz)ξ̂i(y)

ξ̂i(z) = ξi(z) for z ∈ {z : L(z) = ∅ or qk = 1} , ξ(z) ∈ CO(z)

}
. (31)
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Denote by C̃O(z) the 
ore 
al
ulated for 
ooperative subgame 〈N, V̂ (·, z)〉, z ∈ CZ,
with 
hara
teristi
 fun
tion V̂ (S, z), de�ned by formulas (23), (24). We prove the

theorem providing the relation between C̃O(z) and ĈO(z).

Theorem 5. The regularized 
ore de�ned by formula (30) is subgame-
onsistent

solution. Moreover, ĈO(z0) ⊂ C̃O(z0), where C̃O(z0) is the 
ore of 
ooperative

sto
hasti
 game 〈N, V̂ (·, z)〉 with 
hara
teristi
 fun
tion de�ned by formulas (23),
(24).

Proof. Subgame 
onsisten
y of the 
ore follows from Theorem 1. To prove that

ĈO(z0) ⊂ C̃O(z), we need to prove that any imputation ξ̂(z0) ∈ ĈO(z0) belongs to

the set C̃O(z0), whi
h is equivalent to the following: for any ξ̂(z) ∈ ĈO(z), z ∈ CZ
and S ⊂ N the inequality ∑

i∈S

ξ̂i(z) > V̂ (S, z) (32)

is true.

The proof is obvious for the verti
es z ∈ {z : L(z) = ∅ or qk = 1}. Now we prove

this inequality for the verti
es z ∈ {z : L(z) ∋ y and L(y) = ∅}:

∑

i∈S

ξ̂i(z) =

∑
i∈N

Ki(ā
z)

V (N, z)

∑

i∈S

ξi(z) + (1− qk)
∑

y∈L(z)

(
p(y|z, āz)

∑

i∈S

ξ̂i(y)

)
>

> V̂ (S, z),

whi
h is true be
ause y ∈ {z : L(z) = ∅ or qk = 1} and

∑
i∈S ξi(z) > V (S, z), as

ξ(z) is the imputation belonging to the 
ore CO(z).

The following part of the proof is made for the next verti
es up to the initial

vertex z0 like in the proof of Theorem 1.

Now we 
onsider examples of 
onstru
tion and regularization of the solution in


ooperative sto
hasti
 games de�ned on the graphs.

Example 1.1. (Petrosyan et al., 2004) Consider sto
hasti
 game G(z0) de-
�ned on graph Ψ(z0) whi
h is represented on Fig. 1.

Fig. 1. Graph of Example 1.1.

The set of verti
es of graph Ψ(z0) is Z = {z0, . . . , z9}. The set of players is

N = {1, 2}. In ea
h vertex of graph Ψ(z0) two-player normal-form game Γ (z),
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z ∈ Z, is given and the payo�s in these games are the following:

Γ (z0) :

(
(5, 5) (0, 8)
(8, 0) (1, 1)

)
, Γ (z2) :

(
(3, 0) (6, 4)
(5, 6) (2, 2)

)
,

Γ (z3) :

(
(1, 11) (4, 2)
(1, 3) (1, 1)

)
, Γ (z7) :

(
(1, 1) (0, 2)
(2, 0) (1, 2)

)
,

Γ (z8) :

(
(5, 5) (6, 1)
(1, 6) (6, 6)

)
, Γ (z9) :

(
(4, 2) (3, 4)
(5, 6) (1, 5)

)
,

Γ (z1), Γ (z4), Γ (z5), Γ (z6) :

(
(0, 0) (1, 0)
(1, 0) (0, 1)

)
.

To determine non-
ooperative sto
hasti
 game G(z0) we need to de�ne transition

probabilities and probabilities of the game duration. First, de�ne the transition

probabilities from the verti
es of the graph to the next verti
es. If in game Γ (z0)
the a
tion pro�le (2, 2) is realised, then sto
hasti
 game G(z0) transits to the vertex
z2 with probability 1/3 and to the vertex z3 with probability 2/3. If any other

a
tion pro�le di�erent from (2, 2) is realised (arrow =⇒ means the deterministi


transition), then the game G(z0) transits to vertex z1. At verti
es z1, z2 when

any a
tion pro�le is played, sto
hasti
 game G(z0) transits to verti
es z4 and z5
respe
tively. If in the game Γ (z3) the a
tion pro�le (2, 2) is played, then sto
hasti


game G(z0) transits to verti
es z8 and z9 with equal probabilities 1/2. And if in the
game Γ (z3) the a
tion pro�le (2, 1) is played, the game G(z0) transits to vertex z7
with probability 1. The deterministi
 transition (with probability 1) is made from

other a
tion pro�les to vertex z6 (arrow =⇒ means the deterministi
 transition).

Let probabilities qk that the game ends at stage k be given:

q1 =
1

8
, q2 = 0, q3 = 1.

Let players 
hoose the Shapley value as the 
ooperative solution of the game.

For two-player game, it is 
al
ulated by formulas:

Sh1(z) = V ({1}, z) + V ({1, 2} , z)− V ({1}, z)− V ({2}, z)
2

,

Sh2(z) = V ({2}, z) + V ({1, 2} , z)− V ({1}, z)− V ({2}, z)
2

,

where V ({1}, z) and V ({2}, z) are the values of 
hara
teristi
 fun
tion for the sub-

game beginning at vertex z 
al
ulated for 
oalitions {1} and {2} respe
tively.
The above des
ribed sets and values determine sto
hasti
 game with random

duration G(z0) (see (1)).
We start to �nd the solution of the 
ooperative game from the terminal verti
es

of the graph, i. e., the verti
es from whi
h it is impossible to transmit to any

other verti
es of the graph. First, 
al
ulate V ({1}, z9) and V ({2}, z9) as maximum
guaranteed players' payo�s in the game Γ (z9) using formula (8):

V ({1}, z9) = 3, V ({2}, z9) = 4, V ({1, 2}, z9) = 11.



A Survey on Cooperative Sto
hasti
 Games with Finite and In�nite Duration 149

Then, we may 
al
ulate the Shapley value of the subgame Ḡ(z9) of the game Ḡ(z0)
starting from game Γ (z9):

Sh1(z9) = 5, Sh2(z9) = 6.

We make the similar 
al
ulations for the subgames starting from the games Γ (z4),
Γ (z5), Γ (z6), Γ (z7) and Γ (z8) using formula (8) while these games are realised

at the verti
es belonging to the set {z : L(z) = ∅}. The values of 
hara
teristi

fun
tions for these subgames and 
orresponding Shapley values are given in the

Table 2.

Table 2. Chara
teristi
 fun
tions and the Shapley values of subgames Ḡ(z), z ∈
{z4, z5, z6, z7, z8, z9}.

Vertex z V ({1}, z) V ({2}, z) V ({1, 2}, z) Sh1(z) Sh2(z)

z4 0 0 1 1/2 1/2

z5 0 0 1 1/2 1/2

z6 0 0 1 1/2 1/2

z7 1 2 3 1 2

z8 5 5 12 6 6

z9 3 4 11 5 6

Now 
onsider the verti
es from the set {z : (L(z))2 = ∅}. We start from vertex

z3. As sto
hasti
 game may transit to the other verti
es of the graph, we need to

transform the payo�matrix of the game to 
al
ulate the Shapley value of 
ooperative

subgame Ḡ(z3). With a
tion pro�le (2,2) the mathemati
al expe
tations of the

players' payo�s we �nd in the following way:

• for Player 1:

1 + (1 − q2)

(
1

2
V ({1}, z8) +

1

2
V ({1}, z9)

)
= 5,

• for Player 2:

1 + (1− q2)

(
1

2
V ({2}, z8) +

1

2
V ({2}, z9)

)
= 5.5.

With a
tion pro�le (2,1) they are

• for Player 1:

1 + (1− q2)V ({1}, z7) = 2,

• for Player 2:

1 + (1− q2)V ({2}, z7) = 3.

Similarly, with a
tion pro�le (1,1) the mathemati
al expe
tations of the players'

payo�s are

• for Player 1:

1 + (1− q2)V ({1}, z6) = 1,

• for Player 2:

11 + (1− q2)V ({2}, z6) = 11;
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and with a
tion pro�le (1,2) the mathemati
al expe
tations of the players' payo�s

are

• for Player 1:

4 + (1− q2)V ({1}, z6) = 4,

• for Player 2:

2 + (1− q2)V ({2}, z6) = 2.

Then the bi-matrix game written for the 
al
ulations of the values of 
hara
teristi


fun
tions V ({1}, z3) and V ({2}, z3) looks like
(
(1, 11) (4, 2)
(2, 5) (5, 5.5)

)
.

The values of 
hara
teristi
 fun
tion of 
ooperative subgame Ḡ(z3) of the game
Ḡ(z0) for 
oalitions {1}, {2} are

V ({1}, z3) = 2, V ({2}, z3) = 5.

To 
al
ulate V ({1, 2}, z3) we use formula (7) and obtain the bi-matrix game:

(
12 + (1− q2)V ({1, 2}, z6) 6 + (1− q2)V ({1, 2}, z6)
4 + (1 − q2)V ({1, 2}, z7) 2 + (1 − q2)(0.5V ({1, 2}, z8) + 0.5V ({1, 2}, z9))

)

or in numeri
 form: (
13 7
7 13.5

)
.

Therefore,

V ({1, 2}, z3) = 13, 5,

Sh1(z3) = 5.25, Sh2(z3) = 8.25.

We make similar 
al
ulations for the 
ooperative subgame Ḡ(z1):

V ({1}, z1) = 0, V ({2}, z1) = 0, V ({1, 2}, z1) = 2,

Sh1(z1) = Sh2(z1) = 1,

and for subgame Ḡ(z2):

V ({1}, z2) = 3, V ({2}, z2) = 2, V ({1, 2}, z2) = 12,

Sh1(z2) = 6.5, Sh2(z2) = 5.5.

For 
ooperative sto
hasti
 game Ḡ(z0), the matrix game for the 
al
ulation of the

values of 
hara
teristi
 fun
tion for 
oalitions {1}, {2} 
an be found by formula

(7). With a
tion pro�le (2,2) the mathemati
al expe
tations of the players' payo�s

are

• for Player 1:

1 + (1 − q1)

(
1

3
V ({1}, z2) +

2

3
V ({1}, z3)

)
= 3

1

24
,
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• for Player 2:

1 + (1− q1)

(
1

3
V ({2}, z2) +

2

3
V ({2}, z3)

)
= 4

1

2
.

With a
tion pro�le (2,1) the mathemati
al expe
tations of the players' payo�s

are

• for Player 1:

8 + (1− q1)V ({1}, z1) = 8,

• for Player 2:

0 + (1− q1)V ({2}, z1) = 0.

Similarly, with a
tion pro�le (1,1) the mathemati
al expe
tations of the players'

payo�s are

• for Player 1:

5 + (1− q1)V ({1}, z1) = 5,

• for Player 2:

5 + (1− q1)V ({2}, z1) = 5.

With a
tion pro�le (1,2) the mathemati
al expe
tations of the players' payo�s

are

• for Player 1:

0 + (1− q1)V ({1}, z1) = 0,

• for Player 2:

8 + (1− q1)V ({2}, z1) = 8.

Finally, we obtain the matrix:

(
(5, 5) (0, 8)
(8, 0) (3 1

24 , 4
1
2 )

)
,

V ({1}, z0) = 3
1

24
, V ({2}, z0) = 4

1

2
.

For the 
al
ulation of V ({1, 2}, z0) we form matrix game using formula (7):

(
10 + (1− q1)V ({1, 2}, z1) 8 + (1 − q1)V ({1, 2}, z1)
8 + (1− q1)V ({1, 2}, z1) 2 + (1− q1)(

1
3V ({1, 2}, z2) + 2

3V ({1, 2}, z3))

)

or in a numeri
 form: (
11 3

4 9 3
4

9 3
4 13 3

8

)
.

Cal
ulating V ({1, 2}, z0) and Sh1(z0), Sh2(z0), we obtain:

V ({1, 2}, z0) = 13
3

8
, Sh1(z0) = 5

23

24
, Sh2(z0) = 7

5

12
.

The set of verti
es forming the 
ooperative subtree 
onsists of the verti
es z0,
z2, z3, z5, z8, z9.
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Now we verify if the imputation distribution pro
edure is non-negative. It is

negative at vertex z3 that follows from equation (17), in whi
h the vertex z3 is

used:

Sh1(z3) = β1(z3) + (1− q1)

[
1

2
· Sh1(z8) +

1

2
· Sh1(z9)

]
,

5.25 = β1(z3) + (1− 0)

[
1

2
· 5 + 1

2
· 6
]
,

β1(z3) = −0.25.

As β1(z3) is negative, we make the regularization of the Shapley value to 
onstru
t
a ¾new¿ non-negative Shapley value.

Determine the new Shapley value for the verti
es of the 
ooperative subtree with

verti
es z0, z2, z3, z5, z8, z9 by formulas (26) and (27):

Ŝh1(z5) = 0.5, Ŝh1(z8) = 6, Ŝh1(z9) = 5,

Ŝh2(z5) = 0.5, Ŝh2(z8) = 6, Ŝh2(z9) = 6,

Ŝh1(z2) =
11

12
· 6.5 + 1

2
= 6

11

24
,

Ŝh2(z2) =
11

12
· 5.5 + 1

2
= 5

13

24
,

Ŝh1(z3) =
2

13.5
· 5.25 +

[
1

2
· 5 + 1

2
· 6
]
= 6

5

18
,

Ŝh2(z3) =
2

13.5
· 8.25 +

[
1

2
· 6 + 1

2
· 6
]
= 7

2

9
,

Ŝh1(z0) =
2

13 3
8

· 523
24

+

(
1− 1

8

)[
1

3
· 611

24
+

2

3
· 6 5

18

]
= 6

80741

184896
≈ 6.437,

Ŝh2(z0) =
2

13 3
8

· 7 5

12
+

(
1− 1

8

)[
1

3
· 513

24
+

2

3
· 72

9

]
= 6

173491

184896
≈ 6.938.

The ¾new¿ ve
tor is the Shapley value of the 
ooperative game with 
hara
teristi


fun
tion de�ned by formulas (23), (24). It is subgame-
onsistent whi
h follows from
Theorem 4.

For the games Γ (z5), Γ (z8) and Γ (z9) the new 
hara
teristi
 fun
tions are pre-

sented in Table 3.

Table 3. ¾New¿ 
hara
teristi
 fun
tions.

Vertex z V̂ ({1}, z) V̂ ({2}, z) V̂ ({1, 2}, z)

z0 3.763 4.265 13.375

z2 2.750 1.833 12.000

z3 4.296 5.574 13.500

z5 0.000 0.000 1.000

z8 5.000 5.000 12.000

z9 3.000 4.000 11.000

Remark 4. The nu
leolus may be 
hosen by the players as a solution of the 
o-

operative game (see S
hmeidler, 1969). Noti
e that the nu
leolus 
onsists of one
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ve
tor, so there are no problems with the 
hoi
e of a unique imputation from the

imputation set. We also noti
e that the nu
leolus belongs to the 
ore when the latter

is non-empty.

Example 1.2.Consider sto
hasti
 gameG(z0) de�ned on the graph Ψ(z0) whi
h
is presented on Fig. 3. The set of verti
es of graph Ψ(z0) is Z = {z0, . . . , z5}. The set

Fig. 2. Graph of Example 1.2.

of players is N = {1, 2, 3}. At ea
h vertex of graph G(z0) three-player normal-form
game Γ (z), z ∈ Z, is given. The payo� matrix are the following:

Γ (z0), Γ (z2) :

((
(1, 1, 1) (2, 2, 0)
(2, 2, 0) (0, 0, 3)

) (
(1, 1, 2) (2, 2, 1)
(1, 3, 1) (3, 0, 1)

))
,

Γ (z1), Γ (z5) :

((
(2, 0, 1) (1, 0, 1)
(3, 1, 2) (2, 2, 2)

) (
(2, 2, 1) (1, 1, 3)
(2, 1, 1) (2, 1, 2)

))
,

Γ (z3) :

((
(1, 1, 1) (2, 2, 2)
(3, 2, 0) (1, 4, 1)

) (
(2, 0, 1) (2, 1, 1)
(4, 0, 1) (0, 4, 1)

))
,

Γ (z4) :

((
(2, 1, 0) (2, 1, 3)
(3, 1, 2) (3, 6, 4)

) (
(4, 5, 0) (0, 5, 4)
(2, 8, 0) (0, 8, 2)

))
.

In ea
h game de�ned above, Player 1 
hooses rows, Player 2 
hooses 
olumns and

Player 3 
hooses matri
es.

First, we de�ne the transition probabilities from the vetri
es to the other verti
es

of the graph. If in game Γ (z0) a
tion pro�le (1,1,1) is played, then sto
hasti
 game

G(z0) transits to the vertex z1 with probability 1/3 and to the vertex z2 with

probability 2/3. Otherwise, if any a
tion pro�le di�erent from (1,1,1) is played

(arrow =⇒ means the deterministi
 transition), then the game G(z0) transits to
the vertex z1. If a
tion pro�le (2,1,2) is realised at vertex z2, sto
hasti
 game G(z0)
transits to the vertex z3 and z4 with probabilities 1/3, 2/3 respe
tively. If any other
a
tion pro�le di�erent from (2,1,2) is realised, game G(z0) transits to vertex z5 with
probability 1.

The probabilities qk that sto
hasti
 game G(z0) ends at stage k are given:

q1 = 0.5, q2 = 0, q3 = 1.

Let players 
hoose the Shapley value as a solution of the game. We start solving

the game with the verti
es of the graph whi
h belong to the set {z : L(z) = ∅}. We


al
ulate the values of 
hara
teristi
 fun
tion and the Shapley value for subgame
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Ḡ(z3). Similar 
al
ulations are made for the verti
es z1, z5, z4, and then for the

verti
es z2 and z0 using formula (7). The 
al
ulations are presented in Tables 4 and
5.

Table 4. Chara
teristi
 fun
tions for subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z V ({1}, z) V ({2}, z) V ({3}, z) V ({1, 2}, z) V ({2, 3}, z) V ({1, 3}, z) V ({1, 2, 3}, z)

z0 2 1 3/2 11/2 9/2 2 83/9

z1 2 0 1 3 4 3 6

z2 3 1 4/3 7 6 7 47/3

z3 1 1 1 4 4 3 6

z4 0 1 0 8 9 5 13

z5 2 0 1 3 4 3 6

Table 5. The Shapley values of subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z Sh1(z) Sh2(z) Sh3(z)

z0 193/54 305/108 305/108

z1 8/3 7/6 13/6

z2 37/6 14/3 29/6

z3 11/6 7/3 11/6

z4 10/3 35/6 23/6

z5 8/3 7/6 13/6

The set of verti
es of the 
ooperative subtree is CZ = {z0, z1, z2, z3, z4}. We

regularize the Shapley value:

Sh(z0) =

(
3
31

54
, 2

89

108
, 2

89

108

)

and verify if the imputation distribution pro
edure is non-negative. For this, we

�nd values βi(z) for verti
es z0 ∈ CZ and z2 ∈ CZ using formula (19) and verify if

imputation distribution pro
edure βi(z) is non-negative:

βi(z2) = Shi(z2)− (1− q2)

(
1

3
Shi(z3) +

2

3
Shi(z4)

)
,

βi(z0) = Shi(z0)− (1− q1)

(
1

3
Shi(z1) +

2

3
Shi(z2)

)
,

obtaining

β1(z2) = 3
1

3
, β2(z2) = 0, β3(z2) = 1

2

3
;

β1(z0) = 1
2

27
, β2(z0) = 1

2

27
, β3(z0) =

23

27
.

For z ∈ {z0, z2} the following 
onditions: βi(z) > 0 and

∑
i∈N βi(z2) = 5 are

satis�ed, and

∑
i∈N βi(z0) = 3.

In all verti
es of the 
ooperative subtree, 
onditions of subgame 
onsisten
y

and non-negativity of the Shapley value are satis�ed. Therefore, we state that the

Shapley value is subgame-
onsistent imputation in game Ḡ(z0).
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Now we repeat 
al
ulations assuming that players adopt the nu
leolus as a so-

lution of the game Ḡ(z0). The nu
leolus was initially proposed by D. S
hmeidler

(S
hmeidler, 1969). The de�nition and some usefull theorems and lemmas about

the properties of the nu
leolus may be found in (Pe
herski and Yanovskaya, 2004,

Driessen et al., 1992, Kohlberg, 1971). The works (Kohlberg, 1972, Montero, 2005)

are devoted to the 
al
ulation of the nu
leolus whi
h 
ontains the unique ve
tor.

For the 
al
ulation of the nu
leolus, one may use Matlab (Mathworks, 2017) and

program TUGlab (TUGlab), written for 
al
ulation in 
ooperative game theory, or

Mathemati
a (MATHEMATICA) and program TUGames (Meinhardt) written for

the same tasks.

The 
hara
teristi
 fun
tion was 
al
ulated above. The nu
leolus of the subgame

Ḡ(z), z ∈ CZ, is denoted by n(z) = (ni(z) : i ∈ N).
We 
al
ulate the nu
leoli for all subgames of the game Ḡ(z0). The results are

presented in Table 6.

Table 6. The nu
leoli of subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z n1(z) n2(z) n3(z)

z0 3 5

9
3 1

18
2 11

18

z1 2 1

2
1 1

4
2 1

4

z2 6 1

3
4 1

2
4 2

3

z3 1 2

3
2 2

3
1 2

3

z4 2 2

3
6 2

3
3 2

3

z5 2 1

2
1 1

4
2 1

4

Now we verify the subgame 
onsisten
y of the nu
leolus using formula (17) and

al
ulate βi(z2) for vertex z2 by formula:

ni(z2) = βi(z2) + (1− q2)(p(z3|z2, āz2)ni(z3) + p(z4|z2, āz2)ni(z4)).

We obtain:

β1(z2) = 4, β2(z2) = −5

6
, β3(z2) = 1

5

6
.

The nu
leolus of the 
ooperative sto
hasti
 game Ḡ(z0) is not subgame-
onsistent if
the non-negativity of the imputation distribution pro
edure is required. For exam-

ple, β2(z2) < 0. We won't verify existen
e of non-negative imputation distribution

pro
edure (17), but we will make the regularization of the nu
leolus.
Cal
ulate ¾new¿ nu
leolus for ea
h vertex z ∈ CZ by formula (21) with initial


ondition (22). For vertex z2, we use the following formula:

n̂i(z2) =

∑
i∈N

Ki(ā
z2)

V (N, z2)
ni(z2) + (1− q2)

∑

y∈L(z2)

p(y|z2, āz2)n̂i(y),

for vertex z0, we use formula:

n̂i(z0) =

∑
i∈N

Ki(ā
z0)

V (N, z0)
Ni(z0) + (1− q1)

∑

y∈L(z0)

p(y|z0, āz0)n̂i(y).
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Table 7. The nu
leoli of subgames Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z n̂1(z) n̂2(z) n̂3(z)

z0 3 3487

140436
3 128867

280872
2 69149

93624

z1 2 1

2
1 1

4
2 1

4

z2 4 50

141
6 217

282
4 51

94

z3 1 2

3
2 2

3
1 2

3

z4 2 2

3
6 2

3
3 2

3

z5 2 1

2
1 1

4
2 1

4

¾New¿ nu
leoli for the verti
es of set CZ are given in Table 7.

Cal
ulate 
hara
teristi
 fun
tion V̂ (S, z) for ea
h vertex z ∈ CZ by formulas

(23) and (24). Moreover, V̂ (S, z3) = V (S, z3), V̂ (S, z4) = V (S, z4), V̂ (S, z1) =
V̂ (S, z5) = V (S, z1) = V (S, z5). For the 
al
ulation of V̂ (S, z2) we use formula:

V̂ (S, z2) =

∑
i∈N

Ki(ā
z2)

V (N, z2)
V (S, z2) + (1− q2)

∑

y∈L(z2)

p(y|z2, āz2)V̂ (S, y),

and for V̂ (S, z0):

V̂ (S, z0) =

∑
i∈N

Ki(ā
z0)

V (N, z0)
V (S, z0)+

+ (1− q1)
(
p(z1|z0, āz0)V̂ (S, z1) + p(z2|z0, āz0)V̂ (S, z2)

)
.

The values of the fun
tion V̂ (S, ·) are given in Table 8.

Table 8. Chara
teristi
 fun
tion V̂ (S, z), z ∈ {z0, z1, z2, z3, z4, z5}.

z V̂ ({1}, z) V̂ ({2}, z) V̂ ({3}, z) V̂ ({1, 2}, z) V̂ ({2, 3}, z) V̂ ({1, 3}, z) V̂ ({1, 2, 3}, z)

z0 1 245

249

164

249
1 74

747
4 155

249
3 80

83
4 52

83
9 2

9

z1 2 0 1 3 4 3 6

z2 1 41

141
1 15

47

107

141
8 127

141
9 35

141
6 80

141
15 2

3

z3 1 1 1 4 4 3 6

z4 0 1 0 8 9 5 13

z5 2 0 1 3 4 3 6

Noti
e that the �new� nu
leolus n̂(z2) of subgame Ḡ(z2) belongs to the impu-

tation set with 
hara
teristi
 fun
tion V̂ (S, z2) (the nu
leolus n̂(z2) also belongs to
the set I(z2), whi
h is not true in general), but it is not the nu
leolus of the 
oop-

erative game. The nu
leolus of 
ooperative game de�ned by 
hara
teristi
 fun
tion

V̂ (S, z2), is denoted by ñ(z2) = (ñ1(z2), ñ2(z2), ñ3(z2)). It equals to the following

one:

ñ(z2) ≈ (4.213, 6.894, 4.560) 6= n̂(z2).

The ¾new¿ nu
leolus n̂(z0) 
al
ulated for the game Ḡ(z0), belongs to the im-

putation set of the 
ooperative game de�ned by 
hara
teristi
 fun
tion V̂ (S, z0)
(n̂(z0) also belongs to the imputation set I(z0)), but it does not 
oin
ide with the
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nu
leolus of this 
ooperative game. The nu
leolus of the 
ooperative game de�ned

by 
hara
teristi
 fun
tion V̂ (S, z0), given above, is denoted by ñ(z0) and it equals

ñ(z0) ≈ (3.621, 2.720, 2.881) 6= n̂(z0).

2.9. Strongly subgame 
onsisten
y of the 
ore

In this se
tion we 
onsider the 
ase when solution of the 
ooperative sto
hasti
 game

is the set and 
ontains more than one point. As an example of su
h a solution we ex-

amine the 
ore. First, we des
ribe the problem of subgame 
onsisten
y and then �nd

the su�
ient 
onditions of strongly subgame 
onsisten
y of the 
ore. This problem

was initially examined by Leon Petrosyan for di�erential games (Petrosyan, 1992)

and then for multi
riteria problems of optimal 
ontrol (Petrosyan, 1993).

Suppose that the 
ores of sto
hasti
 game Ḡ(z0) and any subgame Ḡ(z), z ∈ CZ,
are non-empty. When players 
ooperate they 
ome to an agreement about the real-

ization of the 
ooperative strategy pro�le ϕ̄ and expe
t to re
eive the 
omponents

of the imputation belonging to the 
ore CO(z0). Rea
hing the intermediate ver-

tex z ∈ CZ \ {z0} of the 
ooperative subtree, player i ∈ N 
hooses an a
tion āzi
in a

ordan
e with the 
ooperative strategy ϕ̄i and re
eives the payo� Kz

i (ā
z). If

the players re
al
ulate the 
ooperative solution, i.e., �nd the solution of the 
oop-

erative subgame starting from vertex z, the re
al
ulated solution will be the 
ore

CO(z). It will be rational to require that the payo� re
eived by the player in vertex
z summarized with the expe
ted sum of any imputations from solutions CO(y),
y ∈ L(z), of the games of the 
ooperative subtrees following game Γ (z), is equal to
the imputation from solution CO(z). If this property is satis�ed for any vertex z of
the 
ooperative subtree, the 
ore of 
ooperative sto
hasti
 game Ḡ(z0) is strongly
subgame-
onsistent.

To introdu
e the mathemati
ally stri
t de�nition of strongly subgame-
onsistent


ore, it is ne
essary to de�ne the so-
alled expe
ted 
ore. For any non-terminal vertex

of the 
ooperative subtree we de�ne the set of expe
ted imputations belonging to

the 
ores whi
h are the solutions of the subgames following the 
onsidered vertex.

For any vertex z ∈ CZ, L(z) 6= ∅, de�ne the expe
ted 
ore:

EC(L(z)) =



α(L(z)) =

∑

y∈L(z)

p(y|z, āz)α(y) | α(y) ∈ CO(y)



 . (33)

The set EC(L(z)) 
onsists of the ve
tors α(L(z)) whi
h are the mathemati
al expe
-
tations of the possible 
olle
tion of the imputations from the 
ores of the subgames

beginning from the verti
es following vertex z with respe
t to the probability dis-

tribution {p(y|z, āz), y ∈ L(z)}.
We also de�ne the distribution pro
edure of the players' payo�s in the verti
es

of the 
ooperative subtree. Re�ne De�nition 10 of the imputation distribution pro-


edure. The �rst 
ondition in De�nition 10 maybe 
alled the 
ondition of �feasibility

of the imputation distribution pro
edure� be
ause it guarantees that in any vertex

of the 
ooperative subtree the sum of the payments to the players equals the sum

of the payo�s re
eived by the players when they realize 
ooperative strategies. The

se
ond 
ondition guarantees to the players that they re
eive the 
omponents of the

initially 
hosen imputation from the 
ore of 
ooperative game Ḡ(z0) in the sense

of mathemati
al expe
tation, if the payments to the players along the game are

realized in a

ordan
e with imputation distribution pro
edure {β(z) : z ∈ CZ}.
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Now we need to de�ne the distribution pro
edure of the imputation α(z0) from
the 
ore CO(z0) in a way that the 
ore is strongly subgame-
onsistent.

De�nition 16. We 
all the 
ore CO(z0) of the 
ooperative sto
hasti
 game Ḡ(z0)
strongly subgame-
onsistent if there exists the distribution pro
edure {β(z)}z∈CZ
of the imputation from the 
ore CO(z0) su
h that for ea
h vertex z ∈ CZ the

in
lusions take pla
e:

β(z)⊕ (1− qk)EC(L(z)) ⊂ CO(z), (34)

B(z0) ∈ CO(z0), (35)

where

β(z) ⊕ (1 − qk)EC(L(z)) =

{
β(z) + (1 − qk)α(L(z)) : α(L(z)) ∈ EC(L(z))

}
.

And the imputation distribution pro
edure {β(z)}z∈CZ is 
alled strongly subgame-


onsistent.

3

Condition (34) means that the set of ve
tors whi
h are equal to the sum of the

imputation distribution pro
edure of the player at vertex z and the imputation from
the expe
ted 
ore of the vertex z, belongs to the 
ore of the subgame beginning from
vertex z. This 
ondition provides the restri
tions on the payments to the players

in the games de�ned at verti
es and often it is not satis�ed for any game if the

payments to the players are realised in a

ordan
e with initially de�ned payo�

fun
tions.

We impose additional restri
tions on 
hara
teristi
 fun
tions of subgames start-

ing from the verti
es of the 
ooperative subtree to obtain su�
ient 
onditions of

strongly subgame 
onsisten
y of the 
ore. Denote by EV (S,L(z)) the expe
ted val-
ues of 
hara
teristi
 fun
tion 
al
ulated for 
oalition S ⊆ N at the verti
es following

the vertex z:
EV (S,L(z)) =

∑

y∈L(z)

p(y|z, āz)V (S, y).

Denote by

∆V (S, z) = V (S, z)− (1− qk)EV (S,L(z))

the di�eren
e between the value of 
hara
teristi
 fun
tion at vertex z and expe
ted
value of 
hara
teristi
 fun
tion on 
ondition that the game does not �nish at vertex

z. Denote by ∆CO(z) analogue of the 
ore 
al
ulated using fun
tion ∆V (S, z).
Now de�ne su�
ient 
ondition of strongly subgame 
onsisten
y of the imputation

distribution pro
edure and the 
ore CO(z0).

Theorem 6. Let for ea
h vertex z ∈ CZ the 
ore CO(z) and the set ∆CO(z) be
non-empty. For ea
h vertex z ∈ CZ distribution pro
edure {β(z) : z ∈ CZ} of the

imputation from the 
ore CO(z0) satis�es the 
onditions:

β(z) ∈ ∆CO(z), (36)

B(z0) ∈ CO(z0). (37)

then the 
ore CO(z0) and distribution pro
edure {β(z) : z ∈ CZ} are strongly

subgame-
onsistent.

3

The sum denoted by sign ⊕ is 
alled Minkowski sum (see (S
hneider), in whi
h some

properties of this operator are proved).
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Proof. We need to prove that any ve
tor β(z) ∈ ∆CO(z) satisfying 
onditions (36)
and (37) is strongly subgame-
onsistent distribution pro
edure of the imputation

α(z0) ∈ CO(z0). So, the 
onditions (34) and (35) from De�nition 16 hold. Condition

(37) 
oin
ides with (35), therefore, it remains to show that the in
lusion (34) holds

for any vertex z ∈ CZ. Consider any ve
tor α(L(z)) ∈ EC(L(z)) for vertex z and

al
ulate the sum β(z) + (1− qk)α(L(z)). Verify if the latter ve
tor belongs to the

ore CO(z). Now 
al
ulate the sum of all 
omponents of the ve
tor:

∑

i∈N

βi(z) + (1 − qk)
∑

y∈L(z)

p(y|z, āz)
∑

i∈N

αi(y) =

= V (N, z)− (1− qk)
∑

y∈L(z)

p(y|z, āz)V (N, y)+

+ (1 − qk)
∑

y∈L(z)

p(y|z, āz)
∑

i∈N

αi(y) = V (N, z),

whi
h 
arries out the property of 
olle
tive rationality.

Now 
onsider S ⊂ N , S 6= N :

∑

i∈S

βi(z) + (1− qk)
∑

y∈L(z)

p(y|z, āz)
∑

i∈S

αi(y) >

> V (S, z) + (1− qk)
∑

y∈L(z)

p(y|z, āz)V (S, y)−

− (1− qk)
∑

y∈L(z)

p(y|z, āz)V (S, y) = V (S, z).

By virtue of the arbitrariness of vertex z ∈ CZ, we make a 
on
lusion that

the 
ore of 
ooperative game Ḡ(z0) and pro
edure {β(z) : z ∈ CZ} are strongly

subgame-
onsistent.

When analogue of the 
ore∆CO(z) is non-empty for ea
h vertex z of the 
ooper-
ative subtree, Theorem 6 provides the method of 
onstru
tion of strongly subgame-


onsistent distribution pro
edure of the imputations from the 
ore, equal Bi(z0) by

ondition (37). Noti
e that in a general 
ase not all the imputations from the 
ore


an be realised using distribution pro
edure {β(z) : z ∈ CZ} de�ned above.

Example 1.3 Consider sto
hasti
 game G(z0) de�ned on graph Ψ(z0) depi
ted
on Fig. 3.

The set of the verti
es of graph Ψ(z0) is Z = {z0, . . . , z5}. The set of the players
is N = {1, 2, 3}. In ea
h vertex of graph G(z0) the three-person normal-form game



160 Elena Parilina

Fig. 3. The tree Ψ(z0).

Γ (z), z ∈ Z, is de�ned. The payo� matri
es are

Γ (z0) :

((
(2, 2, 2) (2, 2, 0)
(2, 2, 0) (0, 0, 3)

) (
(1, 1, 2) (2, 2, 1)
(1, 3, 1) (3, 0, 1)

))
,

Γ (z2) :

((
(1, 1, 1) (2, 2, 0)
(2, 2, 0) (0, 0, 3)

) (
(1, 1, 2) (2, 2, 1)
(1, 3, 1) (3, 0, 1)

))
,

Γ (z1), Γ (z5) :

((
(2, 0, 1) (1, 0, 1)
(3, 1, 2) (2, 2, 2)

) (
(2, 2, 1) (1, 1, 3)
(2, 1, 1) (2, 1, 2)

))
,

Γ (z3) :

((
(1, 1, 1) (2, 2, 2)
(3, 2, 0) (1, 4, 1)

) (
(2, 0, 1) (2, 1, 1)
(4, 0, 1) (0, 4, 1)

))
,

Γ (z4) :

((
(2, 1, 0) (2, 1, 3)
(3, 1, 2) (3, 6, 4)

) (
(4, 5, 0) (0, 5, 4)
(2, 8, 0) (0, 8, 2)

))
.

In ea
h game the �rst player 
hooses rows, the se
ond one 
hooses 
olumns, the third

one 
hooses matri
es. The strategy set of player i ∈ N in game Γ (z) is Azi = {1, 2}.
De�ne the probabilities of transition from all verti
es to the following ones. If in

game Γ (z0) the a
tion pro�le (1, 1, 1) is realised, sto
hasti
 game G(z0) transits to
vertex z1 with a probability of 1/3 and to vertex z2 with a probability of 2/3. If any
a
tion pro�le di�erent from (1,1,1) is realised (arrow =⇒ means the deterministi


transition), the game G(z0) transits to vertex z1. If at vertex z2 a
tion pro�le (2,1,2)
is realised, sto
hasti
 game G(z0) transits to verti
es z3 and z4 with probabilities

of 1/3, 2/3 respe
tively. The game G(z0) transits to vertex z5 with a probability of

1 from any other verti
es.

The probabilities qk that sto
hasti
 game G(z0) ends at stage k are given:

q1 = 0.5, q2 = 0, q3 = 1.

To 
onstru
t the 
ooperative version of sto
hasti
 game we �nd the 
ooperative

strategy pro�le ϕ̄. This pro�le ϕ̄ pres
ribes to play a
tion pro�le (1, 1, 1) at vertex z0.
The game ends at stage z0 with probability 0.5 and transits to the next stage with a
probability of 0.5. If the game does not end, it transits to stage z1 with a probability
of 1/3, at whi
h the players should realise any of a
tion pro�les (2, 1, 1) or (2, 2, 1), or
with a probability of 2/3 the game transits to vertex z2, at whi
h the players should
play a
tion pro�le (2, 1, 2). At vertex z2 the game does not end be
ause q1 = 0 and
transits to the verti
es z3 and z4 with probabilities of 1/3 and 2/3 respe
tively. At
verti
es z3 and z4 the game terminates. Therefore, the set of the verti
es of the


ooperative subtree represented on Fig. 4 is Ψ̄(z0) = {z0, z1, z2, z3, z4}.
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Fig. 4. Cooperative subtree Ψ̄(z0) of the game Ḡ(z0).

Find the values of 
hara
teristi
 fun
tion using formulas (5) with boundary


ondition (6) for S = N , (7) with boundary 
ondition (8) for S ⊂ N and (9) for

S = ∅. Cal
ulations are given in Table 9. For further 
al
ulations we use pa
kage

TUGlab of program Matlab [16℄.

Table 9. Chara
teristi
 fun
tions v(S, z) for Ḡ(z), z ∈ {z0, z1, z2, z3, z4, z5}.

z � S {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}

z0 2 1 1.5 5.5 4.5 6 110/9

z1 2 0 1 3 4 3 6

z2 3 1 4/3 7 6 7 47/3

z3 1 1 1 4 4 3 6

z4 0 1 0 8 9 5 13

z5 2 0 1 3 4 3 6

Now we de�ne the 
ores of subgames beginning from the verti
es of 
ooperative

subtree Ψ̄(z0). We also assure that they all are non-empty to use the 
ore as a


ooperative solution of a sto
hasti
 game. The systems of linear inequalities and

equities whi
h determines the 
ores and their graphi
al representations are given

in Tables 10 and 11. On the �gures, the imputation set is depi
ted as a light-gray

triangle and the 
ores are dark-grey sets. Noti
e that at verti
es z1 and z5 
ondition
α1 = 2 holds for ea
h element of the 
ore. And the 
ore is the segment 
onne
ting

points (2, 1, 3) and (2, 3, 1).

For ea
h vertex of the 
ooperative subtree Ψ̄(z0) we de�ne the analogues of the

ores denoted by∆CO(z). Remind that for terminal verti
es z1, z3, z4 of set∆CO(·)

oin
ide with the 
ore CO(·). Systems of linear inequalities and equities determining
sets∆CO(z0) and∆CO(z2) and also their graphs are presented in Tables 12. Noti
e
that analogues of the 
ores ∆CO(·) are non-empty for all verti
es of the 
ooperative
subtree. First, verify if the 
ore is strongly subgame-
onsistent if the payments to

the players are realised a

ording to initially de�ned payo� fun
tions, i. e., verify if

payo� ve
tors in the verti
es of the 
ooperative subtree belong to the 
orresponding

sets ∆CO(·) when the players realise 
ooperative strategy pro�le:

Kz0(1, 1, 1) = (2, 2, 2) ∈ ∆CO(z0),

Kz1(2, 2, 1) = (2, 2, 2) ∈ CO(z1) = ∆CO(z1),
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Table 10. The 
ore for verti
es z0, z1, z5 ∈ CZ.

z Core Graph of the 
ore

z0



















































α1 > 2

α2 > 1

α3 > 1.5

α1 + α2 > 5.5

α1 + α3 > 6

α2 + α3 > 4.5

α1 + α2 + α3 = 110/9

(2,1,9.2222)

(9.7222,1,1.5) (2,8.7222,1.5)

z1,

z5



















































α1 > 2

α2 > 0

α3 > 1

α1 + α2 > 3

α1 + α3 > 3

α2 + α3 > 4

α1 + α2 + α3 = 6

(2,0,4)

(5,0,1) (2,3,1)

Kz2(2, 1, 2) = (1, 3, 1) /∈ ∆CO(z2),

Kz3(1, 2, 1) = (2, 2, 2) ∈ CO(z3) = ∆CO(z3),

Kz4(2, 2, 1) = (3, 6, 4) ∈ CO(z4) = ∆CO(z4).

We 
an easily see that at vertex z2 the 
ondition of in
lusion is not satis�ed and we

an't guarantee strongly subgame 
onsisten
y of an imputation from the 
ore if the

payments to the players are realised a

ording to initially de�ned payo� fun
tions.

We show that 
ondition (34) does not hold at vertex z2. Following De�nition 16
players may 
hoose any imputation from expe
ted 
ore of vertex z. Let they 
hoose
the imputations: (1.5, 3, 1.5) ∈ CO(z3) and (0, 8, 5) ∈ CO(z4), then the sum at the

left-handed term of in
lusion (34) takes form:

(1, 3, 1) +
1

3
(1.5, 3, 1.5) +

2

3
(0, 8, 5) =

(
3

2
,
28

3
,
29

6

)
,

and this ve
tor does not belong to the 
ore CO(z2), whi
h means that 
ondition

(34) does not hold and the 
ore is not subgame-
onsistent.

Following Theorem 6, the set of ve
tors β(z) belonging to ∆CO(z), z ∈ CZ, is
the distribution pro
edure of an imputation from the 
ore CO(z0) of initially de�ned
game. By Theorem 6 we may also 
on
lude that 
olle
tion of ve
tors (β(z) : z ∈ CZ)
is not strongly subgame-
onsistent. For example, 
onsider element from the set

∆C(z), z ∈ CZ: β(z0) = (4, 1, 1), β(z1) = (2, 2, 2), β(z2) = (3, 1, 1), β(z3) =
(2, 2, 2), β(z4) = (3, 6, 4). Cal
ulate the mathemati
al expe
tations of the players'
payo�s if in the verti
es of 
ooperative subtree they are paid in a

ordan
e with
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Table 11. The 
ore for the verti
es z2, z3, z4 ∈ CZ.

z2



















































α1 > 3

α2 > 1

α3 > 4/3

α1 + α2 > 7

α1 + α3 > 7

α2 + α3 > 6

α1 + α2 + α3 = 47/3

(3,1,11.6667)

(13.3333,1,1.3333) (3,11.3333,1.3333)

z3



















































α1 > 1

α2 > 1

α3 > 1

α1 + α2 > 4

α1 + α3 > 3

α2 + α3 > 4

α1 + α2 + α3 = 6

(1,1,4)

(4,1,1) (1,4,1)

z4



















































α1 > 0

α2 > 1

α3 > 0

α1 + α2 > 8

α1 + α3 > 5

α2 + α3 > 9

α1 + α2 + α3 = 13

(0,1,12)

(12,1,0) (0,13,0)

{β(·)}:

B(z0) = (4, 1, 1) + 0.5

{
1

3
(2, 2, 2) +

2

3

(
(3, 1, 1) +

1

3
(2, 2, 2) +

2

3
(3, 6, 4)

)}
=

=

(
56

9
,
29

9
,
25

9

)
.

Obviously, B(z0) ∈ CO(z0).

So, we have proposed a method of 
onstru
tion of strongly subgame-
onsistent

imputation distribution pro
edure when the 
ore is 
hosen by the players as a set-

valued optimality prin
iple.
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Table 12. Sets ∆CO(z) for verti
es z0 and z2.

z ∆C(z) Graphs of ∆CO(z)

z0



















































α1 > 2/3

α2 > 2/3

α3 > 8/9

α1 + α2 > 8/3

α1 + α3 > 19/6

α2 + α3 > 11/6

α1 + α2 + α3 = 6

(0.66667,0.66667,4.6667)

(4.4444,0.66667,0.88889) (0.66667,4.4444,0.88889)

z2



















































α1 > 8/3

α2 > 0

α3 > 1

α1 + α2 > 1/3

α1 + α3 > 8/3

α2 + α3 > −4/3

α1 + α2 + α3 = 5

(2.6667,0,2.3333)

(4,0,1) (2.6667,1.3333,1)

3. Cooperative sto
hasti
 games with in�nite duration

3.1. Non
ooperative sto
hasti
 games with in�nite duration

In this se
tion we 
onsider sto
hasti
 games with in�nite duration de-

�ned by Shapley in the paper (Shapley, 1953a). The main 
lassi
al results

on non
ooperative sto
hasti
 games are presented in (Filar and Vrieze, 1997,

Neyman and Sorin, 2003). Similar to the previous se
tion, the game is realised in

a dis
rete time. The signi�
ant di�eren
e of this sto
hasti
 game from the game


onsidered in Se
tion 2 is that now the game has an in�nite duration, the set of

states whi
h 
an be realised at any stage is �nite and does not 
hange over time.

We de�ne �rst a sto
hasti
 game and then des
ribe the set of strategies and the

payo� fun
tion of the player. Noti
e that the notations of this se
tion whi
h are

widely used in modern literature on sto
hasti
 games are a bit di�erent from the

notations of Se
tion 2.

Consider sto
hasti
 game G de�ned by

1. The �nite set of players N = {1, . . . , n}.
2. The �nite non-empty set of states Ω = {1, . . . , ω̄};
3. The �nite, non-empty set of available a
tions Aωi of player i ∈ N in state ω ∈ Ω.

The a
tion of player i ∈ N in state ω ∈ Ω is element aωi ∈ Aωi . The a
tion pro�le
in state ω ∈ Ω is a ve
tor of players' a
tions aω = (aωi : i ∈ N). The set of
a
tion pro�les in state ω is Aω = Aω1 × . . .×Aωn .

4. The �nite payo� fun
tion Kω
i :
∏
k∈N A

ω
k → R, for every player i ∈ N and every

state ω ∈ Ω.
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5. The transition fun
tion p(·|ω, aω) : Ω × Aω → ∆(Ω) from state ω ∈ Ω and

a
tion pro�le aω ∈∏i∈N A
ω
i . Here ∆(Ω) is probability distribution over set Ω.

6. The initial state is determined by probability distribution

π0 = (π1
0 , . . . , π

ω
0 , . . . , π

ω̄
0 ),

where πω0 is the probability that state ω is realised at the �rst stage of the game,∑
ω∈Ω π

ω
0 = 1.

Time is dis
rete and game G lasts for an in�nite number of stages denoted by

t. Sto
hasti
 game G is realised in the following way:

1. Prior to the game, an initial state ω′
is 
hosen along the probability distribution

π0, i. e., with probability πω0 sto
hasti
 game starts with state ω.
2. At the �rst stage, state ω is realised and players simultaneously 
hoose their

a
tions. Player i 
hooses a
tion aωi ∈ Aωi , i ∈ N . Thus the a
tion pro�le aω =
(aωi : i ∈ N) ∈ Aω1 × . . . × Aωn is realised at the �rst stage. Player i re
eives
payo� Kω

i (a
ω). On
e aω is announ
ed for all players, then the game transits to

the next state ω′ ∈ Ω with probability p(ω′|ω, aω).
3. At the se
ond stage, player i ∈ N 
hooses a
tion aω

′

i ∈ Aω
′

i . Thus, at the se
ond

stage the a
tion pro�le aω
′

= (aω
′

i : i ∈ N) ∈ Aω
′

1 × . . . × Aω
′

n is played and

player i re
eives payo� Kω′

i (aω
′

).
4. The game further is played in the way des
ribed above.

Finally, let âωi ∈ ∆(Aωi ) be a mixed a
tion of player i in state ω, where ∆(Aωi ) is a
probability measure over Aωi .

De�nition 17. A dis
ounted sto
hasti
 game G is de�ned as

G =

〈
N,Ω, {Aωi } i∈N

ω∈Ω
, {Kω

i } i∈N
ω∈Ω

, π0,
{
p(ω′′|ω′, aω

′

)
}

ω′,ω′′∈Ω

aω
′
∈
∏

i∈N
Aω′

i

, δ

〉
, (38)

where δ ∈ (0, 1) is a dis
ount fa
tor, the same for all players.

Every state ω is determined by n-person normal-form game

〈N, {Aωi }i∈N , {Kω
i }i∈N 〉.

A 
hange of state may 
orrespond to the presen
e of (positive or negative) sho
ks

of di�erent size. They will be re�e
ted on the players' payo�s.

The subgame of non
ooperative sto
hasti
 game G beginning from stage k is

denoted by G(k).
To solve a sto
hasti
 game, we need to de�ne the 
lass of players' strategies and

the 
al
ulation method of players' payo�s in the whole game. First, de�ne players'

strategies and distinguish two 
lasses of strategies:

• The behavior strategy of player i ∈ N is a fun
tion ϕi = {ϕi(k)}∞k=1 and

ϕi(k) : h(k) × Ω 7−→ ∆(Aωi ), where h(k) is a history of stage k, whi
h is

given by a 
olle
tion of pairs 
onsisting of states and a
tion pro�les whi
h

were realised at the previous stages until stage k: ((ω(1), a(1)), (ω(1), a(2)),
. . ., (ω(k− 1), a(k− 1))). Denote the set of behavior strategies of player i by
Φi and behavior strategy pro�le in sto
hasti
 game by ϕ = (ϕi : i ∈ N).
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• We also 
onsider the subset of behavior strategies set, that is, the set of sta-

tionary strategies. A stationary strategy pres
ribes a player to 
hoose the

same strategy in the same state independently of the history of the stage.

Denote a stationary strategy to distinguish behavior (not ne
essarily sta-

tionary) and stationary strategies. Denote a stationary strategy of player i
by ηi = {ηi(k)}∞k=1, ηi(k) : Ω 7−→ ∆(Aωi ). Denote the pro�le of stationary
strategies in a sto
hasti
 game by η = (ηi : i ∈ N), and the set of stationary

strategies of player i by Hi, while Hi ⊂ Φi.

Now we determine players' payo�s in sto
hasti
 game (1):

• For the �nite number of stages t a payo� of player i in a sto
hasti
 game is

determined as a mathemati
al expe
tation:

Ei(ϕ) = Eω(1),ϕ
1

t

t∑

k=1

K
ω(k)
i (a(k)),

i. e., a mathemati
al expe
tation of a payo� with respe
t to the initial state

ω(1) and strategy pro�le ϕ, while K
ω(k)
i (a(k)) is a payo� of player i in state

ω(k) realised at stage k, a(k) is a strategy pro�le in state ω(k) realised at

stage k in a

ordan
e with strategy pro�le ϕ.

• In 
ase of in�nite game G, a dis
ounted payo� of player i is given by

Ei(ϕ) = Eω(1),ϕ
∞∑

k=1

δk−1K
ω(k)
i (a(k)) (39)

as a mathemati
al expe
tation of the payo� with respe
t to the initial state

ω(1) and pro�le ϕ.

We formulate the main results on the existen
e of the values of sto
hasti
 games

with two and more than two players whi
h are used in the present work.

Theorem 7. (Shapley, 1953a) A two-person zero-sum sto
hasti
 game with dis-


ount fa
tor δ ∈ (0, 1) has a value for any initial state. Moreover, players' optimal

strategies are stationary.

This result was extended on the 
ase of nonzero-sum games with more than two

players by Fink and Takahashi in 1964:

Theorem 8. (Fink, 1964, Takahashi, 1964) A nonzero-sum sto
hasti
 game with

many players with dis
ount fa
tor δ ∈ (0, 1) and �nite set of states and strategies

has a value for any initial state. Moreover, there exist optimal stationary strategies

of the players.

3.2. Sto
hasti
 games in stationary strategies

In this se
tion we provide formulas to 
al
ulate players' payo�s in a sto
hasti


game when players use stationary strategies. Sin
e the set of states Ω is �nite, there

are only ω̄ subgames Gω1 , . . . , Gω̄, ea
h with initial states ω1, . . . , ω̄ respe
tively,

be
ause stationary strategies pres
ribe the same behavior in the same states even

with di�erent histories of the 
urrent stage. We denote a non-
ooperative sto
hasti


subgame in stationary strategies with initial state ω ∈ Ω by Gω.
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We now de�ne the ω̄ × ω̄-matrix of transition probabilities in G:

Π(η) =




p(ω1|ω1, a
ω1) . . . p(ω̄|ω1, a

ω1)
p(ω1|ω2, a

ω2) . . . p(ω̄|ω2, a
ω2)

. . . . . . . . .
p(ω1|ω̄, aω̄) . . . p(ω̄|ω̄, aω̄)


 (40)

whi
h is a fun
tion p(ω′|ω, aω) of a stationary strategy pro�le η = (ηi : i ∈ N)
su
h that ηi(ω) = aωi ∈ ∆(Aωi ), ω ∈ Ω, i ∈ N , and aω = (aω1 , . . . , a

ω
n) for any state

ω ∈ Ω. Matrix entry (40) whi
h is the element of the jth row and the j′th 
olumn

is the probability to transit from state jth to state j′th when players use strategy

pro�le η = (ηi : i ∈ N).
We simplify equation (39) for player i's payo�, i.e., we 
al
ulate his expe
ted

payo� in an expli
it form. Let Eωi (η) be the expe
ted payo� of player i in subgame
Gω when pro�le η = (η1, . . . , ηn) in stationary strategies is adopted. The ve
torial

form of the expe
ted payo�s is Ei(η) = (Eω1

i (η), . . . , Eω̄i (η))
T
.

Hen
e a player i's indire
t utility fun
tion in subgame Gω satis�es the following

re
urrent equation:

Eωi (η) = Kω
i (a

ω) + δ
∑

ω′∈Ω

p(ω′|ω, aω)Eω′

i (η). (41)

Given a matrix form of transition probabilities (40), rewrite equation (41) in a

matrix form:

Ei(η) = Ki(a) + δΠ(η)Ei(η), (42)

where Ki(a) = (Kω1

i (a1), . . . ,K ω̄
i (a

ω̄))T . Equation (3) is equivalent to the equation

Ei(η) = (I− δΠ(η))−1Ki(a),

where I is an identity matrix of size ω̄ × ω̄. Matrix (I− δΠ(η))
−1

always exists for

dis
ount fa
tor δ ∈ (0, 1). The payo� of player i in game G taking into a

ount the

initial state with distributed with π0 in stationary strategies is

Ēi(η) = π0Ei(η) = π0 (I− δΠ(η))
−1
Ki(a). (43)

3.3. Cooperative sto
hasti
 games with in�nite duration

We now develop the 
ooperative version of sto
hasti
 game G. Suppose that players
de
ide to 
ooperate by forming a grand 
oalition N with the aim to maximise

total payo�. The existen
e of maximum of the dis
ounted joint payo� follows from

theorem proved in (Shapley, 1953a), a

ording to whi
h the 
ooperative strategy of

the grand 
oalition that yields the maximal payo� is stationary. Denote the pro�le

of pure stationary strategies of player i as ηi ∈ Hi, where Hi ⊂ Φi.
4

The mixed

stationary strategy is denoted as η̂i ∈ Ĥi, with Hi ⊂ Ĥi.

A 
ooperative strategy pro�le or 
ooperative solution maximising the sum of the

expe
ted players' payo�s in G is denoted as η∗ = (η∗1 , . . . , η
∗
n), where

5

max
η∈

∏

i∈N

Hi

∑

i∈N

Ēi(η) =
∑

i∈N

Ēi(η
∗). (44)

4

From now on we use the notation ηi if player i uses the stationary strategy in the

game. When a player i uses a behaviour strategy (not ne
essarily stationary), we use

the notation ϕi.

5

Without loss of generality we may �nd the maximum in equation (6) over the set of

pure a
tions of 
oalition N .
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In order to de�ne the 
ooperative solution of the sto
hasti
 game, we deter-

mine the values of a 
hara
teristi
 fun
tion for any 
oalition S ⊆ N . This fun
-

tion des
ribes how mu
h 
olle
tive payo� players 
an gain by forming a 
oalition.

We denote the 
hara
teristi
 fun
tion as V (S) = (V ω1(S), . . . , V ω̄(S)). Following
(Kohlberg and Neyman, 2015), let V (S) be the minmax value of two-person zero-

sum game GS between 
oalition S and 
oalition N\S.6 Before introdu
ing 
har-

a
teristi
 fun
tion, we �rst de�ne the pure stationary strategies of 
oalition S and

N\S as ηS ∈ HS =
∏
i∈S Hi and ηN\S ∈ HN\S =

∏
i∈N\S Hi, respe
tively.

Remark 5. When we determine the 
hara
teristi
 fun
tion V(S), S ⊆ N , we as-

sume that players in S play in the interests of the 
oalition. Therefore, the a
tions

and strategies of the players in S are 
orrelated (Aumann, 1974).

In state ω ∈ Ω, the 
orrelated a
tions of the players from 
oalition S are âωS ∈
∆(AωS) where A

ω
S =

∏
i∈S A

ω
i . The 
orrelated stationary strategy of players from


oalition S and N\S are η̂S(ω) ∈ ∆(AωS) and η̂N\S(ω) ∈ ∆(AωN\S), respe
tively.

Let the set of 
orrelated stationary strategies of 
oalition S and N\S be ĤS and

ĤN\S , respe
tively.

Begin the 
onstru
tion of the 
hara
teristi
 fun
tion by examining the grand


oalition, S = N . The Bellman equation for the 
hara
teristi
 fun
tion V (N) rep-
resents the dis
ounted payo� of N :

V (N) = max
η∈

∏

i∈N

Hi

∑

i∈N

Ēi(η) =
∑

i∈N

Ki(a
∗) + δΠ(η∗)V (N), (45)

where η∗ is the 
ooperative strategy pro�le satisfying 
ondition (6) and η∗(ω) = aω∗,
ω ∈ Ω, andKi(a

∗) = (Kω1

i (aω1∗), . . . ,K ω̄
i (a

ω̄∗))T . From (4), we 
an infer the matrix

form of V (N):

V (N) = (I− δΠ(η∗))
−1
∑

i∈N

Ki(a
∗), (46)

where I is an identity ω̄ × ω̄-matrix and Π(η∗) is the ω̄ × ω̄-matrix of transition

probabilities in G when players use the strategy pro�le η∗. MatrixΠ(η∗) is des
ribed
in details by (40).

We de�ne next the value of V ω(S) of 
oalition S as the minmax payo� in the

subgame GωS starting from state ω:

V ω(S) = min
η̂N\S

max
ηS

∑

i∈S

Eωi (ηS , η̂N\S) = max
η̂S

min
ηN\S

∑

i∈S

Eωi (η̂S , ηN\S). (47)

In equation (9), the maximum in min
η̂N\S

max
ηS

∑
i∈S

Eωi (ηS , ηN\S) is found over the set

of pure strategies of 
oalition S, while the minimum in max
η̂S

min
ηN\S

∑
i∈S

Eωi (ηS , ηN\S)

is found over the set of pure strategies of 
oalition N\S.
The Bellman equation for the 
hara
teristi
 fun
tion V ω(S) is

V ω(S) = min
η̂N\S∈ĤN\S

max
ηS∈HS

∑

i∈S

Eωi (ηS , η̂N\S) =
∑

i∈S

Eωi (ηS , η̂N\S)

=
∑

i∈S

Kω
i (a

ω
S , â

ω
N\S) + δ

∑

ω′∈Ω

p
(
ω′|ω, (aωS , âωN\S)

)
V ω

′

(S), (48)

6

The existen
e of the minmax value of two-player dis
ounted sto
hasti
 game is proved

by Shapley (1953a).
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where (aωS , â
ω
N\S) is a pro�le in 
orrelated a
tions in state ω ∈ Ω su
h that ηS(ω) =

aωS , η̂N\S(ω) = âωN\S , and Ki(a
ω
S , â

ω
N\S) = (Kω1

i (aω1

S , âω1

N\S), . . . ,K
ω̄
i (a

ω̄
S , â

ω̄
N\S)).

We then rewrite equation (48) in a matrix form:

V (S) =
(
I− δΠ(ηS , η̂N\S)

)−1∑

i∈S

Ki(a
ω
S , â

ω
N\S). (49)

Finally, we de�ne the 
hara
teristi
 fun
tion V̄ (S) for the whole sto
hasti
 game
as:

V̄ (S) = π0V (S), (50)

for any 
oalition S ⊆ N, where V (S) = (V ω1(S), . . . , V ω̄(S)), and V ω(S) is the
value of the 
hara
teristi
 fun
tion of subgame Gω for S.

The 
hara
teristi
 fun
tion satis�es two properties. First, for any state ω ∈ Ω:

V ω(∅) = 0. (51)

Se
ond, the 
hara
teristi
 fun
tions V̄ (S) and V ω(S) determined by (10) and (7)-

(51), respe
tively, are superadditive (Aumann and Peleg, 1960). In other words, for

any disjoint 
oalitions S, T ⊂ N , and S ∩ T = ∅, the inequality V (S) + V (T ) 6

V (S ∪ T ) holds. Superadditivity implies that the value of two disjoint 
oalitions is

at least as great when they play together as when they a
t non-
ooperatively. If

superadditivity is not satis�ed, then the 
oalition S ∪ T is not pro�table, thus it

will not be formed.

7

We are now in a position to de�ne the 
ooperative version of sto
hasti
 game

17 and its subgames.

De�nition 18. A 
ooperative sto
hasti
 game Gc, 
orresponding to a sto
hasti


game G, is a set 〈N, V̄ 〉, where N is the set of players and V̄ : 2N −→ R is the


hara
teristi
 fun
tion 
al
ulated by (10). A 
ooperative sto
hasti
 subgame Gωc
starting from state ω is a set 〈N, V ω〉, where V ω : 2N −→ R is the 
hara
teristi


fun
tion 
al
ulated by (7), (9) and (51).

When forming the grand 
oalition, players should de
ide not only what strategies

to use to maximise the joint payo� but also how to allo
ate the total payo�. The

next de�nitions display the allo
ation rule or solution (also 
alled imputation) of

Gωc and Gc, respe
tively. To determine an imputation of the joint payo� (6) we need

to determine the values of the 
hara
teristi
 fun
tion for any 
oalition S ⊂ N .

De�nition 19. An imputation in the subgame Gωc , ω ∈ Ω, is a ve
tor σω =
(σω1 , . . . , σ

ω
n ) satisfying: (i)

∑
i∈N σ

ω
i = V ω(N), and (ii) σωi > V ω({i}) for any

i ∈ N . The set of imputations in Gωc is denoted as Σω
.

De�nition 20. An imputation in the game Gc is a ve
tor σ̄ = (σ̄1, . . . , σ̄n), where
σ̄i = π0σi, σi = (σω1

i , . . . , σω̄i )
T
, and (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

, ω ∈ Ω. The set of
imputations in Gc is denoted as Σ̄.

7

The property of superadditivity is not needed and it is often omitted in 
ooperative game

theory, be
ause in real life there are a lot of motivations to 
onsider both pro�table and

non-pro�table 
oalitions. As Aumann and Dreze (1974, p. 233) note, there are arguments

for superadditivity that are quite persuasive, but, as they also note, superadditivity is

quite problemati
 in some e
onomi
 appli
ations.
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By De�nition 19, an imputation satis�es the following 
onditions: (i) any player

should obtain no less than she may get by non-
ooperative play (individual rationa-

lity 
ondition) and (ii) the sum of 
omponents of the imputation equals the value

of the 
hara
teristi
 fun
tion 
orresponding to grand 
oalition (group rationality


ondition). The set of imputations is non-empty in any subgame Gωc , ω ∈ Ω and in

the whole 
ooperative sto
hasti
 game Gc, sin
e the 
hara
teristi
 fun
tion deter-

mined by equations (4)-(51) is superadditive.

3.4. Prin
iples of stable 
ooperation

In 
ooperative games, the solution of a game is determined by an optimality prin-


iple. The optimality prin
iple is assumed to be the subset of the imputation set.

Therefore, the optimality prin
iple 
ontains one or more than one imputations or so-

lutions of a 
ooperative game but sometimes it maybe empty. For example, the 
ore

may be empty, then the solution of a 
ooperative game does not exist a

ording to

this optimality prin
iple. The Shapley value as an optimality prin
iple always exists

and 
ontains a unique imputation. Therefore, the solution of a 
ooperative game

always exists and it is unique a

ording to this optimality prin
iple. The solution

of 
ooperative sto
hasti
 game means an imputation.

8

Now we do not 
onsider the

problem of 
hoosing a unique imputation from the set but assume that the optimal-

ity prin
iple 
ontains the only one imputation. The examples of one-point solutions

are the Shapley value (Shapley, 1953b), the Von Neumann-Morgenstern solution

(von Neumann and Morgenstern, 1944) and the nu
leolus (S
hmeidler, 1969). The

realisation of an imputation in a 
ooperative sto
hasti
 game requires the satisfa
-

tion of some prin
iples, whi
h in turn ensure stable 
ooperation in a game. Following

(Petrosyan and Zenkevi
h, 2015), we formulate the main prin
iples of stable 
oop-

eration in
luding subgame 
onsisten
y, strategi
 support (or strategi
 stability) and

irrational-behaviour-proof of the solution of a 
ooperative sto
hasti
 game. Ea
h

prin
iple of stable 
ooperation is de�ned and analysed separately.

Subgame 
onsisten
y. The prin
iple of subgame 
onsisten
y ensures that in any

subgame 
ooperative solution is determined a

ording to the initially 
hosen allo
a-

tion rule. This 
on
ept deserves a detailed explanation. Players agree on 
ooperation

before the game and adopt an imputation following the allo
ation me
hanism. Dur-

ing the game, they play a 
ooperative strategy pro�le a∗i , i ∈ N whi
h maximises

their total payo�. In any subgame beginning in a 
ertain state, a player is able to

derive her expe
ted payo� for the remainder of the game. If at some intermediate

stage of the game players de
ide to 
al
ulate their expe
ted payo�s in the subgame

a

ording to the initially de�ned payo� fun
tions, then most often these expe
ted

dis
ounted payo�s do not 
oin
ide with an imputation 
al
ulated in a

ordan
e

with the initially 
hosen optimality prin
iple. This means subgame in
onsisten
y

of a 
ooperative solution (or optimality prin
iple). If for any subgame dis
ounted

players' payo�s 
oin
ide with the imputations 
al
ulated in a

ordan
e with initial

optimality prin
iple, 
ooperative solution (or optimality prin
iple) is subgame 
on-

sistent (see Petrosyan, 1977). To make 
ooperative solution subgame 
onsistent, we

8

We further 
onsider the 
ase when the solution of a 
ooperative sto
hasti
 game is an

imputation set 
onsisting of more than one imputation.
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propose the transfer me
hanism, 
alled imputation distribution pro
edure (IDP).

9

Originally, the idea of IDP was proposed by L. A. Petrosyan for di�erential games

(Petrosyan and Danilov, 1979).

This me
hanism leads to a modi�
ation of the players' payo�s in a dynami


game. We 
all the modi�ed game as σ-regularisation, where σ is an initially 
hosen

imputation in 
ooperative game Gc. This modi�ed game ensures several advantages
to the players. First, subgame 
onsisten
y is ensured through the �new� payo� fun
-

tions. Se
ond, the expe
ted payo�s in the regularised game will be equal to the


omponents of the 
hosen imputation σ. Moreover, the sum of the stage payo�s in

the regularised game is equal to the sum of the payo�s in the 
orrespondent state

of the initial game. For instan
e, suppose that players 
hoose the Shapley value at

the beginning of the game as an allo
ation rule. In this 
ase, subgame 
onsisten
y

guarantees that, in ea
h subgame, the ve
tor of the players' payo� for the remaining

stages is the Shapley value 
al
ulated for this subgame.

Let players adopt 
ooperative solution in sto
hasti
 game, i.e., they 
hoose impu-

tation σω = (σω1 , . . . , σ
ω
n )
T ∈ Σω

for every subgameGωc . The problem is to determine

the transfers that ensure the expe
ted payo� σωi for player i in every subgame Gωc .
If transfers are based on the payo� fun
tions in every state, then players 
an hardly

expe
t to get the payo� based on the initially 
hosen allo
ation rule. To over
ome

this, we propose a rule to transfer the players' total payo�, based on the method

for di�erential games (Petrosyan and Danilov, 1979).

Sin
e strategies are stationary, the number of states 
orresponds to the num-

ber of relevant �di�erent� histories. In turn, when players implement 
ooperative

strategies in the sto
hasti
 game (1), the number of relevant subgames is equal to

the number of possible states. Therefore, we need to determine a ve
tor of transfers

βi = (βω1

i , . . . , βω̄i )
T
for where βωi is the transfer of player i ∈ N in state ω ∈ Ω.

De�nition 21. The set of transfers {βi}i∈N is IDP if the following 
onditions are

satis�ed:

1. In ea
h state ω ∈ Ω, the sum of the transfers is equal to the sum of players'

payo�s in 
ooperative strategy pro�le η∗:

∑

i∈N

βωi =
∑

i∈N

Kω
i (a

ω∗). (52)

2. The expe
ted sum of transfers to player i ∈ N in the game Ḡ is equal to the ith


omponent of the initially 
hosen imputation σ̄.

We then de�ne the 
onditions of subgame 
onsisten
y for the imputation and

IDP.

De�nition 22. Imputation σ̄ = (σ̄1, . . . , σ̄n) and 
orresponding IDP {βi}i∈N are


alled subgame 
onsistent if the expe
ted sum of transfers to player i in ea
h sub-

gameGω is equal to the ith 
omponent of the initially 
hosen imputation in subgame
Gωc (in a

ordan
e with the prin
iple imputation σ̄ of the whole game is 
al
ulated).

9

Imputation distribution pro
edure was adapted for the 
lass of dis
ounted sto
has-

ti
 games in (Baranova and Petrosjan, 2006). See Petrosjan and Danilov (1979), and

Baranova and Petrosjan (2006).
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The following statement suggests the method of IDP 
onstru
tion for imputa-

tion σ̄.

Lemma 2. Let imputation σ̄ be su
h that (σ̄1, . . . , σ̄n) ∈ Σ̄ where σ̄i = π0σi, σi =
(σω1

i , . . ., σω̄i )
T
and (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

. Then the 
olle
tion {βi}i∈N where βi

al
ulated by

βi = (I− δΠ(η∗))σi, (53)

is an imputation distribution pro
edure

10

in game G.

Proof. Verify the IDP 
ondition:

∑

i∈N

βωi =
∑

i∈N

Kω
i (a

ω∗),

where aω∗ is an a
tion pro�le adopted under 
ooperative pro�le η∗ in state ω.
It is easy to show that βi from (53) satis�es (52). Sin
e

∑
i∈N β

ω
i is equal to

(I − δΠ(η∗))
∑

i∈N σi = (I − δΠ(η∗))V (N), and V (N) is determined by (7), then

equation (52) holds.

The se
ond IDP 
ondition is satis�ed sin
e the expe
ted total payo� of player i,
denoted as Bi, with new transfer βωi in state ω ∈ Ω satis�es the re
urrent equation:

Bωi = βωi + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)Bω′

i ,

or, in ve
torial form:

Bi = βi + δΠ(η∗)Bi, (54)

where Bi = (Bω1

i , . . . , Bω̄i )
T
. Equation (54) is equivalent to:

Bi = (I− δΠ(η∗))
−1
βi. (55)

Given the se
ond 
ondition of IDP and equation (55) we obtain:

σi = (I− δΠ(η∗))
−1
βi, (56)

where σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

. Equation (56) 
an be rewritten

equivalently as:

βi = (I− δΠ(η∗))σi. (57)

Finally, equation (53) equals to:

σi = βi + δΠ(η∗)σi. (58)

The se
ond item in the right part of (16) is the expe
ted value of the transfers


al
ulated for the subgame from the next stage onwards. Suppose that the impu-

tation for ea
h subgame is 
hosen following the same allo
ation rule that has been


hosen by the players at the beginning of the game. If players maintain 
ooperative

strategy pro�le η∗, then the expe
ted payo� of player i with new transfers is equal

to the 
orrespondent 
omponent of imputation σ̄ in 
ooperative sto
hasti
 game Gc.

10

Noti
e that IDP is uniquely de�ned by formula (53) if optimality prin
iple provides

unique 
ooperative solution σ̄ (e.g., if the solution is nu
leolus, the Shapley value or

another single-valued solution). If the 
ooperative solution is the set of imputations


ontaining more than one imputation, the method of IDP 
onstru
tion should be mod-

i�ed (see Parilina and Za

our, 2015).
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Given De�nition 21, for every imputation σ̄ = (σ̄1, . . . , σ̄n) ∈ Σ̄, where σ̄i =
π0σi, σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈ Σω, we 
an de�ne the regularization

of sto
hasti
 game G as follows:

De�nition 23. A σ-regularisation of sto
hasti
 game G (subgame Gω, ω ∈ Ω) is
non-
ooperative sto
hasti
 game Gσ (subgame Gωσ) if, for any player i ∈ N in state

ω, payo� fun
tion Kσ,ω
i (aω) is de�ned as:

Kσ,ω
i (aω) =

{
βωi , if aω = aω∗,

Kω
i (a

ω), if aω 6= aω∗,
(59)

where βωi is a 
omponent of PDP of player i de�ned by (53) and aω∗ = η∗(ω).

Equation (59) determines the modi�ed payo� fun
tion for game G.

Remark 6. The σ-regularisation 
hanges the payo� fun
tions in any state ω ∈ Ω
only when a
tion pro�les aω∗ = η∗(ω) are adopted. We may expe
t that players

agree to modify the initial payo� fun
tions to be sure that their 
ooperative solution

satis�es the prin
iple of subgame 
onsisten
y.

The following theorem shows that the players' payo�s in σ- regularization of initial
sto
hasti
 game G satisfy the prin
iple of subgame 
onsisten
y.

Theorem 9. Let σ̄ = (σ̄1, . . . , σ̄n) ∈ Σ̄ be the initially 
hosen imputation in game

G, where σ̄i = π0σi, σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈ Σω

, then σ-
regularization of sto
hasti
 game G satis�es the prin
iple of subgame 
onsisten
y,

i.e., the 
ooperative solution σ̄ is subgame 
onsistent in game Gσ.

Proof. At the beginning of the game, players 
hoose the following imputation: σ̄ =
(σ̄1, . . . , σ̄n) ∈ Σ̄, where σ̄i = π0σi, σi = (σω1

i , . . . , σω̄i )
T
, (σω1 , . . . , σ

ω
n ) = σω ∈

Σω
. A 
ooperative strategy pro�le is η∗. Consider the σ-regularization of game G

determined by De�nition 23, thus the set of transfers {βi}i∈N de�ned by (53) is a

IDP whi
h follows from Lemma 2. To prove that the σ-regularisation of the game G
satis�es the prin
iple of subgame 
onsisten
y, we need to 
al
ulate the dis
ounted

payo�s in every subgame of the game Gσ when a 
ooperative strategy pro�le η∗

o

urs. Consider any subgame Gωσ starting from state ω ∈ Ω. The dis
ounted payo�
of player i in this subgame is:

Eωi (η
∗) = βωi + δ

∑

ω′∈Ω

p(ω′|ω, aω∗)Ei(η∗), (60)

where Ei(η
∗) = (Eω1

i (η∗), . . . , Eω̄i (η
∗))T and Eωi (η

∗) is the dis
ounted payo� of

player i in subgame Gωσ starting from state ω when players adopt η∗. Equation (60)

an be rewritten in a ve
tor form:

Ei(η
∗) = βi + δΠ(η∗)Ei(η

∗),

or

Ei(η
∗) = (I− δΠ(η∗))

−1
βi.

Sin
e βi satis�es (53), we obtain

Ei(η
∗) = (I− δΠ(η∗))

−1
(I− δΠ(η∗)) σi = σi.

This equation proves that σ-regularization of game G satis�es the prin
iple of sub-

game 
onsisten
y.
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De�nition 23 and Theorem 9 provide a method of 
onstru
ting subgame 
onsis-

tent transfers in every state of a sto
hasti
 game. The imputation distribution pro-


edure βω1

i , . . . , βω̄i in states ω1, . . . , ω̄ ensures that a player i re
eives the same

expe
ted payo� in game Gσ (subgame G
ω
σ), as she planned to re
eive in 
ooperative

sto
hasti
 gameGc (subgame G
ω
c ). Moreover, the expe
ted payo� from future trans-

fers is in line with the same allo
ation rule 
hosen by the players at the beginning

of the game.

Strategi
 support. The prin
iple of strategi
 support ensures that, along the

whole game, an individual deviation from 
ooperative strategy pro�le in a regu-

larized game does not yield a higher payo� than 
ooperation. In other words, it

guarantees the existen
e of the Nash equilibrium in a regularized game with the

same payo�s that players expe
t to re
eive with the 
ooperative solution (whi
h

was the basis of regularization). This prin
iple was proposed in (Petrosyan, 1998).

We reformulate the prin
iple and then �nd 
onditions under whi
h Nash equilib-

rium is subgame perfe
t (see Selten, 1975) in a regularized game with the payo�s

des
ribed above.

The subgame perfe
tness is important for dynami
 games be
ause it allows to

guarantee the existen
e of the Nash equilibrium in any subgame with whi
h the

players' payo�s 
oin
ide with the 
ooperative ones. Comparing our approa
h with

the standard analysis of deterministi
 (repeated) games, the 
ondition of strategi


support for sto
hasti
 (or dynami
) games 
orresponds to the 
ondition of the ex-

isten
e of subgame perfe
t Nash equilibrium in grim-trigger strategies. The main

di�eren
e is that, in our setting, players �rst regularize the initial game by adapting

the IDP to a
hieve subgame 
onsisten
y.

Suppose players 
ome to a 
ooperative agreement, i. e., �nd a 
ooperative strat-

egy pro�le η∗ that maximises the expe
ted total payo� in the whole game. If a

player deviates from the 
ooperative strategy pro�le, then the other players swit
h

to trigger strategy from the next stage until forever to punish the deviating player.

The stri
t de�nition of a behavior strategy used by players in Nash equilibrium is

given below (see formula (63)). Here we assume that a sto
hasti
 game is the game

with perfe
t monitoring, that is, all players know the state of a 
urrent stage and

the history of the stage.

To begin with, we de�ne the Nash equilibrium in a regularized sto
hasti
 game.

Denote the expe
ted payo� of player i in σ-regularisation of subgame Gω starting

from state ω as Eω,σi .

De�nition 24. A Nash equilibrium in the regularised game Gσ is a behaviour

strategy pro�le ϕ∗ = (ϕ∗
1, . . . , ϕ

∗
n) su
h that, for any player i ∈ N and for any state

ω ∈ Ω, the 
ondition

Eω,σi (ϕ∗
i , ϕ

∗
N\i) > Eω,σi (ϕi, ϕ

∗
N\i) (61)

holds for any behaviour strategy of player i: ϕi ∈ Φi.

We assume that the behaviour strategy exhibits the following stru
ture. If, in the

history of stage k, all players use their 
ooperative strategies, then they implement

the 
ooperative 
orrelated a
tions also in stage k. Conversely, if before stage k the

individual deviation of a player z ∈ N is observed, then the 
oalition N\z punishes
player z. We assume that the punishment ensures that player z's payo� is at most her
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minimax value in any subgame.

11

Noti
e that, sin
e we fo
us on a Nash equilibrium,

we need to 
onsider only individual deviations from this pro�le.

12

If deviation o

urs

by more than one member of the 
oalition, the player may implement any strategy

from the her set of strategies.

We now outline the 
ondition under whi
h the Nash equilibrium with players'

payo�s equal the 
ooperative ones exists. For 
onvenien
e, de�ne

F ({i}) ≡ (Fω1({i}), . . . , F ω̄({i}))T ,
Fω({i}) = max

âω
i
∈∆(Aω

i
)

{
Kω
i (â

ω
i , a

ω∗
N\i) + δ

∑
ω′∈Ω

p(ω′|ω, (âωi , aω∗N\i))V
ω′

({i})
}
.

The following inequality:

σi = (I− δΠ(η∗))−1βi > F ({i}), (62)


ompares two payo�s for ea
h subgame: (i) the payo� when players adopt the 
o-

operative strategy pro�le in the left hand side, and (ii) the payo� of deviation plus

future punishment in the right hand side. If the �rst payo� is greater or equal to

the se
ond one, the player gets no bene�t from deviation. If this is true for any

player and any state, then the prin
iple of strategi
 stability is satis�ed. This result

is summarised in the following proposition.

Proposition 1. If in an σ-regularisation Gσ su
h that σ̄ = π0σ, inequality (14)

holds for any player i ∈ N , then there exists behaviour strategy pro�le ϕ̂ su
h that

it is the Nash equilibrium with players' payo�s (σ̄1,. . .,σ̄n).

Proof. We determine the behaviour strategy pro�le ϕ̂ = (ϕ̂1, . . . , ϕ̂n) where strate-
gies ϕ̂i, i ∈ N are:

ϕ̂i(h(k)) =





aω∗i , if ω(k) = ω, h(k) ⊂ h∗;

âωi (z), if ω(k) = ω, and ∃ l ∈ [1, k − 1],

z ∈ N , i 6= z: h(l) ⊂ h∗, and

(ω(l), a(l)) /∈ h∗, but

(ω(l), (a∗z(l), aN\z(l)) ∈ h∗;

any otherwise,

(63)

where aω∗i 
orresponds to the player i's 
ooperative a
tion, while âωi (z) ∈ ∆(Aωi )
is the player i's punishment that, together with a
tions âωi′(z) ∈ ∆(Aωi′ ), of players
i′ 6= i, i′ ∈ N\z, forms the a
tion (either in pure or mixed strategies) of 
oali-

tion N\z against player z.13 The proof of the proposition follows from the folk

theorem for sto
hasti
 games (Dutta, 1995) using the stru
ture of the behaviour

strategy (63). Noti
e that we do not de�ne the rea
tion of players when they ob-

serve the deviations of more than one player. This be
ause we fo
us here on the

11

The stri
t de�nition of the behaviour strategy is given in the proof of Proposition 1.

12

Things 
hange for subgame perfe
tness. In this 
ase, we need to prove that eq. (13) holds

for all possible histories and all stages. Therefore, we need to determine the strategy of

a player even if more than one player deviates. Strategy (71) de�nes the behaviour of

the player given any history.

13

Noti
e that the a
tions of the players from 
oalition N\z are 
orrelated.
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Nash equilibrium (not subgame perfe
t). When more than one player deviates, the

player 
hooses any strategy from the player's set of strategies. We now prove that

ϕ̂(·) = (ϕ̂1(·), . . . , ϕ̂n(·)) determined in (63) is a NE in the sto
hasti
 game Gσ.
Given strategy (63) and provided that all players do not deviate from a 
ooperative

strategy pro�le η∗, the dis
ounted payo� of player i in the subgame Gωσ , ω ∈ Ω, is:

Eωi (ϕ̂) = Eωi (η
∗).

Let Ei(ϕ̂) be equal to the ve
tor (E
ω1

i (ϕ̂), . . . , Eω̄i (ϕ̂))
T . Then for any player i ∈ N

the next equation holds:

Ei(ϕ̂) = (I− δΠ(η∗))−1βi. (64)

Consider next the pro�le of strategies (ϕz , ϕ̂N\z), when some player z deviates

from strategy ϕ̂z . For any k, there exists l ∈ [1, k − 1] su
h that h(l) ⊂ h∗ but

(ω(k), a(k)) /∈ h∗ and (ω(k), (a∗z(k), aN\z(k))) ∈ h∗. Without loss of generality, we

simplify ω(k) = ω. In words, the �rst individual deviation of player z o

urs at

stage k. We are now able to determine the total payo� of player z in the game Gσ
with strategy pro�les (ϕz , ϕ̂N\z) by

Ēσz (ϕz , ϕ̂N\z) = π0E
σ
z (ϕz, ϕ̂N\z),

where

Eσz (ϕz , ϕ̂N\z) = Eσ,[1,k−1]
z (ϕz , ϕ̂N\z) + δk−1Πk−1(ϕz , ϕ̂N\z)E

σ,[k,∞)
z (ϕz , ϕ̂N\z).

(65)

The �rst term in the right hand side of (65) is the expe
ted payo� of player z in

the �rst k − 1 stages of the game Gσ, the se
ond term is the expe
ted payo� of

player z in the subgame of Gσ beginning from stage k, where E
σ,[k,∞)
z (ϕz , ϕ̂N\z)

is the ve
tor (Eσ,1z (ϕz, ϕ̂N\z), . . . , E
σ,ω̄
z (ϕz , ϕ̂N\z))

T , with Eσ,ωz (ϕz , ϕ̂N\z) being the
player z's expe
ted payo� in the regularised subgame Gωσ beginning at state ω. Sin
e
there are no deviations from a 
ooperative strategy pro�le η∗ up to stage k− 1, the
following equalities hold:

Eσ,[1,k−1]
z (ϕz, ϕ̂N\z) = Eσ,[1,k−1]

z (η∗),

Πk−1(ϕz, ϕ̂N\z) = Πk−1(η∗).

We now �nd the dis
ounted payo� of player z in the subgame Gωσ beginning with

stage k and when state ω(k) is equal to ω. The following formula takes pla
e:

Eσ,ωz (ϕz , ϕ̂N\z) = Kω
z (â

ω
z , a

ω∗
N\z) + δ

∑

ω′∈Ω

p(ω′|ω, (âωz , aω∗N\z))V
ω′

({z}) , (66)

where âωz ∈ ∆(Aωz ). Players from the 
oalition N \ z punish player z by playing

the strategies whi
h allow player z to obtain her minmax payo� a

ording to the

de�nition of strategy pro�le ϕ̂. In (66), the value of the 
hara
teristi
 fun
tion

V ω
′

({z}) is determined by (9). Sin
e the expe
ted payo�s of player z in the strategy
pro�les ϕ̂ and (ϕz , ϕ̂N\z) do not 
hange up to stage k − 1, then a deviation may

in
rease player z's payo� only at the expenses of the expe
ted payo� in the subgame
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Gωσ , ω ∈ Ω. In parti
ular, the strategy pro�le (ϕz, ϕ̂N\z) ensures the following

expe
ted payo� of player z from stage k:

F ({z}) = max
âωz ∈∆(Aω

z )

{
Kω
z (â

ω
z , a

ω∗
N\z) + δ

∑

ω′∈Ω

p(ω′|ω, (âωz , aω∗N\z))V
ω′

({z})
}
. (67)

A

ording to the de�nition of PDP, the expe
ted payo� of player z in the regularised
subgame Gωσ with a pro�le of strategies ϕ̂(·) 
an be found from:

Eσz (ϕ̂) = (I− δΠ(η∗))−1βz = σz , (68)

where Eσz (ϕ̂) = (Eσ,ω1
z (ϕ̂), . . . , Eσ,ω̄z (ϕ̂))T . Taking into a

ount (14) from (67), (68)

and the above dis
ussion we get

Eσz (ϕ̂) > Eσz (ϕz , ϕ̂N\z),

whi
h is satis�ed when inequality

σz = (I− δΠ (η∗))
−1
βz ≥ F ({z}) (69)

is true. In inequality (69) is satis�ed for any player z ∈ N , a player is not willing to

deviate from the 
ooperative strategy pro�le in any subgame of the σ-regularisation
of game G.

Thus the behaviour strategy pro�le (63) is a NE in the σ-regularisation of game
G. The dis
ounted payo� of i in the game Gσ with pro�le of strategies ϕ̂ is equal to

σ̄i, where σ̄i = π0σi, while σi = (σω1

i , . . . , σω̄i )
T

onsists of ith 
omponents of impu-

tations σω1
, . . ., σω̄ derived from the 
ooperative subgames G1

, . . ., Gω̄ a

ordingly.

Noti
e that the players' strategies used in a punishing regime of the behaviour

strategies (63) are not individually rational, i.e., player i punishing the deviated

player z needs to implement the strategies minimizing the payo� of player z in a

subgame whi
h may be not pro�table for player i and may motivate player i to devi-
ate from strategy pro�le formed by (63). Therefore, the strategy pro�le determined

by strategies (63) is not subgame perfe
t.

We investigate now the 
onditions to obtain a subgame perfe
t Nash equilibrium

(SPNE) of the σ-regularisation of G. To do so, we need to determine the behaviour
strategy pro�le su
h that, for any state o

urring in any period with any history,

individual deviation is not pro�table.

We assume that, if the history of the stage di�ers from the 
ooperative history,

then all players implement a Nash equilibrium of the game G denoted by η̂ne =
(η̂ne1 , . . . , η̂nen ) su
h that η̂nei (ω) ∈ ∆(Aωi ).

14

Again for 
onvenien
e, de�ne

Q({i}) ≡ (Qω1({i}), . . . , Qω̄({i}))T ,
Qω({i}) = max

âω
i
∈∆(Aω

i
)

{
Kω
i (â

ω
i , a

ω∗
N\i) + δ

∑
ω′∈Ω

p(ω′|ω, (âωi , aω∗N\i))E
ω′

i (ηne)

}
,

and

σi = (I− δΠ(η∗))−1βi > Q({i}). (70)

14

In the 
ase of multiple Nash equilibria, one of them should be 
hosen for the realisation

of the punishment. Noti
e that this 
an be implemented be
ause players use 
orrelated

strategies.
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The 
ondition of existen
e of a SPNE are summarised in the following proposition.

The validity of inequality (70) implies that the prin
iple of strategi
 stability holds

when the Nash equilibrium is subgame perfe
t.

Proposition 2. If, in an σ-regularisation Gσ su
h that σ̄ = π0σ, inequality (70)

holds for any player i ∈ N , then there exists behaviour strategy pro�le ϕ̃ whi
h is a

SPNE with players' payo�s (σ̄1,. . .,σ̄n).

Proof. The proof is similar to the proof of Proposition 1 using the stru
ture of the

�new� strategy pro�le. Determine this behaviour strategy pro�le as ϕ̃ = (ϕ̃1, . . . , ϕ̃n)
where strategies ϕ̃i, i ∈ N are:

ϕ̃i(h(k)) =

{
aω∗i , if ω(k) = ω, h(k) ⊂ h∗;

âω,nei , if h(k) * h∗,
(71)

where âω,nei ∈ ∆(Aωi ) is player's i's punishment, whi
h 
an be either in pure or

mixed strategies. Noti
e that, if a multi-player deviation is observed in the history,

all players implement η̂ne.

Irrational-behaviour-proof. Subgame 
onsisten
y and strategi
 support assume

that the players are fully rational. However, in reality 
ooperation may be broken

down by irrational reasons. For instan
e, a player may use irrational a
ts to extort

additional gains if some 
ir
umstan
es allow it. Refusal of other players to yield to

his extortion would result in the dissolution of the 
ooperative s
heme. Thus in this


ase, a deviation would imply an �irrational behaviour.�

15

D.W.K. Yeung proposed a 
ondition

16

under whi
h, even if an irrational be-

haviour emerges in the game, a player is 
ertain to obtain at least her individual

payo� (Yeung, 2006). This pro
edure 
an be explained as follows. Suppose two dif-

ferent s
enarios. In the �rst s
enario, a player 
ooperates until a 
ertain period, and

then the 
ooperation breaks up. In the se
ond s
enario, a player plays individually

during the whole game. If the payo� in the �rst s
enario is not less than the payo�

in the se
ond s
enario, then the prin
iple of irrational behaviour proof is satis�ed.

The following de�nition provides the 
ondition to satisfy this prin
iple.

De�nition 25. Cooperative solution σ̄ and the 
orresponding IDP satisfy the prin-


iple of irrational-behaviour-proof if

Eσi [1, k] + δkΠk(η∗)V ({i}) > V ({i}), for every i ∈ N and any k = 1, 2, . . . , (72)

where Eσi [1, k] is the expe
ted player i's payo� at the �rst k stages in σ-regularisa-
tion Gσ.

The underlying assumption is that, before the beginning of ea
h stage, players

know if the 
ooperation has broken down or not, so that the information is not

delayed. In the left hand side of inequality (15), the �rst term is equal to the

expe
ted value of player i's payo� if, in the �rst k stages, players play 
ooperative

strategy pro�le η∗ and σ-regularization of game Gσ is made. The se
ond term is

the expe
ted payo� of player i from stage k + 1, when the 
ooperation breaks up.

The right hand side of (15) is the payo� of player i if she plays individually from

the start onwards.

15

Note that it is possible to formulate an analogous 
ondition for repeated games.

16

The so-
alled Yeung's 
ondition or prin
iple of irrational- behaviour-proof was adopted

for linear-quadrati
 games in (Tur, 2014, Markovkin, 2006).
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Theorem 10. If inequality

(I− δΠ(η∗))(σi − V ({i})) > 0 (73)

holds for any i ∈ N , then the 
ooperative solution σ̄ and the 
orresponding IDP

{βi}i∈N satisfy the prin
iple of irrational-behaviour-proof.

Proof. In what follows, we show that 
ondition (73) is su�
ient for inequality (15)
to hold for any k = 1, 2, . . .. The proof is based on the mathemati
al indu
tion

method. First, we rewrite (15) for k = 1. Then we transform (73) by 
onsidering

de�nition σi and using IDP (56). We get

V ({i}) 6 βi + δΠ(η∗)V ({i}). (74)

The inequalities 
oin
ide and it proves Theorem for k = 1.
Suppose that (73) implies (15) for k = l. Rewriting (15) for k = l we yield:

V ({i}) 6 βi + . . .+ δl−1Π l−1(η∗)βi + δlΠ l(η∗)V ({i}). (75)

We adopt the same pro
edure for k = l + 1. Inequality (15) for k = l + 1 is:

V ({i}) 6 βi + . . .+ δlΠ l(η∗)βi + δl+1Π l+1(η∗)V ({i}). (76)

Next we need to prove that, if (73) holds, then (15) holds for k = l + 1. After
transformation the right hand side of (76) is:

βi + δΠ(η∗)
{
βi + δΠ(η∗)βi + . . .+ δl−1Π l−1(η∗)βi + δlΠ l(η∗)V ({i})

}
.

Taking into a

ount (75), the expression in bra
es is not less than V ({i}). Therefore
the right part of (76) is not less than βi + δΠ(η∗)V ({i}). From equation (53) and
(73), we get (15) for k = l + 1, whi
h proves the theorem.

Corollary 1. For irrational-behaviour-proof prin
iple it is su�
ient that for ea
h

i ∈ N the following inequality is true:

Ki(ã)− βi 6 δ
(
σmin
i − V max ({i})

)
, (77)

where Ki(ã) =

(
max

a
ω1
i

∈A
ω1
i

Kω1

i (aω1∗‖aω1

i ), . . . , max
aω̄
i
∈Aω̄

i

K ω̄
i (a

ω̄∗‖aω̄i )
)T

, and

max
aω
i
∈Aω

i

Kω
i (a

ω∗‖aωi ) is the maximal payo� of player i whi
h he obtains deviating

from a
tion pro�le aω∗ whi
h is the part of 
ooperative strategy pro�le η∗ satisfying


ondition (6), and ã = arg max
aω
i
∈Aω

i

Kω
i (a

ω∗‖aωi ) for ea
h state ω ∈ Ω and ea
h player

i ∈ N :

σmin
i =

(
min
ω∈Ω

σωi , . . . ,min
ω∈Ω

σωi

)T
,

V max ({i}) =
(
max
ω∈Ω

V ω ({i}) , . . . ,max
ω∈Ω

V ω ({i})
)T

.

Proof. Let su�
ient 
ondition (77) be satis�ed. It 
an be rewritten in the following
way:

βi + δσmin
i > Ki(ã) + δV max ({i}) . (78)
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Estimate the left- and right- hand parts of inequality (78). As matrix of transition
probabilities Π(η∗) is sto
hasti
, we obtain:

βi + δσmin
i = βi + δΠ(η∗)σmin

i 6 βi + δΠ(η∗)σi. (79)

For the right-hand side of inequality (78), the equity is true:

Ki(ã) + δV max ({i}) = Ki(ã) + δΠ(˜̃η)V max ({i}) , (80)

where Π(˜̃a) is a sto
hasti
 matrix, and

˜̃η = (˜̃ηi : i ∈ N) is a pro�le in stationary

strategies su
h that

˜̃ηj =

{
arg max

ηi∈Hi

Π(η∗‖ηi)V ({i}), if j = i

η∗j , if j 6= i

Therefore, we have the inequality:

Ki(ã) + δΠ(˜̃η)V max ({i}) = max
ai∈Ai

Ki(a
∗‖ai) + δ max

ηi∈Ξi

{Π(η∗‖ηi)V ({i})} >

max
ηi∈Hi

{Ki(a
∗‖ai) + δΠ(η∗‖ηi)V ({i})} . (81)

The inequalities (78), (79), (80) and (81) implies 
ondition (73). Therefore, by

Theorem 1 the prin
iple of irrational-behaviour-proof is satis�ed.

3.5. Existen
e of stable 
ooperative solution

In this se
tion we dis
uss the 
onditions guaranteeing the existen
e of a stable


ooperative solution. First, we need to mention that the allo
ation rule adopted

should give a non-empty subset of the imputation set. Cooperative solutions su
h

as the Shapley value or the nu
leolus always exist and we may 
al
ulate them for

any subgame using the values of the 
hara
teristi
 fun
tion given by (7), (9) and

(51).

The existen
e of a subgame 
onsistent 
ooperative solution follows from Theorem

9 and the method of 
onstru
tion of IDP for σ̄. For a given 
ooperative solution σ̄,
the regularisation of a sto
hasti
 game determines new payo� fun
tions to players in

order to satisfy the prin
iple of subgame 
onsisten
y. Hen
e, the players' dis
ounted

payo�s in σ-regularisation of the initial game are equal to the 
omponents of 
oope-
rative solution σ̄, whi
h is subgame 
onsistent.

Thus, if the payments to the players are modi�ed through σ-regularisation, then
subgame 
onsistent 
ooperative solution σ̄ exists in general.

To verify whether 
ooperative solution σ̄ satis�es the prin
iple of strategi
 sta-

bility and irrational-behaviour-proof, we need to 
he
k that the following system of

inequalities holds:

{
σi = (I− δΠ(η∗))−1βi > F ({i}), i ∈ N,

(I− δΠ(η∗))(σi − V ({i})) > 0, i ∈ N.
(82)

These 
onditions on dis
ount fa
tor δ are similar to those ne
essary to prove that a

ooperative strategy pro�le is SPNE in repeated games. This system is non-linear

with respe
t to δ and the solution of the system 
annot be obtained in an expli
it

form.
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However, we may state the existen
e of a stable 
ooperative solution for the


lass of sto
hasti
 games in whi
h the 
ooperative strategy pro�le 
oin
ides with

the Nash equilibrium and the players are symmetri
. In this 
ase, the Shapley value

satis�es the prin
iples of stable 
ooperation. Further, we examine the solution of

system (82) on a spe
i�
 
lass of sto
hasti
 games with two states and two players.

Example 3. Sto
hasti
 game of 
ompetition between asymmetri
 �rms.

Non
ooperative game. Consider Cournot duopoly with asymmetri
 �rms. De-

s
ribe it with a sto
hasti
 game setting like Prisoners' Dilemma. Let the set of states

be Ω = {ω1, ω2}, where ωj = 〈N,Aωj

1 , A
ωj

2 ,K
ωj

1 ,K
ωj

2 〉, j = 1, 2, and A
ωj

i = {Cj , Dj}
is the set of a
tions of player i = 1, 2. Strategies Cj and Dj stands for �
ollude� and

�deviate�, respe
tively. For state ω1, players' payo�s are:

C1 D1( )
C1 (7, 7) (1, 8)
D1 (8, 1) (4, 5)

whereas for state ω2 players' payo�s are:

C2 D2( )
C2 (9, 9) (1, 10)
D2 (16.5, 1) (6, 5)

State ω1 
an be interpreted as a market with a low demand, and state ω2 as a mar-

ket with a high demand. Both one-shot games have the unique Nash equilibrium

when both �rms deviate with out
omes (4, 5) and (6, 5) in states ω1 and ω2 re-

spe
tively. Conversely, the 
ooperative a
tion pro�le that maximizes the sum of the

payo�s are �to 
ollude� with out
omes (7, 7) and (9, 9) respe
tively. When playing

the 
ooperative a
tion pro�le, players get equal payo�s, but in the Nash equilib-

rium out
ome they obtain asymmetri
 payo�s. In parti
ular, with a low demand

Firm 1 has a lower payo� than Firm 2, and with a high demand Firm 2 has lower

payo� than Firm 1. This s
enario 
ould be interpreted as the result of te
hni
al fea-

tures of �rms' produ
tion. For instan
e, Firm 2 
an be endowed with a produ
tion

te
hnology being more e�
ient in produ
ing low levels of output.

In state ω2, players also di�er in the pro�les when one �rm �
olludes� and the


ompetitor �deviates�. In parti
ular, Firm 1's deviation payo� is larger than Firm 2's

one. Hen
e the asymmetry of the players in�uen
es the 
ooperative payo� imputa-

tion. Another feature of state ω2 is that, when both �rms 
ollude, their summarized

payo� is not mu
h larger the one in a
tion pro�le (D2, C2) (18 against 17.5). There-
fore, if the probability of transiting from pro�le (D2, C2) to state ω1 is larger than

from pro�le (C2, C2), then players may agree on playing pro�le (D2, C2) to avoid

transition from high to low demand state.

Let transition probabilities from states ω1 and ω2 be

(
(0.3, 0.7) (0.9, 0.1)
(0.4, 0.6) (0.3, 0.7)

)
,

(
(0.9, 0.1) (0.4, 0.6)
(0.1, 0.9) (0.3, 0.7)

)

where the element (k, l) of the matrix 
onsists of transition probabilities from state

ωj to states ω1, ω2, on 
ondition that player 1 
hooses a
tions kth and player 2


hooses lth. We may mention that the probability of transiting to state ω1 in a
tion
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pro�le (C2, C2) is mu
h higher than the probability to transit to this state in a
tion
pro�le (D2, C2), that is 0.9 
ontrary to 0.1. Let the dis
ount fa
tor be δ = 0.99 and
the ve
tor of the initial distribution over the set of states be π0 = (0.5, 0.5).

Cooperative game. Determine 
ooperative game Gc based on sto
hasti
 game G.
For it, we 
ompute 
ooperative solution η∗ = (η∗1 , η

∗
2) in stationary strategies using

(5) and (6). We obtain a unique stationary strategy η∗1 = (C1, D2) for player 1,
and η∗2 = (C1, C2) for player 2 whi
h give maximal total players' payo� V̄ ({1, 2}) =
π0V ({1, 2}) = 1704.61. Following this pro�le, in state ω1 the pro�le of 
ooperative

strategies (when both players 
ollude) gives payo� 7 for ea
h �rm. In state ω2, with

a 
ooperative strategy pro�le, Firm 1 deviates and Firm 2 
olludes, and the payo�

of �rm 2 is less than its payo� in the Nash equilibrium. But this will be 
ompensated

by Firm 1 when they apply an imputation of their joint payo�. Therefore, the values

of a 
hara
teristi
 fun
tion for a grand 
oalition are

V ({1, 2}) =
(
Eω1

1 (η∗) + Eω1
2 (η∗)

Eω2
1 (η∗) + Eω2

2 (η∗)

)
=

(
1702.43
1706.80

)
.

By de�nition (51) the values of 
hara
teristi
 fun
tion for the empty set are zero:

V (∅) =

(
0
0

)
.

Cal
ulate the values of 
hara
teristi
 fun
tion V (S) = (V ω1(S), V ω2(S)) for 
oali-
tions S = {1} and S = {2} using (7):

V ({1}) =
(
538.60
540.60

)
, V ({2}) =

(
500.00
500.00

)
.

These are Firms' payo�s in the Nash equilibrium when both �rms deviate in all

states, i.e., they adopt strategy pro�les (D1, D1) and (D2, D2).
Using (10), we may 
al
ulate V̄ (S) for the whole game and all 
oalitions:

V̄ (∅) = 0.00, V̄ ({1}) = 539.60, V̄ ({2}) = 500.00, V̄ ({1, 2}) = 1704.61.

Thus, we determine 
ooperative sto
hasti
 subgame G
ωj
c as the set 〈N, V ωj (·)〉,

j = 1, 2, and 
ooperative sto
hasti
 game Gc as the set 〈N, V̄ (·)〉.
Cooperative solution: the Shapley value. We suppose that players 
hoose the

Shapley value as a 
ooperative solution of their total payo� in 
ooperative sto
hasti


game Gc and in all subgames G
ωj
c , j = 1, 2. For two-player game the Shapley value

is 
al
ulated by formula:

σ
ωj

i = V ωj ({i}) + V ωj ({1, 2})− V ωj ({1})− V ωj ({2})
2

,

where i = 1, 2 and j ∈ {1, 2}, j 6= i. The Shapley values in subgames are

σ1 =

(
870.516
873.698

)
, σ2 =

(
831.916
833.098

)
.

Then taking into a

ount the ve
tor of initial distribution π0, we are able to deter-
mine the Shapley value σ̄ in the whole game Gc by De�nition 20:

σ̄ = (σ̄1, σ̄2) = (872.107, 832.507).
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Subgame 
onsisten
y. Now we verify if the Shapley value satis�es the prin
iples

of stable 
ooperation and begin with subgame 
onsisten
y. If �rms re
eive stage

payo�s a

ording to their initially de�ned payo�s, then their dis
ounted payo�s

in the whole game will be equal 1526.809 and 177.805 whi
h are di�erent from

the 
omponents of the Shapley value whi
h are 872.107 and 832.507. De�ne the

imputation distribution pro
edure or transfer payments to the players su
h that they

�nally re
eive the 
omponents of the Shapley value and the imputation distribution

pro
edure is subgame-
onsistent. Using that σ̄ equals π0σ and equation (53), we

obtain IDP:

β1 = (I− δΠ(η∗))σ1 =

(
6.500
9.052

)
, β2 = (I − δΠ(η∗))σ2 =

(
7.500
8.448

)
.

De�ne σ-regularisation of initial sto
hasti
 game G using IDP and De�nition 23. We

rede�ne payo� fun
tions of the players in the initial game in all states when players

adopt 
ooperative strategy pro�le substituting the payo�s by 
orresponding 
om-

ponents of the IDP. Therefore, players' payo�s in states ω1 and ω2 
orrespondingly

equal: (
(6.500, 7.500) (1, 8)

(8, 1) (4, 5)

)
,

(
(9, 9) (1, 10)

(9.052, 8.448) (6, 5)

)
.

In a regularized game in the state with a low demand (state ω1), both �rms adopt

a
tion �to 
ollude� and re
eive payo�s (6.5, 7.5). Noti
e that their payo�s in the

initial game are (7, 7). Therefore, Firm 1 gives 0.5 to Firm 2. In the state with a

high demand (state ω2) Firm 1 plays a
tion �to deviate� while Firm 2 �
olludes�.

This behavior is pres
ribed by the 
ooperative strategy pro�le. In state ω2 players'

payo�s are (9.052, 8.448). Noti
e that the payo�s in the initial game are (16.5, 1).
Therefore, Firm 1 gets 16.5 − 9.052 = 7.448 from Firm 2. If the regularization of

the initial game is made by the above des
ribed method, the Shapley value and the


orresponding IDP are subgame-
onsistent.

Strategi
 support. We now 
he
k for strategi
 support of the Shapley value, i.

e., we 
he
k if Firms have bene�ts from individual deviations from the 
ooperative

strategy pro�le. First, 
onsider state ω1. As the a
tion pro�le played in 
ooperation

is not the Nash equilibrium, then the players may have bene�ts from deviation. We

verify if the inequality is true:

σω1

i > Fω1({i}),

for ea
h i = 1, 2, where

Fω1({i}) = max
a
ω1
i

∈A
ω1
i

a
ω1
i

6=a
ω1∗
i

{
Kω1

i (aω1

i , a
ω1∗
N\i) + δ

∑

ω′∈Ω

p(ω′|ω1, (a
ω1

i , a
ω1∗
N\i))V

ω′

({i})
}
.

Inequality (14) for Firm 1 is written in this way:

870.516 > 8 + 0.99
(
0.4 0.6

)(538.60
540.60

)
= 542.402,
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and for Firm 2:

831.916 > 8 + 0.99
(
0.9 0.1

)(500.00
500.00

)
= 503.

In state ω2, 
ooperative a
tion pro�le (D2, C2) is the Nash equilibrium. Therefore,

players 
an't in
rease their payo�s by deviations. Therefore, we may 
on
lude that

inequality (14) holds for state ω2. The 
ondition of strategi
 support is satis�ed.

Irrational-behavior-proof. To verify the 
ondition of irrational behavior proof, we

need to 
ompare players' payo�s in two 
ases:

1) A �rm plays individually during the whole game,

2) A �rm 
ooperates with the other �rm until some step, and after this it starts

playing individually.

Noti
e that in the se
ond 
ase, when the �rms 
ooperate, they re
eive payo�s in

a

ordan
e with IDP, 
onstru
ted on the basis of thee initially 
hosen 
ooperative

solution.

If the player's payo� in 
ase 1) is not greater than his payo� in 
ase 2), then the

prin
iple of irrational behavior proof against irrational behavior is satis�ed. This

has been proved in Proposition 1, sin
e

(I− δΠ(η∗))(σ1 − V ({1})) = (I− δΠ(η∗))(σ2 − V ({2})) =
(
2.500
3.448

)
> 0.

3.6. Strong transferable equilibrium

Theorem 1 
an be generalized to the 
ase when several players deviate, i. e., we may

prove that if the 
ondition similar to inequality (14) is satis�ed in σ-regularization
Gσ of sto
hasti
 game G, there exists a strong transferable equilibrium with payo�s

(σ̄1, . . . , σ̄n). In this 
ase, players 
an implement a spe
ially 
onstru
ted pro�le in

trigger strategies, where as a punishment for deviated 
oalition, not deviated players

will implement trigger strategies that allow a deviated 
oalition to obtain a minimax

payo� in any subgame. De�ne a strong transferable equilibrium and prove a theorem

similar to Theorem 1.

De�nition 26. (Petrosyan and Kuzutin, 2000) We 
all pro�le ϕ̃ = (ϕ̃1, . . . , ϕ̃n)
strong transferable equilibrium in regularized game Gσ if for any 
oalition S ⊆ N ,

S 6= ∅, inequality ∑

i∈S

Ēσi (ϕ̃) >
∑

i∈S

Ēσi (ϕ̃ ‖ ϕS) (83)

holds for any behaviour strategy of 
oalition S: ϕS = (ϕi : i ∈ S) ∈ ∏i∈S Φi. Here
Ēσi (·) is a dis
ounted payo� of player i in σ-regularisation of game G.

We will prove a theorem allowing us to obtain a 
ondition on the game param-

eters for whi
h in regularized game Gσ there exists a transferable equilibrium with

players' payo�s equal to the 
orresponding 
omponents of the 
ooperative solution

a

ording to whi
h the initial sto
hasti
 game is regularized.

Theorem 11. If in regularized game Gσ su
h that 
ooperative solution satis�es


ondition σ̄ = π0σ, the inequality holds:

∑

i∈S

βi > (I− δΠ(η∗))F̃ (S) (84)
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for any 
oalition S ⊆ N , S 6= ∅, where F̃ (S) = (F̃ω1(S), . . . , F̃ ω̄(S))T ,

F̃ω(S) = max
aωS∈

∏

i∈S

∆(Aω
i )

aωS 6=aω∗
S

{∑
i∈S

Kω
i (a

ω∗ ‖ aωS) + δ
∑
ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S)

}
, then in re-

gularized game Gσ there exists a strong transferable equilibrium with players' payo�s

(σ̄1, . . ., σ̄n).

Proof. The proof of the theorem is 
lose the proof of Theorem 1 but instead of

strategy (63) we use the following behaviour strategy ϕ′
i, i ∈ N :

ϕ′
i(h(k)) =





aω∗i , if ω(k) = ω, h(k) ⊂ h∗;

aω′i (S), if ω(k) = ω and ∃ l ∈ [1, k − 1],

S ⊂ N , i /∈ S: h(l) ⊂ h∗ and

(ω(l), a(l)) /∈ h∗, but

(ω(l), (a∗S(l), aN\S(l)) ∈ h∗;

any otherwise,

(85)

where aω∗i is an a
tion of player i in a 
ooperative mode, while aω′i (S) ∈ ∆(Aωi ) is
an a
tion of player i in a trigger mode whi
h jointly with a
tions aω′i′ (S) ∈ ∆(Aωi′ )
of players i′ 6= i, i′ ∈ N\S forms an a
tion of 
oalition N\S against 
oalition S and

allows 
oalition S to obtain minmax value V ω(S) in subgame Gω.

3.7. Strongly subgame 
onsisten
y of the 
ore

Now suppose that the solution of a 
ooperative sto
hasti
 game is the subset of

the imputation set that 
ontains more than one point. For de�niteness, let su
h a

solution be the 
ore. We formulate the problem of strongly subgame 
onsisten
y of

the 
ore and propose su�
ient 
onditions for strongly subgame 
onsisten
y of the


ore for sto
hasti
 games with in�nite duration given by (1).

Suppose that the 
ores of sto
hasti
 game Gc and any subgame G
ω
c , ω ∈ Ω, are

nonempty. In 
ooperation, players agree on the joint implementation of 
ooperative

strategy pro�le η∗ and expe
t to obtain the 
omponents of the imputation belonging
to the 
ore CO. Rea
hing intermediate states ω ∈ Ω, player i ∈ N 
hooses a
tion aω∗i
in a

ordan
e with 
ooperative strategy η∗i and gets payo� Kω

i (a
ω∗). If the players

re
al
ulate the solution, i.e., they �nd a solution of 
ooperative subgame Gωc , then
the 
urrent solution will be the 
ore COω . It would be reasonable to require that

the payo� re
eived by a player in state ω summarized with the expe
ted sum of any

imputations from the 
ores COω
′

, ω′ ∈ Ω, following state ω, would be an imputation
from the 
ore COω . If this property holds for any state ω ∈ Ω, then the 
ore of


ooperative sto
hasti
 game Gc is strongly subgame-
onsistent.
To determine a strongly subgame-
onsistent 
ore, we de�ne the so-
alled ex-

pe
ted 
ore in state ω, i.e., we de�ne the set of expe
ted imputations belonging to

the 
ores whi
h are the solutions of the following subgames. For ea
h state ω ∈ Ω,
we de�ne the expe
ted 
ore:

EC(ω) =

{
σ(ω) =

∑

ω′∈Ω

p(ω′|ω, aω∗)σω′ | σω′ ∈ COω
′

}
. (86)

Set EC(ω) 
ontains ve
tors σ(ω) whi
h are mathemati
al expe
tations of all possible
sets of the imputations from the 
ores of subgames starting in states whi
h are
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realised after the 
urrent state with respe
t to probability distribution

{p(ω′|ω, aω∗), ω′ ∈ Ω}.
Remind De�nition 21 of the imputation distribution pro
edure. The �rst 
ondi-

tion (52) in a de�nition 
an be 
alled the 
ondition of �attainability of the imputation

distribution pro
edure� be
ause it allows to ensure that in any realized state the

sum of payments to the players is equal to the sum of their payo�s when they imple-

ment 
ooperative strategies. The se
ond 
ondition guarantees players to re
eive the


omponents of the initially 
hosen imputation from the 
ore of 
ooperative game

Gc in the sense of mathemati
al expe
tation, if payments to the players throughout
the game will be made in a

ordan
e with distribution pro
edure {βω : ω ∈ Ω}.

We now de�ne the distribution pro
edure of imputation σ̄ = (σ̄1, . . . , σ̄n), where
σ̄i = π0σi, (σ

ω
1 , . . . , σ

ω
n ) = σω ∈ COω , su
h that the 
ore is strongly subgame-


onsistent.

De�nition 27. We 
all the 
ore CO of 
ooperative sto
hasti
 game Gc strongly
subgame-
onsistent if there exists a distribution pro
edure {βω : ω ∈ Ω} of the

imputation from the 
ore CO su
h that for any state ω ∈ Ω the following in
lusions

hold:

βω ⊕ δEC(ω) ⊂ COω , (87)

Bω ∈ COω , ω ∈ Ω (88)

where

βω ⊕ δEC(ω) =

{
βω + δσ(ω) : σ(ω) ∈ EC(ω)

}
.

And distribution pro
edure {βω : ω ∈ Ω} is 
alled strongly subgame-
onsistent.

Condition (87) means that the set of ve
tors equal to the sum of the imputation

distribution pro
edure of the player in state ω and an imputation from the expe
ted


ore for this state, is 
ontained in the 
ore of subgame starting from state ω. This

ondition imposes restri
tions on payments to the players in the realized states, and

very often is not satis�ed for an arbitrary game, if payments to the players are made

in a

ordan
e with the initially de�ned payo� fun
tions.

We impose additional restri
tions on the 
hara
teristi
 fun
tions of subgames

starting from the states of set Ω in order to obtain su�
ient 
onditions for strongly

subgame 
onsisten
y of the 
ore. Denote by EV ω(S) the expe
ted value of the


hara
teristi
 fun
tion 
al
ulated for 
oalition S ⊆ N for subgames following state

ω:

EV ω(S) =
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S).

Denote by

∆V ω(S) = V ω(S)− δEV ω(S)

the di�eren
e between the values of a 
hara
teristi
 fun
tion in state ω and the

expe
ted value of the 
hara
teristi
 fun
tion. We denote by ∆COω an analog of

the 
ore 
onstru
ted with fun
tion ∆V ω(S). We formulate a su�
ient 
ondition for

strongly subgame 
onsisten
y of IDP and the 
ore CO.
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Theorem 12. Let for ea
h state ω ∈ Ω the 
ore COω and the set ∆COω be

nonempty. If for every state ω ∈ Ω distribution pro
edure {βω : ω ∈ Ω} of the

imputation from the 
ore CO satis�es 
onditions:

βω ∈ ∆COω , (89)

Bω ∈ COω , ω ∈ Ω, (90)

then the 
ore CO and pro
edure {βω : ω ∈ Ω} are strongly subgame-
onsistent.

Proof. We prove that any ve
tor βω ∈ ∆COω satisfying 
onditions (89) and (90)

is a strongly subgame-
onsistent distribution pro
edure of imputation σ̄ ∈ CO, i.
e., 
onditions (87) and (88) from De�nition 27 hold. Condition (90) 
oin
ides with

(88), so, we need to prove that in
lusion (87) holds for ea
h state ω ∈ Ω. In state ω

onsider any ve
tor σ(ω) ∈ EC(ω) and �nd sum βω + δσ(ω). Now we verify if the

latter ve
tor belongs to the 
ore CO. First, 
al
ulate the sum of all 
omponents of

the ve
tor:

∑

i∈N

βωi + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)
∑

i∈N

σω
′

i =

= V ω(N)− δ
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(N)+

+ δ
∑

ω′∈Ω

p(ω′|ω, aω∗)
∑

i∈N

σω
′

i = V ω(N),

whi
h means that property of 
olle
tive rationality holds.

Next, 
onsider S ⊂ N , S 6= N :

∑

i∈S

βωi + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)
∑

i∈S

σω
′

i >

> V ω(S) + δ
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S)−

− δ
∑

ω′∈Ω

p(ω′|ω, aω∗)V ω′

(S) = V ω(S).

Sin
e the 
hoi
e of state ω ∈ Ω is random, we 
on
lude that the 
ore of the

game Gc and pro
edure {βω : ω ∈ Ω} are strongly subgame-
onsistent.

When analogs of the 
ores ∆COω are nonempty for any state ω, Theorem 12

provides a method of 
onstru
tion of a strongly subgame-
onsistent distribution

pro
edure of imputations from the 
ore. Noti
e that generally not all imputations

from the 
ore 
an be realised with distribution pro
edure {βω : ω ∈ Ω} des
ribed

above.

3.8. Sto
hasti
 game with one absorbing state

Non
ooperative game. In this se
tion we 
onsider a two-player game with two

states. The set of players is N = {1, 2}. Let state ω1 be given by:

ω1 :

C D( )
C (a, a+ 1) (c, b)
D (b, c) (d+ 1, d)

(91)
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Players have two pure a
tions, C (to 
ooperate) and D (to defe
t). The 
onstants

satisfy the inequalities:

b > a+ 1, a > d+ 1, d > c > 0.

We also assume

2a+ 1 > b+ c. (92)

From inequality (92) it follows that players re
eive a larger total payo� by 
oop-

erating than defe
ting. The game represents Prisoners' Dilemma with asymmetri


players: in a
tion pro�le (C,C) the payo� of player 1 is less than the payo� of player
2, but in pro�le (D,D) the payo� of player 2 is less than the payo� of player 1. If

a
tion pro�les (C,C) and (D,D) are 
hosen in state ω1, a sto
hasti
 game remains

in this state with probability 1. But if pro�les (C,D) or (D,C) are 
hosen, the

game transits to state ω2 whi
h is �absorbing�, i.e. this state will be realised in all

following stages of the game with probability 1. In state ω2 both players have a

unique a
tion D and their payo�s will be equal to d:

ω2 :
D

( )D d, d (93)

The matri
es of transition probabilities from states ω1 and ω2 are

(
(1, 0) (0, 1)
(0, 1) (1, 0)

)
,
(
0, 1
)
.

The dis
ount fa
tor is δ ∈ (0, 1) and the ve
tor of the initial distribution on the set
of states is π0 = (1, 0), i.e., a game starts with state ω1.

Cooperative game. For this game we 
onstru
t a 
ooperative game by determin-

ing the 
hara
teristi
 fun
tions for all subgames and the whole game. We then show

how we need to redistribute the stage payo�s adopting IDP to obtain the subgame


onsisten
y of the Shapley value. The 
ondition of strategi
 stability gives the lower

bound of the dis
ount fa
tor.

The �rst step is to determine 
ooperative form Gc of non-
ooperative sto
hasti

game G. In parti
ular, we need to �nd a 
ooperative strategy pro�le and then


al
ulate the values of 
hara
teristi
 fun
tions for ea
h subgame (starting from

states ω1 and ω2) and for the whole game.

We 
ompute 
ooperative strategy pro�le η∗ = (η∗1 , η
∗
2) using (5) and (6). In a


ooperative strategy pro�le both players 
hoose C in state ω1 and D in state ω2.

The total players' payo� with pro�le η∗ is equal to the value of the 
hara
teristi


fun
tion of 
oalition N :

V̄ ({1, 2}) = Ē1(η
∗) + Ē2(η

∗) = 2a+ 1 + δ(2a+ 1) + . . . =
2a+ 1

1− δ
. (94)

In parti
ular, the values of 
hara
teristi
 fun
tion V ω({1, 2}) for both subgames are

V ({1, 2}) =
(
V ω1({1, 2})
V ω2({1, 2})

)
=



2a+ 1

1− δ
2d

1− δ


 . (95)
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We 
an now 
al
ulate the values of 
hara
teristi
 fun
tions of 
oalitions {1} and

{2} for both states using (9):

V ω1({1}) = max
η1

min
η2

Eω1
1 (η1, η2) = min

η2
max
η1

Eω1
1 (η1, η2) =

d+ 1

1− δ
,

V ω1({2}) = max
η2

min
η1

Eω1
2 (η1, η2) = min

η1
max
η2

Eω1
2 (η1, η2) =

d

1− δ
,

V ω2({1}) = V ω2({2}) = d

1− δ
.

By equation (51), the values of the 
hara
teristi
 fun
tions for the empty set are

zero:

V (∅) =

(
0
0

)
.

Using (10), we then 
al
ulate the values of the 
hara
teristi
 fun
tion V̄ (·) for all
possible 
oalitions taking into a

ount the initial distribution of states π0 = (1, 0):

V̄ (∅) = 0, V̄ ({1}) = d+ 1

1− δ
, V̄ ({2}) = d

1− δ
, V̄ ({1, 2}) = 2a+ 1

1− δ
.

In this way, we determine 
ooperative sto
hasti
 subgames G
ωj
c as the set

〈N, V ωj (·)〉, j = 1, 2, and 
ooperative sto
hasti
 game Gc as the set 〈N, V̄ (·)〉.

The Shapley value. We assume that players 
hoose the Shapley value as an im-

putation of their total payo� in 
ooperative sto
hasti
 game Gc and in all subgames
G
ωj
c , j = 1, 2. For a two-person game, this is given by:

σ
ωj

i = V ωj ({i}) + V ωj ({1, 2})− V ωj ({1})− V ωj ({2})
2

,

where i = 1, 2 and j 6= i. The Shapley values for the subgames are:

σ1 =

(
σω1
1

σω2

1

)
=



a+ 1

1− δ
d

1− δ


 , σ2 =

(
σω1
2

σω2

2

)
=




a

1− δ
d

1− δ


 .

Taking into a

ount the ve
tor of initial distribution π0, we are able to determine
the Shapley value σ̄ in game Gc by De�nition 20:

σ̄ = (σ̄1, σ̄2) =

(
a+ 1

1− δ
,

a

1− δ

)
.

Subgame 
onsisten
y of the Shapley value. We are now in a position to verify

the prin
iples of stable 
ooperation. Begin with subgame 
onsisten
y. If players get

payo�s a

ording to the initially de�ned payo� fun
tions, their total payo�s will

be

a
1−δ and

a+1
1−δ in 
ontrast to the 
omponents of the Shapley value

a+1
1−δ and

a
1−δ .

In order to obtain subgame 
onsisten
y, we 
ompute IDP by equating σ̄ to π0σ by
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using (53):

β1 = (I− δΠ(η∗))σ1 =

(
1− δ 0
0 1− δ

)


a+ 1

1− δ
d

1− δ


 =

(
a+ 1
d

)
,

β2 = (I− δΠ(η∗))σ2 =

(
1− δ 0
0 1− δ

)



a

1− δ
d

1− δ


 =

(
a
d

)
.

We then determine σ-regularisation of the initial sto
hasti
 game G using the IDP

and De�nition 23. We re-establish the payo� fun
tions of the initial game in state ω1

when players adopt the 
ooperative a
tion pro�les. Therefore, the players' payo�s

in state ω1 are: (
(a+ 1, a) (c, b)
(b, c) (d+ 1, d)

)
.

In state ω1, when both players adopt the 
ooperative strategy pro�le (both players

use a
tion C in state ω1), their payo�s are (a+ 1, a). Sin
e their payo�s in the

initial game were (a, a+ 1), player 2 transfers 1 to player 1. If the initial game is

regularised by the method des
ribed above, the Shapley value and the 
orresponding

PDP satisfy the prin
iple of subgame 
onsisten
y (see Theorem 9).

Strategi
 support of the Shapley value. We now evaluate the strategi
 sup-

port of the Shapley value by 
he
king if players may deviate from the 
ooperative

strategy pro�le. We 
onsider the possible deviations of players in state ω1 (in state

ω2 players have the unique a
tion). In this state the 
ooperative a
tion pro�le is not

the Nash equilibrium, thus players may bene�t from deviation. We should 
he
k if

the following inequality

σω1

i > Fω1({i}), (96)

is true for any i = 1, 2, where

Fω1({i}) = max
a
ω1
i

∈∆(A
ω1
i

)

{
Kω1

i (aω1

i , aω1∗
N\i) + δ

∑

ω′∈Ω

p(ω′|ω1, (a
ω1

i , a
ω1∗
N\i))V

ω′

({i})
}
.

For player 1, inequality (96) yields:

a+ 1

1− δ
> b+ δd+ δ2d+ . . . = b +

δd

1− δ
,

for player 2:

a

1− δ
> b+ δd+ δ2d+ . . . = b+

δd

1− δ
.

These two inequalities give the 
ondition on δ when the prin
iple of strategi
 support
is satis�ed:

δ >
b− a

b− d
.
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Prin
iple of irrational-behaviour-proof. In order to verify irrational-behaviour

proof, we need to 
ompare the payo�s of ea
h player when:

1) A player a
ts as an �individual player� during the whole game.

2) A player 
ooperates with a 
ompetitor until some stage and then plays indi-

vidually.

If the payo� of 2) is not less than the payo� of 1), then this prin
iple is satis�ed.

This is 
on�rmed by Theorem 1, sin
e:

(I − δΠ(η∗))(σ1 − V ({1})) =
(
1− δ 0
0 1− δ

)


a+ 1

1− δ
− d+ 1

1− δ
d

1− δ
− d

1− δ


 =

(
a− d
0

)
> 0,

(I − δΠ(η∗))(σ2 − V ({2})) =
(
1− δ 0
0 1− δ

)



a

1− δ
− d

1− δ
d

1− δ
− d

1− δ


 =

(
a− d
0

)
> 0.

Both players bene�t from 
ooperation even if IDP is adopted initially at some stages

and then the game is played as a non-
ooperative one with initially de�ned payo�

fun
tions as 
ompared with a game played individually by both players during the

whole game.

Results. To sum up, we 
an formulate the 
onditions under whi
h the Shapley value

in the des
ribed sto
hasti
 game satis�es the three prin
iples of stable 
ooperation

(subgame 
onsisten
y, strategi
 support, irrational-behavior-proof):

1. A dis
ount fa
tor is to be δ > b−a
b−d .

2. A sto
hasti
 game is σ-regularised, i. e., the players' payo�s in state ω1 are:

C D( )
C (a+ 1, a) (c, b)
D (b, c) (d+ 1, d)

and in state ω2 they must not be 
hanged.

4. Con
lusion

The paper summarizes the results on 
ooperative sto
hasti
 games with �nite and

in�nite duration based on the author's and 
oauthors' publi
ations. Se
tion 2 is

devoted to des
ribing 
ooperative sto
hasti
 games with �nite duration and 
on-

sidering some properties of 
ooperative solutions applying in dynami
s. Se
tion

3 
ontains a method of 
onstru
tion of a 
ooperative sto
hasti
 game with in-

�nite duration. The prin
iples of stable 
ooperation in these 
lass of games are

examined in this se
tion. There are several numeri
al examples representing theo-

reti
al results. For the appli
ations of theoreti
al results see the following publi
a-

tions (Bure and Parilina, 2017, Parilina, 2009, Parilina, 2008, Parilina and Sedakov,

2015).
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