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Abstrat We study game equilibria in a model of prodution and exter-

nalities in regular network with three types of agents who possess di�erent

produtivities. Eah agent may invest a part of her endowment (for instane,

time or money) at the �rst stage; onsumption at the seond stage depends

on her own investment and produtivity as well as on the investments of

her neighbors in the network. We introdue adjustment dynamis desribed

by di�erential equations. We study whih equilibria are possible, and whih

of these equilidria are dynamially stable under di�erent ombinations of

parameters of the game.

Keywords: network, game equilibrium, heterogeneous agents, network for-

mation, produtivity.

1. Introdution

Soial network analysis beame an important researh �eld, both as a sub-

jet area and as a methodologial approah appliable to analysis of interrela-

tions in various omplex network strutures, not only soial, but politial, eo-

nomi, urban. A speial plae is played by the approah of network games (e.g.

Bramoulle and Kranton, 2007, Galeotti et al., 2010, Goyal, 2009, Jakson, 2008,

Jakson and Zenou, 2014, Martemyanov and Matveenko, 2014), whih assumes

that agents in network at as rational deision makers, and the pro�le of ations of

all agents in the network is a game equilibrium. Deision of eah agent is supposed

to be in�uened by behavior (or by knowledge) of her neighbors in the network.

In majority of researh on game equilibria in networks the agents are assumed to

be homogeneous (exept their positions in the network), and the problem is to

study the relation between the agents' positions in the network and their behavior

in the game equilibrium, haraterized by one or another measure of entrality

(e.g. Ballester et al., 2006, Bramoulle et al., 2014, Matveenko and Korolev, 2017,

Naghizadeh and Liu, 2017).

However, diversity and heterogeneity have beome an important aspet of on-

temporary soial and eonomi life (many examples are provided by researhers of

inlusiveness and soial ohesion, e.g. Aemoglu and Robinson, 2012). Correspond-

ingly, along with aounting for position of agents in the network, an important

task is to aount for heterogeneity of agents as a fator shaping di�erenes in their

behavior and wellbeing. This diretion of researh beomes atual in the literature

(see e.g. Goyal, 2018).

⋆
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In the present paper we add heterogeneity of agents and adjustment dy-

namis into a two-period onsumption-investment model with network ex-

ternalities (see (Romer, 1986) for a speial ase of omplete network and

(Matveenko and Korolev, 2017) for a general network ase). The model onsiders

situations in whih at the �rst stage eah agent in network, at the expense of dimin-

ishing urrent onsumption, may make investment of some resoure (suh as money

or time) with the goal to inrease her seond stage onsumption. The latter depends

not only on her own investment and produtivity but also on investments by her

neighbors in the network. Total utility of eah agent depends on her onsumptions

at both stages. Suh situations are typial for families, ommunities, international

organizations, innovative industries, et.

We use the onept of `Nash equilibrium with externalities', similar to the one

introdued by Romer, 1986 and Luas, 1988. It is assumed that the agent makes

her deision, being in a de�nite environment whih is formed by herself and by her

neighbors in the network. Though she partiipates herself in the environment, the

agent in the moment of deision-making onsiders the environment as exogenously

given.

Matveenko et al., 2017 assume the presene of two types of agents haraterized

by di�erent produtivities, but study only the ase of omplete networks. In the

present paper we onsider a more general lass of regular (equidegree) networks

with three types of agents.

We identify onditions under whih an agent behaves in equilibrium in a de�nite

way, being `passive' (not investing), `ative' (investing a part of the available endow-

ment) or `hyperative' (investing the whole endowment), study dependene of the

investment on the pure externality reeived by the agent and the in�uene of the

heterogeneity on the game equilibria. We introdue adjustment dynamis into the

model and study dynamis of transition to the equilibrium. The dynamis pattern

and the nature of the resulting equilibrium depend on the parameters harateriz-

ing heterogeneous agents. A questions studied in the paper is the enumerating of

symmetri equilibria whih are possible in triregular network and �nding onditions

under whih these equilibria are possible. We study also the orrelation between pa-

rameters of network, under whih these equilibria are dynamially stable. We make

onlusions about behavior of agents of di�erent types after juntion of regular

networks; in partiular, how the behavior of nonadopters (passive agents) hanges

when they onnet to adopters (ative or hyperative) agents.

The paper is organized in the following way. The game model is formulated in

Setion 2. Agent's behavior in equilibrium is haraterized in Setion 3. Setion 4

studies equilibria with heterogeneous agents in regular network of a speial lass.

Setion 5 introdues and studies the adjustment dynamis whih may start after a

small disturbane of initial equilibrium or after a juntion of networks. Setion 6

onludes.

2. The model

In a network (undireted graph) eah node i = 1, 2, ..., n represents an agent. At

the �rst stage eah agent i possesses initial endowment of good, e (it may be, for

instane, time or money) and uses it partially for onsumption at the �rst stage,

ci1, and partially for investment into knowledge, ki:
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ci1 + ki = e, i = 1, 2, ..., n.

Investment immediately transforms one-to-one into knowledge, whih is used in

prodution of good for onsumption on the seond stage, ci2. Prodution in node i
is desribed by prodution funtion:

F (ki,Ki) = gikiKi, gi > 0,

whih depends on the state of knowledge in i-th node, ki, and on environment, Ki.

The environment is the sum of investments by the agent himself and her neighbors:

Ki = ki + K̃i, K̃i =
∑

j∈N(i)

ki

where N(i) � is the set of neighboring nodes of node i. The sum of investments of

neighbors, K̃i, will be referred as pure externality.

Preferenes of agent i are desribed by quadrati utility funtion:

Ui(c
i
1, c

i
2) = ci1(e− aci1) + dic

i
2,

where di > 0; a is a satiation oe�ient. It is assumed that ci1 ∈ [0, e], the utility
inreases in ci1 and is onave (the marginal utility dereases) with respet to ci1. A
su�ient ondition leading to the assumed property of the utility is 0 < a < 1/2;
we assume that this inequality is satis�ed.

We will denote the produt digi by bi and assume that a < bi. Sine inrease of
any of parameters di, gi promotes inrease of the seond stage onsumption, we will
all bi produtivity. We will assume that bi 6= 2a, i = 1, 2, ..., n. If bi > 2a, we will
say that i-th agent is produtive, and if bi < 2a � that the agent is unprodutive.

Three ways of behavior are possible: agent i is alled passive if she makes zero

investment, ki = 0 (i.e. onsumes the whole endowment at the �rst stage); ative if

0 < ki < e; hyperative if she makes maximally possible investment e (i.e. onsumes
nothing at the �rst stage).

Let us onsider the following game. Players are the agents i = 1, 2, ..., n. Possible
ations (strategies) of player i are values of investment ki from the segment [0, e].
Nash equilibrium with externalities (for shortness, equilibrium) is a pro�le of ations

k∗1 , k
∗
2 , ..., k

∗
n, suh that eah k∗i is a solution of the following problem P (Ki) of

maximization of i-th player's utility given environment Ki:

Ui(c
i
1, c

i
2) −→

ci1,c
i
2,k

i
max





ci1 = e− ki,

ci2 = F (ki,Ki),

ci1 ≥ 0, ci2 ≥ 0, ki ≥ 0,

where the environment Ki is de�ned by the pro�le k∗1 , k
∗
2 , ..., k

∗
n:

Ki = k∗i +
∑

j∈N(i)

k∗j .

Substituting the onstraints-equalities into the objetive funtion, we obtain a

new funtion (payo� funtion):
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Vi(ki,Ki) = Ui(e − ki, Fi(ki,Ki)) = (e− ki)(e − a(e−Ki)) + bikiKi =

e2(1− a)− kie(1− 2a)− ak2i + bikiKi.
(1)

If all players' solutions are internal (0 < k∗i < e, i = 1, 2, ..., n), i.e. all players are
ative, the equilibrium will be referred to as inner equilibrium. Clearly, the inner

equilibrium (if it exists for given values of parameters) is de�ned by the system

D1Vi(ki,Ki) = 0, i = 1, 2, ..., n. (2)

Here

D1Vi(ki,Ki) = e(2a− 1)− 2aki + biKi. (3)

3. Indiation of agent's ways of behavior

We will denote by kSi the root of the equation

D1Vi(ki,Ki) = (bi − 2a)ki + biK̃i − e(1− 2a) = 0.

Thus,

kSi = e(2a−1)+biK̃i

2a−bi
,

where K̃i is the pure externality reeived by the agent.

Remark 1. Lemma 2.1 in (Matveenko et al., 2017) and Corollary 2.1 in

(Matveenko et al., 2017) give us a pratial method of examination, whether the ol-

letion of agents' investments is in equilibrium. Namely, the olletion k1, k2, . . . , kn
may be in equilibrium only if for every agent i, i = 1, 2, . . . , n

1) If ki = 0, then K̃i ≤ e(1−2a)
bi

;

2) If 0 < ki < e, then ki = kSi ;

3) If ki = e, then K̃i ≥ e(1−bi)
bi

.

Lemma 1 (Lemma 2.2 in (Matveenko et al., 2017)). .

In equilibrium i-th agent is passive i�

Ki ≤
e(1− 2a)

bi
; (4)

i-th agent is ative i�

e(1− 2a)

bi
< Ki <

e

bi
; (5)

i-th agent is hyperative i�

Ki ≥
e

bi
. (6)

Remark 2. In any network, in whih all agents have the same environment, there

annot be equilibrium in whih an agent with a higher produtivity is ative while

an agent with a lower produtivity is hyperative, or when an agent with a higher

produtivity is passive while an agent with a lower produtivity is ative or hyper-

ative.
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4. Equilibria in triregular network with heterogeneous agents

De�nition 1. Let the set of nodes 1, 2, . . . , n be deomposed into disjoint lasses

in suh way that any nodes belonging the same lass have the same produtivity

and the same numbers of neighbors from eah lass. The lasses will be referred

as types of nodes. Type i is haraterized by produtivity bi and by vetor ti =
(ti1, ti2, . . . , tik), where tij is the number of neighbors of type j for any node of type
i.

Let us desribe an algorithm of subdivision of the set of nodes of network into

types. Let s be a urrent number of subsets of subdivision. Initially s is the number
of various produtivities.

Iteration of the algorithm. Consider nodes of the �rst subset. If all of them

have the same numbers of neighbors in eah subset 1, 2, ..., s, then the �rst subset

is not hanged. In the opposite ase, we divide the �rst subset into new subsets

in suh way that all nodes of eah new subset have the same vetor of numbers of

neighbors in subsets.

We proeed in preisely same way with the seond, the third, ..., the s-th subset.
If on the present iteration the number of subsets s have not hanged, then the

algorithm �nishes its work. If s has inreased, then the new iteration is exeuted.

The number of subsets s does not derease in proess of the algorithm. Sine

s is bounded from above by the number of nodes in the network, the algorithm

onverges. It is lear that the algorithm divides the set of nodes into the minimal

possible number of lasses.

De�nition 2. A network in whih eah node has the same degree (number of

neighbors) is referred as regular.

De�nition 3. Let us onsider a regular network onsisting of three types of agents

with produtivities bi and vetors ti = (ti1, ti2, ti3), i = 1, 2, 3; b1 > b2 > b3. Let the
following onditions be satis�ed:

t11 + 1 = t21 = t31 = n1,

t12 = t22 + 1 = t32 = n2,

t13 = t23 = t33 + 1 = n3.

Suh network will be referred as triregular.

The triregularity seems to be a natural spei�ation of regularity. In triregular

network, any agent has ni links with type i (i = 1, 2, 3). (Sine eah agent of type i
is "linked" in some sense with herself, she has only (ni − 1) links with other agents

of type i).

A speial ase of triregular network is a omplete network with n1 + n2 + n3

nodes whih is reeived in result of juntion of three omplete networks with n1, n2

and n3 nodes.

De�nition 4. Equilibrium (or any other situation) is alled symmetri, if all play-

ers of the same type hoose the same ation (make the same investment).



118 Vladimir Matveenko, Maria Garmash, Alexei Korolev

Let a triregular network be in a symmetri equilibrium, in whih eah ith type

agent makes investment ki, i = 1, 2, 3. Then, for eah agent environment is equal

to K = k1n1 + k2n2 + k3n3. Aording to Remark 2, only 10 symmetri equilibria

are possible. The following proposition lists these possible symmetri equilibria and

provides onditions of their existene.

Proposition 1. In triregular network the following symmetri equilibria exist.

1) Equilibrium with all hyperative agents (HHH) is possible i�

b1 > b2 > b3 ≥ 1

n1 + n2 + n3
. (7)

2) Equilibrium in whih 1

st

and 2

nd

types agents are hyperative and 3

rd

type

agents are ative (HHA) is possible if

0 <
1− 2a− (n1 + n2)b3

n3b3 − 2a
< 1, (8)

n1 + n2 + n3
1− 2a− (n1 + n2)b3

n3b3 − 2a
≥ 1

b2
. (9)

3) Equilibrium in whih 1

st

type agents are hyperative and 2

nd

and 3

rd

types

agents are ative (HAA) is possible if

0 <
e(1− 2a)[(b3 − b2)n3 − 2a] + 2aen1b2

2a[2a− (n2b2 + n3b3)]
< 1, (10)

0 <
e(1− 2a)[(b2 − b3)n2 − 2a] + 2aen1b3

2a[2a− (n2b2 + n3b3)]
< 1, (11)

n1 + n2
e(1− 2a)[(b3 − b2)n3 − 2a] + 2aen1b2

2a[2a− (n2b2 + n3b3)]
+

n3
e(1− 2a)[(b2 − b3)n2 − 2a] + 2aen1b3

2a[2a− (n2b2 + n3b3)]
≥ 1

b1
. (12)

4) Equilibrium in whih 1

st

and 2

nd

types agents are hyperative and 3

rd

type

agents are passive (HHP) is possible i�

b1 > b2 ≥ 1

n1 + n2
, b3 ≤ 1− 2a

n1 + n2
. (13)

5) Equilibrium in whih 1

st

type agents are hyperative, 2

nd

type agents are

ative and 3

rd

type agents are passive (HAP) is possible if

0 <
1− 2a− n1b2
n2b2 − 2a

< 1, (14)

1

b1
≤ n1 + n2

1− 2a− n1b2
n2b2 − 2a

≤ 1− 2a

b3
. (15)

6) Equilibrium in whih 1

st

type agents are hyperative and 2

nd

and 3

rd

types

agents are passive (HPP) is possible i�
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b1 ≥ 1

n1
, b3 < b2 ≤ 1− 2a

n1
. (16)

7) Equilibrium in whih agents of all types are ative (AAA) exists if

0 <
(1− 2a)

(
(n2 + n3)b1 − n2b2 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) < 1, (17)

0 <
(1− 2a)

(
(n1 + n3)b2 − n1b1 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) < 1, (18)

0 <
(1− 2a)

(
(n1 + n2)b3 − n1b1 − n2b2 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) < 1. (19)

8) Equilibrium in whih 1

st

type agents and 2

nd

type agents are ative and 3

rd

type agents are passive (AAP) is possible if

0 <
(1− 2a)

(
n2(b2 − b1)− 2a

)

2a(2a− n1b1 − n2b2)
< 1, (20)

0 <
(1− 2a)

(
n1(b1 − b2)− 2a

)

2a(2a− n1b1 − n2b2)
< 1, (21)

n1

(1− 2a)
(
n2(b2 − b1)− 2a

)

2a(2a− n1b1 − n2b2)
+ n2

(1− 2a)
(
n1(b1 − b2)− 2a

)

2a(2a− n1b1 − n2b2)
≤ 1− 2a

b3
. (22)

9) Equilibrium in whih 1

st

type agents are ative and 2

nd

type agents and 3

rd

type agents are passive (APP) is possible if

b1 >
1

n1
, (23)

n1(1 − 2a)

n1b1 − 2a
≤ e(1− 2a)

b2
<
e(1− 2a)

b3
. (24)

10) Equilibrium with all passive agents (PPP) is always possible.

Proof. 1) Follows from Lemma 1.

2) This equilibrium is possible if inequality (8) is heked, beause equation (2)

for 3

rd

type agents is

n1b3e+ n2b3e+ (n3b3 − 2a)k3 = e(1− 2a).

Aording to (6), the equilibrium exists under (9).

3) The system of equations (2) for 2

nd

and 3

rd

types agents is

{
n1b2e+ (n2b2 − 2a)k2 + n3b2k3 = e(1− 2a),

n1b3e+ n2b3k2 + (n3b3 − 2a)k3 = e(1− 2a).

The solution of this system is
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kS2 =
e(1− 2a)[(b3 − b2)n3 − 2a] + 2aen1b2

2a[2a− (n2b2 + n3b3)]
,

kS3 =
e(1− 2a)[(b2 − b3)n2 − 2a] + 2aen1b3

2a[2a− (n2b2 + n3b3)]
.

That implies the onditions (10) and (11). From (6) follows the ondition (12).

4) Sine in this ase the environment is K = (n1 + n2)e, aording to (4) and

(6), the equilibrium exists i� (13) is heked.

5) The equation (2) for 2

nd

type agents is

n1b2e+ (n2b2 − 2a)k2 = e(1− 2a),

that implies the ondition (14). From (4) and (6) follows ondition (15).

6) Aording to (4) and (6), the equilibrium is possible i� (16) holds.

7) The system of equations (2) turns into





(n1b1 − 2a)k1 + n2b1k2 + n3b1k3 = e(1− 2a),

n1b2k1 + (n2b2 − 2a)k2 + n3b2k3 = e(1− 2a),

n1b3k1 + n2b3k2 + (n3b3 − 2a)k3 = e(1− 2a).

We solve this system by Kramer method and obtain

kS1 =
e(1− 2a)

(
(n2 + n3)b1 − n2b2 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) ,

kS2 =
e(1− 2a)

(
(n1 + n3)b2 − n1b1 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) ,

kS3 =
e(1− 2a)

(
(n1 + n2)b3 − n1b1 − n2b2 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) .

Hene, the neessary and su�ient onditions of existene of the inner equilib-

rium are (17), (18), (19). Under these inequalities, the inner equilibrium is

k1 = kS1 , k2 = kS2 , k3 = kS3 .

8) The system of equations (2) for 1

st

and 2

nd

types agents in this ase is

{
(n1b1 − 2a)k1 + b1n2k2 = e(1− 2a),

n1b2k1 + (n2b2 − 2a)k2 = e(1− 2a).

The solution of this system by Kramer method is

kS1 =
e(1− 2a)

(
n2(b2 − b1)− 2a

)

2a(2a− n1b1 − n2b2)
,

kS2 =
e(1− 2a)

(
n1(b1 − b2)− 2a

)

2a(2a− n1b1 − n2b2)
.
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That implies the onditions (20) and (21). Aording to (4), the equilibrium is

possible if (22).

9) This equilibrium is possible if inequality

0 <
1− 2a

n1b1 − 2a
< 1 (25)

is heked, beause equation (2) for 1

st

type agents is

(n1b1 − 2a)k1 = e(1− 2a).

But (25) is equivalent to (23). Aording to (4), the equilibrium exists under

(24).

10) Follows from Lemma 1.

⊓⊔

5. Adjustment dynamis and dynami stability of equilibria

Now we introdue adjustment dynamis whih may start after a small deviation

from equilibrium or after juntion of networks eah of whih was initially in equi-

librium. We model the adjustment dynamis in the following way.

De�nition 5. In the adjustment proess, eah agent maximizes her utility by

hoosing a level of her investment; at the moment of deision-making she onsiders

her environment as exogenously given. Correspondingly, if ki(t0) = 0, where t0 is

an arbitrary moment of time, and D1Vi(ki,Ki)|ki=0 ≤ 0, then ki(t) = 0 for any

t > t0, and if ki(t0) = e and D1Vi(ki,Ki)|ki=e ≥ 0, then ki(t) = e for any t > t0; in
all other ases, ki(t) satis�es the di�erential equation:

k̇i =
bi
2a
K̃i +

bi − 2a

2a
ki −

e(1− 2a)

2a
. (26)

De�nition 6. The equilibrium is alled dynamially stable if, after a small devia-

tion of one of the agents from the equilibrium, dynamis starts whih returns the

equilibrium bak to the initial state. In the opposite ase, the equilibrium is alled

dynamially unstable.

In triregular network, let in initial time period eah i-th type agent invest k0i
(i = 1, 2, 3). Correspondingly, the environment (ommon for all agents) in the initial
period is K = n1k01 + n2k02 + n3k03.

Assume that for eah i (i = 1, 2, 3) either k0i = 0 and D1V1(ki,K)|ki=0 > 0, or
k0i = e and D1V1(ki,K)|ki=e < 0, or k0i ∈ (0, e). Then De�nition 4.1 implies that

the dynamis is desribed by the system of di�erential equations.





k̇1 = n1b1−2a
2a k1 +

n2b1
2a k2 +

n3b1
2a k3 +

e(2a−1)
2a ,

k̇2 = n1b2
2a k1 +

n2b2−2a
2a k2 +

n3b2
2a k3 +

e(2a−1)
2a ,

k̇3 = n1b3
2a k1 +

n2b3
2a k2 +

n3b3−2a
2a k3 +

e(2a−1)
2a

(27)

with initial onditions

k0i = k0i, i = 1, 2, 3. (28)
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Proposition 2. The general solution of the system of di�erential equations (27)

has the form

k(t) = C1 · exp{−t}



−n3

0
n1


+ C2 · exp{−t}




0
−n3

n2


+

+C3 · exp
{(n1b1 + n2b2 + n3b3

2a
− 1

)
t
}


b1
b2
b3


+



D1

D2

D3


 , (29)

where (D1, D2, D3)
T
is the steady state of (27),

Di =
e(1− 2a)

[
(n1 + n2 + n3)bi − (n1b1 + n2b2 + n3b3) + 2a

]

2a
(
n1b1 + n2b2 + n3b3 − 2a

) , i = 1, 2, 3. (30)

The solution of the Cauhy di�erential problem (27)�(28) has the form

k(t) =
k0 − D̃ + (D1 − k01)(n1b1 + n2b2 + n3b3)n3

(n1b1 + n2b2 + n3b3)n3
· exp{−t}



−n3

0
n1


+

+
k0 − D̃ + (D2 − k02)(n1b1 + n2b2 + n3b3)n3

(n1b1 + n2b2 + n3b3)n3
· exp{−t}




0
−n3

n2


+

+
k0 − D̃

n1b1 + n2b2 + n3b3
· exp

{(n1b1 + n2b2 + n3b3
2a

− 1

)
t
}


b1
b2
b3


+

+



D1

D2

D3


 , (31)

where

D̃ = n1D1 + n2D2 + n3D3 =
e(1− 2a)(n1 + n2 + n3)

n1b1 + n2b2 + n3b3 − 2a
, (32)

k0 = n1k
0
1 + n2k

0
2 + n3k

0
3 . (33)

Proof. The harateristi equation of system (27) is

∣∣∣∣∣∣

n1b1
2a − (λ + 1) n2b1

2a
n3b1
2a

n1b2
2a

n2b2
2a − (λ+ 1) n3b2

2a
n1b3
2a

n2b3
2a

n3b3
2a − (λ+ 1)

∣∣∣∣∣∣
=

= (λ + 1)2
(
n1b1
2a

+
n2b2
2a

+
n3b3
2a

)
+ (λ+ 1)3 = 0.

Thus, the eigenvalues are
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λ1,2 = −1, λ3 =
n1b1 + n2b2 + n3b3

2a
− 1.

Eigenvetors orresponding λ = −1 are

e1 =



−n3

0
n1




and

e2 =




0
−n3

n2


 ,

while an eigenvetor orresponding λ3 an be found as a solution of the system of

equations





−(n2b2 + n3b3)x1 + n2b1x2 + n3b1x3 = 0,

n1b2x1 − (n1b1 + n3b3)x2 + n3b2x3 = 0,

n1b3x1 + n2b3x2 − (n1b1 + n2b2)x3 = 0.

We �nd

e2 =



b1
b2
b3


 .

The general solution of the homogeneous system of di�erential equations orre-

sponding (27) has the form

(k(t))g = C1 · exp{−t}



−n3

0
n1


+ C2 · exp{−t}




0
−n3

n2


+

+C3 · exp
{(n1b1 + n2b2 + n3b3

2a
− 1

)
t
}


b1
b2
b3


 .

As a partial solution of the system (27) we take its steady state, i.e. the solution

of the linear system

(n1x1 + n2x2 + n3x3)bi − 2axi = e(1− 2a), i = 1, 2, 3.

The solution is (30); hene, the general solution of the system (27) has the

form (29). In solution of the Cauhy problem (27)�(28), onstants of integration are

de�ned from the initial onditions:



k01
k02
k03


 = C1



−n3

0
n1


+ C2




0
−n3

n2


+ C3



b1
b2
b3


+



D1

D2

D3


 . (34)
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Multiplying the �rst salar equation of system (34) by n1, the seond equation

by n2 and the third equation by n3 and adding we obtain

C3 =
k0 − D̃

n1b1 + n2b2 + n3b3
.

Substituting this expression in the �rst and the seond equations of system (34)

we obtain

C1 =
k0 − D̃ + (D1 − k01)(n1b1 + n2b2 + n3b3)n3

n1b1 + n2b2 + n3b3)n3
,

C2 =
k0 − D̃ + (D2 − k02)(n1b1 + n2b2 + n3b3)n3

n1b1 + n2b2 + n3b3)n3
.

Substituting for C1, C2 and C3 into (29) we obtain (31). ⊓⊔

Proposition 3. The onditions of dynami stability/instability of the equilibria

listed in Proposition 1, if they exist, are the following.

1. The equilibrium with all hyperative agents (HHH) is stable i�

b1 > b2 > b3 >
1

n1 + n2 + n3
. (35)

2. Equilibrium in whih 1

st

and 2

nd

types agents are hyperative and 3

rd

type

agents are ative (HHA) is stable i� n3 = 1 and

1− 2a

n1 + n2
< b3 <

1

n1 + n2 + 1
, (36)

n1 + n2 +
1− 2a− (n1 + n2)b3

b3 − 2a
>

1

b2
>

1

b1
. (37)

3. Equilibrium in whih 1

st

type agents are hyperative and 2

nd

and 3

rd

types

agents are ative (HAA) is unstable.

4. Equilibrium in whih 1

st

and 2

nd

types agents are hyperative and 3

rd

type

agents are passive (HHP) is stable i�

b1 > b2 >
1

n1 + n2
, b3 <

1− 2a

n1 + n2
. (38)

5. Equilibrium in whih 1

st

type agents are hyperative, 2

nd

type agents are ative

and 3

rd

type agents are passive (HAP) is stable if n2 = 1 and

1− 2a

n1
< b2 <

1

n1 + 1
, (39)

1

b1
< n1 +

1− 2a− n1b2
b2 − 2a

<
1− 2a

b3
. (40)

6. Equilibrium in whih 1

st

type agents are hyperative and 2

nd

and 3

rd

types

agents are passive (HPP) is stable i�

b1 >
1

n1
, b3 < b2 <

1− 2a

n1
. (41)
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7. The equilibrium in whih agents of all types are ative (AAA) is always un-

stable.

8. Equilibrium in whih 1

st

type and 2

nd

type agents are ative and 3

rd

type

agents are passive (AAP) is unstable.

9. Equilibrium in whih 1

st

type agents are ative and 2

nd

type and 3

rd

type

agents are passive (APP) is unstable.

10. The equilibrium in whih agents of all types are passive (PPP) is always

stable.

Proof. 1. Aording to equation (3), in the point (e, e, e) we have

D1Vi(ki,K)|k1=k2=k3=e = bi(n1 + n2 + n3)e − e, i = 1, 2, 3.

All the three derivatives are positive i� (35) is heked; hene, aording to

De�nition 5 this equilibrium is stable.

2. The di�erential equation (26) for 3

rd

type agents in this ase turns into

k̇3 =
e(2a− 1) + e(n1 + n2)b3

2a
+
n3b3 − 2a

2a
k3.

Thus this equilibrium may be stable only if n3 = 1, b3 < 2a. But in this ase the

ondition of 3

rd

type agents ativity (8) holds i� (36) holds. This ondition implies

2a(n1 + n2 + 1) > 1;

thus, (36) involves the ondition b3 < 2a.
Aording to equations (3), (9),

D1V1(k1,K)|k1=k2=k3=e = b1

(
n1 + n2 + n3

1− 2a− (n1 + n2)b3
n3b3 − 2a

)
e− e ≥ 0,

D1V2(k2,K)|k1=k2=k3=e = b2

(
n1 + n2 + n3

1− 2a− (n1 + n2)b3
n3b3 − 2a

)
e− e ≥ 0.

However, for dynami stability, aording to De�nition 5, the strit inequality

(37) is needed.

3. The system of di�erential equations (27) for agents of 2

nd

and 3

rd

types in

this ase turns into

{
k̇2 = n1b2e

2a + n2b2−2a
2a k2 +

n3b2
2a k3 +

e(2a−1)
2a ,

k̇3 = n1b3e
2a + n2b3

2a k2 +
n3b3−2a

2a k3 +
e(2a−1)

2a .

The eigenvalues of this system are

λ1 = −1,

λ2 = −1 +
n2b2 + n3b3

2a
> 0.

Thus the system is unstable.

4. Aording to De�nition 5 and equation (3), the neessary and su�ient on-

ditions for stability are
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D1V1(k1,K)|k1=e,k2=e,k3=0 = b1(n1 + n2)e− e > 0,

D1V2(k2,K)|k1=e,k2=e,k3=0 = b2(n1 + n2)e− e > 0,

D1V3(k3,K)|k1=e,k2=e,k3=0 = b3(n1 + n2)e− e(1− 2a) < 0,

whih are equivalent to (38).

5. The di�erential equation (26) for 2

nd

type agents in this ase turns into

k̇2 =
e(2a− 1) + en1b2

2a
+
n2b2 − 2a

2a
k2.

Thus this equilibrium may be stable only if n2 = 1, b2 < 2a. But in this ase the
ondition of 3

rd

type agents ativity (14) holds i� (39) holds. This equation implies

2a(n1 + 1) > 1,

thus (39) involves the ondition b2 < 2a. For the stability of equilibrium the

ondition (15) of hyperativity of 1

st

type agents and passivity of 3

rd

type agents

shall hold as strit inequality (40), aording to De�nition 5.

6. Aording to De�nition 5, for stability of this equilibrium the ondition (16)

of its existene shall hold as strit inequalities (41).

7. One of the eigenvalues of the system (27) is

λ3 =
n1b1 + n2b2 + n3b3

2a
− 1 > 0;

hene, the equilibrium is unstable.

8. The system of di�erential equations (27) for agents of 1

st

and 2

nd

types in

this ase turns into

{
k̇1 = n1b1−2a

2a k1 +
n2b1
2a k2 +

e(2a−1)
2a ,

k̇2 = n1b2
2a k1 +

n2b2−2a
2a k2 +

e(2a−1)
2a .

The eigenvalues of this system are

λ1 = −1,

λ2 = −1 +
n1b1 + n2b2

2a
> 0.

Thus, the system is unstable.

9. The di�erential equation (26) for 1

st

type agents in this ase turns into

k̇1 =
b1n1 − 2a

2a
k1 +

e(2a− 1)

2a
.

This equilibrium may be stable only if n1 = 1, b1 < 2a. But in this ase the

ondition of 1

st

type agents ativity (25) is wrong. Thus, this equilibrium is always

unstable.

10. Aording to equation (3), we have

D1V1(ki,K)|k1=k2=k3=0 = e(2a− 1) < 0, i = 1, 2, 3.

Aording to De�nition 5, this equilibrium is stable.

⊓⊔
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From this Proposition follows, in partiular, that if three regular networks with

produtivities b1, b2 and b3 (b1 > b2 > b3), being initially in equilibria with hyper-

ative agents of 1

st

and 2

nd

networks and with passive agents of 3

rd

network, unify,

then under ondition

b3 <
1− 2a

n1 + n2

(i.e. if produtivity of the passive agents is su�iently low), in united network shall

be no transition proess. The state {k1 = e, k2 = e, k3 = 0} shall be a stable

equilibrium. But if before the uni�ation the agents of the 1

st

network were passive,

but the agents of the 2

nd

and of the 3

rd

networks were hyperative, in the united

network arises a transition proess. As result of this proess, the uni�ed network

shall ome in stable equilibrium in whih all the agents are hyperative.

Agents, who are initially ative in a symmetri equilibrium in regular network

(whih implies that their produtivities are su�iently high), also may inrease

their level of investment in result of uni�ation with other regular networks with

hyperative or ative agents. The uni�ed network omes into equilibrium in whih

all agents are hyperative.

6. Conlusion

Researh on the role of heterogeneity of agents in soial and eonomi networks is

rather new in the literature. In our model we assume presene of three types of

agents possessing di�erent produtivities. At the �rst stage eah agent in network

may invest some resoure (suh as money or time) to inrease her gain at the seond

stage. The gain depends on her own investment and produtivity, as well as on

investments of her neighbors in the network. Suh situations are typial for various

soial, eonomi, politial and organizational systems. In framework of the model,

we onsider relations between network struture, inentives, and agents' behavior

in the game equilibrium state in terms of welfare (utility) of the agents.

We introdue adjustment dynamis whih may start after a deviation from equi-

librium or after a juntion of networks initially being in equilibrium. Earlier, a spe-

ial ase of omplete networks was onsidered in (Matveenko et al., 2017). Here we

introdue a more general ase of triregular networks and study behavior of agents

with di�erent produtivities. In triregular networks we enumerate all the equilibria,

whih are possible under ertain onditions. We �nd also the onditions under whih

these equilibria are dynamially stable.

A natural task for future researh is to expand the results to broader lasses of

networks.
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