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Abstract We study game equilibria in a model of production and exter-
nalities in regular network with three types of agents who possess different
productivities. Each agent may invest a part of her endowment (for instance,
time or money) at the first stage; consumption at the second stage depends
on her own investment and productivity as well as on the investments of
her neighbors in the network. We introduce adjustment dynamics described
by differential equations. We study which equilibria are possible, and which
of these equilidria are dynamically stable under different combinations of
parameters of the game.
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1. Introduction

Social network analysis became an important research field, both as a sub-
ject area and as a methodological approach applicable to analysis of interrela-
tions in various complex network structures, not only social, but political, eco-
nomic, urban. A special place is played by the approach of network games (e.g.
Bramoulle and Kranton, 2007, Galeotti et al., 2010, Goyal, 2009, Jackson, 2008,
Jackson and Zenou, 2014, Martemyanov and Matveenko, 2014), which assumes
that agents in network act as rational decision makers, and the profile of actions of
all agents in the network is a game equilibrium. Decision of each agent is supposed
to be influenced by behavior (or by knowledge) of her neighbors in the network.
In majority of research on game equilibria in networks the agents are assumed to
be homogeneous (except their positions in the network), and the problem is to
study the relation between the agents’ positions in the network and their behavior
in the game equilibrium, characterized by one or another measure of centrality
(e.g. Ballester et al., 2006, Bramoulle et al., 2014, Matveenko and Korolev, 2017,
Naghizadeh and Liu, 2017).

However, diversity and heterogeneity have become an important aspect of con-
temporary social and economic life (many examples are provided by researchers of
inclusiveness and social cohesion, e.g. Acemoglu and Robinson, 2012). Correspond-
ingly, along with accounting for position of agents in the network, an important
task is to account for heterogeneity of agents as a factor shaping differences in their
behavior and wellbeing. This direction of research becomes actual in the literature
(see e.g. Goyal, 2018).

* The research is supported by the Russian Foundation for Basic Research (project 17-
06-00618).
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In the present paper we add heterogeneity of agents and adjustment dy-
namics into a two-period consumption-investment model with network ex-
ternalities (see (Romer, 1986) for a special case of complete network and
(Matveenko and Korolev, 2017) for a general network case). The model considers
situations in which at the first stage each agent in network, at the expense of dimin-
ishing current consumption, may make investment of some resource (such as money
or time) with the goal to increase her second stage consumption. The latter depends
not only on her own investment and productivity but also on investments by her
neighbors in the network. Total utility of each agent depends on her consumptions
at both stages. Such situations are typical for families, communities, international
organizations, innovative industries, etc.

We use the concept of ‘Nash equilibrium with externalities’, similar to the one
introduced by Romer, 1986 and Lucas, 1988. It is assumed that the agent makes
her decision, being in a definite environment which is formed by herself and by her
neighbors in the network. Though she participates herself in the environment, the
agent in the moment of decision-making considers the environment as exogenously
given.

Matveenko et al., 2017 assume the presence of two types of agents characterized
by different productivities, but study only the case of complete networks. In the
present paper we consider a more general class of regular (equidegree) networks
with three types of agents.

We identify conditions under which an agent behaves in equilibrium in a definite
way, being ‘passive’ (not investing), ‘active’ (investing a part of the available endow-
ment) or ‘hyperactive’ (investing the whole endowment), study dependence of the
investment, on the pure externality received by the agent and the influence of the
heterogeneity on the game equilibria. We introduce adjustment dynamics into the
model and study dynamics of transition to the equilibrium. The dynamics pattern
and the nature of the resulting equilibrium depend on the parameters characteriz-
ing heterogeneous agents. A questions studied in the paper is the enumerating of
symmetric equilibria which are possible in triregular network and finding conditions
under which these equilibria are possible. We study also the correlation between pa-
rameters of network, under which these equilibria are dynamically stable. We make
conclusions about behavior of agents of different types after junction of regular
networks; in particular, how the behavior of nonadopters (passive agents) changes
when they connect to adopters (active or hyperactive) agents.

The paper is organized in the following way. The game model is formulated in
Section 2. Agent’s behavior in equilibrium is characterized in Section 3. Section 4
studies equilibria with heterogeneous agents in regular network of a special class.
Section 5 introduces and studies the adjustment dynamics which may start after a
small disturbance of initial equilibrium or after a junction of networks. Section 6
concludes.

2. The model

In a network (undirected graph) each node i = 1,2,...,n represents an agent. At
the first stage each agent ¢ possesses initial endowment of good, e (it may be, for
instance, time or money) and uses it partially for consumption at the first stage,
¢, and partially for investment into knowledge, k;:
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ci—i—ki =e,i=1,2,...,n.

Investment immediately transforms one-to-one into knowledge, which is used in
production of good for consumption on the second stage, 5. Production in node %
is described by production function:

F(klaKl) = gikiKia i > 01

which depends on the state of knowledge in i-th node, k;, and on environment, K;.
The environment is the sum of investments by the agent himself and her neighbors:

Ki=ki+K; K; = Z ki
JEN(#)
where N (i) — is the set of neighboring nodes of node i. The sum of investments of

neighbors, Ki, will be referred as pure externality.
Preferences of agent i are described by quadratic utility function:

Ui(ci, ¢3) = ci (e — ach) + dich,
where d; > 0; a is a satiation coefficient. It is assumed that ¢} € [0, €], the utility
increases in ¢! and is concave (the marginal utility decreases) with respect to ¢j. A
sufficient condition leading to the assumed property of the utility is 0 < a < 1/2;
we assume that this inequality is satisfied.

We will denote the product d;g; by b; and assume that a < b;. Since increase of
any of parameters d;, g; promotes increase of the second stage consumption, we will
call b; productivity. We will assume that b; # 2a, i = 1,2,....,n. If b; > 2a, we will
say that i-th agent is productive, and if b; < 2a — that the agent is unproductive.

Three ways of behavior are possible: agent ¢ is called passive if she makes zero
investment, k; = 0 (i.e. consumes the whole endowment at the first stage); active if
0 < k; < e; hyperactive if she makes maximally possible investment e (i.e. consumes
nothing at the first stage).

Let us consider the following game. Players are the agents i = 1,2, ..., n. Possible
actions (strategies) of player ¢ are values of investment k; from the segment [0, e].
Nash equilibrium with externalities (for shortness, equilibrium) is a profile of actions

1, k3, ..., k%, such that each &} is a solution of the following problem P(K;) of
maximization of i-th player’s utility given environment K;:

Ui(ct,ch) — max
ct,ch k?
¢t =e— Kk,
ch = F(k', K"),
¢t >0,¢y >0,k >0,

where the environment K; is defined by the profile &7, k3, ..., k)

Ki=k+ Y k.
JEN(3)

Substituting the constraints-equalities into the objective function, we obtain a
new function (payoff function):
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‘/1(,’{1, Kz) = Ul(e - l{i, Fz(kl, Kl)) = (6 - kz)(e - a(e - Kz)) + blkZKl =

1
e2(1 —a) — kie(1 — 2a) — ak? + bik; K;. M)

If all players’ solutions are internal (0 < kf <e,i =1,2,...,n), i.e. all players are
active, the equilibrium will be referred to as inner equilibrium. Clearly, the inner
equilibrium (if it exists for given values of parameters) is defined by the system

D1Vi(ki,K;) =0, i=1,2,...n. (2)

Here
DlVi(ki, Kl) = 6(2@ — 1) - 2@]@ + ble (3)

3. Indication of agent’s ways of behavior

We will denote by k¢ the root of the equation
DlVi(ki, Kz) = (bz - 2&)]{51' + blkl — 6(1 — 2@) =0.
Thus,

(3 2a—b; ’

where K is the pure externality received by the agent.

Remark 1. Lemma 2.1 in (Matveenko et al., 2017) and Corollary 2.1 in
(Matveenko et al., 2017) give us a practical method of examination, whether the col-
lection of agents’ investments is in equilibrium. Namely, the collection k1, ko, ..., ky
may be in equilibrium only if for every agent i, i =1,2,...,n

1) If k; = 0, then K; < <=2,

2) If 0 < k; <e, then k; = k7';

3) If k; = e, then K; > e(lb—:bi).

Lemma 1 (Lemma 2.2 in (Matveenko et al., 2017)). .
In equilibrium i-th agent is passive iff

K, < 129 (4)
b;
i-th agent is active iff
e(1 ; 2a) K, < = (5)
i-th agent is hyperactive iff
Ki> - (6)

Remark 2. In any network, in which all agents have the same environment, there
cannot be equilibrium in which an agent with a higher productivity is active while
an agent with a lower productivity is hyperactive, or when an agent with a higher
productivity is passive while an agent with a lower productivity is active or hyper-
active.
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4, Equilibria in triregular network with heterogeneous agents

Definition 1. Let the set of nodes 1,2,...,n be decomposed into disjoint classes
in such way that any nodes belonging the same class have the same productivity
and the same numbers of neighbors from each class. The classes will be referred
as types of nodes. Type 7 is characterized by productivity b; and by vector t; =
(ti1, ti2, ..., tix), where t;; is the number of neighbors of type j for any node of type
i.

Let us describe an algorithm of subdivision of the set of nodes of network into
types. Let s be a current number of subsets of subdivision. Initially s is the number
of various productivities.

Iteration of the algorithm. Consider nodes of the first subset. If all of them
have the same numbers of neighbors in each subset 1,2, ..., s, then the first subset
is not changed. In the opposite case, we divide the first subset into new subsets
in such way that all nodes of each new subset have the same vector of numbers of
neighbors in subsets.

We proceed in precisely same way with the second, the third, ..., the s-th subset.
If on the present iteration the number of subsets s have not changed, then the
algorithm finishes its work. If s has increased, then the new iteration is executed.

The number of subsets s does not decrease in process of the algorithm. Since
s is bounded from above by the number of nodes in the network, the algorithm
converges. It is clear that the algorithm divides the set of nodes into the minimal
possible number of classes.

Definition 2. A network in which each node has the same degree (number of
neighbors) is referred as regular.

Definition 3. Let us consider a regular network consisting of three types of agents
with productivities b; and vectors t; = (t;1,ti2,ti3), 1 = 1,2,3; by > ba > bs. Let the
following conditions be satisfied:

t11 + 1 =to; = t31 = na,
t12 = too + 1 = t32 = na,
t13 = tog3 = t33 + 1 = ng.

Such network will be referred as trireqular.

The triregularity seems to be a natural specification of regularity. In triregular
network, any agent has n; links with type 7 (i = 1,2, 3). (Since each agent of type i
is "linked" in some sense with herself, she has only (n; — 1) links with other agents
of type 7).

A special case of triregular network is a complete network with ny + no + ng
nodes which is received in result of junction of three complete networks with n1, no
and n3 nodes.

Definition 4. Equilibrium (or any other situation) is called symmetric, if all play-
ers of the same type choose the same action (make the same investment).
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Let a triregular network be in a symmetric equilibrium, in which each i*® type
agent makes investment k;, ¢ = 1,2,3. Then, for each agent environment is equal
to K = kini + kang + ksns. According to Remark 2, only 10 symmetric equilibria
are possible. The following proposition lists these possible symmetric equilibria and
provides conditions of their existence.

Proposition 1. In triregular network the following symmetric equilibria exist.
1) Equilibrium with all hyperactive agents (HHH) is possible iff

1

by >by >by3 > ————.
1 2 3_n1+n2+n3

(7)

2) Equilibrium in which 1°¢ and 2" types agents are hyperactive and 3™ type
agents are active (HHA) is possible if

1—2a— (n1 + 7’L2)b3

0 1 8
< n3b3 —2a <5b ( )
1—2a— (TLl + ng)bg 1
> —.
ni +no +ng nabs — 2a Z 5 (9)

8) Equilibrium in which 1°¢ type agents are hyperactive and 2™ and 3™ types
agents are active (HAA) is possible if

e(1 — 2a)[(bs — ba)ns — 2a] + 2aenibs

0<
2&[2@ — (ngbg + n3b3)]

<1, (10)

0<

e(1 —2a)[(bz — b3)n2 — 2a] + 2aen;bs
[

1 11
2a|2a — (n2b2 + ngbg)] < ( )

e(1 — 2a)[(bs — ba)ng — 2a] + 2aeny by
2@[2(1 - (ngbg + n3b3)]

ni + no

e(1 — 2a)[(ba — b3)na — 2a] + 2aen;bs
2a[2a — (7’L2b2 + ngbg)]

1

4) Equilibrium in which 1°t and 2™ types agents are hyperactive and 3™ type
agents are passive (HHP) is possible iff

1—2a
<

by > by > 3> .
TL1+’II2’ n1+n2

(13)

5) Equilibrium in which 1°* type agents are hyperactive, 2™ type agents are
active and 3" type agents are passive (HAP) is possible if

1—20,—7111)2
0< —— 2 <1, 14
n2b2—2a ( )
1 1—2a—mn1b 1-2
— < ny+ne - Mm% < a- (15)

b1 nobs —2a T b3

6) Equilibrium in which 1°¢ type agents are hyperactive and 2% and 3™ types
agents are passive (HPP) is possible iff
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1 1-2
by > —_—, by < by < a. (16)
ny ny

7) Equilibrium in which agents of all types are active (AAA) exists if

(1 — 2@)((712 + ng)bl — n2b2 — n3b3 + 2a)

0< , 17
2&((”1[)1 + nabs + n3b3) - 2(1) ( )
1-2 + n3)ba —n1by — n3bs + 2
0 < ( G)((nl ns) 2 — N101 — N303 a) <1, (18)
20,((7111)1 + n2b2 + ngbg) — 20,)
1-2 + n2)bs —n1by — naby + 2
0 < L7200 (01 +72)bs = mbs —maba +20) (19)

20,((7111)1 + n2b2 + ngbg) — 20,)

8) Equilibrium in which 1°* type agents and 2"¢ type agents are active and 3™
type agents are passive (AAP) is possible if

(1 — 2@)(”2([)2 — bl) — 2@) <1

0< 2&(2(1 — n1b1 — ngbg) ’ (20>
(1 — 2(1) (nl(bl — bg) — 2(1)
0< 2@(2@ — n1b1 — ngbg) ’ (21)
(1 — 2(1) (ng(bg — bl) — 2(1) + o (1 — 2@) (7’L1 (bl — bg) — 2@) < 1— 20,. (22)

2@(2@ —n1by — ngbg) 2&(2(1 —niby — ngbg) - b3

9) Equilibrium in which 1°' type agents are active and 2" type agents and 3™
type agents are passive (APP) is possible if

10) Equilibrium with all passive agents (PPP) is always possible.
Proof. 1) Follows from Lemma 1.
2) This equilibrium is possible if inequality (8) is checked, because equation (2)
for 3*4 type agents is
nibse + nabse + (n3bs — 2a)ks = e(1 — 2a).

According to (6), the equilibrium exists under (9).
3) The system of equations (2) for 2°¢ and 3¢ types agents is

nibse + (ngbg - 2a)k2 + n3boks = 6(1 — 2@),
nlbge + ngbng + (n3b3 - 20,)]{33 = 6(1 — 2@)

The solution of this system is
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1S — e(1 —2a)[(bs — ba)ng — 2a] + 2aeniby
2 2a[2a - (n2b2 + ngbg)]

)

1S — e(1 — 2a)[(ba — b3)na — 2a] + 2aenbs
3 2a[2a - (n2b2 + ngbg)]
That implies the conditions (10) and (11). From (6) follows the condition (12).
4) Since in this case the environment is K = (n; + ns)e, according to (4) and
(6), the equilibrium exists iff (13) is checked.
5) The equation (2) for 2"¢ type agents is

nibae + (naba — 2a)ke = e(1 — 2a),

that implies the condition (14). From (4) and (6) follows condition (15).
6) According to (4) and (6), the equilibrium is possible iff (16) holds.
7) The system of equations (2) turns into

(n1b1 — 2a)k1 + nabrks + nsbiks = e(1l — 2a),
n1baki + (nabs — 2a)ke + nsboks = e(1 — 2a),
n1b3k1 + TLngkQ + (n3b3 — 2&),’{3 = 8(1 - 2a)

We solve this system by Kramer method and obtain

15 e(1 —2a)((n2 + n3)by — nobs — n3bs + 2a)
r 2a((n1b1 + ngby + ngbs) — 2a) ’
1S e(1 = 2a)((n1 + n3)bz — n1by — n3bs + 2a)

2 2a((n1b1 + ngby + nsbs) — 2a) ’
L e(1 = 2a)((n1 + n2)bs — n1by — nobs + 2a)
3 2a((n1b1 + ngby + nsbs) — 2a)

Hence, the necessary and sufficient conditions of existence of the inner equilib-
rium are (17), (18), (19). Under these inequalities, the inner equilibrium is

ki =k, ko=ky, ks=EkS.

8) The system of equations (2) for 1°* and 2°¢ types agents in this case is

(n1b1 — 2a)k1 + bingks = 6(1 — 2@),
nlbgkl + (7’L2b2 — 2a)k2 = 6(1 — 2@)
The solution of this system by Kramer method is

kS — e(1 = 2a)(na(by — by) — 2a)

2&(2(1 — n1b1 — ngbg)
e(1 —2a)(ni(b1 — b2) — 2a)

k5 =
2 2@(2@ — n1b1 — n2b2)
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That implies the conditions (20) and (21). According to (4), the equilibrium is
possible if (22).
9) This equilibrium is possible if inequality
1—2a

0< ——+<«1 2
<n1b1—2a< (5>

is checked, because equation (2) for 1% type agents is

(n1b1 — 2a)k; = e(1 — 2a).

But (25) is equivalent to (23). According to (4), the equilibrium exists under
(24).
10) Follows from Lemma 1.

5. Adjustment dynamics and dynamic stability of equilibria

Now we introduce adjustment dynamics which may start after a small deviation
from equilibrium or after junction of networks each of which was initially in equi-
librium. We model the adjustment dynamics in the following way.

Definition 5. In the adjustment process, each agent maximizes her utility by
choosing a level of her investment; at the moment of decision-making she considers
her environment as exogenously given. Correspondingly, if k;(t9) = 0, where t( is
an arbitrary moment of time, and D1V;(k;, K;)|k,—0 < 0, then k;(t) = 0 for any
t > to, and if k;(t9) = e and D1V;(k;, K;)|k;—=e > 0, then k;(t) = e for any ¢ > to; in
all other cases, k;(t) satisfies the differential equation:

. bi ~ bi—2a e(1—2a)
ki = %KZ + = k; — 5 (26)

Definition 6. The equilibrium is called dynamically stable if, after a small devia-
tion of one of the agents from the equilibrium, dynamics starts which returns the
equilibrium back to the initial state. In the opposite case, the equilibrium is called
dynamically unstable.

In triregular network, let in initial time period each i-th type agent invest ko;
(1 =1,2,3). Correspondingly, the environment (common for all agents) in the initial
period is K = niko1 + nakoz + nskos.

Assume that for each ¢ (i = 1,2, 3) either ko; = 0 and D1V (k;, K)|k,=0 > 0, or
koi = e and D1V (k;i, K)|g,=e < 0, or ko; € (0,¢€). Then Definition 4.1 implies that
the dynamics is described by the system of differential equations.

k‘l — n1b21a—2akl + n22§1 k2 + 77,232-1 k3 + 6(2;(1—1)7
By = otk o 2ty 4 nia gy 4 SCIEL, (27)
kg — n21ab'g kl 4 ’n.223'; kQ + n3b§;2a I{:g + 6(25{;1)

with initial conditions

E) = koi, i=1,2,3. (28)
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Proposition 2. The general solution of the system of differential equations (27)

has the form

—ns 0
kE(t)=Cy-exp{—t} | 0 | +Cy-exp{—t} | —ns |+

ny n2

b1 Dy

b b b
+C’3-exp{<nl 1+ n2dz + nabs —1)15} bo | + | D2, (29)
2a
bs Ds

where (D1, Do, D3)T is the steady state of (27),

D e(1 = 2a)[(n1 + na + n3)b; — (n1by + nabs + nzbs) + 2al i=1,2,3. (30)
2a(n1b1 + noby + n3bz — 2a)

The solution of the Cauchy differential problem (27)—(28) has the form

—ng

k° — D+ (D1 — k9)(n1b b b
k(t) = + (D 1)(711 1+ n2bs + ngbs)ns eap{—t} 0 "
(n1b1 + nabs + nsbs)ns -
~ 0
E°— D+ (Dy — K9 b b b
+ + (D2 2)(mby + nabs + ngbs)ny ~exp{—t} [ —ns | +
(n1by + nabs + nsbs)ns o
4 KO —D { n1b1 + nabs + n3bs 1 t} IIZI +
. ex _
n1b1 + nabs + n3bs P 2a bi
D,
+ | D2, (31)
D3
where
- e(1—2a)(n1 + n2 + ng3)
D =n1D D D3 = 32
niip + nala + n3ls b1 + niaby + nabs — 24 (32)
(33)

ko = nlk? + ngkg + ngkg

Proof. The characteristic equation of system (27) is

P (A1) =
e w1 ome =

2a 2a 2a

b b b
—oe (B ) o

Thus, the eigenvalues are
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n1by + naby + nzbs

Ao=—-1, A= -1
1,2 3 %
Eigenvectors corresponding A = —1 are
—ns
€1 = 0
ni
and
0
€2 = —ns3 )
n2

while an eigenvector corresponding A3 can be found as a solution of the system of

equations
—(n2by + ngbz)xy + nobiza + n3bizs =0,
nibazr — (n1b1 + nsbz)za + ngbozs =0,
n1b3171 =+ n2b3x2 — (n1b1 + n2b2)x3 = O
We find
by
€9 = b2
b3

The general solution of the homogeneous system of differential equations corre-
sponding (27) has the form

—nNns3 0
(k(t)g =Cy-exp{—t} | 0 | +Cs-exp{—t}|—ns|+
ny 2
n1b1 + n2b2 + n3b3 bl
+C5 - eacp{< — 1>t} by
2a bs

As a partial solution of the system (27) we take its steady state, i.e. the solution

of the linear system

(n1z1 + noxo + nsws)b; — 2ax; = e(l —2a), i=1,2,3.

The solution is (30); hence, the general solution of the system (27) has the
form (29). In solution of the Cauchy problem (27)—(28), constants of integration are
defined from the initial conditions:

k? —ns3 0 bl D1
B = (& 0 +Co | —n3 | +Cs3|ba | + | Do . (34)
kS n N2 bs D3
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Multiplying the first scalar equation of system (34) by ni, the second equation
by ne and the third equation by ns and adding we obtain

3 K —D
5 n1b1 + n2b2 + 7’L3b3 '

Substituting this expression in the first and the second equations of system (34)

we obtain ~
ko — D+ (D1 — k?)(n1by + naba + nzbs)ng

¢ ,
! n1b1 + nabs + nzbz)ns
ko — D + (D2 — k) (n1b1 + nabs + nzbs)ns
Csy = )
n1b1 + n2b2 + ngbg)ng
Substituting for C1, C2 and Cj into (29) we obtain (31). O

Proposition 3. The conditions of dynamic stability/instability of the equilibria
listed in Proposition 1, if they exist, are the following.
1. The equilibrium with all hyperactive agents (HHH) is stable iff

1

b1 > by >b3 > ——.
1 2 3 T

(35)

2. Equilibrium in which 1°' and 2"¢ types agents are hyperactive and 3™ type
agents are active (HHA) is stable iff ng = 1 and

1—2a 1
<bs< ——M——,
ni + no n1+n2—|—1

(36)

1—2a— (n1 +n2)bs 1 1
ny +ng + bs — 2a > b > b (37)

3. Equilibrium in which 1% type agents are hyperactive and 2"¢ and 8™ types
agents are active (HAA) is unstable.

4. Equilibrium in which 1% and 2" types agents are hyperactive and 3" type
agents are passive (HHP) is stable iff

1—2a

by > by > .
1 2 n1+n2

by <

(38)

b
ny1 + ng

5. Equilibrium in which 1%t type agents are hyperactive, 2" type agents are active
and 8™ type agents are passive (HAP) is stable if no = 1 and

1
b -
- < 2<n1+1, (39)
1 1—2a—n1by 1—2a
— . 4
b1 <n1+ b2—2a < bg ( O)

6. Equilibrium in which 1% type agents are hyperactive and 2"* and 3 types
agents are passive (HPP) is stable iff

1 1-2
b1 > —, b3<ba< a.
ny ny

(41)
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7. The equilibrium in which agents of all types are active (AAA) is always un-
stable.

8. Equilibrium in which 1° type and 2™ type agents are active and 3" type
agents are passive (AAP) is unstable.

9. Equilibrium in which 1°* type agents are active and 2"* type and 3" type
agents are passive (APP) is unstable.

10. The equilibrium in which agents of all types are passive (PPP) is always
stable.

Proof. 1. According to equation (3), in the point (e, e, e) we have

D1Vi(ki, K)|ky=ky=ks—e = bi(n1 +n2 +n3)e —e, i=1,2,3.

All the three derivatives are positive iff (35) is checked; hence, according to
Definition 5 this equilibrium is stable.
2. The differential equation (26) for 3'¢ type agents in this case turns into

. 2a — 1 b bs — 2
kgze(a )+22(n1+n2)3+n3 32a akg.

Thus this equilibrium may be stable only if ng = 1, b3 < 2a. But in this case the
condition of 3" type agents activity (8) holds iff (36) holds. This condition implies

2a(n1 +ne+1) > 1;

thus, (36) involves the condition b3 < 2a.
According to equations (3), (9),

7’L3b3 —2a

1—2@—(n1+n2)b3 e—e>0.
n3b3—2a

1—2a—(n1+n9)b
D1Vi(k1, K)|ky=ky=ks—e = b1 (nl +ng +ng (m 2) 3)6—620,

D1 Va(ka, K)|ky —ky=ks—e = b2 (nl +n2 +ng3

However, for dynamic stability, according to Definition 5, the strict inequality
(37) is needed.

3. The system of differential equations (27) for agents of 2"4 and 3™ types in
this case turns into

2a 2a

. __ nibge nabs nsbs—2a 6(2071)
/{3 ~ 2a + 2a kQ + 2a /{3 + 2a

] b by —2 b 2a—1
{kQ—nl ge+n222a ak2+n§a2k3+e(a )7

The eigenvalues of this system are

A= —1,
n2b2 + n3b3

Ao =—14 =22 5.
2a

Thus the system is unstable.
4. According to Definition 5 and equation (3), the necessary and sufficient con-
ditions for stability are



126 Viadimir Matveenko, Maria Garmash, Alexei Korolev

D1 Vi(k1, K)|ky=eks=e,ks=0 = bi(n1 +na)e —e >0,
D1Va(ka, K)|ky=e,ks=e,ks=0 = b2(n1 + na)e —e >0,
D1V3(k3, K)|ky=e ko—e,ks—0 = b3(n1 + n2)e —e(1 —2a) <0,

which are equivalent to (38).
5. The differential equation (26) for 2"¢ type agents in this case turns into

e(2a — 1) + enyby n nobs — 2a
2a 2a

Thus this equilibrium may be stable only if ny = 1, bs < 2a. But in this case the
condition of 3" type agents activity (14) holds iff (39) holds. This equation implies

ko = k.

2a(ny +1) > 1,

thus (39) involves the condition be < 2a. For the stability of equilibrium the
condition (15) of hyperactivity of 15! type agents and passivity of 3" type agents
shall hold as strict inequality (40), according to Definition 5.
6. According to Definition 5, for stability of this equilibrium the condition (16)
of its existence shall hold as strict inequalities (41).
7. One of the eigenvalues of the system (27) is
nibi + nabs + n3bs

A3 = —-1>0;
3 %2, > U3

hence, the equilibrium is unstable.
8. The system of differential equations (27) for agents of 15¢ and 2°¢ types in
this case turns into

.. — nibi—2a naby e(2a-1)
{].{1 - 2a kl + 2a k2 + 2a

— niby nabs—2a e(2a—1)
ko = 522k + P20 ke + =5 .

The eigenvalues of this system are

A =1,
n1b1 + n2b2

A=—14+4——="=>0.
2 + %a >

Thus, the system is unstable.
9. The differential equation (26) for 1% type agents in this case turns into
_ bing —2a e(2a—1)

ky = k .
! 2a 1+ 2a

This equilibrium may be stable only if ny = 1, b < 2a. But in this case the
condition of 1% type agents activity (25) is wrong. Thus, this equilibrium is always
unstable.

10. According to equation (3), we have

D1 (ki K) gy =ky=ks=0 = €(2a — 1) < 0, i=1,2,3.

According to Definition 5, this equilibrium is stable.
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From this Proposition follows, in particular, that if three regular networks with
productivities b1, bo and b3 (b1 > by > b3), being initially in equilibria with hyper-
active agents of 1% and 2" networks and with passive agents of 3'4 network, unify,
then under condition 1%

by < ———
ny + no

(i.e. if productivity of the passive agents is sufficiently low), in united network shall
be no transition process. The state {k1 = e, ks = e, k3 = 0} shall be a stable
equilibrium. But if before the unification the agents of the 15* network were passive,
but the agents of the 2"¢ and of the 3" networks were hyperactive, in the united
network arises a transition process. As result of this process, the unified network
shall come in stable equilibrium in which all the agents are hyperactive.

Agents, who are initially active in a symmetric equilibrium in regular network
(which implies that their productivities are sufficiently high), also may increase
their level of investment in result of unification with other regular networks with
hyperactive or active agents. The unified network comes into equilibrium in which
all agents are hyperactive.

6. Conclusion

Research on the role of heterogeneity of agents in social and economic networks is
rather new in the literature. In our model we assume presence of three types of
agents possessing different productivities. At the first stage each agent in network
may invest some resource (such as money or time) to increase her gain at the second
stage. The gain depends on her own investment and productivity, as well as on
investments of her neighbors in the network. Such situations are typical for various
social, economic, political and organizational systems. In framework of the model,
we consider relations between network structure, incentives, and agents’ behavior
in the game equilibrium state in terms of welfare (utility) of the agents.

We introduce adjustment dynamics which may start after a deviation from equi-
librium or after a junction of networks initially being in equilibrium. Earlier, a spe-
cial case of complete networks was considered in (Matveenko et al., 2017). Here we
introduce a more general case of triregular networks and study behavior of agents
with different productivities. In triregular networks we enumerate all the equilibria,
which are possible under certain conditions. We find also the conditions under which
these equilibria are dynamically stable.

A natural task for future research is to expand the results to broader classes of
networks.
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