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Abstra
t We study game equilibria in a model of produ
tion and exter-

nalities in regular network with three types of agents who possess di�erent

produ
tivities. Ea
h agent may invest a part of her endowment (for instan
e,

time or money) at the �rst stage; 
onsumption at the se
ond stage depends

on her own investment and produ
tivity as well as on the investments of

her neighbors in the network. We introdu
e adjustment dynami
s des
ribed

by di�erential equations. We study whi
h equilibria are possible, and whi
h

of these equilidria are dynami
ally stable under di�erent 
ombinations of

parameters of the game.

Keywords: network, game equilibrium, heterogeneous agents, network for-

mation, produ
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1. Introdu
tion

So
ial network analysis be
ame an important resear
h �eld, both as a sub-

je
t area and as a methodologi
al approa
h appli
able to analysis of interrela-

tions in various 
omplex network stru
tures, not only so
ial, but politi
al, e
o-

nomi
, urban. A spe
ial pla
e is played by the approa
h of network games (e.g.

Bramoulle and Kranton, 2007, Galeotti et al., 2010, Goyal, 2009, Ja
kson, 2008,

Ja
kson and Zenou, 2014, Martemyanov and Matveenko, 2014), whi
h assumes

that agents in network a
t as rational de
ision makers, and the pro�le of a
tions of

all agents in the network is a game equilibrium. De
ision of ea
h agent is supposed

to be in�uen
ed by behavior (or by knowledge) of her neighbors in the network.

In majority of resear
h on game equilibria in networks the agents are assumed to

be homogeneous (ex
ept their positions in the network), and the problem is to

study the relation between the agents' positions in the network and their behavior

in the game equilibrium, 
hara
terized by one or another measure of 
entrality

(e.g. Ballester et al., 2006, Bramoulle et al., 2014, Matveenko and Korolev, 2017,

Naghizadeh and Liu, 2017).

However, diversity and heterogeneity have be
ome an important aspe
t of 
on-

temporary so
ial and e
onomi
 life (many examples are provided by resear
hers of

in
lusiveness and so
ial 
ohesion, e.g. A
emoglu and Robinson, 2012). Correspond-

ingly, along with a

ounting for position of agents in the network, an important

task is to a

ount for heterogeneity of agents as a fa
tor shaping di�eren
es in their

behavior and wellbeing. This dire
tion of resear
h be
omes a
tual in the literature

(see e.g. Goyal, 2018).
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In the present paper we add heterogeneity of agents and adjustment dy-

nami
s into a two-period 
onsumption-investment model with network ex-

ternalities (see (Romer, 1986) for a spe
ial 
ase of 
omplete network and

(Matveenko and Korolev, 2017) for a general network 
ase). The model 
onsiders

situations in whi
h at the �rst stage ea
h agent in network, at the expense of dimin-

ishing 
urrent 
onsumption, may make investment of some resour
e (su
h as money

or time) with the goal to in
rease her se
ond stage 
onsumption. The latter depends

not only on her own investment and produ
tivity but also on investments by her

neighbors in the network. Total utility of ea
h agent depends on her 
onsumptions

at both stages. Su
h situations are typi
al for families, 
ommunities, international

organizations, innovative industries, et
.

We use the 
on
ept of `Nash equilibrium with externalities', similar to the one

introdu
ed by Romer, 1986 and Lu
as, 1988. It is assumed that the agent makes

her de
ision, being in a de�nite environment whi
h is formed by herself and by her

neighbors in the network. Though she parti
ipates herself in the environment, the

agent in the moment of de
ision-making 
onsiders the environment as exogenously

given.

Matveenko et al., 2017 assume the presen
e of two types of agents 
hara
terized

by di�erent produ
tivities, but study only the 
ase of 
omplete networks. In the

present paper we 
onsider a more general 
lass of regular (equidegree) networks

with three types of agents.

We identify 
onditions under whi
h an agent behaves in equilibrium in a de�nite

way, being `passive' (not investing), `a
tive' (investing a part of the available endow-

ment) or `hypera
tive' (investing the whole endowment), study dependen
e of the

investment on the pure externality re
eived by the agent and the in�uen
e of the

heterogeneity on the game equilibria. We introdu
e adjustment dynami
s into the

model and study dynami
s of transition to the equilibrium. The dynami
s pattern

and the nature of the resulting equilibrium depend on the parameters 
hara
teriz-

ing heterogeneous agents. A questions studied in the paper is the enumerating of

symmetri
 equilibria whi
h are possible in triregular network and �nding 
onditions

under whi
h these equilibria are possible. We study also the 
orrelation between pa-

rameters of network, under whi
h these equilibria are dynami
ally stable. We make


on
lusions about behavior of agents of di�erent types after jun
tion of regular

networks; in parti
ular, how the behavior of nonadopters (passive agents) 
hanges

when they 
onne
t to adopters (a
tive or hypera
tive) agents.

The paper is organized in the following way. The game model is formulated in

Se
tion 2. Agent's behavior in equilibrium is 
hara
terized in Se
tion 3. Se
tion 4

studies equilibria with heterogeneous agents in regular network of a spe
ial 
lass.

Se
tion 5 introdu
es and studies the adjustment dynami
s whi
h may start after a

small disturban
e of initial equilibrium or after a jun
tion of networks. Se
tion 6


on
ludes.

2. The model

In a network (undire
ted graph) ea
h node i = 1, 2, ..., n represents an agent. At

the �rst stage ea
h agent i possesses initial endowment of good, e (it may be, for

instan
e, time or money) and uses it partially for 
onsumption at the �rst stage,

ci1, and partially for investment into knowledge, ki:
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ci1 + ki = e, i = 1, 2, ..., n.

Investment immediately transforms one-to-one into knowledge, whi
h is used in

produ
tion of good for 
onsumption on the se
ond stage, ci2. Produ
tion in node i
is des
ribed by produ
tion fun
tion:

F (ki,Ki) = gikiKi, gi > 0,

whi
h depends on the state of knowledge in i-th node, ki, and on environment, Ki.

The environment is the sum of investments by the agent himself and her neighbors:

Ki = ki + K̃i, K̃i =
∑

j∈N(i)

ki

where N(i) � is the set of neighboring nodes of node i. The sum of investments of

neighbors, K̃i, will be referred as pure externality.

Preferen
es of agent i are des
ribed by quadrati
 utility fun
tion:

Ui(c
i
1, c

i
2) = ci1(e− aci1) + dic

i
2,

where di > 0; a is a satiation 
oe�
ient. It is assumed that ci1 ∈ [0, e], the utility
in
reases in ci1 and is 
on
ave (the marginal utility de
reases) with respe
t to ci1. A
su�
ient 
ondition leading to the assumed property of the utility is 0 < a < 1/2;
we assume that this inequality is satis�ed.

We will denote the produ
t digi by bi and assume that a < bi. Sin
e in
rease of
any of parameters di, gi promotes in
rease of the se
ond stage 
onsumption, we will

all bi produ
tivity. We will assume that bi 6= 2a, i = 1, 2, ..., n. If bi > 2a, we will
say that i-th agent is produ
tive, and if bi < 2a � that the agent is unprodu
tive.

Three ways of behavior are possible: agent i is 
alled passive if she makes zero

investment, ki = 0 (i.e. 
onsumes the whole endowment at the �rst stage); a
tive if

0 < ki < e; hypera
tive if she makes maximally possible investment e (i.e. 
onsumes
nothing at the �rst stage).

Let us 
onsider the following game. Players are the agents i = 1, 2, ..., n. Possible
a
tions (strategies) of player i are values of investment ki from the segment [0, e].
Nash equilibrium with externalities (for shortness, equilibrium) is a pro�le of a
tions

k∗1 , k
∗
2 , ..., k

∗
n, su
h that ea
h k∗i is a solution of the following problem P (Ki) of

maximization of i-th player's utility given environment Ki:

Ui(c
i
1, c

i
2) −→

ci1,c
i
2,k

i
max





ci1 = e− ki,

ci2 = F (ki,Ki),

ci1 ≥ 0, ci2 ≥ 0, ki ≥ 0,

where the environment Ki is de�ned by the pro�le k∗1 , k
∗
2 , ..., k

∗
n:

Ki = k∗i +
∑

j∈N(i)

k∗j .

Substituting the 
onstraints-equalities into the obje
tive fun
tion, we obtain a

new fun
tion (payo� fun
tion):
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Vi(ki,Ki) = Ui(e − ki, Fi(ki,Ki)) = (e− ki)(e − a(e−Ki)) + bikiKi =

e2(1− a)− kie(1− 2a)− ak2i + bikiKi.
(1)

If all players' solutions are internal (0 < k∗i < e, i = 1, 2, ..., n), i.e. all players are
a
tive, the equilibrium will be referred to as inner equilibrium. Clearly, the inner

equilibrium (if it exists for given values of parameters) is de�ned by the system

D1Vi(ki,Ki) = 0, i = 1, 2, ..., n. (2)

Here

D1Vi(ki,Ki) = e(2a− 1)− 2aki + biKi. (3)

3. Indi
ation of agent's ways of behavior

We will denote by kSi the root of the equation

D1Vi(ki,Ki) = (bi − 2a)ki + biK̃i − e(1− 2a) = 0.

Thus,

kSi = e(2a−1)+biK̃i

2a−bi
,

where K̃i is the pure externality re
eived by the agent.

Remark 1. Lemma 2.1 in (Matveenko et al., 2017) and Corollary 2.1 in

(Matveenko et al., 2017) give us a pra
ti
al method of examination, whether the 
ol-

le
tion of agents' investments is in equilibrium. Namely, the 
olle
tion k1, k2, . . . , kn
may be in equilibrium only if for every agent i, i = 1, 2, . . . , n

1) If ki = 0, then K̃i ≤ e(1−2a)
bi

;

2) If 0 < ki < e, then ki = kSi ;

3) If ki = e, then K̃i ≥ e(1−bi)
bi

.

Lemma 1 (Lemma 2.2 in (Matveenko et al., 2017)). .

In equilibrium i-th agent is passive i�

Ki ≤
e(1− 2a)

bi
; (4)

i-th agent is a
tive i�

e(1− 2a)

bi
< Ki <

e

bi
; (5)

i-th agent is hypera
tive i�

Ki ≥
e

bi
. (6)

Remark 2. In any network, in whi
h all agents have the same environment, there


annot be equilibrium in whi
h an agent with a higher produ
tivity is a
tive while

an agent with a lower produ
tivity is hypera
tive, or when an agent with a higher

produ
tivity is passive while an agent with a lower produ
tivity is a
tive or hyper-

a
tive.
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4. Equilibria in triregular network with heterogeneous agents

De�nition 1. Let the set of nodes 1, 2, . . . , n be de
omposed into disjoint 
lasses

in su
h way that any nodes belonging the same 
lass have the same produ
tivity

and the same numbers of neighbors from ea
h 
lass. The 
lasses will be referred

as types of nodes. Type i is 
hara
terized by produ
tivity bi and by ve
tor ti =
(ti1, ti2, . . . , tik), where tij is the number of neighbors of type j for any node of type
i.

Let us des
ribe an algorithm of subdivision of the set of nodes of network into

types. Let s be a 
urrent number of subsets of subdivision. Initially s is the number
of various produ
tivities.

Iteration of the algorithm. Consider nodes of the �rst subset. If all of them

have the same numbers of neighbors in ea
h subset 1, 2, ..., s, then the �rst subset

is not 
hanged. In the opposite 
ase, we divide the �rst subset into new subsets

in su
h way that all nodes of ea
h new subset have the same ve
tor of numbers of

neighbors in subsets.

We pro
eed in pre
isely same way with the se
ond, the third, ..., the s-th subset.
If on the present iteration the number of subsets s have not 
hanged, then the

algorithm �nishes its work. If s has in
reased, then the new iteration is exe
uted.

The number of subsets s does not de
rease in pro
ess of the algorithm. Sin
e

s is bounded from above by the number of nodes in the network, the algorithm


onverges. It is 
lear that the algorithm divides the set of nodes into the minimal

possible number of 
lasses.

De�nition 2. A network in whi
h ea
h node has the same degree (number of

neighbors) is referred as regular.

De�nition 3. Let us 
onsider a regular network 
onsisting of three types of agents

with produ
tivities bi and ve
tors ti = (ti1, ti2, ti3), i = 1, 2, 3; b1 > b2 > b3. Let the
following 
onditions be satis�ed:

t11 + 1 = t21 = t31 = n1,

t12 = t22 + 1 = t32 = n2,

t13 = t23 = t33 + 1 = n3.

Su
h network will be referred as triregular.

The triregularity seems to be a natural spe
i�
ation of regularity. In triregular

network, any agent has ni links with type i (i = 1, 2, 3). (Sin
e ea
h agent of type i
is "linked" in some sense with herself, she has only (ni − 1) links with other agents

of type i).

A spe
ial 
ase of triregular network is a 
omplete network with n1 + n2 + n3

nodes whi
h is re
eived in result of jun
tion of three 
omplete networks with n1, n2

and n3 nodes.

De�nition 4. Equilibrium (or any other situation) is 
alled symmetri
, if all play-

ers of the same type 
hoose the same a
tion (make the same investment).
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Let a triregular network be in a symmetri
 equilibrium, in whi
h ea
h ith type

agent makes investment ki, i = 1, 2, 3. Then, for ea
h agent environment is equal

to K = k1n1 + k2n2 + k3n3. A

ording to Remark 2, only 10 symmetri
 equilibria

are possible. The following proposition lists these possible symmetri
 equilibria and

provides 
onditions of their existen
e.

Proposition 1. In triregular network the following symmetri
 equilibria exist.

1) Equilibrium with all hypera
tive agents (HHH) is possible i�

b1 > b2 > b3 ≥ 1

n1 + n2 + n3
. (7)

2) Equilibrium in whi
h 1

st

and 2

nd

types agents are hypera
tive and 3

rd

type

agents are a
tive (HHA) is possible if

0 <
1− 2a− (n1 + n2)b3

n3b3 − 2a
< 1, (8)

n1 + n2 + n3
1− 2a− (n1 + n2)b3

n3b3 − 2a
≥ 1

b2
. (9)

3) Equilibrium in whi
h 1

st

type agents are hypera
tive and 2

nd

and 3

rd

types

agents are a
tive (HAA) is possible if

0 <
e(1− 2a)[(b3 − b2)n3 − 2a] + 2aen1b2

2a[2a− (n2b2 + n3b3)]
< 1, (10)

0 <
e(1− 2a)[(b2 − b3)n2 − 2a] + 2aen1b3

2a[2a− (n2b2 + n3b3)]
< 1, (11)

n1 + n2
e(1− 2a)[(b3 − b2)n3 − 2a] + 2aen1b2

2a[2a− (n2b2 + n3b3)]
+

n3
e(1− 2a)[(b2 − b3)n2 − 2a] + 2aen1b3

2a[2a− (n2b2 + n3b3)]
≥ 1

b1
. (12)

4) Equilibrium in whi
h 1

st

and 2

nd

types agents are hypera
tive and 3

rd

type

agents are passive (HHP) is possible i�

b1 > b2 ≥ 1

n1 + n2
, b3 ≤ 1− 2a

n1 + n2
. (13)

5) Equilibrium in whi
h 1

st

type agents are hypera
tive, 2

nd

type agents are

a
tive and 3

rd

type agents are passive (HAP) is possible if

0 <
1− 2a− n1b2
n2b2 − 2a

< 1, (14)

1

b1
≤ n1 + n2

1− 2a− n1b2
n2b2 − 2a

≤ 1− 2a

b3
. (15)

6) Equilibrium in whi
h 1

st

type agents are hypera
tive and 2

nd

and 3

rd

types

agents are passive (HPP) is possible i�
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b1 ≥ 1

n1
, b3 < b2 ≤ 1− 2a

n1
. (16)

7) Equilibrium in whi
h agents of all types are a
tive (AAA) exists if

0 <
(1− 2a)

(
(n2 + n3)b1 − n2b2 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) < 1, (17)

0 <
(1− 2a)

(
(n1 + n3)b2 − n1b1 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) < 1, (18)

0 <
(1− 2a)

(
(n1 + n2)b3 − n1b1 − n2b2 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) < 1. (19)

8) Equilibrium in whi
h 1

st

type agents and 2

nd

type agents are a
tive and 3

rd

type agents are passive (AAP) is possible if

0 <
(1− 2a)

(
n2(b2 − b1)− 2a

)

2a(2a− n1b1 − n2b2)
< 1, (20)

0 <
(1− 2a)

(
n1(b1 − b2)− 2a

)

2a(2a− n1b1 − n2b2)
< 1, (21)

n1

(1− 2a)
(
n2(b2 − b1)− 2a

)

2a(2a− n1b1 − n2b2)
+ n2

(1− 2a)
(
n1(b1 − b2)− 2a

)

2a(2a− n1b1 − n2b2)
≤ 1− 2a

b3
. (22)

9) Equilibrium in whi
h 1

st

type agents are a
tive and 2

nd

type agents and 3

rd

type agents are passive (APP) is possible if

b1 >
1

n1
, (23)

n1(1 − 2a)

n1b1 − 2a
≤ e(1− 2a)

b2
<
e(1− 2a)

b3
. (24)

10) Equilibrium with all passive agents (PPP) is always possible.

Proof. 1) Follows from Lemma 1.

2) This equilibrium is possible if inequality (8) is 
he
ked, be
ause equation (2)

for 3

rd

type agents is

n1b3e+ n2b3e+ (n3b3 − 2a)k3 = e(1− 2a).

A

ording to (6), the equilibrium exists under (9).

3) The system of equations (2) for 2

nd

and 3

rd

types agents is

{
n1b2e+ (n2b2 − 2a)k2 + n3b2k3 = e(1− 2a),

n1b3e+ n2b3k2 + (n3b3 − 2a)k3 = e(1− 2a).

The solution of this system is
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kS2 =
e(1− 2a)[(b3 − b2)n3 − 2a] + 2aen1b2

2a[2a− (n2b2 + n3b3)]
,

kS3 =
e(1− 2a)[(b2 − b3)n2 − 2a] + 2aen1b3

2a[2a− (n2b2 + n3b3)]
.

That implies the 
onditions (10) and (11). From (6) follows the 
ondition (12).

4) Sin
e in this 
ase the environment is K = (n1 + n2)e, a

ording to (4) and

(6), the equilibrium exists i� (13) is 
he
ked.

5) The equation (2) for 2

nd

type agents is

n1b2e+ (n2b2 − 2a)k2 = e(1− 2a),

that implies the 
ondition (14). From (4) and (6) follows 
ondition (15).

6) A

ording to (4) and (6), the equilibrium is possible i� (16) holds.

7) The system of equations (2) turns into





(n1b1 − 2a)k1 + n2b1k2 + n3b1k3 = e(1− 2a),

n1b2k1 + (n2b2 − 2a)k2 + n3b2k3 = e(1− 2a),

n1b3k1 + n2b3k2 + (n3b3 − 2a)k3 = e(1− 2a).

We solve this system by Kramer method and obtain

kS1 =
e(1− 2a)

(
(n2 + n3)b1 − n2b2 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) ,

kS2 =
e(1− 2a)

(
(n1 + n3)b2 − n1b1 − n3b3 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) ,

kS3 =
e(1− 2a)

(
(n1 + n2)b3 − n1b1 − n2b2 + 2a

)

2a
(
(n1b1 + n2b2 + n3b3)− 2a

) .

Hen
e, the ne
essary and su�
ient 
onditions of existen
e of the inner equilib-

rium are (17), (18), (19). Under these inequalities, the inner equilibrium is

k1 = kS1 , k2 = kS2 , k3 = kS3 .

8) The system of equations (2) for 1

st

and 2

nd

types agents in this 
ase is

{
(n1b1 − 2a)k1 + b1n2k2 = e(1− 2a),

n1b2k1 + (n2b2 − 2a)k2 = e(1− 2a).

The solution of this system by Kramer method is

kS1 =
e(1− 2a)

(
n2(b2 − b1)− 2a

)

2a(2a− n1b1 − n2b2)
,

kS2 =
e(1− 2a)

(
n1(b1 − b2)− 2a

)

2a(2a− n1b1 − n2b2)
.
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That implies the 
onditions (20) and (21). A

ording to (4), the equilibrium is

possible if (22).

9) This equilibrium is possible if inequality

0 <
1− 2a

n1b1 − 2a
< 1 (25)

is 
he
ked, be
ause equation (2) for 1

st

type agents is

(n1b1 − 2a)k1 = e(1− 2a).

But (25) is equivalent to (23). A

ording to (4), the equilibrium exists under

(24).

10) Follows from Lemma 1.

⊓⊔

5. Adjustment dynami
s and dynami
 stability of equilibria

Now we introdu
e adjustment dynami
s whi
h may start after a small deviation

from equilibrium or after jun
tion of networks ea
h of whi
h was initially in equi-

librium. We model the adjustment dynami
s in the following way.

De�nition 5. In the adjustment pro
ess, ea
h agent maximizes her utility by


hoosing a level of her investment; at the moment of de
ision-making she 
onsiders

her environment as exogenously given. Correspondingly, if ki(t0) = 0, where t0 is

an arbitrary moment of time, and D1Vi(ki,Ki)|ki=0 ≤ 0, then ki(t) = 0 for any

t > t0, and if ki(t0) = e and D1Vi(ki,Ki)|ki=e ≥ 0, then ki(t) = e for any t > t0; in
all other 
ases, ki(t) satis�es the di�erential equation:

k̇i =
bi
2a
K̃i +

bi − 2a

2a
ki −

e(1− 2a)

2a
. (26)

De�nition 6. The equilibrium is 
alled dynami
ally stable if, after a small devia-

tion of one of the agents from the equilibrium, dynami
s starts whi
h returns the

equilibrium ba
k to the initial state. In the opposite 
ase, the equilibrium is 
alled

dynami
ally unstable.

In triregular network, let in initial time period ea
h i-th type agent invest k0i
(i = 1, 2, 3). Correspondingly, the environment (
ommon for all agents) in the initial
period is K = n1k01 + n2k02 + n3k03.

Assume that for ea
h i (i = 1, 2, 3) either k0i = 0 and D1V1(ki,K)|ki=0 > 0, or
k0i = e and D1V1(ki,K)|ki=e < 0, or k0i ∈ (0, e). Then De�nition 4.1 implies that

the dynami
s is des
ribed by the system of di�erential equations.





k̇1 = n1b1−2a
2a k1 +

n2b1
2a k2 +

n3b1
2a k3 +

e(2a−1)
2a ,

k̇2 = n1b2
2a k1 +

n2b2−2a
2a k2 +

n3b2
2a k3 +

e(2a−1)
2a ,

k̇3 = n1b3
2a k1 +

n2b3
2a k2 +

n3b3−2a
2a k3 +

e(2a−1)
2a

(27)

with initial 
onditions

k0i = k0i, i = 1, 2, 3. (28)
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Proposition 2. The general solution of the system of di�erential equations (27)

has the form

k(t) = C1 · exp{−t}



−n3

0
n1


+ C2 · exp{−t}




0
−n3

n2


+

+C3 · exp
{(n1b1 + n2b2 + n3b3

2a
− 1

)
t
}


b1
b2
b3


+



D1

D2

D3


 , (29)

where (D1, D2, D3)
T
is the steady state of (27),

Di =
e(1− 2a)

[
(n1 + n2 + n3)bi − (n1b1 + n2b2 + n3b3) + 2a

]

2a
(
n1b1 + n2b2 + n3b3 − 2a

) , i = 1, 2, 3. (30)

The solution of the Cau
hy di�erential problem (27)�(28) has the form

k(t) =
k0 − D̃ + (D1 − k01)(n1b1 + n2b2 + n3b3)n3

(n1b1 + n2b2 + n3b3)n3
· exp{−t}



−n3

0
n1


+

+
k0 − D̃ + (D2 − k02)(n1b1 + n2b2 + n3b3)n3

(n1b1 + n2b2 + n3b3)n3
· exp{−t}




0
−n3

n2


+

+
k0 − D̃

n1b1 + n2b2 + n3b3
· exp

{(n1b1 + n2b2 + n3b3
2a

− 1

)
t
}


b1
b2
b3


+

+



D1

D2

D3


 , (31)

where

D̃ = n1D1 + n2D2 + n3D3 =
e(1− 2a)(n1 + n2 + n3)

n1b1 + n2b2 + n3b3 − 2a
, (32)

k0 = n1k
0
1 + n2k

0
2 + n3k

0
3 . (33)

Proof. The 
hara
teristi
 equation of system (27) is

∣∣∣∣∣∣

n1b1
2a − (λ + 1) n2b1

2a
n3b1
2a

n1b2
2a

n2b2
2a − (λ+ 1) n3b2

2a
n1b3
2a

n2b3
2a

n3b3
2a − (λ+ 1)

∣∣∣∣∣∣
=

= (λ + 1)2
(
n1b1
2a

+
n2b2
2a

+
n3b3
2a

)
+ (λ+ 1)3 = 0.

Thus, the eigenvalues are
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λ1,2 = −1, λ3 =
n1b1 + n2b2 + n3b3

2a
− 1.

Eigenve
tors 
orresponding λ = −1 are

e1 =



−n3

0
n1




and

e2 =




0
−n3

n2


 ,

while an eigenve
tor 
orresponding λ3 
an be found as a solution of the system of

equations





−(n2b2 + n3b3)x1 + n2b1x2 + n3b1x3 = 0,

n1b2x1 − (n1b1 + n3b3)x2 + n3b2x3 = 0,

n1b3x1 + n2b3x2 − (n1b1 + n2b2)x3 = 0.

We �nd

e2 =



b1
b2
b3


 .

The general solution of the homogeneous system of di�erential equations 
orre-

sponding (27) has the form

(k(t))g = C1 · exp{−t}



−n3

0
n1


+ C2 · exp{−t}




0
−n3

n2


+

+C3 · exp
{(n1b1 + n2b2 + n3b3

2a
− 1

)
t
}


b1
b2
b3


 .

As a partial solution of the system (27) we take its steady state, i.e. the solution

of the linear system

(n1x1 + n2x2 + n3x3)bi − 2axi = e(1− 2a), i = 1, 2, 3.

The solution is (30); hen
e, the general solution of the system (27) has the

form (29). In solution of the Cau
hy problem (27)�(28), 
onstants of integration are

de�ned from the initial 
onditions:



k01
k02
k03


 = C1



−n3

0
n1


+ C2




0
−n3

n2


+ C3



b1
b2
b3


+



D1

D2

D3


 . (34)
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Multiplying the �rst s
alar equation of system (34) by n1, the se
ond equation

by n2 and the third equation by n3 and adding we obtain

C3 =
k0 − D̃

n1b1 + n2b2 + n3b3
.

Substituting this expression in the �rst and the se
ond equations of system (34)

we obtain

C1 =
k0 − D̃ + (D1 − k01)(n1b1 + n2b2 + n3b3)n3

n1b1 + n2b2 + n3b3)n3
,

C2 =
k0 − D̃ + (D2 − k02)(n1b1 + n2b2 + n3b3)n3

n1b1 + n2b2 + n3b3)n3
.

Substituting for C1, C2 and C3 into (29) we obtain (31). ⊓⊔

Proposition 3. The 
onditions of dynami
 stability/instability of the equilibria

listed in Proposition 1, if they exist, are the following.

1. The equilibrium with all hypera
tive agents (HHH) is stable i�

b1 > b2 > b3 >
1

n1 + n2 + n3
. (35)

2. Equilibrium in whi
h 1

st

and 2

nd

types agents are hypera
tive and 3

rd

type

agents are a
tive (HHA) is stable i� n3 = 1 and

1− 2a

n1 + n2
< b3 <

1

n1 + n2 + 1
, (36)

n1 + n2 +
1− 2a− (n1 + n2)b3

b3 − 2a
>

1

b2
>

1

b1
. (37)

3. Equilibrium in whi
h 1

st

type agents are hypera
tive and 2

nd

and 3

rd

types

agents are a
tive (HAA) is unstable.

4. Equilibrium in whi
h 1

st

and 2

nd

types agents are hypera
tive and 3

rd

type

agents are passive (HHP) is stable i�

b1 > b2 >
1

n1 + n2
, b3 <

1− 2a

n1 + n2
. (38)

5. Equilibrium in whi
h 1

st

type agents are hypera
tive, 2

nd

type agents are a
tive

and 3

rd

type agents are passive (HAP) is stable if n2 = 1 and

1− 2a

n1
< b2 <

1

n1 + 1
, (39)

1

b1
< n1 +

1− 2a− n1b2
b2 − 2a

<
1− 2a

b3
. (40)

6. Equilibrium in whi
h 1

st

type agents are hypera
tive and 2

nd

and 3

rd

types

agents are passive (HPP) is stable i�

b1 >
1

n1
, b3 < b2 <

1− 2a

n1
. (41)
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7. The equilibrium in whi
h agents of all types are a
tive (AAA) is always un-

stable.

8. Equilibrium in whi
h 1

st

type and 2

nd

type agents are a
tive and 3

rd

type

agents are passive (AAP) is unstable.

9. Equilibrium in whi
h 1

st

type agents are a
tive and 2

nd

type and 3

rd

type

agents are passive (APP) is unstable.

10. The equilibrium in whi
h agents of all types are passive (PPP) is always

stable.

Proof. 1. A

ording to equation (3), in the point (e, e, e) we have

D1Vi(ki,K)|k1=k2=k3=e = bi(n1 + n2 + n3)e − e, i = 1, 2, 3.

All the three derivatives are positive i� (35) is 
he
ked; hen
e, a

ording to

De�nition 5 this equilibrium is stable.

2. The di�erential equation (26) for 3

rd

type agents in this 
ase turns into

k̇3 =
e(2a− 1) + e(n1 + n2)b3

2a
+
n3b3 − 2a

2a
k3.

Thus this equilibrium may be stable only if n3 = 1, b3 < 2a. But in this 
ase the


ondition of 3

rd

type agents a
tivity (8) holds i� (36) holds. This 
ondition implies

2a(n1 + n2 + 1) > 1;

thus, (36) involves the 
ondition b3 < 2a.
A

ording to equations (3), (9),

D1V1(k1,K)|k1=k2=k3=e = b1

(
n1 + n2 + n3

1− 2a− (n1 + n2)b3
n3b3 − 2a

)
e− e ≥ 0,

D1V2(k2,K)|k1=k2=k3=e = b2

(
n1 + n2 + n3

1− 2a− (n1 + n2)b3
n3b3 − 2a

)
e− e ≥ 0.

However, for dynami
 stability, a

ording to De�nition 5, the stri
t inequality

(37) is needed.

3. The system of di�erential equations (27) for agents of 2

nd

and 3

rd

types in

this 
ase turns into

{
k̇2 = n1b2e

2a + n2b2−2a
2a k2 +

n3b2
2a k3 +

e(2a−1)
2a ,

k̇3 = n1b3e
2a + n2b3

2a k2 +
n3b3−2a

2a k3 +
e(2a−1)

2a .

The eigenvalues of this system are

λ1 = −1,

λ2 = −1 +
n2b2 + n3b3

2a
> 0.

Thus the system is unstable.

4. A

ording to De�nition 5 and equation (3), the ne
essary and su�
ient 
on-

ditions for stability are
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D1V1(k1,K)|k1=e,k2=e,k3=0 = b1(n1 + n2)e− e > 0,

D1V2(k2,K)|k1=e,k2=e,k3=0 = b2(n1 + n2)e− e > 0,

D1V3(k3,K)|k1=e,k2=e,k3=0 = b3(n1 + n2)e− e(1− 2a) < 0,

whi
h are equivalent to (38).

5. The di�erential equation (26) for 2

nd

type agents in this 
ase turns into

k̇2 =
e(2a− 1) + en1b2

2a
+
n2b2 − 2a

2a
k2.

Thus this equilibrium may be stable only if n2 = 1, b2 < 2a. But in this 
ase the

ondition of 3

rd

type agents a
tivity (14) holds i� (39) holds. This equation implies

2a(n1 + 1) > 1,

thus (39) involves the 
ondition b2 < 2a. For the stability of equilibrium the


ondition (15) of hypera
tivity of 1

st

type agents and passivity of 3

rd

type agents

shall hold as stri
t inequality (40), a

ording to De�nition 5.

6. A

ording to De�nition 5, for stability of this equilibrium the 
ondition (16)

of its existen
e shall hold as stri
t inequalities (41).

7. One of the eigenvalues of the system (27) is

λ3 =
n1b1 + n2b2 + n3b3

2a
− 1 > 0;

hen
e, the equilibrium is unstable.

8. The system of di�erential equations (27) for agents of 1

st

and 2

nd

types in

this 
ase turns into

{
k̇1 = n1b1−2a

2a k1 +
n2b1
2a k2 +

e(2a−1)
2a ,

k̇2 = n1b2
2a k1 +

n2b2−2a
2a k2 +

e(2a−1)
2a .

The eigenvalues of this system are

λ1 = −1,

λ2 = −1 +
n1b1 + n2b2

2a
> 0.

Thus, the system is unstable.

9. The di�erential equation (26) for 1

st

type agents in this 
ase turns into

k̇1 =
b1n1 − 2a

2a
k1 +

e(2a− 1)

2a
.

This equilibrium may be stable only if n1 = 1, b1 < 2a. But in this 
ase the


ondition of 1

st

type agents a
tivity (25) is wrong. Thus, this equilibrium is always

unstable.

10. A

ording to equation (3), we have

D1V1(ki,K)|k1=k2=k3=0 = e(2a− 1) < 0, i = 1, 2, 3.

A

ording to De�nition 5, this equilibrium is stable.

⊓⊔
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From this Proposition follows, in parti
ular, that if three regular networks with

produ
tivities b1, b2 and b3 (b1 > b2 > b3), being initially in equilibria with hyper-

a
tive agents of 1

st

and 2

nd

networks and with passive agents of 3

rd

network, unify,

then under 
ondition

b3 <
1− 2a

n1 + n2

(i.e. if produ
tivity of the passive agents is su�
iently low), in united network shall

be no transition pro
ess. The state {k1 = e, k2 = e, k3 = 0} shall be a stable

equilibrium. But if before the uni�
ation the agents of the 1

st

network were passive,

but the agents of the 2

nd

and of the 3

rd

networks were hypera
tive, in the united

network arises a transition pro
ess. As result of this pro
ess, the uni�ed network

shall 
ome in stable equilibrium in whi
h all the agents are hypera
tive.

Agents, who are initially a
tive in a symmetri
 equilibrium in regular network

(whi
h implies that their produ
tivities are su�
iently high), also may in
rease

their level of investment in result of uni�
ation with other regular networks with

hypera
tive or a
tive agents. The uni�ed network 
omes into equilibrium in whi
h

all agents are hypera
tive.

6. Con
lusion

Resear
h on the role of heterogeneity of agents in so
ial and e
onomi
 networks is

rather new in the literature. In our model we assume presen
e of three types of

agents possessing di�erent produ
tivities. At the �rst stage ea
h agent in network

may invest some resour
e (su
h as money or time) to in
rease her gain at the se
ond

stage. The gain depends on her own investment and produ
tivity, as well as on

investments of her neighbors in the network. Su
h situations are typi
al for various

so
ial, e
onomi
, politi
al and organizational systems. In framework of the model,

we 
onsider relations between network stru
ture, in
entives, and agents' behavior

in the game equilibrium state in terms of welfare (utility) of the agents.

We introdu
e adjustment dynami
s whi
h may start after a deviation from equi-

librium or after a jun
tion of networks initially being in equilibrium. Earlier, a spe-


ial 
ase of 
omplete networks was 
onsidered in (Matveenko et al., 2017). Here we

introdu
e a more general 
ase of triregular networks and study behavior of agents

with di�erent produ
tivities. In triregular networks we enumerate all the equilibria,

whi
h are possible under 
ertain 
onditions. We �nd also the 
onditions under whi
h

these equilibria are dynami
ally stable.

A natural task for future resear
h is to expand the results to broader 
lasses of

networks.
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