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1. Introdu
tion

In this paper we 
onsider a 
lass of m-player mean payo� games on networks

that generalizes the following two-player zero-sum mean payo� game introdu
ed

by Ehrenfeu
ht and My
ielski, 1979, and 
onsidered by Gurvi
h et al., 1988.

Let G = (X,E) be a �nite dire
ted graph in whi
h every vertex x ∈ X has at

least one outgoing dire
ted edge e = (x, y) ∈ E. On the edge set E it is given

a fun
tion c : E → R whi
h assigns a 
ost c(e) to ea
h edge e ∈ E. In ad-

dition the vertex set X is divided into two disjoint subsets X1 and X2 (X =
X1 ∪ X2, X1 ∩ X2 = ∅) whi
h are regarded as position sets of the two play-

ers. The game starts at a given position x0 ∈ X . If x0 ∈ X1 then the move

is done by the �rst player, otherwise it is done dy se
ond one. Move means the

passage from position x0 to a neighbor position x1 through the dire
ted edge

e0 = (x0, x1) ∈ E. After that if x1 ∈ X1 then the move is done by the �rst player,

otherwise it is done by the se
ond one and so on inde�nitely. The �rst player has

the aim to maximize lim
t→∞

inf
1

t

t−1∑

τ=0

c(eτ ) while the se
ond player has the aim

to minimize lim
t→∞

sup
1

t

t−1∑

τ=0

c(eτ ). Ehrenfeu
ht and My
ielski, 1979, proved that

for this game there exists a value v(x0) su
h that the �rst player has a strat-

egy of moves that insures lim
t→∞

inf
1

t

t−1∑

τ=0

c(eτ ) ≥ v(x0) and the se
ond player

has a strategy of moves that insure lim
t→∞

sup
1

t

t−1∑

τ=0

c(eτ ) ≤ v(x0). Furthermore

Ehrenfeu
ht and My
ielski, 1979 and Gurvi
h et al., 1988 showed that the play-

ers 
an a
hieve the value v(x0) applying the strategies of moves whi
h do not de-

pend on t but depend only on the vertex from whi
h the player is able to move.
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Ehrenfeu
ht and My
ielski, 1979 and Zwi
k and Paterson,1996, 
alled su
h strate-

gies positional strategies. Gurvi
h et al., 1988 and Lozovanu and Pi
kl, 2006, 
alled

these strategies stationary strategies.

In this paper we will regard su
h strategies as pure stationary strategies be
ause

ea
h move in a position of the game is 
hosen from the set of feasible strategies

of moves by the 
orresponding player with the probability equal to 1 and in ea
h

position su
h a strategy does not 
hange in time.

A generalization of the zero-sum mean payo� game to m-player, where m ≥ 2, is
the following. Consider a �nite dire
ted graph G = (X,E) in whi
h every vertex has
at least one outgoing dire
ted edge. Assume that the vertex set X is divided into

m disjoint subsets X1, X2, . . . , Xm ( X = X1∪X2 ∪· · · ∪Xm; Xi∩Xj = ∅, i 6= j)
whi
h we regard as position sets of the m players. Additionally, we assume that on

the edge set m fun
tions ci : F → R, i = 1, 2, . . . ,m are de�ned that assign to

ea
h dire
ted edge e = (x, y) ∈ E the values c1e, c
2
e, . . . , c

m
e that are regarded as the

rewards for the 
orresponding players 1, 2, . . . ,m.
On G we 
onsider the following m-person dynami
 game. The game starts at

given position x0 ∈ X at the moment of time t = 0 where the player i ∈ {1, 2, . . . ,m}
who is owner of the starting position x0 makes a move from x0 to a neighbor position
x1 ∈ X through the dire
ted edge e0 = (x0, x1) ∈ E. After that players 1, 2, . . . ,m
re
eive the 
orresponding rewards c1e0 , c

2
e0 , . . . , c

m
e0 . Then at the moment of time t = 1

the player k ∈ {1, 2, . . . ,m} who is owner of position x1 makes a move from x1 to
a position x2 ∈ V through the dire
ted edge e1 = (x1, x2) ∈ E, players 1, 2, . . . ,m
re
eive the 
orresponding rewards c1e1 , c

2
e1 , . . . , c

m
e1 , and so on, inde�nitely. Su
h a

play of the game on G produ
es the sequen
e of positions x0, x1, x2, . . . , xt . . . where
ea
h xt is the position at the moment of time t. In this game the players make moves
through the dire
ted edges in their positions in order to maximize their average

rewards per move

ωixo
= lim

t→∞
inf

1

t

t−1∑

τ=0

cieτ , i = 1, 2, . . . ,m.

The game formulated above in the 
ase m = 2 and c1e = −c2e = ce, ∀e ∈ E
is transformed into a two-player mean payo� game for whi
h Nash equilibria in

pure stationary strategies exist. In general a non-zero-sum mean payo� game may

have no Nash equilibrium in pure stationary strategies. This fa
t has been shown

by Gurvi
h et al., 1988, where an example of two-player non-zero-sum mean payo�

game that has no Nash equilibrium in pure strategies is 
onstru
ted. Alpern, 1991

and Lozovanu and Pi
kl, 2015, have shown that Nash equilibria for non-zero m-
player mean payo� games may exist only for some spe
ial 
ases. A 
lass of m-player
mean payo� games for whi
h Nash equilibria in pure stationary strategies exist is

presented in Lozovanu and Pi
kl, 2006.

In this paper we 
onsider the non-zero-sum mean payo� games in mixed station-

ary strategies. We de�ne a mixed stationary strategy of moves in a position x ∈ Xi

for the player i ∈ {1, 2, . . . ,m} as a probability distribution over the set of feasible

moves from x. We show that an arbitrary m-player mean payo� game possesses a

Nash equilibrium in mixed stationary strategies. Based on a 
onstru
tive proof of

this result we propose an approa
h for determining the optimal mixed stationary

strategies of the players.
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The paper is organized as follows. In Se
tion 2 a 
lass of average sto
hasti
 posi-

tional games that generalizes non-zero-sum mean payo� games is 
onsidered. Then

in Se
tions 3 is shown how an average sto
hasti
 positional game 
an be formu-

lated in terms of pure and mixed stationary strategies. In Se
tion 4 some results


on
erned with the existen
e of Nash equilibria in mixed stationary strategies for

average sto
hasti
 positional games are presented. Additionally an approa
h for de-

termining the optimal strategies of players is proposed. In Se
tions 5,6, based on

results from the Se
tions 3,4, is proven the existen
e of Nash equilibria in mixed

stationary strategies for non-zero-sum mean payo� games and an approa
h for de-

termining the optimal strategies of the players is proposed.

2. A generalization of mean payo� games to average sto
hasti


positional games

The problem of determining Nash equilibria in mixed stationary strategies

for mean payo� games leads to a spe
ial 
lass of average sto
hasti
 games

that Lozovanu and Pi
kl, 2015 
alled average sto
hasti
 positional games.

Lozovanu, 2018 shown that this 
lass of games possesses of Nash equilibria in mixed

stationary strategies. Therefore in the paper we shall use the average sto
hasti
 po-

sitional games for studying the non-zero-sum mean payo� games.

A sto
hasti
 positional game with m players 
onsists of the following elements:

- a state spa
e X (whi
h we assume to be �nite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set of

player i ∈ {1, 2, . . . ,m};

- a �nite set A(x) of a
tions in ea
h state x ∈ X ;

- a step reward f i(x, a) with respe
t to ea
h player i ∈{1, 2, . . . ,m} in ea
h

state x ∈ X and for an arbitrary a
tion a ∈ A(x);

- a transition probability fun
tion p : X × ∏
x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X

for a �xed a
tion a ∈ A(x), where

∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a starting state x0 ∈ X .

The game starts at the moment of time t = 0 in the state x0 where the player i ∈
{1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) 
hooses an a
tion
a0 ∈ A(x0) and determines the rewards f

1(x0, a0), f
2(x0, a0), . . . , f

m(x0, a0) for the

orresponding players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X
a

ording to a probability distribution {pa0x0,y}. At the moment of time t = 1 the

player k ∈ {1, 2, . . . ,m} who is the owner of the state position x1 (x1 ∈ Xk) 
hooses

an a
tion a1 ∈ A(x1) and players 1, 2, . . . ,m re
eive the 
orresponding rewards

f1(x1, a1), f
2(x1, a1), . . . , f

m(x1, a1). Then the game passes to a state y = x2 ∈ X
a

ording to a probability distribution {pa1x1,y} and so on inde�nitely. Su
h a play

of the game produ
es a sequen
e of states and a
tions x0, a0, x1, a1, . . . , xt, at, . . .
that de�nes a stream of stage rewards f1(xt, at), f

2(xt, at), . . . , f
m(xt, at), t =

0, 1, 2, . . . . The average sto
hasti
 positional game is the game with payo�s of the
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players

ωix0
= lim

t→∞
inf

1

t

t−1∑

τ=0

E(f i(xτ , aτ )), i = 1, 2, . . . ,m

where E is the expe
tation operator with respe
t to the probability measure in the

Markov pro
ess indu
ed by a
tions 
hosen by players in their position sets and given

a starting state x0. Ea
h player in this game has the aim to maximize his average

reward per transition. In the 
ase m = 1 this game be
omes the average Markov

de
ision problem with given a
tion sets A(x) for x ∈ X , a transition probability

fun
tion p : X × ∏
x∈X

A(x) ×X → [0, 1] and step rewards f(x, a) = f1(x, a) for

x ∈ X and a ∈ A(x). If in an average sto
hasti
 positional game the probabilities

pax,y take only values 0 and 1, i. e. pax,y ∈ {0, 1}, ∀x, y ∈ X and ∀a ∈ A(x), then su
h
a game be
omes a mean payo� game on the graph G = (X,E), where e = (x, y) ∈ E
if and only if there exists a ∈ A(x) su
h that pax,y = 1. So, in this 
ase the set of

dire
ted edges E(x) = {e = (x, y) ∈ E|y ∈ X} with the 
ommon origin in x

orresponds to the set of a
tions A(x) in the position x of the game.

In the paper we will study the average sto
hasti
 positional game when the

players use pure and mixed stationary strategies of 
hoosing the a
tions in the

states.

3. Average sto
hasti
 positional games in pure and mixed stationary

strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a sto
hasti
 positional game is a mapping

si that provides for every state xt ∈ Xi a probability distribution over the set of

a
tions A(xt). If these probabilities take only values 0 and 1, then si is 
alled a

pure strategy, otherwise si is 
alled a mixed strategy. If these probabilities depend

only on the state xt = x ∈ Xi (i. e. s
i
does not depend on t), then si is 
alled a

stationary strategy, otherwise si is 
alled a non-stationary strategy.

Thus, we 
an identify the set of mixed stationary strategies Si of player i with
the set of solutions of the system





∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(1)

Ea
h basi
 solution si of this system 
orresponds to a pure stationary strategy of

player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si of player i

orresponds to the set of basi
 solutions of system (1).

Let s= (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm be a pro�le of stationary

strategies (pure or mixed strategies) of the players. Then the elements of probability

transition matrix P s = (psx,y) in the Markov pro
ess indu
ed by s 
an be 
al
ulated

as follows:

psx,y =
∑

a∈A(x)

six,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (2)

If we denote by Qs = (qsx,y) the limiting probability matrix of matrix P s
then the

average payo�s per transition ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) for the players indu
ed by

pro�le s are determined as follows
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ωix0
(s) =

m∑

k=1

∑

y∈Xk

qsx0,yf
i(y, sk), i = 1, 2, . . . ,m, (3)

where

f i(y, sk) =
∑

a∈A(y)

sky,af
i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (4)

expresses the average reward (step reward) of player i in the state y ∈ Xk when

player k uses the strategy sk.
The fun
tions ω1

x0
(s), ω2

x0
(s), . . . , ωmx0

(s) on S = S1 × S2 × · · · × Sm, de-

�ned a

ording to (10),(11), determine a game in normal form that we denote

by 〈{Si}i=1,m, {ωix0
(s)}i=1,m 〉. This game 
orresponds to the average sto
has-

ti
 positional game in mixed stationary strategies that in extended form is deter-

mined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0). The fun
-

tions ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) on S = S1 × S2 × · · · × Sm, determine the game
〈{Si}i=1,m, {ωix0

(s)}i=1,m 〉 that 
orresponds to the average sto
hasti
 positional

game in pure strategies. In the extended form this game is also determined by the

tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0).
A sto
hasti
 positional games 
an be 
onsidered also for the 
ase when the

starting state is 
hosen randomly a

ording to a given distribution {θx} on X .

So, for a given sto
hasti
 positional game we may assume that the play starts in

the state x ∈ X with probability θx > 0 where

∑
x∈X

θx = 1. If the players use

mixed stationary strategies then the payo� fun
tions

ψiθ(s) =
∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 that in extended

form is determined by ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θx}x∈X). In the

ase θx = 0, ∀x ∈ X \ {x0}, θxo

= 1 the 
onsidered game be
omes a sto
hasti


positional game with a �xed starting state x0.

4. Nash equilibria for an average sto
hasti
 positional game and

determining the optimal stationary strategies of the players

We present a Nash equilibria existen
e result and an approa
h for determining

the optimal mixed stationary strategies of the players for the average sto
hasti


positional game when the starting state of the game is 
hosen randomly a

ording

to a given distribution {θx} on the set of states X . In this 
ase for the game in

normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉, the set of strategies Si and the payo�

fun
tions ψiθ(s), i = 1, 2, . . . ,m 
an be spe
i�ed as follows:

Let Si, i ∈ {1, 2, . . .m} be the set of solutions of the system





∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(5)
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On S = S1 × S2 × · · · × Sm we de�ne m payo� fun
tions

ψiθ(s
1, s2, . . . , sm) =

m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m, (6)

where qx for x ∈ X are determined uniquely from the following system of linear

equations





qy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y qx = 0, ∀y ∈ X ;

qy + wy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y wx = θy, ∀y ∈ X

(7)

for an arbitrary �xed pro�le s = (s1, s2, . . . , sm) ∈ S.

The fun
tions ψiθ(s
1, s2, . . . , sm), i = 1, 2, . . . ,m, represent the payo� fun
tions

for the average sto
hasti
 game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 deter-
mined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θy}y∈X) where
θy for y ∈ X are given nonnegative values su
h that

∑
y∈X θy = 1.

If θy = 0, ∀y ∈ X \ {x0} and θx0 = 1, then we obtain an average sto
hasti


game in normal form 〈{Si}i=1,m, {ωix0
(s)}i=1,m 〉 when the starting state x0 is

�xed, i.e. ψiθ(s
1, s2, . . . , sm) = ωix0

(s1, s2, . . . , sm), i = 1, 2, . . . ,m. So, in this


ase the game is determined by ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0).

Lozovanu, 2018, showed that ea
h payo� fun
tion ψiθ(s), i ∈ {1, 2, . . . ,m}
in the game 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 is quasi-monotoni
 (quasi-
onvex and

quasi-
on
ave) with respe
t to si on a 
onvex and 
ompa
t set Si for �xed

s1, s2, . . . , si−1, si+1, . . . , sm. Moreover for the game 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉
has been shown that ea
h payo� fun
tion ψiθ(s), i ∈ {1, 2, . . . ,m} is graph-


ontinuous in the sense of Dasgupta and Maskin, 1986. Based on these properties

Lozovanu, 2018, proved the following theorem.

Theorem 1. The game 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 possesses a Nash equilibrium s∗=

(s1
∗
, s2

∗
, . . . , sm∗) ∈ S whi
h is a Nash equilibrium in mixed stationary strategies for

the average sto
hasti
 positional game determined by ({Xi}i=1,m, {A(x)}x∈X ,
{f i(x, a)}i=1,m, p, {θy}y∈X). If θy > 0, ∀y ∈ X, then s∗= (s1

∗
, s2

∗
, . . . , sm∗) is a

Nash equilibrium in mixed stationary strategies for the average sto
hasti
 positional

game 〈{Si}i=1,m, {ωiy(s)}i=1,m 〉 with an arbitrary starting state y ∈ X.

Thus, for an average sto
hasti
 positional game a Nash equilibrium in mixed

stationary strategies 
an be found using the game model 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉,
where Si and ψiθ(s), i = 1, 2, . . . ,m, are determined a

ording to (5)-(7). This

game model in the 
ase m = 2, f(x, a) = f1(x, a) = −f2(x, a), ∀x ∈ X, ∀a ∈ A(x)

orresponds to a zero-sum two-player average sto
hasti
 positional game and we 
an

use it for determining the optimal stationary strategies of the players. Note that in

this 
ase the equilibrium may exists in pure stationary strategies and 
onsequentely

su
h a game model allows to determine the optimal pure stationary strategies of

the players.
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For antagonisti
 average sto
hasti
 positional games Lozovanu and Pi
kl, 2016,

proposed an another approa
h for determining Nash equilibria in pure stationary

strategies. However the approa
h from Lozovanu and Pi
kl, 2016, 
ouldn't be ex-

tended for non-zero average sto
hasti
 positional games and for the non-zero mean

payo� games. Nevertheless su
h an approa
h allows to ground �nite e�
ient it-

erative pro
edures for determining the optimal pure stationary strategies of the

players.

5. Formulation of mean payo� games in mixed stationary strategies

Consider a mean payo� game determined by the tuple (G, {Xi}i=1,m, {ci}i=1,m, x0)
where G = (X,E) is a �nite dire
ted graph with vertex set X and edge set E,
X = X1 ∪X2 ∪ · · · ∪ Xm (Xi ∩ Xj = ∅, i 6= j) is a partition of X that determine

the 
orresponding position set of players, ci : E → R1, i = 1, 2, . . . ,m are the real

fun
tions that determine the rewards on edges of graph G and x0 is the starting

position of the game.

The pure and mixed stationary strategies in the mean payo� game on G 
an be

de�ned in a similar way as for the average sto
hasti
 positional game. We identify

the set of mixed stationary strategies Si of player i ∈ {1, 2, . . . ,m} with the set of

solutions of the system

{ ∑
y∈X(x)

six,y = 1, ∀x ∈ Xi;

six,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)
(8)

where X(x) represents the set of neighbor verti
es for the vertex x, i.e. X(x) =
{y ∈ X |e = (x, y) ∈ E}.

Let s = (s1, s2, . . . , sm) be a pro�le of stationary strategies (pure or mixed

strategies) of the players. This means that the moves in the mean payo� game from

an arbitrary x ∈ X to y ∈ X indu
ed by s are made a

ording to probabilities of

the sto
hasti
 matrix P s = (sx,y), where

sx,y =

{
six,y if e = (x, y) ∈ E, x ∈ Xi, y ∈ X ; i = 1, 2, . . . ,m;

0 if e = (x, y) 6∈ E.
(9)

Thus, for a given pro�le s we obtain a Markov pro
ess with the probability tran-

sition matrix P s = (sx,y) and the 
orresponding rewards cix,y, i = 1, 2, . . . ,m
on edges (x, y) ∈ E. Therefore, if Qs = (qsx,y) is the limiting probability matrix

of P s
then the average rewards per transition ω1

v0(s), ω
2
x0
(s), . . . , ωmx0

(s) for the

players 
an be determined as follows

ωix0
(s) =

m∑

k=1

∑

y∈Xk

qsx0,yµ
i(y, sk), i = 1, 2, . . . ,m, (10)

where

µi(y, sk) =
∑

x∈X(y)

sky,xc
i(y, x), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (11)
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expresses the average step reward of player i in the state y ∈ Xk when player k
uses the mixed stationary strategy sk. The fun
tions ω1

x0
(s), ω2

x0
(s), . . . , ωmx0

(s)
on S = S1 × S2 × · · · × Sm, de�ned a

ording to (10), (11), determine a game in

normal form that we denote by 〈{Si}i=1,m, {ωix0
(s)}i=1,m 〉. This game 
orresponds

to the mean payo� game in mixed stationary strategies on G with a �xed starting

position x0. So this game is determined by the tuple (G, {Xi}i=1,m, {ci}i=1,m, x0).

In a similar way as for an average sto
hasti
 game here we 
an 
onsider the

mean payo� game on G when the starting state is 
hosen randomly a

ording to a

given distribution {θx} on X . So, for su
h a game we will assume that the play

starts in the states x ∈ X with probabilities θx > 0 where

∑
x∈X

θx = 1. If the

players in su
h a game use mixed stationary strategies of moves in their positions

then the payo� fun
tions

ψiθ(s) =
∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 that is determined

by the following tuple (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X) . In the 
ase θx = 0,
∀x ∈ X \ {v0}, θv0 = 1 this game be
omes a mean payo� with �xed starting

state x0.

6. Nash equilibria in mixed stationary strategies for mean payo�

games and determining the optimal strategies of the players

In this se
tion we show how the results from the previous se
tions 
an be applied

for determining Nash equilibria and the optimal mixed stationary strategies of the

players for mean payo� games.

Let 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 be the game in normal form for the mean payo�

game determined by (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). We show that Si and

ψiθ(s) for i ∈ {1, 2, . . . ,m} 
an be de�ned as follows:

Si represents a set of the solutions of the system

{ ∑
y∈X(x)

six,y = 1, ∀x ∈ Xi;

six,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)
(12)

and

ψiθ(s
1, s2, . . . , sm) =

m∑

k=1

∑

y∈Xk

∑

y∈X(x)

skx,yc
i(x, y)qx, (13)

where qx for x ∈ X are determined uniquely (via skx,y) from the following system of

equations





qy −
m∑
k=1

∑
x∈Xk

∑
v∈X(x)

skx,y qx = 0, ∀y ∈ X(x);

qy + wy −
m∑
k=1

∑
y∈X

∑
x∈X(y)

skx,y wx = θy, ∀y ∈ X(x).

(14)
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Here, θy for y ∈ X represent arbitrary �xed positive values su
h that

∑
y∈X

θy = 1.

Using Theorem 1 we 
an prove now the following result.

Theorem 2. For a mean payo� game on G the 
orresponding game in normal form

〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 possesses a Nash equilibrium s∗= (s1
∗
, s2

∗
, . . . , sm∗) ∈ S

whi
h is a Nash equilibrium in mixed stationary strategies for the mean payo� game

on G with an arbitrary starting position x0 ∈ X.

Proof. To prove the theorem it is su�
ient to show that the fun
tions ψiθ(s),
i ∈ {1, 2, . . . ,m} de�ned a

ording to (13), (14) represent the payo� fun
tions for

the mean payo� game determined by (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). This
is easy to verify be
ause if we repla
e in (6) the rewards f i(x, a) for x ∈ X
and a ∈ A(x) by rewards cix,y for (x, y) ∈ E and in (6), (7) we repla
e the

probabilities pax,y, x ∈ Xk, a ∈ A(x) for the 
orresponding players k = 1, 2, . . . , m

by pkx,y ∈ {0, 1} a

ording to the stru
ture of graph G then we obtain that (6),

(7) are transformed into (13), (14). If after that we apply Theorem 1 then obtain

the proof of the theorem.

So, the optimal mixed stationary strategies of the players in a mean payo� game


an be found if we determine the optimal stationary strategies of the players for the

game 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 where Si and ψiθ(s) for i ∈ {1, 2, . . . , m} are

de�ned a

ording to (12) - (14). If m = 2, cx,y = c1x,y = −c2x,y, ∀(x, y) ∈ E then

we obtain a game model in normal form for the zero-sum two-player mean payo� on

graph G. In this 
ase the equilibrium exists in pure stationary strategies and the


onsidered game model allows to determine the optimal pure stationary strategies

of the players. For antagonisti
 mean payo� games on graphs the approa
h for

antagonisti
 average sto
hasti
 positional games from Lozovanu and Pi
kl, 2016,


an also be adapted if we take into a

ount the mentioned transforms in the proof

of Theorem 2, i.e. we should 
hange the rewards f i(x, a) for x ∈ X, a ∈ A(x)
by rewards cix,y for (x, y) ∈ E and repla
e the probabilities pax,y, x ∈ Xk, a ∈
A(x), k = 1, 2, . . . ,m by probabilities pkx,y ∈ {0, 1} a

ording to the stru
ture of

the graph G.

7. Con
lusion

The 
onsidered 
lass of non-zero mean payo� games generalizes the zero-sum two-

player mean payo� games on graphs studied by Ehrenfeu
ht and My
ielski, 1979,

Gurvi
h et al., 1988, Lozovanu and Pi
kl, 2015 and Zwi
k and Paterson,1996. For

zero-sum two-player mean payo� games on graphs there exist Nash equilibria in

pure stationary strategies. For the 
ase of non-zero-sum mean payo� games on

networks Nash equilibria in pure stationary strategies may not exist. The results

presented in the paper show that an arbitrary mean payo� game in mixed stationary

strategies possesses a Nash equilibrium and su
h an equilibrium 
an be found using

the game models proposed in Se
tions 5,6.
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