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Abstract We consider a class of non-zero-sum mean payoff games on net-
works that extends the two-player zero-sum mean payoff game introduced by
Ehrenfeucht and Mycielski. We show that for the considered class of games
there exist Nash equilibria in mixed stationary strategies and propose an
approach for determining the optimal strategies of the players.
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1. Introduction

In this paper we consider a class of m-player mean payoff games on networks
that generalizes the following two-player zero-sum mean payoff game introduced
by Ehrenfeucht and Mycielski, 1979, and considered by Gurvich et al., 1988.

Let G = (X, E) be a finite directed graph in which every vertex € X has at
least one outgoing directed edge e = (z,y) € E. On the edge set E it is given
a function ¢ : E — R which assigns a cost c(e) to each edge e € E. In ad-
dition the vertex set X is divided into two disjoint subsets X; and X» (X =
X1 U Xs, X1 N Xy = Q) which are regarded as position sets of the two play-
ers. The game starts at a given position zg € X. If 29 € X; then the move
is done by the first player, otherwise it is done dy second one. Move means the
passage from position zy to a neighbor position x; through the directed edge
eo = (zo,x1) € E. After that if 1 € X; then the move is done by the first player,
otherwise it is done by the second one and so on indefinitely. The first player has

t—1
the aim to maximize tlim inf n c(e;) while the second player has the aim
—00
7=0
t—1

to minimize tlim sup n Z c(e;). Ehrenfeucht and Mycielski, 1979, proved that
—00

—
for this game there exists a value v(zg) such that the first player has a strat-

t—1
egy of moves that insures lim inf — E c(er) > wv(zg) and the second player
t—o00 t ¢
—

t—1
has a strategy of moves that insure lim sup—Zc(eT) < wv(zp). Furthermore
t—o00 t

7=0
Ehrenfeucht and Mycielski, 1979 and Gurvich et al., 1988 showed that the play-
ers can achieve the value v(xo) applying the strategies of moves which do not de-
pend on t but depend only on the vertex from which the player is able to move.
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Ehrenfeucht and Mycielski, 1979 and Zwick and Paterson,1996, called such strate-
gies positional strategies. Gurvich et al., 1988 and Lozovanu and Pickl, 2006, called
these strategies stationary strategies.

In this paper we will regard such strategies as pure stationary strategies because
each move in a position of the game is chosen from the set of feasible strategies
of moves by the corresponding player with the probability equal to 1 and in each
position such a strategy does not change in time.

A generalization of the zero-sum mean payoff game to m-player, where m > 2, is
the following. Consider a finite directed graph G = (X, E) in which every vertex has
at least one outgoing directed edge. Assume that the vertex set X is divided into
m disjoint subsets X1, Xa,..., Xm (X =XjUXoU - UX,; XiNXJ=0,4+#7)
which we regard as position sets of the m players. Additionally, we assume that on

the edge set m functions ¢ : F — R, i = 1,2,...,m are defined that assign to
each directed edge e = (z,y) € E the values c.,c2,...,c™ that are regarded as the
rewards for the corresponding players 1,2,...,m.

On G we consider the following m-person dynamic game. The game starts at
given position zy € X at the moment of time ¢t = 0 where the playeri € {1,2,...,m}
who is owner of the starting position zy makes a move from z( to a neighbor position
x1 € X through the directed edge eg = (z9, 1) € E. After that players 1,2,...,m

receive the corresponding rewards céO, cgo, ..., cgr. Then at the moment of time ¢t = 1
the player k € {1,2,...,m} who is owner of position z1 makes a move from z; to

a position 2o € V' through the directed edge e; = (x1,z2) € E, players 1,2,...,m
receive the corresponding rewards ¢ ,cZ ,...,cl", and so on, indefinitely. Such a
play of the game on G produces the sequence of positions xg, x1, T2, ..., xs... where
each x is the position at the moment of time ¢. In this game the players make moves
through the directed edges in their positions in order to maximize their average
rewards per move

t—1
. 1 .
i 1: : - i .
Wy —thggolnft g Co, 1=1,2,...,m.
7=0
The game formulated above in the case m = 2 and ¢! = —c2 = ¢., Ve € E

is transformed into a two-player mean payoff game for which Nash equilibria in
pure stationary strategies exist. In general a non-zero-sum mean payoff game may
have no Nash equilibrium in pure stationary strategies. This fact has been shown
by Gurvich et al., 1988, where an example of two-player non-zero-sum mean payoff
game that has no Nash equilibrium in pure strategies is constructed. Alpern, 1991
and Lozovanu and Pickl, 2015, have shown that Nash equilibria for non-zero m-
player mean payoff games may exist only for some special cases. A class of m-player
mean payoff games for which Nash equilibria in pure stationary strategies exist is
presented in Lozovanu and Pickl, 2006.

In this paper we consider the non-zero-sum mean payoff games in mixed station-
ary strategies. We define a mixed stationary strategy of moves in a position z € X;
for the player ¢ € {1,2,...,m} as a probability distribution over the set of feasible
moves from z. We show that an arbitrary m-player mean payoff game possesses a
Nash equilibrium in mixed stationary strategies. Based on a constructive proof of
this result we propose an approach for determining the optimal mixed stationary
strategies of the players.
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The paper is organized as follows. In Section 2 a class of average stochastic posi-
tional games that generalizes non-zero-sum mean payoff games is considered. Then
in Sections 3 is shown how an average stochastic positional game can be formu-
lated in terms of pure and mixed stationary strategies. In Section 4 some results
concerned with the existence of Nash equilibria in mixed stationary strategies for
average stochastic positional games are presented. Additionally an approach for de-
termining the optimal strategies of players is proposed. In Sections 5,6, based on
results from the Sections 3,4, is proven the existence of Nash equilibria in mixed
stationary strategies for non-zero-sum mean payoff games and an approach for de-
termining the optimal strategies of the players is proposed.

2. A generalization of mean payoff games to average stochastic
positional games

The problem of determining Nash equilibria in mixed stationary strategies
for mean payoff games leads to a special class of average stochastic games
that Lozovanu and Pickl, 2015 called average stochastic positional games.
Lozovanu, 2018 shown that this class of games possesses of Nash equilibria in mixed
stationary strategies. Therefore in the paper we shall use the average stochastic po-
sitional games for studying the non-zero-sum mean payoft games.

A stochastic positional game with m players consists of the following elements:
- a state space X (which we assume to be finite);

- a partition X = X7 UXoU---UX,, where X; represents the position set of
player i € {1,2,...,m};

- a finite set A(x) of actions in each state x € X;

- a step reward fi(z,a) with respect to each player i €{1,2,...,m} in each
state x € X and for an arbitrary action a € A(z);

- a transition probability function p: X x ] A(z) x X — [0,1] that gives
reX
the probability transitions pj , from an arbitrary x € X to an arbitrary y € X

for a fixed action a € A(z), where > p} =1, Vre X, a€ A(w);
yeX
- a starting state zg € X.

The game starts at the moment of time ¢t = 0 in the state xo where the player i €
{1,2,...,m} who is the owner of the state position x¢ (¢ € X;) chooses an action
ap € A(xp) and determines the rewards f!(xo,ao), f*(20, ao), - - -, f™(xo, ao) for the
corresponding players 1,2, ..., m. After that the game passes to a state y = z1 € X
according to a probability distribution {pg?  }. At the moment of time ¢ = 1 the
player k € {1,2,...,m} who is the owner of the state position z1 (z1 € Xi) chooses
an action a; € A(z1) and players 1,2,...,m receive the corresponding rewards
Y x1,a1), f2(z1,01), ..., f™(x1,a1). Then the game passes to a state y = x5 € X
according to a probability distribution {pgiy} and so on indefinitely. Such a play
of the game produces a sequence of states and actions xg, ag, 1,01, ...,Z¢, G, . . .
that defines a stream of stage rewards fl(z¢, a¢), f2(xe,ae), ..., f™ (2, a0), t =

0,1,2,.... The average stochastic positional game is the game with payoffs of the
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players

t—1
wmo—tlggolnf n E,OE(f (Tr,ar)), i=1,2,...,m

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and given
a starting state xg. Each player in this game has the aim to maximize his average
reward per transition. In the case m =1 this game becomes the average Markov
decision problem with given action sets A(z) for x € X, a transition probability

function p: X x [[ A(z) x X — [0,1] and step rewards f(z,a) = f!(x,a) for
reX
x € X and a € A(x). If in an average stochastic positional game the probabilities

P, take only values 0 and 1, i. e. p§ , € {0,1}, Vo,y € X and Va € A(x), then such
a game becomes a mean payoff game on the graph G = (X, E), where e = (z,y) € E
if and only if there exists a € A(z) such that pj , = 1. So, in this case the set of
directed edges E(z) = {e = (x,y) € Ely € X} with the common origin in x
corresponds to the set of actions A(x) in the position z of the game.

In the paper we will study the average stochastic positional game when the
players use pure and mixed stationary strategies of choosing the actions in the
states.

3. Average stochastic positional games in pure and mixed stationary
strategies

A strategy of player i € {1,2,...,m} in a stochastic positional game is a mapping
s’ that provides for every state x; € X; a probability distribution over the set of
actions A(x;). If these probabilities take only values 0 and 1, then s’ is called a
pure strategy, otherwise s’ is called a mized strategy. If these probabilities depend
only on the state 7, = x € X; (i. e. s* does not depend on t), then s’ is called a
stationary strategy, otherwise s is called a non-stationary strategy.

Thus, we can identify the set of mixed stationary strategies S’ of player i with
the set of solutions of the system

> s;,a =1, Vz € X;;
acA(x) (]_)
>0, Vo € X;, Va e A(z).

Each basic solution s’ of this system corresponds to a pure stationary strategy of
player i € {1,2,...,m}. So, the set of pure stationary strategies S® of player i
corresponds to the set of basic solutions of system (1).

Let s= (s',s2,...,5™) € S=8' x 82 x --- x S™ be a profile of stationary
strategies (pure or mixed strategies) of the players. Then the elements of probability
transition matrix P® = (p3 ,) in the Markov process induced by s can be calculated
as follows:

Doy = Z s;apgyy for z€X;, i=1,2,...,m. (2)
a€A(x)
If we denote by Q° = (¢ ,) the limiting probability matrix of matrix PS then the
average payoffs per transition wy (s), w3 (s),...,wy (s) for the players induced by
profile s are determined as follows
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w;o(s) - Z Z q;(),yfi(yvsk)v i=1,2,...,m, (3)

k=1yeXy

where

fiy,s*) = Z s’;yafi(y,a), for ye Xy, ke {1,2,...,m} 4)
acA(y)

expresses the average reward (step reward) of player ¢ in the state y € X, when
player k uses the strategy s*.

The functions wy (s), w2 (s), ..., wi'(s) on S =8'x 8% x ... x 8™ de-
fined according to (10),(11), determine a game in normal form that we denote
by ({S},—1m: {wi,(8)}i—1 ). This game corresponds to the average stochas-
tic positional game in mized stationary strategies that in extended form is deter-
mined by the tuple ({X;},_17, {A(®)}eex, {f'(z,a)} ;17 P, ®o). The func-
tions wg (s), w2, (s),...,wi(s)on S =S x §% x ... x §™, determine the game
({S*} et {wi, (8) }i=17m ) that corresponds to the average stochastic positional
game in pure strategies. In the extended form this game is also determined by the
tuple ({Xz}lzma {A(@)}eex, {fi(xaa)}izl,_m’ p, o).

A stochastic positional games can be considered also for the case when the
starting state is chosen randomly according to a given distribution {6,} on X.
So, for a given stochastic positional game we may assume that the play starts in

the state z € X with probability 6, > 0 where > 6, = 1. If the players use
reX
mixed stationary strategies then the payoff functions

Yp(s) = Y Oewi(s), i=1,2,...,m

reX

on S define a game in normal form ({S'},_1—, {¥§(s)},—17 ) that in extended
form is determined by ({Xi};,—17, {A(®)}aex, {f*(2,0)}im177: P {02} 2ex). In the
case 0, = 0,Vx € X \ {z0}, 0,, = 1 the considered game becomes a stochastic
positional game with a fixed starting state z.

4. Nash equilibria for an average stochastic positional game and
determining the optimal stationary strategies of the players

We present a Nash equilibria existence result and an approach for determining
the optimal mixed stationary strategies of the players for the average stochastic
positional game when the starting state of the game is chosen randomly according
to a given distribution {6,} on the set of states X. In this case for the game in
normal form ({S'},_17, {¥§(s)}i—t7 ), the set of strategies S* and the payoff
functions ¥} (s), i=1,2,...,m can be specified as follows:

Let S’ i€ {1,2,...m} be the set of solutions of the system

siyazl, Vo € Xy;
acA(x) (5)
st o >0, Vz € X;, Vae€ A(z).
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On S=S8!'x82%2x-.--x 8™ we define m payoff functions

¢§(51, Z Z Z Spaf xaqz, 1=1,2,...,m, (6)

k=1 z€X, a€A(z)

where ¢, for z € X are determined uniquely from the following system of linear
equations

m
qy — Z Z Z S];,a pg,y dz = 07 vy € X7
k=1 z€Xr a€A(x)

m

dy + Wy — Z Z Z Sl;,a p;,y We = Gyv V?J €X
k=1 z€Xr a€A(x)

for an arbitrary fixed profile s = (s!,s%,...,s™) € S.

The functions ¥p(s', s%,...,s™), i =1,2,...,m, represent the payoff functions
for the average stochastic game in normal form ({S'},_77, {¥§(s)},—15; ) deter-
mined by the tuple ({Xi},_15m, {A()}rex, {£1(@a) bt P 10y hyex) where
0, for y € X are given nonnegative values such that ) 6, =1.

If ,=0, Vye X\ {zo} and 6,, =1, then we obtain an average stochastic
game in normal form ({S'},_17;, {wi (s)};—1 ) when the starting state o is
fixed, i.e. ¢h(s',s?,..., ") =wh (s',s%, ..., s™), i =1,2,...,m. So, in this
case the game is determined by ({Xi}i:L—m, {A(x)}rex, {fi(x, a)}i:L—m, D, To).

yeX

Lozovanu, 2018, showed that each payoff function }(s), i € {1,2,...,m}
in the game ({S'},_17;, {¥}(s)},—17 ) is quasi-monotonic (quasi-convex and
quasi-concave) with respect to s° on a convex and compact set S for fixed
s', %, ..., s 8" L 8™ Moreover for the game ({S'},_17, {4§(s)}ict )
has been shown that each payoff function wé(s), i € {1,2,...,m} is graph-
continuous in the sense of Dasgupta and Maskin, 1986. Based on these properties
Lozovanu, 2018, proved the following theorem.

Theorem 1. The game ({S'},_15, {§(s)},—1m) possesses a Nash equilibrium s*=
(31*, 25 s™*) € S which is a Nash equilibrium in mized stationary strategies for
the average stochastic positional game determined by ({Xi},_17, {A(%)}zex,
{fi(a:,a)}i:L—m, D, {0ytyex). If 0, >0, Yy € X, then s*= (s, s%%,...,s™) is a
Nash equilibrium in mized stationary strategies for the average stochastic positional
game ({8}, _1, {w},(8)} izt ) with an arbitrary starting state y € X.

Thus, for an average stochastic positional game a Nash equilibrium in mixed
stationary strategies can be found using the game model ({S'},_1—, {¥4(8)}i—17m);
where S and ¢)(s), i = 1,2,...,m, are determined according to (5)-(7). This
game model in the case m =2, f(x,a) = f'(z,a) = —f?(z,a), Vz € X, Va € A(x)
corresponds to a zero-sum two-player average stochastic positional game and we can
use it for determining the optimal stationary strategies of the players. Note that in
this case the equilibrium may exists in pure stationary strategies and consequentely
such a game model allows to determine the optimal pure stationary strategies of
the players.



Nash Equilibria in Mized Stationary Strategies 109

For antagonistic average stochastic positional games Lozovanu and Pickl, 2016,
proposed an another approach for determining Nash equilibria in pure stationary
strategies. However the approach from Lozovanu and Pickl, 2016, couldn’t be ex-
tended for non-zero average stochastic positional games and for the non-zero mean
payoff games. Nevertheless such an approach allows to ground finite efficient it-
erative procedures for determining the optimal pure stationary strategies of the
players.

5. Formulation of mean payoff games in mixed stationary strategies

Consider a mean payoff game determined by the tuple (G, {X;},_17, {ci}i:L—m, xo)
where G = (X, E) is a finite directed graph with vertex set X and edge set F,
X=X1UXaU---UX,, (X;NXj=0,i#j)is a partition of X that determine
the corresponding position set of players, ¢’ : E — R, i =1,2,...,m are the real
functions that determine the rewards on edges of graph G and z( is the starting
position of the game.

The pure and mixed stationary strategies in the mean payoff game on G can be
defined in a similar way as for the average stochastic positional game. We identify
the set of mixed stationary strategies S* of player i € {1,2,...,m} with the set of
solutions of the system

>osh,=1, VexeXy;

yeX () (8)
>0, VerelX;, yeX(x)
where X (z) represents the set of neighbor vertices for the vertex z, i.e. X(z) =
{y € X|e = (a,y) € B}.

Let s = (s',s%,...,5™) be a profile of stationary strategies (pure or mixed
strategies) of the players. This means that the moves in the mean payoff game from
an arbitrary z € X to y € X induced by s are made according to probabilities of
the stochastic matrix P® = (s, ), where

z,y

0 if e=(z,y)€E.

s if e=(z,y)eFreX;yeX;i=12...,m;
Sw_{ (z,y) y ©)

Thus, for a given profile s we obtain a Markov process with the probability tran-
sition matrix P® = (s;,) and the corresponding rewards ci_’y, 1=1,2,...,m
on edges (z,y) € E. Therefore, if Q° = (¢3,) is the limiting probability matrix
of PS then the average rewards per transition wj (s), w2 (s), ...,wy (s) for the

players can be determined as follows

wig(s) = Z Z ng,yﬂi(yv Sk)a 1= 17 27 cee,Mm, (10)
k=1yeXy
where
i ky _ ki
2 (y,S ) - Z Sy,mc (yvx)v for Yy e Xk7 ke {1721- -'am} (11>

z€X (y)
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expresses the average step reward of player 4 in the state y € X; when player k

uses the mixed stationary strategy s®. The functions w’ (s), w2 (s), ..., w™(s)

xo o Zo
on S =S'x 8% x--- x 8™, defined according to (10), (11), determine a game in
normal form that we denote by ({S'},_17, {w3,(8)},—17 )- This game corresponds
to the mean payoff game in mized stationary strategies on G with a fixed starting

position xo. So this game is determined by the tuple (G, {X;},_17, {¢'}i—17m T0)-

In a similar way as for an average stochastic game here we can consider the
mean payoff game on G when the starting state is chosen randomly according to a
given distribution {f,} on X. So, for such a game we will assume that the play

starts in the states © € X with probabilities 6, > 0 where > 6, = 1. If the
rzeX
players in such a game use mixed stationary strategies of moves in their positions

then the payoff functions
Up(s) =Y Oewi(s), i=1,2,...,m

zeX

on S define a game in normal form ({S*},_17, {¥§(s)},_15; ) that is determined
by the following tuple (G, {Xi},_15, {¢'}imtmm> {0z}eex) . In the case 6, =0,
Vo € X\ {vo}, Oy =1 this game becomes a mean payoff with fixed starting
state xg.

6. Nash equilibria in mixed stationary strategies for mean payoff
games and determining the optimal strategies of the players

In this section we show how the results from the previous sections can be applied
for determining Nash equilibria and the optimal mixed stationary strategies of the
players for mean payoff games.

Let ({S'};—17m {¥4(s)}i—1) be the game in normal form for the mean payoff
game determined by (G, {X;},_17, {¢'}iotm, {0z}eex). We show that S* and
Vh(s) for i € {1,2,...,m} can be defined as follows:

S’ represents a set of the solutions of the system

yeEX(z) (12)
Spy >0, VreX; yeX()

x -

{ >osh, =1, VzeX;
and

Yyt 8% s = Y sy (2,9)de, (13)

where ¢, for x € X are determined uniquely (via s];y) from the following system of
equations

m

W > > sk, q=0, Yy € X (x);

k=1 z€X) veX(x)

Qtwy— Y > > s’;y wy =0y, Yye X(x).
k=1 yeX zeX(y)
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Here, 6, for y € X represent arbitrary fixed positive values such that > 6, = 1.
yeX

Using Theorem 1 we can prove now the following result.

Theorem 2. For a mean payoff game on G the corresponding game in normal form
({S"}i—tm> {104 (5) }i—1m) possesses a Nash equilibrium s*= (s, s%%,...,sm") €S
which is a Nash equilibrium in mized stationary strategies for the mean payoff game
on G with an arbitrary starting position xo € X.

Proof. To prove the theorem it is sufficient to show that the functions j(s),
1€ {1,2,...,m} defined according to (13), (14) represent the payoff functions for
the mean payoff game determined by (G, {Xi},_15, {¢'}ietom> {02}zex). This
is easy to verify because if we replace in (6) the rewards fi(z,a) for = € X
and a € A(z) by rewards ¢, for (z,y) € E andin (6), (7) we replace the
probabilities p§ ,, = € Xy, a € A(x) for the corresponding players k =1,2,..., m
by p’;,y € {0,1} according to the structure of graph G then we obtain that (6),
(7) are transformed into (13), (14). If after that we apply Theorem 1 then obtain
the proof of the theorem.

So, the optimal mixed stationary strategies of the players in a mean payoff game
can be found if we determine the optimal stationary strategies of the players for the

game ({S"},_17, {¥§(s)},—17m) where S* and ¢j(s) for i€ {1,2, ..., m} are
defined according to (12) - (14). If m =2, ¢,y =ci, = —c3,, ¥(z,y) € E then

we obtain a game model in normal form for the zero-sum two-player mean payoff on
graph G. In this case the equilibrium exists in pure stationary strategies and the
considered game model allows to determine the optimal pure stationary strategies
of the players. For antagonistic mean payoff games on graphs the approach for
antagonistic average stochastic positional games from Lozovanu and Pickl, 2016,
can also be adapted if we take into account the mentioned transforms in the proof
of Theorem 2, i.e. we should change the rewards fi(z,a) for z € X,a € A(x)
by rewards C;u for (x,y) € E and replace the probabilities iy T € Xk, a €
A(x), k=1,2,...,m by probabilities p];_y € {0,1} according to the structure of
the graph G. '

7. Conclusion

The considered class of non-zero mean payoff games generalizes the zero-sum two-
player mean payoff games on graphs studied by Ehrenfeucht and Mycielski, 1979,
Gurvich et al., 1988, Lozovanu and Pickl, 2015 and Zwick and Paterson,1996. For
zero-sum two-player mean payoff games on graphs there exist Nash equilibria in
pure stationary strategies. For the case of non-zero-sum mean payoff games on
networks Nash equilibria in pure stationary strategies may not exist. The results
presented in the paper show that an arbitrary mean payoff game in mixed stationary
strategies possesses a Nash equilibrium and such an equilibrium can be found using
the game models proposed in Sections 5,6.
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