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approah for determining the optimal strategies of the players.

Keywords: mean payo� game, pure stationary strategy, mixed stationary

strategy, Nash equilibria

1. Introdution

In this paper we onsider a lass of m-player mean payo� games on networks

that generalizes the following two-player zero-sum mean payo� game introdued

by Ehrenfeuht and Myielski, 1979, and onsidered by Gurvih et al., 1988.

Let G = (X,E) be a �nite direted graph in whih every vertex x ∈ X has at

least one outgoing direted edge e = (x, y) ∈ E. On the edge set E it is given

a funtion c : E → R whih assigns a ost c(e) to eah edge e ∈ E. In ad-

dition the vertex set X is divided into two disjoint subsets X1 and X2 (X =
X1 ∪ X2, X1 ∩ X2 = ∅) whih are regarded as position sets of the two play-

ers. The game starts at a given position x0 ∈ X . If x0 ∈ X1 then the move

is done by the �rst player, otherwise it is done dy seond one. Move means the

passage from position x0 to a neighbor position x1 through the direted edge

e0 = (x0, x1) ∈ E. After that if x1 ∈ X1 then the move is done by the �rst player,

otherwise it is done by the seond one and so on inde�nitely. The �rst player has

the aim to maximize lim
t→∞

inf
1

t

t−1∑

τ=0

c(eτ ) while the seond player has the aim

to minimize lim
t→∞

sup
1

t

t−1∑

τ=0

c(eτ ). Ehrenfeuht and Myielski, 1979, proved that

for this game there exists a value v(x0) suh that the �rst player has a strat-

egy of moves that insures lim
t→∞

inf
1

t

t−1∑

τ=0

c(eτ ) ≥ v(x0) and the seond player

has a strategy of moves that insure lim
t→∞

sup
1

t

t−1∑

τ=0

c(eτ ) ≤ v(x0). Furthermore

Ehrenfeuht and Myielski, 1979 and Gurvih et al., 1988 showed that the play-

ers an ahieve the value v(x0) applying the strategies of moves whih do not de-

pend on t but depend only on the vertex from whih the player is able to move.
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Ehrenfeuht and Myielski, 1979 and Zwik and Paterson,1996, alled suh strate-

gies positional strategies. Gurvih et al., 1988 and Lozovanu and Pikl, 2006, alled

these strategies stationary strategies.

In this paper we will regard suh strategies as pure stationary strategies beause

eah move in a position of the game is hosen from the set of feasible strategies

of moves by the orresponding player with the probability equal to 1 and in eah

position suh a strategy does not hange in time.

A generalization of the zero-sum mean payo� game to m-player, where m ≥ 2, is
the following. Consider a �nite direted graph G = (X,E) in whih every vertex has
at least one outgoing direted edge. Assume that the vertex set X is divided into

m disjoint subsets X1, X2, . . . , Xm ( X = X1∪X2 ∪· · · ∪Xm; Xi∩Xj = ∅, i 6= j)
whih we regard as position sets of the m players. Additionally, we assume that on

the edge set m funtions ci : F → R, i = 1, 2, . . . ,m are de�ned that assign to

eah direted edge e = (x, y) ∈ E the values c1e, c
2
e, . . . , c

m
e that are regarded as the

rewards for the orresponding players 1, 2, . . . ,m.
On G we onsider the following m-person dynami game. The game starts at

given position x0 ∈ X at the moment of time t = 0 where the player i ∈ {1, 2, . . . ,m}
who is owner of the starting position x0 makes a move from x0 to a neighbor position
x1 ∈ X through the direted edge e0 = (x0, x1) ∈ E. After that players 1, 2, . . . ,m
reeive the orresponding rewards c1e0 , c

2
e0 , . . . , c

m
e0 . Then at the moment of time t = 1

the player k ∈ {1, 2, . . . ,m} who is owner of position x1 makes a move from x1 to
a position x2 ∈ V through the direted edge e1 = (x1, x2) ∈ E, players 1, 2, . . . ,m
reeive the orresponding rewards c1e1 , c

2
e1 , . . . , c

m
e1 , and so on, inde�nitely. Suh a

play of the game on G produes the sequene of positions x0, x1, x2, . . . , xt . . . where
eah xt is the position at the moment of time t. In this game the players make moves
through the direted edges in their positions in order to maximize their average

rewards per move

ωixo
= lim

t→∞
inf

1

t

t−1∑

τ=0

cieτ , i = 1, 2, . . . ,m.

The game formulated above in the ase m = 2 and c1e = −c2e = ce, ∀e ∈ E
is transformed into a two-player mean payo� game for whih Nash equilibria in

pure stationary strategies exist. In general a non-zero-sum mean payo� game may

have no Nash equilibrium in pure stationary strategies. This fat has been shown

by Gurvih et al., 1988, where an example of two-player non-zero-sum mean payo�

game that has no Nash equilibrium in pure strategies is onstruted. Alpern, 1991

and Lozovanu and Pikl, 2015, have shown that Nash equilibria for non-zero m-
player mean payo� games may exist only for some speial ases. A lass of m-player
mean payo� games for whih Nash equilibria in pure stationary strategies exist is

presented in Lozovanu and Pikl, 2006.

In this paper we onsider the non-zero-sum mean payo� games in mixed station-

ary strategies. We de�ne a mixed stationary strategy of moves in a position x ∈ Xi

for the player i ∈ {1, 2, . . . ,m} as a probability distribution over the set of feasible

moves from x. We show that an arbitrary m-player mean payo� game possesses a

Nash equilibrium in mixed stationary strategies. Based on a onstrutive proof of

this result we propose an approah for determining the optimal mixed stationary

strategies of the players.
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The paper is organized as follows. In Setion 2 a lass of average stohasti posi-

tional games that generalizes non-zero-sum mean payo� games is onsidered. Then

in Setions 3 is shown how an average stohasti positional game an be formu-

lated in terms of pure and mixed stationary strategies. In Setion 4 some results

onerned with the existene of Nash equilibria in mixed stationary strategies for

average stohasti positional games are presented. Additionally an approah for de-

termining the optimal strategies of players is proposed. In Setions 5,6, based on

results from the Setions 3,4, is proven the existene of Nash equilibria in mixed

stationary strategies for non-zero-sum mean payo� games and an approah for de-

termining the optimal strategies of the players is proposed.

2. A generalization of mean payo� games to average stohasti

positional games

The problem of determining Nash equilibria in mixed stationary strategies

for mean payo� games leads to a speial lass of average stohasti games

that Lozovanu and Pikl, 2015 alled average stohasti positional games.

Lozovanu, 2018 shown that this lass of games possesses of Nash equilibria in mixed

stationary strategies. Therefore in the paper we shall use the average stohasti po-

sitional games for studying the non-zero-sum mean payo� games.

A stohasti positional game with m players onsists of the following elements:

- a state spae X (whih we assume to be �nite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set of

player i ∈ {1, 2, . . . ,m};

- a �nite set A(x) of ations in eah state x ∈ X ;

- a step reward f i(x, a) with respet to eah player i ∈{1, 2, . . . ,m} in eah

state x ∈ X and for an arbitrary ation a ∈ A(x);

- a transition probability funtion p : X × ∏
x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X

for a �xed ation a ∈ A(x), where

∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a starting state x0 ∈ X .

The game starts at the moment of time t = 0 in the state x0 where the player i ∈
{1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) hooses an ation
a0 ∈ A(x0) and determines the rewards f

1(x0, a0), f
2(x0, a0), . . . , f

m(x0, a0) for the
orresponding players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X
aording to a probability distribution {pa0x0,y}. At the moment of time t = 1 the

player k ∈ {1, 2, . . . ,m} who is the owner of the state position x1 (x1 ∈ Xk) hooses

an ation a1 ∈ A(x1) and players 1, 2, . . . ,m reeive the orresponding rewards

f1(x1, a1), f
2(x1, a1), . . . , f

m(x1, a1). Then the game passes to a state y = x2 ∈ X
aording to a probability distribution {pa1x1,y} and so on inde�nitely. Suh a play

of the game produes a sequene of states and ations x0, a0, x1, a1, . . . , xt, at, . . .
that de�nes a stream of stage rewards f1(xt, at), f

2(xt, at), . . . , f
m(xt, at), t =

0, 1, 2, . . . . The average stohasti positional game is the game with payo�s of the
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players

ωix0
= lim

t→∞
inf

1

t

t−1∑

τ=0

E(f i(xτ , aτ )), i = 1, 2, . . . ,m

where E is the expetation operator with respet to the probability measure in the

Markov proess indued by ations hosen by players in their position sets and given

a starting state x0. Eah player in this game has the aim to maximize his average

reward per transition. In the ase m = 1 this game beomes the average Markov

deision problem with given ation sets A(x) for x ∈ X , a transition probability

funtion p : X × ∏
x∈X

A(x) ×X → [0, 1] and step rewards f(x, a) = f1(x, a) for

x ∈ X and a ∈ A(x). If in an average stohasti positional game the probabilities

pax,y take only values 0 and 1, i. e. pax,y ∈ {0, 1}, ∀x, y ∈ X and ∀a ∈ A(x), then suh
a game beomes a mean payo� game on the graph G = (X,E), where e = (x, y) ∈ E
if and only if there exists a ∈ A(x) suh that pax,y = 1. So, in this ase the set of

direted edges E(x) = {e = (x, y) ∈ E|y ∈ X} with the ommon origin in x
orresponds to the set of ations A(x) in the position x of the game.

In the paper we will study the average stohasti positional game when the

players use pure and mixed stationary strategies of hoosing the ations in the

states.

3. Average stohasti positional games in pure and mixed stationary

strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a stohasti positional game is a mapping

si that provides for every state xt ∈ Xi a probability distribution over the set of

ations A(xt). If these probabilities take only values 0 and 1, then si is alled a

pure strategy, otherwise si is alled a mixed strategy. If these probabilities depend

only on the state xt = x ∈ Xi (i. e. s
i
does not depend on t), then si is alled a

stationary strategy, otherwise si is alled a non-stationary strategy.

Thus, we an identify the set of mixed stationary strategies Si of player i with
the set of solutions of the system





∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(1)

Eah basi solution si of this system orresponds to a pure stationary strategy of

player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si of player i
orresponds to the set of basi solutions of system (1).

Let s= (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm be a pro�le of stationary

strategies (pure or mixed strategies) of the players. Then the elements of probability

transition matrix P s = (psx,y) in the Markov proess indued by s an be alulated

as follows:

psx,y =
∑

a∈A(x)

six,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (2)

If we denote by Qs = (qsx,y) the limiting probability matrix of matrix P s
then the

average payo�s per transition ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) for the players indued by

pro�le s are determined as follows
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ωix0
(s) =

m∑

k=1

∑

y∈Xk

qsx0,yf
i(y, sk), i = 1, 2, . . . ,m, (3)

where

f i(y, sk) =
∑

a∈A(y)

sky,af
i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (4)

expresses the average reward (step reward) of player i in the state y ∈ Xk when

player k uses the strategy sk.
The funtions ω1

x0
(s), ω2

x0
(s), . . . , ωmx0

(s) on S = S1 × S2 × · · · × Sm, de-

�ned aording to (10),(11), determine a game in normal form that we denote

by 〈{Si}i=1,m, {ωix0
(s)}i=1,m 〉. This game orresponds to the average stohas-

ti positional game in mixed stationary strategies that in extended form is deter-

mined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0). The fun-

tions ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) on S = S1 × S2 × · · · × Sm, determine the game
〈{Si}i=1,m, {ωix0

(s)}i=1,m 〉 that orresponds to the average stohasti positional

game in pure strategies. In the extended form this game is also determined by the

tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0).
A stohasti positional games an be onsidered also for the ase when the

starting state is hosen randomly aording to a given distribution {θx} on X .

So, for a given stohasti positional game we may assume that the play starts in

the state x ∈ X with probability θx > 0 where

∑
x∈X

θx = 1. If the players use

mixed stationary strategies then the payo� funtions

ψiθ(s) =
∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 that in extended

form is determined by ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θx}x∈X). In the
ase θx = 0, ∀x ∈ X \ {x0}, θxo

= 1 the onsidered game beomes a stohasti

positional game with a �xed starting state x0.

4. Nash equilibria for an average stohasti positional game and

determining the optimal stationary strategies of the players

We present a Nash equilibria existene result and an approah for determining

the optimal mixed stationary strategies of the players for the average stohasti

positional game when the starting state of the game is hosen randomly aording

to a given distribution {θx} on the set of states X . In this ase for the game in

normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉, the set of strategies Si and the payo�

funtions ψiθ(s), i = 1, 2, . . . ,m an be spei�ed as follows:

Let Si, i ∈ {1, 2, . . .m} be the set of solutions of the system





∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(5)



108 Dmitrii Lozovanu, Stefan Pikl

On S = S1 × S2 × · · · × Sm we de�ne m payo� funtions

ψiθ(s
1, s2, . . . , sm) =

m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m, (6)

where qx for x ∈ X are determined uniquely from the following system of linear

equations





qy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y qx = 0, ∀y ∈ X ;

qy + wy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y wx = θy, ∀y ∈ X

(7)

for an arbitrary �xed pro�le s = (s1, s2, . . . , sm) ∈ S.

The funtions ψiθ(s
1, s2, . . . , sm), i = 1, 2, . . . ,m, represent the payo� funtions

for the average stohasti game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 deter-
mined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θy}y∈X) where
θy for y ∈ X are given nonnegative values suh that

∑
y∈X θy = 1.

If θy = 0, ∀y ∈ X \ {x0} and θx0 = 1, then we obtain an average stohasti

game in normal form 〈{Si}i=1,m, {ωix0
(s)}i=1,m 〉 when the starting state x0 is

�xed, i.e. ψiθ(s
1, s2, . . . , sm) = ωix0

(s1, s2, . . . , sm), i = 1, 2, . . . ,m. So, in this

ase the game is determined by ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0).

Lozovanu, 2018, showed that eah payo� funtion ψiθ(s), i ∈ {1, 2, . . . ,m}
in the game 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 is quasi-monotoni (quasi-onvex and

quasi-onave) with respet to si on a onvex and ompat set Si for �xed

s1, s2, . . . , si−1, si+1, . . . , sm. Moreover for the game 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉
has been shown that eah payo� funtion ψiθ(s), i ∈ {1, 2, . . . ,m} is graph-

ontinuous in the sense of Dasgupta and Maskin, 1986. Based on these properties

Lozovanu, 2018, proved the following theorem.

Theorem 1. The game 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 possesses a Nash equilibrium s∗=

(s1
∗
, s2

∗
, . . . , sm∗) ∈ S whih is a Nash equilibrium in mixed stationary strategies for

the average stohasti positional game determined by ({Xi}i=1,m, {A(x)}x∈X ,
{f i(x, a)}i=1,m, p, {θy}y∈X). If θy > 0, ∀y ∈ X, then s∗= (s1

∗
, s2

∗
, . . . , sm∗) is a

Nash equilibrium in mixed stationary strategies for the average stohasti positional

game 〈{Si}i=1,m, {ωiy(s)}i=1,m 〉 with an arbitrary starting state y ∈ X.

Thus, for an average stohasti positional game a Nash equilibrium in mixed

stationary strategies an be found using the game model 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉,
where Si and ψiθ(s), i = 1, 2, . . . ,m, are determined aording to (5)-(7). This

game model in the ase m = 2, f(x, a) = f1(x, a) = −f2(x, a), ∀x ∈ X, ∀a ∈ A(x)
orresponds to a zero-sum two-player average stohasti positional game and we an

use it for determining the optimal stationary strategies of the players. Note that in

this ase the equilibrium may exists in pure stationary strategies and onsequentely

suh a game model allows to determine the optimal pure stationary strategies of

the players.
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For antagonisti average stohasti positional games Lozovanu and Pikl, 2016,

proposed an another approah for determining Nash equilibria in pure stationary

strategies. However the approah from Lozovanu and Pikl, 2016, ouldn't be ex-

tended for non-zero average stohasti positional games and for the non-zero mean

payo� games. Nevertheless suh an approah allows to ground �nite e�ient it-

erative proedures for determining the optimal pure stationary strategies of the

players.

5. Formulation of mean payo� games in mixed stationary strategies

Consider a mean payo� game determined by the tuple (G, {Xi}i=1,m, {ci}i=1,m, x0)
where G = (X,E) is a �nite direted graph with vertex set X and edge set E,
X = X1 ∪X2 ∪ · · · ∪ Xm (Xi ∩ Xj = ∅, i 6= j) is a partition of X that determine

the orresponding position set of players, ci : E → R1, i = 1, 2, . . . ,m are the real

funtions that determine the rewards on edges of graph G and x0 is the starting

position of the game.

The pure and mixed stationary strategies in the mean payo� game on G an be

de�ned in a similar way as for the average stohasti positional game. We identify

the set of mixed stationary strategies Si of player i ∈ {1, 2, . . . ,m} with the set of

solutions of the system

{ ∑
y∈X(x)

six,y = 1, ∀x ∈ Xi;

six,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)
(8)

where X(x) represents the set of neighbor verties for the vertex x, i.e. X(x) =
{y ∈ X |e = (x, y) ∈ E}.

Let s = (s1, s2, . . . , sm) be a pro�le of stationary strategies (pure or mixed

strategies) of the players. This means that the moves in the mean payo� game from

an arbitrary x ∈ X to y ∈ X indued by s are made aording to probabilities of

the stohasti matrix P s = (sx,y), where

sx,y =

{
six,y if e = (x, y) ∈ E, x ∈ Xi, y ∈ X ; i = 1, 2, . . . ,m;

0 if e = (x, y) 6∈ E.
(9)

Thus, for a given pro�le s we obtain a Markov proess with the probability tran-

sition matrix P s = (sx,y) and the orresponding rewards cix,y, i = 1, 2, . . . ,m
on edges (x, y) ∈ E. Therefore, if Qs = (qsx,y) is the limiting probability matrix

of P s
then the average rewards per transition ω1

v0(s), ω
2
x0
(s), . . . , ωmx0

(s) for the

players an be determined as follows

ωix0
(s) =

m∑

k=1

∑

y∈Xk

qsx0,yµ
i(y, sk), i = 1, 2, . . . ,m, (10)

where

µi(y, sk) =
∑

x∈X(y)

sky,xc
i(y, x), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (11)
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expresses the average step reward of player i in the state y ∈ Xk when player k
uses the mixed stationary strategy sk. The funtions ω1

x0
(s), ω2

x0
(s), . . . , ωmx0

(s)
on S = S1 × S2 × · · · × Sm, de�ned aording to (10), (11), determine a game in

normal form that we denote by 〈{Si}i=1,m, {ωix0
(s)}i=1,m 〉. This game orresponds

to the mean payo� game in mixed stationary strategies on G with a �xed starting

position x0. So this game is determined by the tuple (G, {Xi}i=1,m, {ci}i=1,m, x0).

In a similar way as for an average stohasti game here we an onsider the

mean payo� game on G when the starting state is hosen randomly aording to a

given distribution {θx} on X . So, for suh a game we will assume that the play

starts in the states x ∈ X with probabilities θx > 0 where

∑
x∈X

θx = 1. If the

players in suh a game use mixed stationary strategies of moves in their positions

then the payo� funtions

ψiθ(s) =
∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉 that is determined

by the following tuple (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X) . In the ase θx = 0,
∀x ∈ X \ {v0}, θv0 = 1 this game beomes a mean payo� with �xed starting

state x0.

6. Nash equilibria in mixed stationary strategies for mean payo�

games and determining the optimal strategies of the players

In this setion we show how the results from the previous setions an be applied

for determining Nash equilibria and the optimal mixed stationary strategies of the

players for mean payo� games.

Let 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 be the game in normal form for the mean payo�

game determined by (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). We show that Si and

ψiθ(s) for i ∈ {1, 2, . . . ,m} an be de�ned as follows:

Si represents a set of the solutions of the system

{ ∑
y∈X(x)

six,y = 1, ∀x ∈ Xi;

six,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)
(12)

and

ψiθ(s
1, s2, . . . , sm) =

m∑

k=1

∑

y∈Xk

∑

y∈X(x)

skx,yc
i(x, y)qx, (13)

where qx for x ∈ X are determined uniquely (via skx,y) from the following system of

equations





qy −
m∑
k=1

∑
x∈Xk

∑
v∈X(x)

skx,y qx = 0, ∀y ∈ X(x);

qy + wy −
m∑
k=1

∑
y∈X

∑
x∈X(y)

skx,y wx = θy, ∀y ∈ X(x).

(14)
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Here, θy for y ∈ X represent arbitrary �xed positive values suh that

∑
y∈X

θy = 1.

Using Theorem 1 we an prove now the following result.

Theorem 2. For a mean payo� game on G the orresponding game in normal form

〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 possesses a Nash equilibrium s∗= (s1
∗
, s2

∗
, . . . , sm∗) ∈ S

whih is a Nash equilibrium in mixed stationary strategies for the mean payo� game

on G with an arbitrary starting position x0 ∈ X.

Proof. To prove the theorem it is su�ient to show that the funtions ψiθ(s),
i ∈ {1, 2, . . . ,m} de�ned aording to (13), (14) represent the payo� funtions for

the mean payo� game determined by (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). This
is easy to verify beause if we replae in (6) the rewards f i(x, a) for x ∈ X
and a ∈ A(x) by rewards cix,y for (x, y) ∈ E and in (6), (7) we replae the

probabilities pax,y, x ∈ Xk, a ∈ A(x) for the orresponding players k = 1, 2, . . . , m

by pkx,y ∈ {0, 1} aording to the struture of graph G then we obtain that (6),

(7) are transformed into (13), (14). If after that we apply Theorem 1 then obtain

the proof of the theorem.

So, the optimal mixed stationary strategies of the players in a mean payo� game

an be found if we determine the optimal stationary strategies of the players for the

game 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 where Si and ψiθ(s) for i ∈ {1, 2, . . . , m} are

de�ned aording to (12) - (14). If m = 2, cx,y = c1x,y = −c2x,y, ∀(x, y) ∈ E then

we obtain a game model in normal form for the zero-sum two-player mean payo� on

graph G. In this ase the equilibrium exists in pure stationary strategies and the

onsidered game model allows to determine the optimal pure stationary strategies

of the players. For antagonisti mean payo� games on graphs the approah for

antagonisti average stohasti positional games from Lozovanu and Pikl, 2016,

an also be adapted if we take into aount the mentioned transforms in the proof

of Theorem 2, i.e. we should hange the rewards f i(x, a) for x ∈ X, a ∈ A(x)
by rewards cix,y for (x, y) ∈ E and replae the probabilities pax,y, x ∈ Xk, a ∈
A(x), k = 1, 2, . . . ,m by probabilities pkx,y ∈ {0, 1} aording to the struture of

the graph G.

7. Conlusion

The onsidered lass of non-zero mean payo� games generalizes the zero-sum two-

player mean payo� games on graphs studied by Ehrenfeuht and Myielski, 1979,

Gurvih et al., 1988, Lozovanu and Pikl, 2015 and Zwik and Paterson,1996. For

zero-sum two-player mean payo� games on graphs there exist Nash equilibria in

pure stationary strategies. For the ase of non-zero-sum mean payo� games on

networks Nash equilibria in pure stationary strategies may not exist. The results

presented in the paper show that an arbitrary mean payo� game in mixed stationary

strategies possesses a Nash equilibrium and suh an equilibrium an be found using

the game models proposed in Setions 5,6.
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