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Abstract This paper focuses on different approaches for calculating char-
acteristic functions in cooperative differential games with prescribed and
random duration. We construct a—, §— and {—characteristic functions and
examine their properties in the differential game of pollution control. Addi-
tionally, we introduce a new n— characteristic function.
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1. Introduction

In cooperative differential games the problem of the calculation of a characteris-
tic function (c.f.) plays an important role since the characteristic function allows
to obtain optimal (cooperative) solution of the game. The review and analysis of
different methods for construction of c.f. for cooperative games with so-called neg-
ative externalities (see, e.g., Chander, 2007) in static formulation was presented
in (Reddy and Zaccour, 2016). Whereas in a dynamic formulation the construction
of a-, 6- characteristic functions (see, correspondingly, Petrosjan and Danilov, 1982,
Petrosjan and Zaccour, 2003) was analyzed in (Gromova and Petrosyan, 2017)
where a new approach to constructing (-characteristic function was introduced (see
also (Petrosyan and Gromova, 2014) for the first reference in Russian). This paper
presents different techniques for characteristic function construction in cooperative
differential game with prescribed (Petrosjan and Danilov, 1982) and random du-
ration as well. To illustrate our results we consider the dynamic game-theoretical
problem of pollution control (Gromova, 2016) which belongs to the class of games
with negative externalities.

2. Different techniques of the characteristic function construction

Let K;(-) and u; € U; C compR! be the payoff functions and controls in a classical
cooperative differential game of n players with prescribed duration (Petrosjan and
Danilov, 1982). Assume that all standard restrictions (Krasovskii and Subbotin,
1988) on the parameters, controls and trajectory function are satisfied. To define
the cooperative game we have to construct the characteristic function V(S,-) for

* The construction of Nash equilibria by first author was supported by the project 17—
11-01093 from Russian Science Foundation
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every coalition S C N in the game. The c.f. in a cooperative game is a mapping
from the set of all possible coalitions:

V():2N 5 R, V(D) = 0.

Note that the value of the c.f. for the grand coalition N equals to V(IV, ).
The value V(5) is interpreted traditionally as the power of the coalition S. The
important property of a c.f. is superadditivity:

V(Sl @] Sg) > V(Sl) + V(Sg), V51,85 C N, S1NSy = . (1)

The use of superadditive characteristic functions in solving various problems in the
field of cooperative game theory in static and dynamic setting provides a number
of advantages (Gromova and Petrosyan, 2017).

There are several approaches to the construction of characteristic functions (see
Neumann and Morgenstern, 1953, Reddy and Zaccour, 2016, Petrosjan and Zaccour,
2003, Gromova and Petrosyan, 2017). In this paper we shall focus on the a-, §-, and
(-characteristic functions and then introduce the new one named n—characteristic
function.

2.1. «-characteristic function

A classical way to define the c.f. is to use the lower value of the zero-sum game

between the coalition S, acting as the first (maximizing) player and the coalition

N\ S, acting as the second (minimizing) player. This approach had been introduced

in (Neumann and Morgenstern, 1953) and now is called a-characteristic function.
We have

0, S ={0},
max min Y K;(ui,...,un,), S C N,
V(S,:) =< i€s jems €S (2)

max Y K;(ug, ..., un,"), S =N,

Uiseelin j=]
where max min is the lower value of the zero-sum game between the coalition S
i€5 jeN\s
and N\ S with the payoff function y K;(u1,...,Un,). It was proved in (Petrosjan
€S
and Danilov, 1982) that in general the a-characteristic function is superadditive.

2.2. d-characteristic function

d-characteristic function, (Petrosjan and Zaccour, 2003), of a coalition S is con-
structed in two steps. First, we calculate the Nash equilibrium strategies for all
players. Second, we fix (freeze) those strategies for players from N \ S while the

players from S seek to maximize their joint payoff > K;(u1,...,un,").
€S
0, S = {0},
_ NE
max ZKl(uS,uN\S,~),SCN,
Vs =g e e (3)
uj:uj-\]E, JEN\S
max . Ki(ug, ..., up,"), S = N.

UL, Un

In general, a d-characteristic function is a non-superadditive function (see ex-
amples in (Gromova et al., 2017)).
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2.3. (-characteristic function

One of the novel approaches is to use a (-characteristic function, (Gromova and
Petrosyan, 2017). This c.f. of coalition S is computed in two stages: first, we find
optimal controls maximizing the total payoff of the players; next, the cooperative
optimal strategies are used by the players from the coalition S while the left-out
players from N\ S use the strategies minimizing the total payoff of the players from
S. We have

0, S = {0},

min ZKi(ugauN\Sa')asCNa
’U,jEUj,jEN\S, €S
VC(S’) = u;=u;, 1€S (4)
max Y K;(ui,...,un,-), S=N,

UL yeeeyUn, =1

u; €U;, 1€N

where u* = {u}};cn is the profile of strategies for which the maximal value of payoff
function is achieved for all players, u§ = {u]}ics-

The c.f. defined in this way is in general superadditive (see Gromova and Pet-
rosyan, 2017). Note, that for the case of {-characteristic function players from N\ S
have active reaction while players from S just use the same strategies u;, ¢ € S as
they were use in the case of total payoff maximization.

3. Game-theoretical model of pollution control with prescribed
duration

Consider a game-theoretic model of pollution control based on the models published
in (Breton et al., 2005), see also (Gromova, 2016). There are 3 players (companies,
countries) that participate in the game, N = {1,2,3}. Each player has an industrial
production site. It is assumed that the production is proportional to the pollution
u;. Thus, the strategy of a player is to choose the amount of pollutions emitted to
the atmosphere, u; € [0;b;]. In this example the solution will be considered in the
class of open-loop strategies u;(t) and Pontryagin’s maximum principle (PMP) is
applied (Pontryagin, 2018).

The dynamics of the total amount of pollution z(¢) is described by following
equation

3
B(t) = ui(t).
i=1
The instantaneous payoff of i-th player is defined as:
R(u;(t)) = bju;(t) — %uf(t), 1€ N.
Each player has to bear expenses due to the pollution removal. Hence the in-

stantaneous payoff (utility) of the i-th player is equal to R(u;(t)) — d;z(t),d; > 0.
The payoff of the i-th player is thus defined as

r 1
Ki(l'o,T—to,ul,UQ,’lm) :/ ((bl— §ul)uz—dzx)dt

to
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We will assume additional regularity constraints to be satisfied: Vi € N b; >

3
DN(T — to), where DN = Z dZ
=1

3.1. Construction of characteristic functions

To find the profile of optimal strategies we have to solve the maximization problem

3

T
1
E bi__i) i_di )dt

=1

The Hamiltonian is

3 3 3
1
H(z,u,v) = (bi - _Ui)ui - dix + g,
)= 2 (g e
its first order partial derivatives w.r.t. u;’s are
O0H L
a—ui('rvuaw):bi_ui‘F'l/), i=1,3.

The Hessian matrix is negative definite hence we conclude that Hamiltonian H
is concave w.r.t. u;.
0’H -
—5(r,u, ) =—-1<0, +=1,3.

The adjoint equations and the related transversality conditions are

3
d
() =0
We get the optimal control
u*(t) = (b — DN(T —1t), bo—Dn(T —1t), bs— Dn(T —1)). (5)

Given the initial conditions (¢,x) the value of c.f. for the grand coalition N can
be written as

Ve(N,z(t), T —t) = VO(N,z(t), T —t) = VS(N,z(t), T — t) =

(6)
= —Dn(T — t)a(t) + 1BN(T —t) — DN By (T — t)? + 1D%(T — 1),

3 3
where By = 3. b, By = 3 b2.
i=1 i=1

Now we have to calculate the value of the characteristic function for coalitions
of one and two players. Let us carry out some preliminary calculations.

For the case of d—c.f. we have to find the Nash equilibrium. To find Nash equi-
librium strategies for this game one has to maximize the payoff for each player ¢ by
the control u; in assumption that another players use fixed NE strategies

T 1
max/ ((bi — §ul)ul — di:v) dt, i=1,2,3.
Uq tO
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We apply the PMP to this maximization problem. The players’ Hamiltonians
are

3
1 _

and their first order partial derivatives w.r.t. u;’s are

0H, -
—(x,u,Y) =b; —u; +v, i=1,3.
3ui
The Hessian matrices are negative definite hence we conclude that Hamiltonians
H; are concave w.r.t. u;.

0%H;
ou?

K2

(x,u,9) = —-1<0, i=1,3.
The adjoint equations and the related transversality conditions are

dy _ g
dt - 19
{wm ~0.

We get the Nash equilibrium strategies
uNE(t) = (by —dy (T —t), by —dao(T —1t), b3—ds(T —1)). (7)

According (3) we have to solve the maximization problem, taking into account
(7). We have:

T

1 1

max / ((bz — —ui)ui + (bj — —Uj)Uj — (dl + dj)x)dt

U, Uy to 2 2

R E

Uk =Up,
Following PMP we get
up =b; — (di + d)(T —t), uf =b;— (di +dj)(T —1). (8)

For the case of a—, (— c.f. (2), (4) we will have to solve the minimization problem

min /T ((bZ — %ul)ul + (b — %uj)uj — (d; + dj)x)dt.
to

Uk

By using PMP we get

According to the definition of the a-c.f. (2), to construct it we have to solve the
maximization problem with (9):

r 1 1
max / ((bl — —ui)ui + (bj — —Uj)Uj — (dl + dj)x)dt
Uq,Uj to 2 2

uk:bk

Applying PMP in the same way we get

uf =bi = (di + dj)(T 1), uj =b; — (di +dj)(T — ). (10)
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Given the initial conditions (¢,x) one can calculate the value of three above

mentioned characteristic functions for coalitions of one and two players.
Considering (2), (9), (10) we obtain the value of a a—characteristic function:

VO {i}, 2(0), T—) = ~di(T—0)a(t)+ 50 (T—1)~3 Byd(T~0%+ 22 (T, (11)

Ve{i gt a(t), T —t) = —=(di + d;)(T — t)a(t) + 5(b] + b)) (T —t)—

(12)
—3BN(di + dj)(T — t)? + & (d; + d;)*(T —t)>.
We get a d—characteristic function from (3), (7), (8):
VO({it,x(t), T —t) = —di(T — t)z(t) + $b3 (T — t) — $Bnds(T — t)*+
(13)

++d;(2DN — d;)(T — t)?,

Vo{i, g} a(t), T —t) = —(di + dj)(T — t)a(t) + 5 (b7 + b3)(T — t)—

—3Bn(di + d;)(T = £)* + 5(di(di + dj) + (di + dj)*)(T — t)*.

(14)
Finally, for a (—characteristic function from (4), (5), (9) we obtain:
Ve({i} (), T —t) = —=d;(T — t)a(t) + $02(T — t) — $Bnd;(T — t)?—
(15)
— DN (Dy —2d;)(T — t)3,
Ve({i g} (), T —t) = —(di + d;)(T — t)a(t) + 3 (b7 + 05)(T —t)—
(16)

—3Bn(d; + d;)(T — t)? — Dn(Dn — 2(d; + dj)) (T — t)*.

3.2. Superadditivity of the c.f.

Check that a—characteristic function (2) is superadditive (1). From (6), (11), (12)
we have

VAN) = VE({RY) = VE{ig}) = gdk(di +d)(T = 1)° >0,

Ve{i gy - vediah) - ve{sh) = ;didj(T —)* >0,

since t € [tg, T]. We conclude that the constructed function is superadditive which
agrees with the previously obtained results.

At the next step we check if —characteristic function (3) is superadditive. From
(6), (13), (14) we have

VO(N) = VO ({k}) - VO ({i,5}) = %(D?v +dp)(T —1)° >0,
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. . . 1
VO{i, 1) =V {i}) =V ({5}) = g(d? +d3)(T —1)° >0,
since ¢ € [tg, T]. This proves the superadditivity of the constructed d— c.f.

Finally we may check if (—characteristic function is also superadditive in this
game. From (6), (15), (16) we have

VEN) = VE(RY) = VE({ir31) = 5 Dx(ds +d; + 201 (T = 6)° > 0,

VA1) — VD — VY = 3 Dald: +d)(T — 1) >0,

since t € [to, T]. This concludes that {—characteristic function is also superadditive
(as must be in general).

3.3. Comparison of characteristic functions

Let us investigate how the constructed c.f.s relate to each other. Obviously, we have
VO(N) = V*(N),

also from (11), (13) and (12), (14) we get

V(i) = VIR + 3dildy + d)(T — 1),

VO 31) = Vo ({is}) + 3deldi + )T — 1)

Thus,
V() = V(). (17)

Furthermore, from (11), (15) and (12), (16) we have

VRN = VE(N),
V(i) = VE((iD) + 5+ do)(T 1),

V(i) = VE(iL ) + S (T — 1)

Thus,
ve() = vEe). (18)

Finally, (17) and (18) imply that

VO() = V() = V().
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4. Game-theoretical model of pollution control with random duration

To make the model from Sec. 3 more realistic we examine the game-theoretic
model of pollution control with random duration (Petrosyan and Murzov, 1966,
Petrosyan and Shevkoplyas, 2000, Petrosyan and Shevkoplyas, 2003, Marin-Solano
and Shevkoplyas, 2011, Shevkoplyas, 2014) (T' — ¢p), where T is a random variable
with exponential distribution function F'(¢),t¢ € [to, T]. The strategy of each player
is to choose the amount of pollution emitted to the atmosphere, u; € [0;b;]. Let us
consider case of N = {1,2,3}. The game starts from initial state z¢ at the time ¢g.
The dynamics of the total amount of pollution x(¢) is described by

3

B(t) =Y wui(t), w(to) = 0.

i=1

The expectation of the payoff of players i = 1,2, 3 are calculated as

Ki(xo,to, Ty, u1,uz, u3) = E(/tT ((bZ — %ul(T))uZ(T) — dix(T))dT).

We assume that d; > 0, Vi = 1,2, 3 and there are additional constraints called the
3
regularity constraints: b; > DTN, where Dy = > d;.
i=1
According to (Shevkoplyas, 2014, Kostyunin and Shevkoplyas, 2011, Gromova
and Tur, 2017) the payoff of each player i € N can be represented as

o 1
Ki(l'o,to,Tf, ul,u2,u3) = / ((bz — §UZ(T))’U,1(T) — dlx(T)) eiA(Tito)dT =
to

= Mo /t:O ((bi - %UZ(T))’U/l(T) - diZC(T)) e dr.

We consider this game in cooperative form and construct the c.f. by three de-
scribed above methods.

4.1. Construction of characteristic functions

We start with solving the maximization problem in order to find the profile of
optimal strategies.

3

o0 1
» e ((b-—— ) ;—d; ) Mt

The Hamiltonian is

3

H(xz,u,v) = Z ((bl — %ul)uZ - dix)ef)‘t + wguz,

i=1
its first order partial derivatives w.r.t. u;’s are

%(Z,U,?ﬁ) = (bz - u’i)e_)\t + 1/)7 1= 173
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The Hessian matrix is negative definite hence we conclude thet Hamiltonian H
is concave w.r.t. u;.

0*H At

— (z,u, ) = —e " <0, =13

y 9.

The adjoint equations and the related transversality conditions are

We have optimal controls in the following form

D D D
W)= (= Fhb - ) (19

Given the initial conditions (¢, ), we compute the c.f. for the grand coalition N
from (19).

VYN, z(t), T —t) = VI(N,z(t),T —t) = VS(N,z(t), T —t) =

(20)
= (822 - ByDyA+13D% - Dy2z),

3 . 3
where By = >~ b;, By = Y b2
i=1 i=1
Next, we construct the characteristic function for coalitions of one and two
players. First, we find the Nash equilibrium to construct é—c.f.

H}ﬁx/too ((bZ - %UZ(T))ul(T) — dix(T))ef)‘TdT.

According to the PMP the Hamiltonian has the form

Hi(z,u,) = ((bl — %ul)uZ — dix)e"\t —i—z/Jgui, i=1,3

and its first order partial derivatives w.r.t. u;’s are

0H;

B (x,u, 1/1) = (bl - ui)ei)\t +¥, 1 1,3

=1,0.

The Hamiltonians H; are concave w.r.t. u;, because the respective Hessian ma-
trices are negative definite.

02H; —
52 (z,u,0) = —e M <0, i=1,3

= 1,0.

The adjoint equations and the related transversality conditions are

% = diei)\t,
lim (t) = 0.

t—o00
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We get the Nash equilibrium strategies

d d d
NE 1 2 3
H=(b-5 =T k-2 21
N = (=5 - -5 (21)
Now we solve the maximization problem while considering (21).
r 1 1
max / ((bl — iul)uZ + (b — §uj)uj — (d; + dj):c) dt.
Wi, to
2 RE
Uk =Up,
Following PMP we get, the controls in form of
di +d; di +d
uf:bl—TJ, Uf:bj— b\ J (22)

For the case of a—, (—c.f. (2), (4) we will have to solve the minimization problem
. A\t o 1 1 —At
min e™"° ((bZ - §uz)ul + (bj — §uj))uj — (d; + dj):c)e dt.
Uk to

From the PMP we get
U = bk. (23)

According to the definition of a-c.f. (2), to calculate it we have to solve the
maximization problem having in mind (23):

> 1 1
max / ((bl - iul)uZ + (b — §uj)uj —(di + dj)x)e*)‘tdt.
Wi, Uj to

uk:bk

Applying the PMP to this problem we get

di + d;
S 1 ] S

.:bi—i7 —
Y )

(24)

Given the initial conditions (¢, z), we calculate the value of three described above
characteristic functions for one- and two-players coalitions.
With (2), (23), (24) we calculate the a—c.f.

1 /1 1
Vet z(t), T —t) = ’el (517?/\2 — BydiX + Qdf - di/\Qx(t))a (25)

Ve{i,j}2(6), T — ) = 5 (302 + 820 = By (d; + dy)A + (di + d;)* -
(26)
—(d; + d;)X2a(t)).

According (3), (21), (22) the d—characteristic function could be calculated as

_ 1

V(e T 1) = 55

1 1
(#XZ — Bydi\ + (dj + di)d; + §d§ - diAQ:c(t)), (27)
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VO({i, 3} a(t), T = £) = 35 (502 + 09N> = By (d; + dj)A + dy(di + dy)+
(28)
+(d; + dj)2 —(d; + dlj))\21‘(t)).

For the (—characteristic function from (4), (19), (23) we obtain

VE({i} (), T — ) = /\3(b2/\2 Byd; — D2+dDN—d)\:c()) (29)

VE({i, g} a(t). T = £) = 5 (5062 + 02N> = By (d; + dj)A-
(30)
— D2, +2Dn(d; + dj) — (d; + dj)/\%(t)).

4.2. Superadditivity of c.f.

It is easy to check the superadditivity of a—characteristic function by (20), (25),
(26).

VEAN) ~ V(Y V(i 31) = g (6 + )7 + 203 + 6di(d: + ;) > 0,

VEis}) = VA — Ve = gy (8 + & + ddidy) > 0,
since t € [to, T).
Additionally we could prove that d —characteristic function is superadditive using

(20), (27), (28).

VIN) = VAURY) = V2 ({0, 31) = g (s + d0)? + 248 + 2d4(di + dy)) >0,

Ve{i, 5}) - VO({i}) - VO ({5}) = /\(d2+d2)

since t € [to, T,
Also (—characteristic function is superadditive too (20), (29), (30).

VEN) = VE(RY) = Vo 71) = 55D (d +ds +2d1) 20

VE(i 1 = Vi) = VEWUID = 3D (di+ ;) 2 0

since ¢ € [to, T'.
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4.3. Comparison of characteristic functions

Next we are going to examine the properties of the constructed c.f. with respect to
each other. It is clear that

VE(N) = VE(N),
also from (25), (27) and (26), (28) we get
Vo)) = ve((e)) + BB
V(G = Vet gy + 20 ),

Thus,
Vo) = V). (31)

Apart from that, from (25), (29) and (26), (30) we have

VE(N) = VE(N),

V(i) = VD) + 55 (Dy — ),

ve{i,gy) = Vvedig} + —d2

Thus,
V()= V(). (32)

Inequalities (17) and (18) imply that
V() > V() = VE(.
5. New characteristic function

Developing the idea of simplification of the technique for calculating c.f.s, we intro-
duce the new definition for the characteristic function

N S = {0},
Vn(S’ ) — Z;K (U’S’uN\Sa ')a S C N, (33)

 max Z Ki(ui,...,upn,"), S =N.

Uy Um ]
where u* = {u}};cn is the profile of strategies for which the maximal value of payoff
function is achieved for all players, u§ = {u}}ics.

In (33) for players from S we use (obtained earlier) strategies v} from optimal
profile u* (as in {(—c.f.) and for players from N \ S we use (obtained earlier) strate-
gies uy (g from the Nash equilibrium strategies for all players (as in d— c.f.). This
provides certain technical advantages as will be reported in a subsequent paper.
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6. Conclusion

In this paper we considered three different approaches to the calculation of charac-
teristic function in differential games and applied all of them to differential games
with prescribed and random duration. We analyzed the obtained functions and
their relations. Also a new way of the characteristic function construction has been
introduced.

References

Breton, M., Zaccour, G, Zahaf, A. (2005). A differential game of joint implementation of
environmental projects. Automatica, 41(10), 1737-1749.

Chander, P. (2007). The gamma—cor and coalition formation. International Journal of
Game Theory, 35, 539-556.

Gromova, E. (2016). The Shapley value as a sustainable cooperative solution in differential
games of 3 players. In Recent Advances in Game Theory and Applications, Static &
Dynamic Game Theory: Foundations & Applications. Birkhiuser, Cham, 67-89.

Gromova, E., Petrosyan, L. (2017). On an approach to constructing a characteristic func-
tion in cooperative differential games. Automation and Remote Control, 78(9), 1680—
1692, https://doi.org/10.1134/S0005117917090120

Gromova, E., Tur, A. (2017). On the form of integral payoff in differential games with
random duration. XX VI International Conference on Information, Communication and
Automation Technologies (ICAT), IEEE, https://doi.org/10.1109/ICAT.2017.8171597

Gromova, E., Malakhova, A., Marova, E. (2017). On the superadditivity of a character-
istic function in cooperative differential games with negative erternalities. Construc-
tive Nonsmooth Analysis and Related Topics (dedicated to the memory of VF De-
myanov)(CNSA), IEEE, https://doi.org/10.1109/CNSA.2017.7973963

Krasovskii, N., Subbotin, A. (1988). Game-theoretical control problems. New York:
Springer, P. 518.

Kostyunin, S., Shevkoplyas, E. (2011). On simplification of integral payoff in differential
games with random duration. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10.
Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 4, 47-56.

Marin-Solano, J., Shevkoplyas, E. (2011). Non-constant discounting and differential games
with random time horizon. Automatica, 47(12), 2626—2638.

von Neumann, J., Morgenstern, O. (1953). Theory of Games and Economic Behavior.
Princeton University Press.

Petrosjan, L., Zaccour, G. (2003). Time-consistent Shapley value allocation of pollution
cost reduction. Journal of Economic Dynamics and Control, 27(3), 381-398.

Petrosyan, L., Gromova, E. (2014). Two-level Cooperation in Coalitional Differential
Games. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 20(3), 193-203 (in Rus-
sian).

Petrosyan, L., Murzov, N. (1966). Game-theoretic problems of mechanics. Litovskii Matem-
aticheskii Sbornik, VI(8), 423-433 (in Russian).

Petrosjan, L., Shevkoplyas, E. (2000). Cooperative games with random duration. Vestnik
St. Petersburg University, ser.1, 4, 14-18.

Petrosyan, L., Shevkoplyas, E. (2003). Cooperative solutions for games with random dura-
tion. Game Theory and Applications, 9, 125-139.

Petrosjan L., Danilov N. (1982). Cooperative differential games and their applications.
Tomsk University Press.

Pontryagin, L. (2018). Mathematical theory of optimal processes. Routledge.

Reddy, P., Zaccour, G. (2016). A friendly computable characteristic function. Mathematical
Social Sciences, 82, 18-25.

Shevkoplyas, E. (2014). The Hamilton-Jacobi-Bellman equation for a class of differential
games with random duration. Automation and Remote Control, 75(5), 959-970.





