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Abstra
t The alteration of opinions of individuals in groups over time is

a parti
ular 
ommon phenomenon in so
ial life. Taking into a

ount the in-

�uen
e of homogeneous members and some spe
ial in�uential persons, an

opinion dynami
s game is established. In a so
ial network, two spe
ial in-

�uen
e nodes pursuing their 
ertain goals with the pro
ess of in�uen
ing

the opinions of other normal nodes in dis
rete time is 
onsidered. From the

perspe
tive of non-
ooperation, Sta
kelberg equilibrium is sele
ted as the

solution of the opinion dynami
s game. Given distin
t information knowl-

edge, players will derive di�erent equilibrium strategies. The open-loop and

feedba
k information 
on�gurations are investigated. In the two-person non-


ooperative dynami
 game, te
hniques of Pontryagin's minimum prin
iple

and dynami
 programming are adopted to derive the equilibrium levels of

in�uen
e for in�uen
e nodes and the equilibrium opinions for other normal

nodes in the network. To 
ompute and 
ompare the various equilibrium 
on-


epts under di�erent information stru
tures, numeri
al results are presented

for di�erent s
enarios.
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1. Introdu
tion

In the 
omplex interpersonal so
ial networks, some in�uential opinions will deter-

mine the formation and revision of individuals' opinions. Delving into the tenden
y

of opinion dynami
s of the agents in 
ommunity is 
ondu
ive to deep 
omprehending

of the progress of 
ivilization, so
ial development and stabilization. Furthermore,

it is the 
ru
ial foundation of so
ial 
ontrol. In
ipiently, resear
h on whether all

agents in the group would rea
h an opinion 
onsensus is a hot topi
. One of the

most 
lassi
al is the DeGroot model (DeGroot, 1974). Establishing the algebra of

a Markov 
hain, DeGroot proposed the system framework of opinion dynami
s,

in whi
h the linear 
ombination of agents' opinions at the previous stage 
onsti-

tutes his 
urrent stage opinion. The so
ial in�uen
e network knowledge stru
ture

was enri
hed by Friedkin and Johnsen (Friedkin and Johnsen, 1990; Friedkin and

Johnsen, 1999), in their works the so
ial in�uen
e pro
ess a�e
ted by both endoge-

nous opinions and exogenous 
onditions was des
ribed. Literatures (A
emoglu and

Ozdaglar, 2011; Bue
hel et al., 2015; Dandekar et al., 2013) had extended the theory

of opinion dynami
s, where the �elds involved are e
onomi
s, so
ial and politi
al s
i-

en
es, engineering and 
omputer s
ien
es. In (Hegselmann and Krause, 2002), the

bounded 
on�den
e framework for a Friedkin�Johnsen model was developed and

a series of simulations was presented to illustrate the theoreti
al knowledge. The

wisdom groups regarding to DeGroot model was examined in (Golub and Ja
kson,
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2010), while regarding the initial opinions the stubbornness of agents was 
onsid-

ered in (Ghaderi and Srikant, 2014). Re
ently, (Bure et al., 2015; Bure et al., 2017)


onstru
ted a spe
i�
 stru
ture of in�uen
e matrix to investigate the problem of

rea
hing a 
onsensus of opinion dynami
s with three groups of agents in�uen
ed by

two nodes.

There is no starting point from game-theoreti
 perspe
tive in the aforemen-

tioned literatures. A
tually, to analyse opinion dynami
s, distin
t game-theoreti


approa
hes 
an be adopted. For instan
e, the Hegselmann�Krause model in a well-

designed potential game was investigated in (Etesami and Ba�sar, 2015), while a


ontrolled DeGroot model of opinion dynami
s was explored in (Barabanov et al.,

2010; Gubanov et al., 2011).

A spe
ial stru
ture of dynami
 games was 
onsidered in this paper, where the

in�uen
e in the opinion formation pro
ess is 
hara
terized by a dis
rete-time linear-

quadrati
 game. The theory of linear-quadrati
 games is based on optimal 
on-

trol, whi
h is related to the system dynami
s des
ribed by a set of linear di�er-

ential/di�eren
e equations and the 
riterion des
ribed by a quadrati
 fun
tion. In

the proposed model, the opinion dynami
s is established as an iteration of opin-

ions from agents and in�uen
e levels (
ontrol variables) from players in linear form.

Ea
h player has his �desired" opinion, what players are 
on
erned is whether they


an optimise their performan
e by minimizing the asso
iated 
osts. Furthermore,

players' obje
tive is to make agents' opinions 
lose to their �desired" opinions in

quadrati
 form, whi
h is 
lose to those in (Kraw
zyk and Tidball, 2006).

There are two distinguished dire
tions to investigate in game theory, i.e., 
ooper-

ation and non-
ooperation. The popular non-
ooperative solution 
on
ept Sta
kel-

berg equilibrium is examined in this paper. In Sta
kelberg 
ompetition, the follower

moves sequentially after the leader. Te
hnique of ba
kward indu
tion is adopted to

solve the model. The follower 
an always rea
t optimally after observing the strategy

taken by the leader, on the other hand, the leader should anti
ipate the predi
ted

best response of the follower then develop a strategy minimizing his payo�.

Fundamentally, open-loop and feedba
k 
on�gurations are designed to spe
ify

di�erent requirements in 
ontrol system. Under the open-loop information stru
-

ture, players will make de
isions independently of the pro
ess state of the system,

whi
h be�tting 
ase is the redu
tion in 
omponent 
ount and 
omplexity. The term

feedba
k implies players will have some knowledge of the state of the system, thus

the primary advantage is its ability to 
orre
t for outside disturban
es. This paper

assumes that players only use the knowledge of the initial state and 
urrent stage

to determine their open-loop strategies, and the feedba
k strategies depend on both

the 
urrent stage and state of the system. The te
hnique of solving open-loop op-

timal 
ontrol problem is Pontryagin's maximum (or minimum) prin
iple, whi
h we

express as a system of algebra equations. Applying the dynami
 programming the-

ory, the equilibrium 
an be obtained under the feedba
k information knowledge by

solving the system of re
urren
e relations. With similar te
hniques, linear-quadrati


di�erential games are studied in (Wang et al., 2019).

As an illustration and 
omparison, the symmetri
 theoreti
al so
ial network


onstru
ted in (Sedakov and Zhen, 2019) is examined. The results of 
omparison of

two distinguished non
ooperative solutions Nash and Sta
kelberg equilibrium are

presented. Indeed, so
iologi
al resear
h usually take a long time based on tra
king

observation of 
ommunities. This paper establishes the opinion dynami
s game of
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Za
hary karate 
lub network (Za
hary, 1977) lasting 36 months. The administrator

and the instru
tor stand at quite various positions on the pri
e of karate lessons,

therefore this two players perform their own a
tions to a
hieve their obje
tives. The


omparison is 
ondu
ted when administrator and instru
tor play the role of leader

respe
tively.

The outline of the rest of the paper is organized as follows. In Se
tion 2, the opin-

ion dynami
s model in a so
ial network is des
ribed as a two-person dis
rete-time

linear-quadrati
 game. The subsequent a
tions of players des
ribed by Sta
kelberg

equilibrium are explored in Se
tion 3, whi
h is investigated under open-loop and

feedba
k information stru
tures. At last, the numeri
al examples illustrate the the-

oreti
al �ndings in Se
tion 4.

2. The opinion dynami
s game model

The model of opinion dynami
s game 
onsidered in this paper was proposed in

(Sedakov and Zhen, 2019). We start with the treatment of an opinion dynami
s

game in a so
ial network de�ned in �nite dis
rete-time. Let the set of stages be T =
{0, 1, . . . , T }. Denote the so
ial 
ommuni
ation stru
ture by standard terminology

(V,E), where V is a �nite set of nodes in the so
ial network and E is a set of edges

between the nodes. Individuals in the so
ial network are lo
ated in the nodes and


ommuni
ate with ea
h other through edges between ea
h pair of nodes. There are

two types of parti
ipants in the opinion dynami
s game, for instan
e, sellers and


onsumers in the business relationship network. Thus, we suppose that the set of

nodes 
an be de
omposed as V = A∪N , A∩N = ∅. Ea
h individual in A is 
alled

an agent, meanwhile a player or in�uen
e node in N . Therefore, the set A is an

agent set and N is a player set in the network.

First, we illustrate the role of agents in the opinion dynami
s game. Suppose

there is a subje
t in the network, su
h as a new produ
t, during the pro
ess of

learning more information of the new produ
t ea
h 
onsumer may hold distin
t

view about the produ
t. In the opinion dynami
s game we suppose that ea
h agent

i ∈ A in the network has his own opinion on this spe
i�
 �subje
t� whi
h 
an be


hanged over time. To better measure and show the alterations of agents' opinions,

we suppose that agents' opinions are numeri
al values. Given xi0 ∈ X ⊆ R as the

element i in the initial state ve
tor x0, whi
h means the initial opinion of agent i in
the opinion dynami
s game. The state of agent i may 
hange over time, denote by

xi(t) ∈ X his opinion at stage t = 1, . . . , T . As an illustration, let X = [0, 1] in the

business relationship network, xi(t) = 0 implies 
onsumer i has no willingness to

buy the new produ
t, and the bigger xi(t) ∈ X , the more willingness of 
onsumer i
to buy. Let state ve
tors x(t) = (x1(t), . . . , x|A|(t))

′
be the opinion pro�le of agents

at stage t = 1, . . . , T , further denote x0 = (x10, . . . , x|A|0)
′
as the initial opinions.

Then we dis
uss how players a�e
t agents' opinions in the opinion dynami
s

game. Let us go ba
k to our illustration, sellers who sell the new produ
ts usually

take diversi�ed marketing promotional program to let more 
onsumers know and


onsumers know more about their new produ
ts. For simpli
ity, we assume that

there are two in�uen
e nodes in the network, i.e., N = {1, 2}. Denote by ui(t) ∈
U ⊆ R the in�uen
e level (or a 
ontrol) of player i ∈ N on network agents sele
ted at

stage t = 0, . . . , T − 1. Also as an illustration, 
onsider in the business relationship

network U = [0, 1], then ui(t) = 0 implies seller i does not make any e�ort to

in�uen
e 
onsumers' opinions on his new produ
t. and ui(t) ∈ U 
an be 
onsidered
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as the investment of seller i at stage t = 0, . . . , T −1 with his total assets of 1. Thus,

the more investment the greater the impa
t on 
onsumers.

2.1. Opinion dynami
s

As we all know, a parti
ular 
onsumer 
an form a new opinion on the produ
t by

a
quiring information from sellers and 
onsumers in
luding his own experien
es. In

the game, we assume ea
h agent evaluates his opinion at any stage aggregating the

opinions of other agents in the network as well as the in�uen
e e�orts of players.

The opinion of agent i ∈ A evolves a

ording to the following system:

xi(t+ 1) =
∑

j∈A

wijxj(t) + bi1u1(t) + bi2u2(t), t = 0, . . . , T − 1, (1)

with xi(0) = xi0. In the transition fun
tion (1) from t to t + 1, wij ∈ [0, 1] and
bij ∈ [0, 1] are the levels of trust of agent i ∈ A to the opinion of agent j ∈ A and

player j ∈ N , respe
tively. It is not ne
essarily that wij = wji. Additionally, we

assume that

∑

j∈A wij +
∑

j∈N bij = 1 for any agent i ∈ A. The opinions of players

are 
onsidered to remain 
onstant over time and hen
e are not in
luded into the

model. LetW = {wij}i,j∈A, bi = (bi1, . . . , bi|A|)
′
, i ∈ N . Then the opinion dynami
s

of agents in the network is given by:

x(t+ 1) =Wx(t) + b1u1(t) + b2u2(t), t = 0, . . . , T − 1, x(0) = x0, (2)

with the following property holds:

Wx(t) + b1u1(t) + b2u2(t) is 
ontinuously di�erentiable on X |A|
and 
onvex on

X |A| × UT
.

Evidently, ea
h 
onsumer in the 
onsidered business relationship network has

two di�erent types of 
hannels for integrating information. That is, one 
hannel is

between 
onsumers, another is between 
onsumer and seller. In the opinion dynam-

i
s game, we also de
ompose the set of edges E into two disjoint sets EA and EN ,

i.e., E = EA ∪ EN , EA ∩ EN = ∅, in whi
h EA des
ribes all 
onne
tions between

agents and EN des
ribes all 
onne
tions between pairs �player�agent�. Furthermore,

matrix W and ve
tors b1 and b2 
an identify the set of edges E:

(j, i) ∈ EA, if and only if wij > 0,

(j, i) ∈ EN , if and only if bij > 0.

2.2. Criteria

Now we 
hara
terize the 
riteria for players in the opinion dynami
s game. What

are the 
riteria of sellers in the 
onsidered business relationship network? Pre�x-

ing a willingness to buy for 
onsumers and starting from the initial willingness of


onsumers to buy the produ
t, sellers 
hoose the investments at ea
h stages. In the

business pro
ess, the 
osts to sellers 
ome from two aspe
ts, i.e., (i) how far is the


onsumers' willingness to the pre�xed willingness; (ii) how mu
h does the related

investment 
ost. The prin
iple of sellers is to redu
e total 
osts, thus in
rease their

net-in
ome. Let ui = (ui(0), . . . , ui(T − 1)) ∈ UT
be an admissible pro�le of in�u-

en
e levels in T stages (or a strategy) sele
ted by player i ∈ N , where U is a 
losed

and bounded (thereby 
ompa
t) subset of R. Taking into a

ount opinion dynami
s

(2), player i ∈ N aims at minimizing his stage-additive payo� fun
tion, whi
h is
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given by:

Ji(u1, u2) =

T−1
∑

t=0





∑

j∈A

(xj(t)− x̂i)
2 + ciu

2
i (t)



 +
∑

j∈A

(xj(T )− x̂i)
2,

where x̂i ∈ X is a given desired opinion for player i to whi
h he tries to drive the

opinions of all agents in the network sele
ting his strategy ui, and ci > 0 mea-

sures the e�orts of this player asso
iated with the sele
tion of ui. The pro�le of

states (x0, x(1), · · · , x(T )) satisfying the opinion dynami
s (2) is 
alled a state tra-

je
tory starting from initial state, whi
h 
orrespond to the strategy pro�le (u1, u2)
minimizing the payo� fun
tions.

This model is a two-person non-
ooperative dis
rete-time linear-quadrati
 game.

The payo� fun
tion of player i ∈ N 
an be rewritten in a standard form for this


lass of games:

Ji(u1, u2) =

T−1
∑

t=0

(

1

2
x(t)′Qix(t) +

1

2
Riu

2
i (t) + q′ix(t)

)

+
1

2
x(T )′Qix(T ) + q′ix(T ) + zi, (3)

where 1 denotes a ve
tor of ones of size |A|, Qi = 2I, I is an identity matrix of

size |A|, Ri = 2ci, qi = −2x̂i1, zi = |A|(T + 1)x̂2i for i ∈ N . The 
onsidered payo�

fun
tions have the following properties:

(i) Ji is 
ontinuous on UT × UT , i ∈ N ,

(ii) Ji is stri
tly 
onvex on UT , i ∈ N ,

(iii) The transition reward of player i ∈ N , i.e.,

1
2x(t)

′Qix(t) +
1
2Riu

2
i (t) + q′ix(t)

is 
ontinuously di�erentiable on X.

3. Sta
kelberg equilibrium

In this se
tion, we investigate the solution when players perform subsequent a
-

tions. Here we fo
us on Sta
kelberg equilibrium with assuming player 1 moves �rst

and then player 2 moves sequentially. What is more, 
on
epts of equilibrium vary

under di�erent information stru
tures. How to design strategies depends on what

information is available to the players. Let us make a brief overview of 
lassi�
ation

of information in dynami
 games.

(i) Open-loop information stru
ture. An open-loop strategy of player i ∈ N is a

mapping that depends on stage t and initial state x0. Formally, ui(t) = ψs
i (t, x0) ∈ U

where ψs
i (·, x0) : {0, . . . , T − 1} 7→ U .

(ii) Feedba
k information stru
ture, also known as Markovian information stru
-

ture. A feedba
k strategy of player i ∈ N is a mapping that depends on stage t and
the 
urrent state x(t), i.e., ui(t) = σs

i (t, x(t)) ∈ U where σs
i (·, ·) : {0, . . . , T − 1} ×

X |A| 7→ U .

De�nition 1. A pair (us∗1 , u
s∗
2 ) is a Sta
kelberg equilibrium with player 1 as the

leader if:

J1(u
s∗
1 , u

s∗
2 ) = min

u1∈UT

max
ū2∈R2(t,u1)

J1(u1, ū2)
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where

R2(t, u1) =

{

u2 ∈ UT | min
u2∈UT

J2(u1, u2)

}

is the set of best response of the follower given arbitrary u1 ∈ UT
.

The following of this se
tion will des
ribe the te
hniques of Pontryagin's maxi-

mum prin
iple (minimum prin
iple in this 
onsidered opinion dynami
s game) and

dynami
 programming to derive open-loop and feedba
k Sta
kelberg equilibria re-

spe
tively (Haurie et al., 2012).

3.1. Open-loop Sta
kelberg equilibrium

For ea
h �xed ψs
1 ∈ UT

, the follower needs to minimize J2(ψ
s
1, ψ

s
2) with the state

equations (2) hold. The payo� fun
tion of player i ∈ N 
an be transformed as:

J
′

i (ψ
s
1, ψ

s
2) = Ji(ψ

s
1, ψ

s
2)− ai,

where

ai =
1

2
x′0Qix0 + q′ix0 + |A|(T + 1)x̂2i .

Apparentily, for ea
h i ∈ N

J
′

i (ψ
s
1, ψ

s
2) =

T−1
∑

t=0

(

1

2
x(t+ 1)′Qix(t+ 1) +

1

2
Ri(ψ

s
i (t, x0))

2 + q′ix(t+ 1)

)

, (4)


riteria (3) and (4) rea
h the minimum at the same pro�le (ψs∗
1 , ψ

s∗
2 ). Let us inves-

tigate the model with transformed 
riteria (4), then the system of equations 
an be

derived as follows (Basar and Olsder, 1999).

Theorem 1. If (ψs∗
1 , ψ

s∗
2 ) denotes an open-loop Sta
kelberg equilibrium strategy,

then there exist �nite ve
tor sequen
es γ(1), · · · , γ(T ), λ1(0), · · · , λ1(T − 1), λ2(0),
· · · , λ2(T − 1), λ3(0), · · · , λ3(T − 1) that satisfy the following relations, for t =
0, · · · , T − 1:

xs∗(t+ 1) =Wxs∗(t) + b1ψ
s∗
1 (t, x0) + b2ψ

s∗
2 (t, x0), (5)

∂H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

∂ψs
1(t, x0)

= b′1Q1x
s∗(t+ 1) +R1ψ

s∗
1 (t, x0) + b′1

[

q1 + λ1(t)
]

+ b′1Q2

[

Wλ2(t) + b2λ3(t)
]

= 0, (6)

∂H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

∂ψs
2(t, x0)

= b′2Q1x
s∗(t+ 1) + b′2

[

q1 + λ1(t)
]

+ b′2Q2

[

Wλ2(t) + b2λ3(t)
]

+R2λ3(t) = 0, (7)
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λ1(t− 1) = ▽x(t)H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

=W ′
[

Q1x
s∗(t+ 1) + q1 + λ1(t) +Q2Wλ2(t) +Q2b2λ3(t)

]

, (8)

λ2(t+ 1) =
∂H1[x(t), ψ

s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

∂γ(t+ 1)

=Wλ2(t) + b2λ3(t), (9)

∂H2[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1)]

∂ψs
2(t, x0)

= b′2Q2x
∗(t+ 1) +R2ψ

s∗
2 (t, x0) + b′2

[

q2 + γ(t+ 1)
]

= 0, (10)

γ(t) =W ′
[

Q2x
∗(t+ 1) + q2 + γ(t+ 1)

]

, (11)

λ1(T − 1) = 0, λ2(0) = 0, γ(T ) = 0,

where

H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

=
1

2
x(t + 1)′Q1x(t+ 1) +

1

2
R1(ψ

s
1(t, x0))

2 + q′1x(t+ 1)

+ λ1(t)
′

x(t+ 1) + λ2(t)
′

W ′
[

Q2x(t+ 1) + q2 + γ(t+ 1)
]

+ λ3(t)
′
[

b′2(Q2x(t+ 1) + q2 + γ(t+ 1)) +R2ψ
s
2(t, x0)

]

,

H2[x(t), ψ
s
1x(t, x0), ψ

s
2(t, x0), γ(t+ 1)]

=
1

2
x(t + 1)′Q2x(t+ 1) +

1

2
R2(ψ

s
2(t, x0))

2 + q′2x(t+ 1)

+ γ(t+ 1)
′

x(t+ 1).

For deriving the open-loop Sta
kelberg equilibrium we need to 
onstru
t a sys-

tem of linear equations Ay = B, where y = (ψ1(0, x0), · · · , ψ1(T − 1, x0), ψ2(0, x0),
· · · , ψ2(T − 1, x0), x

′
0, x(1)

′, · · · , x(T )′, γ(1), · · · , γ(T ), λ1(0), · · · , λ1(T − 1), λ2(0),
· · · , λ2(T − 1), λ3(0), · · · , λ3(T − 1))′ ∈ R

(4|A|+3)T+|A|
.

As the 
onsidered game is the linear-quadrati
 game, the following statement


an be obtained (Basar and Olsder, 1999).

Theorem 2. If the inverse matrix [I+R−1
2 b2b

′
2P1(t+1)+R−1

1 b1b
′
1(I+Q

′
2b2R

−1
2 b′2)

−1

×P2(t + 1)]−1
exists, then there exists an unique open-loop Sta
kelberg equilibrium

with player 1 a
ting as the leader, whi
h is given by:

ψs∗
1 (t, x0) =K1(t)x

s∗(t) + L1(t),

ψs∗
2 (t, x0) =K2(t)x

s∗(t) + L2(t),

with the unique state traje
tory asso
iated with this pair of strategies (ψs∗
1 (t, x0), ψ

s∗
2

(t, x0)) satis�es:

xs∗(t+ 1) = Φ(t)xs∗(t) + θ(t), xs∗(0) = x0,

where Ki(t), Li(t), i ∈ N, Φ(t), θ(t) are presented as follows:
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K1(t) =−R−1
1 b′1

[

(I +Q′
2b2R

−1
2 b′2)

−1P2(t+ 1)Φ(t)

+Q′
2(I + b2R

−1
2 b′2Q

′
2)

−1WP3(t)
]

, (12)

L1(t) =−R−1
1 b′1

{

(I +Q′
2b2R

−1
2 b′2)

−1[P2(t+ 1)θ(t) + p2(t+ 1) + q1]

+Q′
2(I + b2R

−1
2 b′2Q

′
2)

−1Wp3(t)
}

, (13)

K2(t) =−R−1
2 b′2P1(t+ 1)Φ(t), (14)

L2(t) =−R−1
2 b′2

[

P1(t+ 1)θ(t) + p1(t+ 1) + q2

]

, (15)

Φ(t) =
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

×
[

W −R−1
1 b1b

′
1Q2(I + b2R

−1
2 b′2Q

′
2)

−1WP3(t)
]

, (16)

θ(t) =
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

×
{

−R−1
1 b1b

′
1

[

(I +Q′
2b2R

−1
2 b′2)

−1(p2(t+ 1) + q1) +Q2(I

+b2R
−1
2 b′2Q

′
2)

−1Wp3(t)
]

−R−1
2 b2b

′
2(p1(t+ 1) + q2)

}

. (17)

Proof Rearrange equation (7):

λ3(t) = −(R2 + b′2Q
′
2b2)

−1b′2

[

Q1x(t+ 1) + q1 + λ1(t) +Q′
2Wλ2(t)

]

. (18)

Plug (18) into (6):

ψs
1(t, x0) =−R−1

1 b′1

{[

Q1 −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2Q1

]

x(t+ 1)

+
[

I −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2

][

q1 + λ1(t)
]

+ Q′
2

[

I − b2(R2 + b′2Q
′
2b2)

−1b′2Q
′
2

]

Wλ2(t)
}

.

Plug (18) into (8):

λ1(t− 1) = W ′
{[

Q1 −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2Q1

]

x(t + 1)

+
[

I −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2

][

q1 + λ1(t)
]

+ Q′
2

[

I − b2(R2 + b′2Q
′
2b2)

−1b′2Q
′
2

]

Wλ2(t)
}

, λ1(T ) = 0.

Plug (18) into (9):

λ2(t+ 1) = Wλ2(t)− b2(R2 + b′2Q
′
2b2)

−1b′2

[

Q1x(t+ 1)

+ q1 + λ1(t) +Q′
2Wλ2(t)

]

, λ2(0) = 0.

Assume that:

γ(t+ 1) =
[

P1(t+ 1)−Q2

]

x(t+ 1) + p1(t+ 1), (19)

λ1(t) =
[

P2(t+ 1)−Q1

]

x(t+ 1) + p2(t+ 1), (20)

λ2(t) = P3(t)x(t) + p3(t). (21)
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Plug (19) into (10):

ψs
2(t, x0) = −R−1

2 b′2

[

P1(t+ 1)x(t+ 1) + p1(t+ 1) + q2

]

.

Following Woodbury matrix identity:

(A+ UCV )
−1

= A−1 −A−1U
(

C−1 + V A−1U
)−1

V A−1,

the strategy of the leader 
an be expressed:

ψs
1(t, x0) =−R−1

1 b′1

{

(I +Q′
2b2R

−1
2 b′2)

−1
[

P2(t+ 1)x(t+ 1) + p2(t+ 1) + q1

]

+ Q′
2(I + b2R

−1
2 b′2Q

′
2)

−1W
[

P3(t)x(t) + p3(t)
]}

.

If the inverse matrix

[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

exists, then state equation will be in following form:

x(t+ 1) =
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

×
{[

W −R−1
1 b1b

′
1Q2(I + b2R

−1
2 b′2Q

′
2)

−1WP3(t)
]

x(t)−R−1
1 b1b

′
1

×
[

(I +Q′
2b2R

−1
2 b′2)

−1(p2(t+ 1) + q1) +Q2(I + b2R
−1
2 b′2Q

′
2)

−1

× Wp3(t)
]

−R−1
2 b2b

′
2(p1(t+ 1) + q2)

}

.

Denote

x(t+ 1) = Φ(t)x(t) + θ(t), (22)

where Φ(t), θ(t) are presented in equations (16), (17). Then denote

ψs
1(t, x0) = K1(t)x(t) + L1(t),

ψs
2(t, x0) = K2(t)x(t) + L2(t),

where Ki(t), Li(t), i ∈ N are presented in equations (12)-(15). Plug (19), (22) into

(11):

(P1(t)−Q2)x(t) + p1(t) =W ′Q2

[

Φ(t)x(t) + θ(t)] +W ′[p1(t+ 1) + q2

]

+W ′
[

(P1(t+ 1)−Q2)(Φ(t)x(t) + θ(t))
]

, ρ2(T ) = 0,

Then the following system 
an be obtained:

P1(t)−Q2 =W ′P1(t+ 1)Φ(t),

p1(t) =W ′
[

P1(t+ 1)θ(t) + p1(t+ 1) + q2

]

,

P1(T ) = Q2, p1(T ) = 0.
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Equation (18) be
omes:

λ3(t) =− (R2 + b′2Q
′
2b2)

−1b′2

{

Q1

[

Φ(t)x(t) + θ(t)
]

+ q1 + [P2(t+ 1)−Q1]

×
[

Φ(t)x(t) + θ(t)
]

+ p2(t+ 1) +Q′
2W

[

P3(t)x(t) + p3(t)
]}

=− (R2 + b′2Q
′
2b2)

−1b′2 {[P2(t+ 1)Φ(t) +Q′
2WP3(t)]x(t)

+ q1 + P2(t+ 1)θ(t) + p2(t+ 1) +Q′
2Wp3(t)} . (23)

Denote

λ3(t) =M(t)x(t) +N(t),

where

M(t) =− (R2 + b′2Q
′
2b2)

−1b′2

{

P2(t+ 1)
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1

× (I +Q′
2b2R

−1
2 b′2)

−1P2(t+ 1)]−1
[

W −R−1
1 b1b

′
1Q2(I + b2R

−1
2 b′2Q

′
2)

−1

× WP3(t)
]

+Q′
2WP3(t)

}

,

N(t) =− (R2 + b′2Q
′
2b2)

−1b′2

{

q1 − P2(t+ 1)
[

I +R−1
2 b2b

′
2P1(t+ 1)

+R−1
1 b1b

′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

[R−1
1 b1b

′
1((I +Q′

2b2R
−1
2 b′2)

−1

× (p2(t+ 1) + q1) +Q2(I + b2R
−1
2 b′2Q

′
2)

−1Wp3(t)) +R−1
2 b2b

′
2

× (p1(t+ 1) + q2)
]

+ p2(t+ 1) +Q′
2Wp3(t)

}

.

Plug (20), (21), (22), (23) into (8):

(P2(t)−Q1)x(t) + p2(t) =W ′
{

Q1

[

Φ(t)x(t) + θ(t)
]

+ p2(t+ 1) + q1

+
[

P2(t+ 1)−Q1

]

[Φ(t)x(t) + θ(t)] +Q′
2W

×
[

P3(t)x(t) + p3(t))
]

+Q′
2b2

[

M(t)x(t) +N(t)
]}

.

Then the se
ond system 
an be obtained:

P2(t)−Q1 =W ′
[

P2(t+ 1)Φ(t) +Q′
2WP3(t) +Q′

2b2M(t)
]

,

p2(t) =W ′
[

P2(t+ 1)θ(t) + p2(t+ 1) + q1 +Q′
2b2p3(t) +Q′

2b2N(t)
]

,

P2(T ) = Q1, p2(T ) = 0.

Plug (21), (23) into (9):

P3(t+ 1)[Φ(t)x(t) + θ(t)] + p3(t+ 1) = W
[

P3(t)x(t) + p3(t)
]

+ b2[M(t)x(t) +N(t)],

Finally, the last system will be the following form:

P3(t+ 1)Φ(t) =WP3(t)− b2M(t),

P3(t+ 1)θ(t) + p3(t+ 1) =Wp3(t) + b2N(t),

P3(0) = 0, p3(0) = 0. ⊓⊔
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3.2. Feedba
k Sta
kelberg equilibrium

The value fun
tion for player i ∈ N at stage t = 0, 1, · · ·, T − 1 is de�ned as:

V s
i (t, x(t)) =

T−1
∑

τ=t

(

1

2
x∗(τ)′Qix

∗(τ) +
1

2
Ri(σ

∗
i (τ, x(τ)))

2 + q′ix
∗(τ)

)

+
1

2
x∗(T )′Qix

∗(T ) + q′ix
∗(T ),

V s
i (T, x(T )) =

1

2
x∗(T )′Qix

∗(T ) + q′ix
∗(T ),

where (σs∗
1 , σ

s∗
2 ) is the feedba
k Sta
kelberg equilibrium, (xs∗(t), xs∗(t+1), ···, xs∗(T ))

is the 
orresponding equilibrium state traje
tory.

Re
onsidering 
riteria (3), with the pro
edure of dynami
 programming applied,

the feedba
k Sta
kelberg equilibrium is obtained as follows (Haurie et al., 2012).

Theorem 3. For the proposed opinion dynami
s game, a pair of strategies (σs∗
1 , σ

s∗
2 )

with the following form:

σs∗
i (t, x) = −psi (t)

′x(t) + rsi (t), i ∈ N,


onstitutes a feedba
k Sta
kelberg equilibrium if and only if there exist fun
tions

V s
i (t, ·) : R

|A| 7→ R su
h that:

V s
i (t, x) =

1

2
x(t)′Ss

i (t)x(t) + hsi (t)
′x(t) + ssi (t), i ∈ N, t ∈ T ,

where matri
es Ss
i (t), ve
tors p

s
i (t), h

s
i (t) and numbers rsi (t), s

s
i (t) satisfy:

ps1(t){R1 + b′1[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1Ss

1(t+ 1)[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1}

=W ′[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1Ss

1(t+ 1)[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1,

ps2(t)[R2 + b′2S
s
2(t+ 1)b2] + ps1(t)b

′
1S

s
2(t+ 1)b2 =W ′Ss

2(t+ 1)b2,

rs1(t){R1 + b′1[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1Ss

1(t+ 1)[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1}

= −{hs1(t+ 1)′ − hs2(t+ 1)′b2(R2 + b′2S
s
2(t+ 1)b2)

−1b′2S
s
2(t+ 1)}

× [I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1,

rs2(t)[R2 + b′2S
s
2(t+ 1)b2] + rs1(t)b

′
1S

s
2(t+ 1)b2 = −hs2(t+ 1)′b2,

Ss
i (t) = Qi +Rip

s
i (t)p

s
i (t)

′ +
[

W ′ −
∑

j∈N

psj(t)b
′
j

]

Ss
i (t+ 1)

[

W −
∑

j∈N

bjp
s
j(t)

′
]

,

hsi (t) = −rsi (t)Rip
s
i (t) + qi +

[

W ′ −
∑

j∈N

psj(t)b
′
j

]

Ss
i (t+ 1)

×
∑

j∈N

bjr
s
j (t) +

[

W ′ −
∑

j∈N

psj(t)b
′
j

]

hsi (t+ 1),

ssi (t) =
1

2
Ri[r

s
i (t)]

2 +
1

2

∑

j∈N

b′jr
s
j (t) · S

s
i (t+ 1)

∑

j∈N

bjr
s
j (t)

+ hsi (t+ 1)′
∑

j∈N

bjr
s
j (t) + ssi (t+ 1),

for t = 0, . . . , T − 1, i ∈ N , with the boundary 
onditions:

Si(T ) = Qi, hi(T ) = qi, si(T ) = 0.
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Proof The follower will 
onsider the following optimal problem:

V s
2 (t, x) = min

σs

2
(t,x)∈U

{

1

2
x(t)′Q2x(t) +

1

2
R2(σ

s
2(t, x))

2 + q′2x(t)

+
1

2

[

Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)

]′

Ss
2(t+ 1)

×
[

Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)

]

+ hs2(t+ 1)′

×
[

Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)

]

+ ss2(t+ 1)
}

.

Minimizing the expression in the bra
e with respe
t to σs
2(t, x), we have:

R2σ
s
2(t, x) + b′2S

s
2(t+ 1)[Wx(t) + b1σ

s
1(t, x) + b2σ

s
2(t, x)] + b′2h

s
2(t+ 1) = 0. (24)

Plug the linear form of strategies in the statement of the theorem into (24), thus:

σs
2(t, x) =−

[

R2 + b′2S
s
2(t+ 1)b2

]−1

b′2

×
{

Ss
2(t+ 1)

[

Wx(t) + b1σ
s
1(t, x)

]

+ hs2(t+ 1)
}

. (25)

Considering the best response of the follower in form (25), the leader's value fun
tion

will be the following:

V s
1 (t, x) = min

σs

1
(t,x)∈U

{

1

2
x(t)′Q1x(t) +

1

2
R1(σ

s
1(t, x))

2 + q′1x(t)

+
1

2

[

Wx(t) + b1σ
s
1(t, x)− b2(R2 + b′2S

s
2(t+ 1)b2)

−1

× [(b′2S
s
2(t+ 1)(Wx(t) + b1σ

s
1(t, x) + b′2h

s
2(t+ 1)]}′

× Ss
1(t+ 1){Wx(t) + b1σ

s
1(t, x)− b2(R2 + b′2

× Ss
2(t+ 1)b2)

−1[b′2S
s
2(t+ 1)(Wx(t) + b1σ

s
1(t, x)

+ b′2h
s
2(t+ 1)]}+ hs1(t+ 1)′{Wx(t) + b1σ

s
1(t, x)

− b2(R2 + b′2S
s
2(t+ 1)b2)

−1[b′2S
s
2(t+ 1)(Wx(t)

+ b1σ
s
1(t, x)) + b′2h

s
2(t+ 1)]

]

+ ss1(t+ 1)
}

.

Similar, minimize the expression in the ba
e with respe
t to σs
1(t, x):

R1σ
s
1(t, x) + {[I − b2(R2 + b′2S

s
2(t+ 1)b2)

−1b′2S
s
2(t+ 1)]b1}

′Ss
1(t+ 1)

× {Wx(t) + b1σ
s
1(t, x)− b2(R2 + b′2S

s
2(t+ 1)b2)

−1[b′2S
s
2(t+ 1)(Wx(t)

+ b1σ
s
1(t, x)) + b′2h

s
2(t+ 1)]}+ {hs1(t+ 1)′[I − b2(R2 + b′2

× Ss
2(t+ 1)b2)

−1b′2S
s
2(t+ 1)]b1}

′ = 0. (26)

Following Woodbury matrix identity, we obtain:

I − b2[R2 + b′2S
s
2(t+ 1)b2]

−1b′2S
s
2(t+ 1) = [I + b2R

−1
2 b′2S

s
2(t+ 1)]−1.
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Further, the value fun
tion satis�es:

1

2
x(t)′Ss

i (t)x(t) + hsi (t)x(t) + ssi (t)

=
1

2
x(t)′Qix(t) +

1

2
Ri(σ

s
i (t, x))

2 + q′ix(t)

+
1

2
[Wx(t) + b1σ

s
1(t, x) + b2σ

s
2(t, x)]

′Ss
i (t+ 1)

× [Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)] + hsi (t+ 1)′

× [Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)] + ssi (t+ 1). (27)

Plug the assumed strategies into equations (24), (26) and (27). Then take the


oe�
ients in ea
h equation the same as ea
h other in both sides. At last, the

equations with respe
t to Ss
i (t), p

s
i (t), h

s
i (t), r

s
i (t) and s

s
i (t) des
ribed in Theorem 3

are derived. ⊓⊔

4. Numeri
al simulation

4.1. Example 1

Review the 
onstru
ted symmetri
 opinion dynami
s network game examined in

(Sedakov and Zhen, 2019) �rstly. The network is 
omposed of A = {1, · · · , 10},
N = {Pl.1, P l.2} with a symmetri
 
onne
tion i.e., ea
h agent has the same degree

of three, and ea
h player only in�uen
es �ve of agents over twelve periods, so T = 12.
Players employ the level of in�uen
e to ea
h 
onne
ted agent with δ1, δ2 ∈ (0, 1)
respe
tively. The in�uen
es demonstrated in matrixW and ve
tors b1, b2 are divided
equally among all 
onne
tions. Perform the same values of parameters as evaluated

in (Sedakov and Zhen, 2019) i.e., the desired opinions for players are x̂1 = 0.5, x̂2 =
0.6, the in�uen
e 
osts are c1 = 0.3, c2 = 0.4, the in�uen
e levels in low and

high s
enarios are δL1 = 0.1, δL2 = 0.05, δH1 = 0.4, δH2 = 0.35, and the initial

opinion pro�le of agents is x0 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)′. Hereon,
we 
onsider six equilibria with:

(i) OLSEL implies open-loop Sta
kelberg equilibrium in low s
enario,

(ii) FBSEL implies feedba
k Sta
kelberg equilibrium in low s
enario,

(iii) FBNEL implies feedba
k Nash equilibrium in low s
enario,

(iv) OLSEH implies open-loop Sta
kelberg equilibrium in high s
enario,

(v) FBSEH implies feedba
k Sta
kelberg equilibrium in high s
enario,

(vi) FBNEH implies feedba
k Nash equilibrium in high s
enario.

Table 1. Payo�s in di�erent equilibria

Pl. 1 Pl. 2

OLSEL 1.5502 4.2825

FBSEL 1.8143 3.0788

FBNEL 1.7106 3.7534

OLSEH 1.7760 4.2298

FBSEH 2.6928 2.5586

FBNEH 1.6710 4.3867
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Equilibria in low s
enario

The equilibrium strategies of players, equilibrium traje
tories and terminal opin-

ions of agents in both low and high s
enarios are presented in Fig. 1-8. As 
an be

seen from Table 1, player 1 in
urs the lowest expense J1(ψ
s∗
1 , ψ

s∗
2 ) = 1.5502 em-

ploying open-loop Sta
kelberg equilibrium strategy in low s
enario, while player 2

adopts feedba
k Sta
kelberg equilibrium strategy in high s
enario with his lowest ex-

pense J2(σ
s∗
1 , σ

s∗
2 ) = 2.5586. Compared to Nash equilibrium in low s
enario, player

1 will in
ur more under the same open-loop information stru
ture, however player

2 will in
ur less. Players will have the same preferen
e in high s
enario 
ompared to

Nash equilibrium. The terminal opinions of agents in the six equilibria are shown

as below:

x(T )OLSEL = (0.3742, 0.3742, 0.3952, 0.3980, 0.3983,

0.4150, 0.4112, 0.4117, 0.4412, 0.4342)′,

x(T )FBSEL = (0.3946, 0.3946, 0.4210, 0.4208, 0.4212,

0.4316, 0.4311, 0.4314, 0.4600, 0.4596)′,

x(T )FBNEL = (0.3790, 0.3790, 0.4017, 0.4025, 0.4028,

0.4139, 0.4124, 0.4127, 0.4394, 0.4370)′,

x(T )OLSEH = (0.4486, 0.4485, 0.4325, 0.4486, 0.4467,

0.5222, 0.5041, 0.5065, 0.5341, 0.4838)′,

x(T )FBSEH = (0.5048, 0.5049, 0.5569, 0.5483, 0.5496,

0.4945, 0.5035, 0.5026, 0.5379, 0.5637)′,

x(T )FBNEH = (0.4517, 0.4516, 0.4273, 0.4431, 0.4411,

0.5159, 0.4986, 0.5007, 0.5166, 0.4681)′.

Compared to Nash equilibrium both in low and high s
enarios, agents hold more sim-

ilar terminal opinions as in open-loop Sta
kelberg equilibrium. Furthermore, under

feedba
k Sta
kelberg in�uen
es agents hold the higher levels of terminal opinions

than under the other two equilibria in low s
enario. Unlike low s
enario, agents

1,2,3,4,5 and 10 hold a big di�eren
e in terminal opinions between the in�uen
es

of feedba
k Sta
kelberg equilibrium strategies and Nash equilibrium strategies in

high s
enario. And whats more, agents 6,7,8 and 9 hold a similar terminal opinions

under the three di�erent in�uen
es.
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Fig. 3. Open-loop Sta
kelberg equilibrium
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tories in low s
enario

0 1 2 3 4 5 6 7 8 9 10 11

STAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
T

A
T

E
 T

R
A

J
E

C
T

O
R

Y

FBNEL

FBSEL
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k Nash and Sta
kelberg

equilibrium traje
tories in low s
enario
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nario
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4.2. Example 2: Za
hary network

Fig. 9. Za
hary karate 
lub network

Now 
onsider a so
ial network from (Za
hary, 1977). Za
hary observed a universi-

ty-based karate 
lub for a period of three years from 1970 to 1972. The relationships

among the 34 individuals (i.e. V = {1, · · · , 34}) intera
ting in 
ontexts outside those

of karate 
lasses, workouts, and 
lub meetings were presented in Fig. 9. The karate


lub's 
hief administrator (player 1, i.e., node 34 in Fig. 9) and the instru
tor (player

2, i.e., node 1 in Fig. 9) had an in
ipient 
on�i
t over the pri
e of karate lessons, so

N = {1, 34}. The administrator preferred stable pri
es, while the instru
tor wished

to raise pri
es substantially. As time passed there was a series of in
reasingly sharp

fa
tional 
onfrontations over the pri
e of lessons. Below we explore the behaviours of

all members in the 
lub under the proposed framework of opinion dynami
s game.

The following pro
edure (Avra
henkov et al., 2017) estimates matrix W and

ve
tors b1, b2. Denote Ni = {j ∈ V |(i, j) ∈ E} as the set of neighbors of player (or

agent) i ∈ N , and di = |Ni| is 
alled the degree of player (or agent) i ∈ N . De�ne

below fun
tion for i ∈ V :

vij =















0, j /∈ Ni,

didj
2m

, j ∈ Ni,

1, j = i,

where m = 1
2

∑

l∈V dl is the total number of edges in the network. Based on fun
-

tions above, assume:

wij =
vij

vii +
∑

k∈Ni
vik

, ∀i, j ∈ A,

bi =
vij

∑

k∈Ni
vik

, ∀i ∈ N, j ∈ A.
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Let the desired proportions of 
hanging the pri
e of karate lessons of the admin-

istrator and the instru
tor be 0.4 and 0.8 respe
tively. Consider both administrator

and instru
tor attempting to in�uen
e all trainees in the 
lub with the same 
ost

of 
ontrols c1 = c2 = 40 during the horizon of 36 months, i.e. T = 36. Suppose
U = [0, 1].

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435

STAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
O

N
T

R
O

L

1
s*(t,x

0
)

2
s*(t,x

0
)

1
s*(t,x*)

2
s*(t,x*)

Fig. 10. Sta
kelberg Equilibrium strategies
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Fig. 11. Initial and terminal opinions under

Sta
kelberg Equilibria
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Fig. 12. Open-loop Sta
kelberg equilib-

rium traje
tories
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Fig. 13. Feedba
k Sta
kelberg equilibrium

traje
tories

Administrator a
ts as leader Let the set of states be X = [0, 1]. As administra-

tor is the leader so x̂1 = 0.4, x̂2 = 0.8. Assume all trainees in the 
lub (i.e., nodes

indexed from 2 to 33 in Figure 9, so A = {2, · · · , 32}) have the following initial

opinions:

x0 =0.1× 132 + (x̂1 × 1
′
7,
x̂1 + x̂2

2
, x̂2, x̂1 × 1

′
3,
x̂1 + x̂2

2
, x̂2 × 1

′
2,

0, x̂1, x̂2,
x̂1 + x̂2

2
, x̂2, x̂1, x̂2 × 1

′
2, 0, 0, x̂2 × 1

′
5,
x̂1 + x̂2

2
, x̂2)

′,

where 1k is the 
olumn ve
tor of ones of size k.
As we 
an see in Fig. 10., administrator has lower 
ontrols than instru
tor in both

open-loop and feedba
k Sta
kelberg equilibria. Administrator needs to put stronger


ontrol in feedba
k Nash equilibrium than in open-loop 
ase, while instru
tor needs

to put stronger 
ontrol in open-loop Nash equilibrium than in feedba
k 
ase ex
ept

the last two months. From the numeri
al results, we �nd that both players have

non-monotoni
 
ontrols.
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The 
orresponding equilibrium terminal opinions of all trainees in the karate


lub are presented as follows (See Fig. 11.):

x(T )OLSE = (0.0790, 0.0920, 0.0765, 0.0590, 0.0581, 0.0581, 0.0776, 0.0863,

0.1239, 0.0590, 0.0870, 0.0707, 0.0741, 0.1367, 0.1367, 0.0963,

0.0744, 0.1367, 0.0750, 0.1367, 0.0744, 0.1367, 0.1204, 0.1607,

0.1628, 0.1437, 0.1139, 0.1110, 0.1224, 0.1078, 0.0899, 0.1114)′,

x(T )FBSE = (0.0806, 0.0930, 0.0783, 0.0621, 0.0610, 0.0610, 0.0796, 0.0868,

0.1238, 0.0621, 0.0910, 0.0738, 0.0753, 0.1359, 0.1359, 0.1010,

0.0772, 0.1359, 0.0761, 0.1359, 0.0772, 0.1359, 0.1200, 0.1600,

0.1620, 0.1423, 0.1139, 0.1113, 0.1219, 0.1082, 0.0901, 0.1114)′.

The opinions of all trainees following the in�uen
es of both administrator and in-

stru
tor under di�erent information stru
tures are presented in Fig. 12-13. From

the equilibrium traje
tories we know that under the same 
ost of 
ontrols, players'


ontrols only have a slightly deviation from ea
h of the 
on
epts of equilibria. Thus

the equilibrium opinions of agents is 
lose to ea
h other under di�erent equilibria.

Although there are so many similarity, players have their preferen
e of information

stru
ture. The administrator and instru
tor will in
ur total equilibrium expenses as

their payo�s as shown in Table 2.

Table 2. Payo�s in Sta
kelberg Equilibria

Open-loop Feedba
k

J1(u
∗s

1 , u∗s

2 ) 73.3216 74.1277

J2(u
∗s

1 , u∗s

2 ) 486.6995 483.4364

Instru
tor a
ts as leader As instru
tor is the leader, so x̂1 = 0.8, x̂2 = 0.4, then
all trainees in the 
lub have the same pro�le of initial opinions as in the previous


ase:

x0 =0.1× 132 + (x̂2 × 1
′
7,
x̂1 + x̂2

2
, x̂1, x̂2 × 1

′
3,
x̂1 + x̂2

2
, x̂1 × 1

′
2,

0, x̂2, x̂1,
x̂1 + x̂2

2
, x̂1, x̂2, x̂1 × 1

′
2, 0, 0, x̂1 × 1

′
5,
x̂1 + x̂2

2
, x̂1)

′.

The levels of in�uen
e of administrator and instru
tor are presented in Fig. 14.

And the 
orresponding equilibrium terminal opinions of all trainees in the karate
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lub are presented as follows (See Fig. 15.):

x(T )OLSE = (0.1035, 0.0968, 0.1073, 0.1260, 0.1226, 0.1226, 0.1119, 0.0750,

0.0874, 0.1260, 0.1735, 0.1338, 0.0843, 0.0764, 0.0764, 0.1951,

0.1309, 0.0764, 0.0805, 0.0764, 0.1309, 0.0764, 0.0725, 0.1194,

0.1151, 0.0689, 0.0806, 0.0828, 0.0694, 0.0828, 0.0708, 0.0773)′,

x(T )FBSE = (0.1064, 0.0991, 0.1105, 0.1307, 0.1270, 0.1270, 0.11530.0763,

0.0884, 0.1307, 0.1793, 0.1386, 0.0864, 0.0764, 0.0764, 0.2015,

0.1354, 0.0764, 0.0825, 0.0764, 0.1354, 0.0764, 0.0728, 0.1206,

0.1160, 0.0683, 0.0815, 0.0839, 0.0696, 0.0840, 0.0718, 0.0781)′.
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Fig. 14. Sta
kelberg Equilibrium strategies
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Fig. 15. Initial and terminal opinions under

Sta
kelberg Equilibria
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Fig. 16. Open-loop Sta
kelberg equilib-

rium traje
tories
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Fig. 17. Feedba
k Sta
kelberg equilibrium

traje
tories

The opinions of all trainees following the in�uen
es of both administrator and

instru
tor under di�erent information stru
tures are presented in Fig. 16-17. The

administrator and instru
tor will in
ur total equilibrium expenses as their payo�s

as shown in Table 3. Apparently, both of them prefer the feedba
k information

stru
ture.

As shown in Table 2 and 3, the instru
tor a
ts as leader prefers the feedba
k

Sta
kelberg equilibrium with a mu
h more lower expense 71.3626, whi
h is not the
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Table 3. Payo�s in Sta
kelberg Equilibria

Open-loop Feedba
k

J1(u
∗s

1 , u∗s

2 ) 484.6106 485.5769

J2(u
∗s

1 , u∗s

2 ) 72.7073 71.3626

same information stru
ture as previous 
ase. In 
ontrast, the administrator will

in
ur a mu
h more expense 484.6106 than previous 
ase.

5. Con
lusion

This paper investigated a two-person dis
rete-time opinion dynami
s game in a

so
ial network. The non-
ooperative Sta
kelberg equilibrium was explored under

open-loop and feedba
k information stru
tures. The statements of theoreti
al 
on-

tents were 
hara
terized, whi
h draw support from Pontryagin's minimum prin
iple

and dynami
 programming theory. To perform numeri
al simulation, the 
ompar-

ison in a symmetri
 opinion dynami
s network with the agents of three types was

examined, whats more the Za
hary karate 
lub network was modeled as the opinion

dynami
s game. Compared to Nash equilibrium in low s
enario of the �rst example,

player 1 will in
ur more under the same open-loop information stru
ture, however

player 2 will in
ur less. Furthermore, players will have the same preferen
es in high

s
enario 
ompared to Nash equilibrium. In the Za
hary network, the equilibria were

obtained under di�erent leaderships of the administrator and the instru
tor. As

it turns out that both administrator and instru
tor prefer a
ting as the leader in

feedba
k information stru
ture.
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