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Abstrat The alteration of opinions of individuals in groups over time is

a partiular ommon phenomenon in soial life. Taking into aount the in-

�uene of homogeneous members and some speial in�uential persons, an

opinion dynamis game is established. In a soial network, two speial in-

�uene nodes pursuing their ertain goals with the proess of in�uening

the opinions of other normal nodes in disrete time is onsidered. From the

perspetive of non-ooperation, Stakelberg equilibrium is seleted as the

solution of the opinion dynamis game. Given distint information knowl-

edge, players will derive di�erent equilibrium strategies. The open-loop and

feedbak information on�gurations are investigated. In the two-person non-

ooperative dynami game, tehniques of Pontryagin's minimum priniple

and dynami programming are adopted to derive the equilibrium levels of

in�uene for in�uene nodes and the equilibrium opinions for other normal

nodes in the network. To ompute and ompare the various equilibrium on-

epts under di�erent information strutures, numerial results are presented

for di�erent senarios.

Keywords: soial network, in�uene, opinion dynamis, Stakelberg equi-

librium

1. Introdution

In the omplex interpersonal soial networks, some in�uential opinions will deter-

mine the formation and revision of individuals' opinions. Delving into the tendeny

of opinion dynamis of the agents in ommunity is onduive to deep omprehending

of the progress of ivilization, soial development and stabilization. Furthermore,

it is the ruial foundation of soial ontrol. Inipiently, researh on whether all

agents in the group would reah an opinion onsensus is a hot topi. One of the

most lassial is the DeGroot model (DeGroot, 1974). Establishing the algebra of

a Markov hain, DeGroot proposed the system framework of opinion dynamis,

in whih the linear ombination of agents' opinions at the previous stage onsti-

tutes his urrent stage opinion. The soial in�uene network knowledge struture

was enrihed by Friedkin and Johnsen (Friedkin and Johnsen, 1990; Friedkin and

Johnsen, 1999), in their works the soial in�uene proess a�eted by both endoge-

nous opinions and exogenous onditions was desribed. Literatures (Aemoglu and

Ozdaglar, 2011; Buehel et al., 2015; Dandekar et al., 2013) had extended the theory

of opinion dynamis, where the �elds involved are eonomis, soial and politial si-

enes, engineering and omputer sienes. In (Hegselmann and Krause, 2002), the

bounded on�dene framework for a Friedkin�Johnsen model was developed and

a series of simulations was presented to illustrate the theoretial knowledge. The

wisdom groups regarding to DeGroot model was examined in (Golub and Jakson,
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2010), while regarding the initial opinions the stubbornness of agents was onsid-

ered in (Ghaderi and Srikant, 2014). Reently, (Bure et al., 2015; Bure et al., 2017)

onstruted a spei� struture of in�uene matrix to investigate the problem of

reahing a onsensus of opinion dynamis with three groups of agents in�uened by

two nodes.

There is no starting point from game-theoreti perspetive in the aforemen-

tioned literatures. Atually, to analyse opinion dynamis, distint game-theoreti

approahes an be adopted. For instane, the Hegselmann�Krause model in a well-

designed potential game was investigated in (Etesami and Ba�sar, 2015), while a

ontrolled DeGroot model of opinion dynamis was explored in (Barabanov et al.,

2010; Gubanov et al., 2011).

A speial struture of dynami games was onsidered in this paper, where the

in�uene in the opinion formation proess is haraterized by a disrete-time linear-

quadrati game. The theory of linear-quadrati games is based on optimal on-

trol, whih is related to the system dynamis desribed by a set of linear di�er-

ential/di�erene equations and the riterion desribed by a quadrati funtion. In

the proposed model, the opinion dynamis is established as an iteration of opin-

ions from agents and in�uene levels (ontrol variables) from players in linear form.

Eah player has his �desired" opinion, what players are onerned is whether they

an optimise their performane by minimizing the assoiated osts. Furthermore,

players' objetive is to make agents' opinions lose to their �desired" opinions in

quadrati form, whih is lose to those in (Krawzyk and Tidball, 2006).

There are two distinguished diretions to investigate in game theory, i.e., ooper-

ation and non-ooperation. The popular non-ooperative solution onept Stakel-

berg equilibrium is examined in this paper. In Stakelberg ompetition, the follower

moves sequentially after the leader. Tehnique of bakward indution is adopted to

solve the model. The follower an always reat optimally after observing the strategy

taken by the leader, on the other hand, the leader should antiipate the predited

best response of the follower then develop a strategy minimizing his payo�.

Fundamentally, open-loop and feedbak on�gurations are designed to speify

di�erent requirements in ontrol system. Under the open-loop information stru-

ture, players will make deisions independently of the proess state of the system,

whih be�tting ase is the redution in omponent ount and omplexity. The term

feedbak implies players will have some knowledge of the state of the system, thus

the primary advantage is its ability to orret for outside disturbanes. This paper

assumes that players only use the knowledge of the initial state and urrent stage

to determine their open-loop strategies, and the feedbak strategies depend on both

the urrent stage and state of the system. The tehnique of solving open-loop op-

timal ontrol problem is Pontryagin's maximum (or minimum) priniple, whih we

express as a system of algebra equations. Applying the dynami programming the-

ory, the equilibrium an be obtained under the feedbak information knowledge by

solving the system of reurrene relations. With similar tehniques, linear-quadrati

di�erential games are studied in (Wang et al., 2019).

As an illustration and omparison, the symmetri theoretial soial network

onstruted in (Sedakov and Zhen, 2019) is examined. The results of omparison of

two distinguished nonooperative solutions Nash and Stakelberg equilibrium are

presented. Indeed, soiologial researh usually take a long time based on traking

observation of ommunities. This paper establishes the opinion dynamis game of
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Zahary karate lub network (Zahary, 1977) lasting 36 months. The administrator

and the instrutor stand at quite various positions on the prie of karate lessons,

therefore this two players perform their own ations to ahieve their objetives. The

omparison is onduted when administrator and instrutor play the role of leader

respetively.

The outline of the rest of the paper is organized as follows. In Setion 2, the opin-

ion dynamis model in a soial network is desribed as a two-person disrete-time

linear-quadrati game. The subsequent ations of players desribed by Stakelberg

equilibrium are explored in Setion 3, whih is investigated under open-loop and

feedbak information strutures. At last, the numerial examples illustrate the the-

oretial �ndings in Setion 4.

2. The opinion dynamis game model

The model of opinion dynamis game onsidered in this paper was proposed in

(Sedakov and Zhen, 2019). We start with the treatment of an opinion dynamis

game in a soial network de�ned in �nite disrete-time. Let the set of stages be T =
{0, 1, . . . , T }. Denote the soial ommuniation struture by standard terminology

(V,E), where V is a �nite set of nodes in the soial network and E is a set of edges

between the nodes. Individuals in the soial network are loated in the nodes and

ommuniate with eah other through edges between eah pair of nodes. There are

two types of partiipants in the opinion dynamis game, for instane, sellers and

onsumers in the business relationship network. Thus, we suppose that the set of

nodes an be deomposed as V = A∪N , A∩N = ∅. Eah individual in A is alled

an agent, meanwhile a player or in�uene node in N . Therefore, the set A is an

agent set and N is a player set in the network.

First, we illustrate the role of agents in the opinion dynamis game. Suppose

there is a subjet in the network, suh as a new produt, during the proess of

learning more information of the new produt eah onsumer may hold distint

view about the produt. In the opinion dynamis game we suppose that eah agent

i ∈ A in the network has his own opinion on this spei� �subjet� whih an be

hanged over time. To better measure and show the alterations of agents' opinions,

we suppose that agents' opinions are numerial values. Given xi0 ∈ X ⊆ R as the

element i in the initial state vetor x0, whih means the initial opinion of agent i in
the opinion dynamis game. The state of agent i may hange over time, denote by

xi(t) ∈ X his opinion at stage t = 1, . . . , T . As an illustration, let X = [0, 1] in the

business relationship network, xi(t) = 0 implies onsumer i has no willingness to

buy the new produt, and the bigger xi(t) ∈ X , the more willingness of onsumer i
to buy. Let state vetors x(t) = (x1(t), . . . , x|A|(t))

′
be the opinion pro�le of agents

at stage t = 1, . . . , T , further denote x0 = (x10, . . . , x|A|0)
′
as the initial opinions.

Then we disuss how players a�et agents' opinions in the opinion dynamis

game. Let us go bak to our illustration, sellers who sell the new produts usually

take diversi�ed marketing promotional program to let more onsumers know and

onsumers know more about their new produts. For simpliity, we assume that

there are two in�uene nodes in the network, i.e., N = {1, 2}. Denote by ui(t) ∈
U ⊆ R the in�uene level (or a ontrol) of player i ∈ N on network agents seleted at

stage t = 0, . . . , T − 1. Also as an illustration, onsider in the business relationship

network U = [0, 1], then ui(t) = 0 implies seller i does not make any e�ort to

in�uene onsumers' opinions on his new produt. and ui(t) ∈ U an be onsidered
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as the investment of seller i at stage t = 0, . . . , T −1 with his total assets of 1. Thus,

the more investment the greater the impat on onsumers.

2.1. Opinion dynamis

As we all know, a partiular onsumer an form a new opinion on the produt by

aquiring information from sellers and onsumers inluding his own experienes. In

the game, we assume eah agent evaluates his opinion at any stage aggregating the

opinions of other agents in the network as well as the in�uene e�orts of players.

The opinion of agent i ∈ A evolves aording to the following system:

xi(t+ 1) =
∑

j∈A

wijxj(t) + bi1u1(t) + bi2u2(t), t = 0, . . . , T − 1, (1)

with xi(0) = xi0. In the transition funtion (1) from t to t + 1, wij ∈ [0, 1] and
bij ∈ [0, 1] are the levels of trust of agent i ∈ A to the opinion of agent j ∈ A and

player j ∈ N , respetively. It is not neessarily that wij = wji. Additionally, we

assume that

∑

j∈A wij +
∑

j∈N bij = 1 for any agent i ∈ A. The opinions of players

are onsidered to remain onstant over time and hene are not inluded into the

model. LetW = {wij}i,j∈A, bi = (bi1, . . . , bi|A|)
′
, i ∈ N . Then the opinion dynamis

of agents in the network is given by:

x(t+ 1) =Wx(t) + b1u1(t) + b2u2(t), t = 0, . . . , T − 1, x(0) = x0, (2)

with the following property holds:

Wx(t) + b1u1(t) + b2u2(t) is ontinuously di�erentiable on X |A|
and onvex on

X |A| × UT
.

Evidently, eah onsumer in the onsidered business relationship network has

two di�erent types of hannels for integrating information. That is, one hannel is

between onsumers, another is between onsumer and seller. In the opinion dynam-

is game, we also deompose the set of edges E into two disjoint sets EA and EN ,

i.e., E = EA ∪ EN , EA ∩ EN = ∅, in whih EA desribes all onnetions between

agents and EN desribes all onnetions between pairs �player�agent�. Furthermore,

matrix W and vetors b1 and b2 an identify the set of edges E:

(j, i) ∈ EA, if and only if wij > 0,

(j, i) ∈ EN , if and only if bij > 0.

2.2. Criteria

Now we haraterize the riteria for players in the opinion dynamis game. What

are the riteria of sellers in the onsidered business relationship network? Pre�x-

ing a willingness to buy for onsumers and starting from the initial willingness of

onsumers to buy the produt, sellers hoose the investments at eah stages. In the

business proess, the osts to sellers ome from two aspets, i.e., (i) how far is the

onsumers' willingness to the pre�xed willingness; (ii) how muh does the related

investment ost. The priniple of sellers is to redue total osts, thus inrease their

net-inome. Let ui = (ui(0), . . . , ui(T − 1)) ∈ UT
be an admissible pro�le of in�u-

ene levels in T stages (or a strategy) seleted by player i ∈ N , where U is a losed

and bounded (thereby ompat) subset of R. Taking into aount opinion dynamis

(2), player i ∈ N aims at minimizing his stage-additive payo� funtion, whih is
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given by:

Ji(u1, u2) =

T−1
∑

t=0





∑

j∈A

(xj(t)− x̂i)
2 + ciu

2
i (t)



 +
∑

j∈A

(xj(T )− x̂i)
2,

where x̂i ∈ X is a given desired opinion for player i to whih he tries to drive the

opinions of all agents in the network seleting his strategy ui, and ci > 0 mea-

sures the e�orts of this player assoiated with the seletion of ui. The pro�le of

states (x0, x(1), · · · , x(T )) satisfying the opinion dynamis (2) is alled a state tra-

jetory starting from initial state, whih orrespond to the strategy pro�le (u1, u2)
minimizing the payo� funtions.

This model is a two-person non-ooperative disrete-time linear-quadrati game.

The payo� funtion of player i ∈ N an be rewritten in a standard form for this

lass of games:

Ji(u1, u2) =

T−1
∑

t=0

(

1

2
x(t)′Qix(t) +

1

2
Riu

2
i (t) + q′ix(t)

)

+
1

2
x(T )′Qix(T ) + q′ix(T ) + zi, (3)

where 1 denotes a vetor of ones of size |A|, Qi = 2I, I is an identity matrix of

size |A|, Ri = 2ci, qi = −2x̂i1, zi = |A|(T + 1)x̂2i for i ∈ N . The onsidered payo�

funtions have the following properties:

(i) Ji is ontinuous on UT × UT , i ∈ N ,

(ii) Ji is stritly onvex on UT , i ∈ N ,

(iii) The transition reward of player i ∈ N , i.e.,

1
2x(t)

′Qix(t) +
1
2Riu

2
i (t) + q′ix(t)

is ontinuously di�erentiable on X.

3. Stakelberg equilibrium

In this setion, we investigate the solution when players perform subsequent a-

tions. Here we fous on Stakelberg equilibrium with assuming player 1 moves �rst

and then player 2 moves sequentially. What is more, onepts of equilibrium vary

under di�erent information strutures. How to design strategies depends on what

information is available to the players. Let us make a brief overview of lassi�ation

of information in dynami games.

(i) Open-loop information struture. An open-loop strategy of player i ∈ N is a

mapping that depends on stage t and initial state x0. Formally, ui(t) = ψs
i (t, x0) ∈ U

where ψs
i (·, x0) : {0, . . . , T − 1} 7→ U .

(ii) Feedbak information struture, also known as Markovian information stru-

ture. A feedbak strategy of player i ∈ N is a mapping that depends on stage t and
the urrent state x(t), i.e., ui(t) = σs

i (t, x(t)) ∈ U where σs
i (·, ·) : {0, . . . , T − 1} ×

X |A| 7→ U .

De�nition 1. A pair (us∗1 , u
s∗
2 ) is a Stakelberg equilibrium with player 1 as the

leader if:

J1(u
s∗
1 , u

s∗
2 ) = min

u1∈UT

max
ū2∈R2(t,u1)

J1(u1, ū2)
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where

R2(t, u1) =

{

u2 ∈ UT | min
u2∈UT

J2(u1, u2)

}

is the set of best response of the follower given arbitrary u1 ∈ UT
.

The following of this setion will desribe the tehniques of Pontryagin's maxi-

mum priniple (minimum priniple in this onsidered opinion dynamis game) and

dynami programming to derive open-loop and feedbak Stakelberg equilibria re-

spetively (Haurie et al., 2012).

3.1. Open-loop Stakelberg equilibrium

For eah �xed ψs
1 ∈ UT

, the follower needs to minimize J2(ψ
s
1, ψ

s
2) with the state

equations (2) hold. The payo� funtion of player i ∈ N an be transformed as:

J
′

i (ψ
s
1, ψ

s
2) = Ji(ψ

s
1, ψ

s
2)− ai,

where

ai =
1

2
x′0Qix0 + q′ix0 + |A|(T + 1)x̂2i .

Apparentily, for eah i ∈ N

J
′

i (ψ
s
1, ψ

s
2) =

T−1
∑

t=0

(

1

2
x(t+ 1)′Qix(t+ 1) +

1

2
Ri(ψ

s
i (t, x0))

2 + q′ix(t+ 1)

)

, (4)

riteria (3) and (4) reah the minimum at the same pro�le (ψs∗
1 , ψ

s∗
2 ). Let us inves-

tigate the model with transformed riteria (4), then the system of equations an be

derived as follows (Basar and Olsder, 1999).

Theorem 1. If (ψs∗
1 , ψ

s∗
2 ) denotes an open-loop Stakelberg equilibrium strategy,

then there exist �nite vetor sequenes γ(1), · · · , γ(T ), λ1(0), · · · , λ1(T − 1), λ2(0),
· · · , λ2(T − 1), λ3(0), · · · , λ3(T − 1) that satisfy the following relations, for t =
0, · · · , T − 1:

xs∗(t+ 1) =Wxs∗(t) + b1ψ
s∗
1 (t, x0) + b2ψ

s∗
2 (t, x0), (5)

∂H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

∂ψs
1(t, x0)

= b′1Q1x
s∗(t+ 1) +R1ψ

s∗
1 (t, x0) + b′1

[

q1 + λ1(t)
]

+ b′1Q2

[

Wλ2(t) + b2λ3(t)
]

= 0, (6)

∂H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

∂ψs
2(t, x0)

= b′2Q1x
s∗(t+ 1) + b′2

[

q1 + λ1(t)
]

+ b′2Q2

[

Wλ2(t) + b2λ3(t)
]

+R2λ3(t) = 0, (7)
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λ1(t− 1) = ▽x(t)H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

=W ′
[

Q1x
s∗(t+ 1) + q1 + λ1(t) +Q2Wλ2(t) +Q2b2λ3(t)

]

, (8)

λ2(t+ 1) =
∂H1[x(t), ψ

s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

∂γ(t+ 1)

=Wλ2(t) + b2λ3(t), (9)

∂H2[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1)]

∂ψs
2(t, x0)

= b′2Q2x
∗(t+ 1) +R2ψ

s∗
2 (t, x0) + b′2

[

q2 + γ(t+ 1)
]

= 0, (10)

γ(t) =W ′
[

Q2x
∗(t+ 1) + q2 + γ(t+ 1)

]

, (11)

λ1(T − 1) = 0, λ2(0) = 0, γ(T ) = 0,

where

H1[x(t), ψ
s
1(t, x0), ψ

s
2(t, x0), γ(t+ 1), λ1(t), λ2(t), λ3(t)]

=
1

2
x(t + 1)′Q1x(t+ 1) +

1

2
R1(ψ

s
1(t, x0))

2 + q′1x(t+ 1)

+ λ1(t)
′

x(t+ 1) + λ2(t)
′

W ′
[

Q2x(t+ 1) + q2 + γ(t+ 1)
]

+ λ3(t)
′
[

b′2(Q2x(t+ 1) + q2 + γ(t+ 1)) +R2ψ
s
2(t, x0)

]

,

H2[x(t), ψ
s
1x(t, x0), ψ

s
2(t, x0), γ(t+ 1)]

=
1

2
x(t + 1)′Q2x(t+ 1) +

1

2
R2(ψ

s
2(t, x0))

2 + q′2x(t+ 1)

+ γ(t+ 1)
′

x(t+ 1).

For deriving the open-loop Stakelberg equilibrium we need to onstrut a sys-

tem of linear equations Ay = B, where y = (ψ1(0, x0), · · · , ψ1(T − 1, x0), ψ2(0, x0),
· · · , ψ2(T − 1, x0), x

′
0, x(1)

′, · · · , x(T )′, γ(1), · · · , γ(T ), λ1(0), · · · , λ1(T − 1), λ2(0),
· · · , λ2(T − 1), λ3(0), · · · , λ3(T − 1))′ ∈ R

(4|A|+3)T+|A|
.

As the onsidered game is the linear-quadrati game, the following statement

an be obtained (Basar and Olsder, 1999).

Theorem 2. If the inverse matrix [I+R−1
2 b2b

′
2P1(t+1)+R−1

1 b1b
′
1(I+Q

′
2b2R

−1
2 b′2)

−1

×P2(t + 1)]−1
exists, then there exists an unique open-loop Stakelberg equilibrium

with player 1 ating as the leader, whih is given by:

ψs∗
1 (t, x0) =K1(t)x

s∗(t) + L1(t),

ψs∗
2 (t, x0) =K2(t)x

s∗(t) + L2(t),

with the unique state trajetory assoiated with this pair of strategies (ψs∗
1 (t, x0), ψ

s∗
2

(t, x0)) satis�es:

xs∗(t+ 1) = Φ(t)xs∗(t) + θ(t), xs∗(0) = x0,

where Ki(t), Li(t), i ∈ N, Φ(t), θ(t) are presented as follows:
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K1(t) =−R−1
1 b′1

[

(I +Q′
2b2R

−1
2 b′2)

−1P2(t+ 1)Φ(t)

+Q′
2(I + b2R

−1
2 b′2Q

′
2)

−1WP3(t)
]

, (12)

L1(t) =−R−1
1 b′1

{

(I +Q′
2b2R

−1
2 b′2)

−1[P2(t+ 1)θ(t) + p2(t+ 1) + q1]

+Q′
2(I + b2R

−1
2 b′2Q

′
2)

−1Wp3(t)
}

, (13)

K2(t) =−R−1
2 b′2P1(t+ 1)Φ(t), (14)

L2(t) =−R−1
2 b′2

[

P1(t+ 1)θ(t) + p1(t+ 1) + q2

]

, (15)

Φ(t) =
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

×
[

W −R−1
1 b1b

′
1Q2(I + b2R

−1
2 b′2Q

′
2)

−1WP3(t)
]

, (16)

θ(t) =
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

×
{

−R−1
1 b1b

′
1

[

(I +Q′
2b2R

−1
2 b′2)

−1(p2(t+ 1) + q1) +Q2(I

+b2R
−1
2 b′2Q

′
2)

−1Wp3(t)
]

−R−1
2 b2b

′
2(p1(t+ 1) + q2)

}

. (17)

Proof Rearrange equation (7):

λ3(t) = −(R2 + b′2Q
′
2b2)

−1b′2

[

Q1x(t+ 1) + q1 + λ1(t) +Q′
2Wλ2(t)

]

. (18)

Plug (18) into (6):

ψs
1(t, x0) =−R−1

1 b′1

{[

Q1 −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2Q1

]

x(t+ 1)

+
[

I −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2

][

q1 + λ1(t)
]

+ Q′
2

[

I − b2(R2 + b′2Q
′
2b2)

−1b′2Q
′
2

]

Wλ2(t)
}

.

Plug (18) into (8):

λ1(t− 1) = W ′
{[

Q1 −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2Q1

]

x(t + 1)

+
[

I −Q′
2b2(R2 + b′2Q

′
2b2)

−1b′2

][

q1 + λ1(t)
]

+ Q′
2

[

I − b2(R2 + b′2Q
′
2b2)

−1b′2Q
′
2

]

Wλ2(t)
}

, λ1(T ) = 0.

Plug (18) into (9):

λ2(t+ 1) = Wλ2(t)− b2(R2 + b′2Q
′
2b2)

−1b′2

[

Q1x(t+ 1)

+ q1 + λ1(t) +Q′
2Wλ2(t)

]

, λ2(0) = 0.

Assume that:

γ(t+ 1) =
[

P1(t+ 1)−Q2

]

x(t+ 1) + p1(t+ 1), (19)

λ1(t) =
[

P2(t+ 1)−Q1

]

x(t+ 1) + p2(t+ 1), (20)

λ2(t) = P3(t)x(t) + p3(t). (21)
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Plug (19) into (10):

ψs
2(t, x0) = −R−1

2 b′2

[

P1(t+ 1)x(t+ 1) + p1(t+ 1) + q2

]

.

Following Woodbury matrix identity:

(A+ UCV )
−1

= A−1 −A−1U
(

C−1 + V A−1U
)−1

V A−1,

the strategy of the leader an be expressed:

ψs
1(t, x0) =−R−1

1 b′1

{

(I +Q′
2b2R

−1
2 b′2)

−1
[

P2(t+ 1)x(t+ 1) + p2(t+ 1) + q1

]

+ Q′
2(I + b2R

−1
2 b′2Q

′
2)

−1W
[

P3(t)x(t) + p3(t)
]}

.

If the inverse matrix

[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

exists, then state equation will be in following form:

x(t+ 1) =
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

×
{[

W −R−1
1 b1b

′
1Q2(I + b2R

−1
2 b′2Q

′
2)

−1WP3(t)
]

x(t)−R−1
1 b1b

′
1

×
[

(I +Q′
2b2R

−1
2 b′2)

−1(p2(t+ 1) + q1) +Q2(I + b2R
−1
2 b′2Q

′
2)

−1

× Wp3(t)
]

−R−1
2 b2b

′
2(p1(t+ 1) + q2)

}

.

Denote

x(t+ 1) = Φ(t)x(t) + θ(t), (22)

where Φ(t), θ(t) are presented in equations (16), (17). Then denote

ψs
1(t, x0) = K1(t)x(t) + L1(t),

ψs
2(t, x0) = K2(t)x(t) + L2(t),

where Ki(t), Li(t), i ∈ N are presented in equations (12)-(15). Plug (19), (22) into

(11):

(P1(t)−Q2)x(t) + p1(t) =W ′Q2

[

Φ(t)x(t) + θ(t)] +W ′[p1(t+ 1) + q2

]

+W ′
[

(P1(t+ 1)−Q2)(Φ(t)x(t) + θ(t))
]

, ρ2(T ) = 0,

Then the following system an be obtained:

P1(t)−Q2 =W ′P1(t+ 1)Φ(t),

p1(t) =W ′
[

P1(t+ 1)θ(t) + p1(t+ 1) + q2

]

,

P1(T ) = Q2, p1(T ) = 0.
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Equation (18) beomes:

λ3(t) =− (R2 + b′2Q
′
2b2)

−1b′2

{

Q1

[

Φ(t)x(t) + θ(t)
]

+ q1 + [P2(t+ 1)−Q1]

×
[

Φ(t)x(t) + θ(t)
]

+ p2(t+ 1) +Q′
2W

[

P3(t)x(t) + p3(t)
]}

=− (R2 + b′2Q
′
2b2)

−1b′2 {[P2(t+ 1)Φ(t) +Q′
2WP3(t)]x(t)

+ q1 + P2(t+ 1)θ(t) + p2(t+ 1) +Q′
2Wp3(t)} . (23)

Denote

λ3(t) =M(t)x(t) +N(t),

where

M(t) =− (R2 + b′2Q
′
2b2)

−1b′2

{

P2(t+ 1)
[

I +R−1
2 b2b

′
2P1(t+ 1) +R−1

1 b1b
′
1

× (I +Q′
2b2R

−1
2 b′2)

−1P2(t+ 1)]−1
[

W −R−1
1 b1b

′
1Q2(I + b2R

−1
2 b′2Q

′
2)

−1

× WP3(t)
]

+Q′
2WP3(t)

}

,

N(t) =− (R2 + b′2Q
′
2b2)

−1b′2

{

q1 − P2(t+ 1)
[

I +R−1
2 b2b

′
2P1(t+ 1)

+R−1
1 b1b

′
1(I +Q′

2b2R
−1
2 b′2)

−1P2(t+ 1)
]−1

[R−1
1 b1b

′
1((I +Q′

2b2R
−1
2 b′2)

−1

× (p2(t+ 1) + q1) +Q2(I + b2R
−1
2 b′2Q

′
2)

−1Wp3(t)) +R−1
2 b2b

′
2

× (p1(t+ 1) + q2)
]

+ p2(t+ 1) +Q′
2Wp3(t)

}

.

Plug (20), (21), (22), (23) into (8):

(P2(t)−Q1)x(t) + p2(t) =W ′
{

Q1

[

Φ(t)x(t) + θ(t)
]

+ p2(t+ 1) + q1

+
[

P2(t+ 1)−Q1

]

[Φ(t)x(t) + θ(t)] +Q′
2W

×
[

P3(t)x(t) + p3(t))
]

+Q′
2b2

[

M(t)x(t) +N(t)
]}

.

Then the seond system an be obtained:

P2(t)−Q1 =W ′
[

P2(t+ 1)Φ(t) +Q′
2WP3(t) +Q′

2b2M(t)
]

,

p2(t) =W ′
[

P2(t+ 1)θ(t) + p2(t+ 1) + q1 +Q′
2b2p3(t) +Q′

2b2N(t)
]

,

P2(T ) = Q1, p2(T ) = 0.

Plug (21), (23) into (9):

P3(t+ 1)[Φ(t)x(t) + θ(t)] + p3(t+ 1) = W
[

P3(t)x(t) + p3(t)
]

+ b2[M(t)x(t) +N(t)],

Finally, the last system will be the following form:

P3(t+ 1)Φ(t) =WP3(t)− b2M(t),

P3(t+ 1)θ(t) + p3(t+ 1) =Wp3(t) + b2N(t),

P3(0) = 0, p3(0) = 0. ⊓⊔
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3.2. Feedbak Stakelberg equilibrium

The value funtion for player i ∈ N at stage t = 0, 1, · · ·, T − 1 is de�ned as:

V s
i (t, x(t)) =

T−1
∑

τ=t

(

1

2
x∗(τ)′Qix

∗(τ) +
1

2
Ri(σ

∗
i (τ, x(τ)))

2 + q′ix
∗(τ)

)

+
1

2
x∗(T )′Qix

∗(T ) + q′ix
∗(T ),

V s
i (T, x(T )) =

1

2
x∗(T )′Qix

∗(T ) + q′ix
∗(T ),

where (σs∗
1 , σ

s∗
2 ) is the feedbak Stakelberg equilibrium, (xs∗(t), xs∗(t+1), ···, xs∗(T ))

is the orresponding equilibrium state trajetory.

Reonsidering riteria (3), with the proedure of dynami programming applied,

the feedbak Stakelberg equilibrium is obtained as follows (Haurie et al., 2012).

Theorem 3. For the proposed opinion dynamis game, a pair of strategies (σs∗
1 , σ

s∗
2 )

with the following form:

σs∗
i (t, x) = −psi (t)

′x(t) + rsi (t), i ∈ N,

onstitutes a feedbak Stakelberg equilibrium if and only if there exist funtions

V s
i (t, ·) : R

|A| 7→ R suh that:

V s
i (t, x) =

1

2
x(t)′Ss

i (t)x(t) + hsi (t)
′x(t) + ssi (t), i ∈ N, t ∈ T ,

where matries Ss
i (t), vetors p

s
i (t), h

s
i (t) and numbers rsi (t), s

s
i (t) satisfy:

ps1(t){R1 + b′1[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1Ss

1(t+ 1)[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1}

=W ′[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1Ss

1(t+ 1)[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1,

ps2(t)[R2 + b′2S
s
2(t+ 1)b2] + ps1(t)b

′
1S

s
2(t+ 1)b2 =W ′Ss

2(t+ 1)b2,

rs1(t){R1 + b′1[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1Ss

1(t+ 1)[I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1}

= −{hs1(t+ 1)′ − hs2(t+ 1)′b2(R2 + b′2S
s
2(t+ 1)b2)

−1b′2S
s
2(t+ 1)}

× [I + b2R
−1
2 b′2S

s
2(t+ 1)]−1b1,

rs2(t)[R2 + b′2S
s
2(t+ 1)b2] + rs1(t)b

′
1S

s
2(t+ 1)b2 = −hs2(t+ 1)′b2,

Ss
i (t) = Qi +Rip

s
i (t)p

s
i (t)

′ +
[

W ′ −
∑

j∈N

psj(t)b
′
j

]

Ss
i (t+ 1)

[

W −
∑

j∈N

bjp
s
j(t)

′
]

,

hsi (t) = −rsi (t)Rip
s
i (t) + qi +

[

W ′ −
∑

j∈N

psj(t)b
′
j

]

Ss
i (t+ 1)

×
∑

j∈N

bjr
s
j (t) +

[

W ′ −
∑

j∈N

psj(t)b
′
j

]

hsi (t+ 1),

ssi (t) =
1

2
Ri[r

s
i (t)]

2 +
1

2

∑

j∈N

b′jr
s
j (t) · S

s
i (t+ 1)

∑

j∈N

bjr
s
j (t)

+ hsi (t+ 1)′
∑

j∈N

bjr
s
j (t) + ssi (t+ 1),

for t = 0, . . . , T − 1, i ∈ N , with the boundary onditions:

Si(T ) = Qi, hi(T ) = qi, si(T ) = 0.



Stakelberg Equilibrium of Opinion Dynamis Game in Soial Network 377

Proof The follower will onsider the following optimal problem:

V s
2 (t, x) = min

σs

2
(t,x)∈U

{

1

2
x(t)′Q2x(t) +

1

2
R2(σ

s
2(t, x))

2 + q′2x(t)

+
1

2

[

Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)

]′

Ss
2(t+ 1)

×
[

Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)

]

+ hs2(t+ 1)′

×
[

Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)

]

+ ss2(t+ 1)
}

.

Minimizing the expression in the brae with respet to σs
2(t, x), we have:

R2σ
s
2(t, x) + b′2S

s
2(t+ 1)[Wx(t) + b1σ

s
1(t, x) + b2σ

s
2(t, x)] + b′2h

s
2(t+ 1) = 0. (24)

Plug the linear form of strategies in the statement of the theorem into (24), thus:

σs
2(t, x) =−

[

R2 + b′2S
s
2(t+ 1)b2

]−1

b′2

×
{

Ss
2(t+ 1)

[

Wx(t) + b1σ
s
1(t, x)

]

+ hs2(t+ 1)
}

. (25)

Considering the best response of the follower in form (25), the leader's value funtion

will be the following:

V s
1 (t, x) = min

σs

1
(t,x)∈U

{

1

2
x(t)′Q1x(t) +

1

2
R1(σ

s
1(t, x))

2 + q′1x(t)

+
1

2

[

Wx(t) + b1σ
s
1(t, x)− b2(R2 + b′2S

s
2(t+ 1)b2)

−1

× [(b′2S
s
2(t+ 1)(Wx(t) + b1σ

s
1(t, x) + b′2h

s
2(t+ 1)]}′

× Ss
1(t+ 1){Wx(t) + b1σ

s
1(t, x)− b2(R2 + b′2

× Ss
2(t+ 1)b2)

−1[b′2S
s
2(t+ 1)(Wx(t) + b1σ

s
1(t, x)

+ b′2h
s
2(t+ 1)]}+ hs1(t+ 1)′{Wx(t) + b1σ

s
1(t, x)

− b2(R2 + b′2S
s
2(t+ 1)b2)

−1[b′2S
s
2(t+ 1)(Wx(t)

+ b1σ
s
1(t, x)) + b′2h

s
2(t+ 1)]

]

+ ss1(t+ 1)
}

.

Similar, minimize the expression in the bae with respet to σs
1(t, x):

R1σ
s
1(t, x) + {[I − b2(R2 + b′2S

s
2(t+ 1)b2)

−1b′2S
s
2(t+ 1)]b1}

′Ss
1(t+ 1)

× {Wx(t) + b1σ
s
1(t, x)− b2(R2 + b′2S

s
2(t+ 1)b2)

−1[b′2S
s
2(t+ 1)(Wx(t)

+ b1σ
s
1(t, x)) + b′2h

s
2(t+ 1)]}+ {hs1(t+ 1)′[I − b2(R2 + b′2

× Ss
2(t+ 1)b2)

−1b′2S
s
2(t+ 1)]b1}

′ = 0. (26)

Following Woodbury matrix identity, we obtain:

I − b2[R2 + b′2S
s
2(t+ 1)b2]

−1b′2S
s
2(t+ 1) = [I + b2R

−1
2 b′2S

s
2(t+ 1)]−1.
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Further, the value funtion satis�es:

1

2
x(t)′Ss

i (t)x(t) + hsi (t)x(t) + ssi (t)

=
1

2
x(t)′Qix(t) +

1

2
Ri(σ

s
i (t, x))

2 + q′ix(t)

+
1

2
[Wx(t) + b1σ

s
1(t, x) + b2σ

s
2(t, x)]

′Ss
i (t+ 1)

× [Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)] + hsi (t+ 1)′

× [Wx(t) + b1σ
s
1(t, x) + b2σ

s
2(t, x)] + ssi (t+ 1). (27)

Plug the assumed strategies into equations (24), (26) and (27). Then take the

oe�ients in eah equation the same as eah other in both sides. At last, the

equations with respet to Ss
i (t), p

s
i (t), h

s
i (t), r

s
i (t) and s

s
i (t) desribed in Theorem 3

are derived. ⊓⊔

4. Numerial simulation

4.1. Example 1

Review the onstruted symmetri opinion dynamis network game examined in

(Sedakov and Zhen, 2019) �rstly. The network is omposed of A = {1, · · · , 10},
N = {Pl.1, P l.2} with a symmetri onnetion i.e., eah agent has the same degree

of three, and eah player only in�uenes �ve of agents over twelve periods, so T = 12.
Players employ the level of in�uene to eah onneted agent with δ1, δ2 ∈ (0, 1)
respetively. The in�uenes demonstrated in matrixW and vetors b1, b2 are divided
equally among all onnetions. Perform the same values of parameters as evaluated

in (Sedakov and Zhen, 2019) i.e., the desired opinions for players are x̂1 = 0.5, x̂2 =
0.6, the in�uene osts are c1 = 0.3, c2 = 0.4, the in�uene levels in low and

high senarios are δL1 = 0.1, δL2 = 0.05, δH1 = 0.4, δH2 = 0.35, and the initial

opinion pro�le of agents is x0 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)′. Hereon,
we onsider six equilibria with:

(i) OLSEL implies open-loop Stakelberg equilibrium in low senario,

(ii) FBSEL implies feedbak Stakelberg equilibrium in low senario,

(iii) FBNEL implies feedbak Nash equilibrium in low senario,

(iv) OLSEH implies open-loop Stakelberg equilibrium in high senario,

(v) FBSEH implies feedbak Stakelberg equilibrium in high senario,

(vi) FBNEH implies feedbak Nash equilibrium in high senario.

Table 1. Payo�s in di�erent equilibria

Pl. 1 Pl. 2

OLSEL 1.5502 4.2825

FBSEL 1.8143 3.0788

FBNEL 1.7106 3.7534

OLSEH 1.7760 4.2298

FBSEH 2.6928 2.5586

FBNEH 1.6710 4.3867
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Equilibria in low senario

The equilibrium strategies of players, equilibrium trajetories and terminal opin-

ions of agents in both low and high senarios are presented in Fig. 1-8. As an be

seen from Table 1, player 1 inurs the lowest expense J1(ψ
s∗
1 , ψ

s∗
2 ) = 1.5502 em-

ploying open-loop Stakelberg equilibrium strategy in low senario, while player 2

adopts feedbak Stakelberg equilibrium strategy in high senario with his lowest ex-

pense J2(σ
s∗
1 , σ

s∗
2 ) = 2.5586. Compared to Nash equilibrium in low senario, player

1 will inur more under the same open-loop information struture, however player

2 will inur less. Players will have the same preferene in high senario ompared to

Nash equilibrium. The terminal opinions of agents in the six equilibria are shown

as below:

x(T )OLSEL = (0.3742, 0.3742, 0.3952, 0.3980, 0.3983,

0.4150, 0.4112, 0.4117, 0.4412, 0.4342)′,

x(T )FBSEL = (0.3946, 0.3946, 0.4210, 0.4208, 0.4212,

0.4316, 0.4311, 0.4314, 0.4600, 0.4596)′,

x(T )FBNEL = (0.3790, 0.3790, 0.4017, 0.4025, 0.4028,

0.4139, 0.4124, 0.4127, 0.4394, 0.4370)′,

x(T )OLSEH = (0.4486, 0.4485, 0.4325, 0.4486, 0.4467,

0.5222, 0.5041, 0.5065, 0.5341, 0.4838)′,

x(T )FBSEH = (0.5048, 0.5049, 0.5569, 0.5483, 0.5496,

0.4945, 0.5035, 0.5026, 0.5379, 0.5637)′,

x(T )FBNEH = (0.4517, 0.4516, 0.4273, 0.4431, 0.4411,

0.5159, 0.4986, 0.5007, 0.5166, 0.4681)′.

Compared to Nash equilibrium both in low and high senarios, agents hold more sim-

ilar terminal opinions as in open-loop Stakelberg equilibrium. Furthermore, under

feedbak Stakelberg in�uenes agents hold the higher levels of terminal opinions

than under the other two equilibria in low senario. Unlike low senario, agents

1,2,3,4,5 and 10 hold a big di�erene in terminal opinions between the in�uenes

of feedbak Stakelberg equilibrium strategies and Nash equilibrium strategies in

high senario. And whats more, agents 6,7,8 and 9 hold a similar terminal opinions

under the three di�erent in�uenes.
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Fig. 4. Feedbak Nash and Stakelberg

equilibrium trajetories in low senario
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trajetories in high senario

0 1 2 3 4 5 6 7 8 9 10 11

STAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
T

A
T

E
 T

R
A

J
E

C
T

O
R

Y

FBNEH

FBSEH

Fig. 8. Feedbak Nash and Stakelberg

equilibrium trajetories in high senario



Stakelberg Equilibrium of Opinion Dynamis Game in Soial Network 381

4.2. Example 2: Zahary network

Fig. 9. Zahary karate lub network

Now onsider a soial network from (Zahary, 1977). Zahary observed a universi-

ty-based karate lub for a period of three years from 1970 to 1972. The relationships

among the 34 individuals (i.e. V = {1, · · · , 34}) interating in ontexts outside those

of karate lasses, workouts, and lub meetings were presented in Fig. 9. The karate

lub's hief administrator (player 1, i.e., node 34 in Fig. 9) and the instrutor (player

2, i.e., node 1 in Fig. 9) had an inipient on�it over the prie of karate lessons, so

N = {1, 34}. The administrator preferred stable pries, while the instrutor wished

to raise pries substantially. As time passed there was a series of inreasingly sharp

fational onfrontations over the prie of lessons. Below we explore the behaviours of

all members in the lub under the proposed framework of opinion dynamis game.

The following proedure (Avrahenkov et al., 2017) estimates matrix W and

vetors b1, b2. Denote Ni = {j ∈ V |(i, j) ∈ E} as the set of neighbors of player (or

agent) i ∈ N , and di = |Ni| is alled the degree of player (or agent) i ∈ N . De�ne

below funtion for i ∈ V :

vij =















0, j /∈ Ni,

didj
2m

, j ∈ Ni,

1, j = i,

where m = 1
2

∑

l∈V dl is the total number of edges in the network. Based on fun-

tions above, assume:

wij =
vij

vii +
∑

k∈Ni
vik

, ∀i, j ∈ A,

bi =
vij

∑

k∈Ni
vik

, ∀i ∈ N, j ∈ A.
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Let the desired proportions of hanging the prie of karate lessons of the admin-

istrator and the instrutor be 0.4 and 0.8 respetively. Consider both administrator

and instrutor attempting to in�uene all trainees in the lub with the same ost

of ontrols c1 = c2 = 40 during the horizon of 36 months, i.e. T = 36. Suppose
U = [0, 1].
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Fig. 10. Stakelberg Equilibrium strategies
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Fig. 11. Initial and terminal opinions under

Stakelberg Equilibria
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Fig. 12. Open-loop Stakelberg equilib-

rium trajetories

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435

STAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
T

A
T

E
 T

R
A

J
E

C
T

O
R

Y

xFBSE(t)

Fig. 13. Feedbak Stakelberg equilibrium

trajetories

Administrator ats as leader Let the set of states be X = [0, 1]. As administra-

tor is the leader so x̂1 = 0.4, x̂2 = 0.8. Assume all trainees in the lub (i.e., nodes

indexed from 2 to 33 in Figure 9, so A = {2, · · · , 32}) have the following initial

opinions:

x0 =0.1× 132 + (x̂1 × 1
′
7,
x̂1 + x̂2

2
, x̂2, x̂1 × 1

′
3,
x̂1 + x̂2

2
, x̂2 × 1

′
2,

0, x̂1, x̂2,
x̂1 + x̂2

2
, x̂2, x̂1, x̂2 × 1

′
2, 0, 0, x̂2 × 1

′
5,
x̂1 + x̂2

2
, x̂2)

′,

where 1k is the olumn vetor of ones of size k.
As we an see in Fig. 10., administrator has lower ontrols than instrutor in both

open-loop and feedbak Stakelberg equilibria. Administrator needs to put stronger

ontrol in feedbak Nash equilibrium than in open-loop ase, while instrutor needs

to put stronger ontrol in open-loop Nash equilibrium than in feedbak ase exept

the last two months. From the numerial results, we �nd that both players have

non-monotoni ontrols.
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The orresponding equilibrium terminal opinions of all trainees in the karate

lub are presented as follows (See Fig. 11.):

x(T )OLSE = (0.0790, 0.0920, 0.0765, 0.0590, 0.0581, 0.0581, 0.0776, 0.0863,

0.1239, 0.0590, 0.0870, 0.0707, 0.0741, 0.1367, 0.1367, 0.0963,

0.0744, 0.1367, 0.0750, 0.1367, 0.0744, 0.1367, 0.1204, 0.1607,

0.1628, 0.1437, 0.1139, 0.1110, 0.1224, 0.1078, 0.0899, 0.1114)′,

x(T )FBSE = (0.0806, 0.0930, 0.0783, 0.0621, 0.0610, 0.0610, 0.0796, 0.0868,

0.1238, 0.0621, 0.0910, 0.0738, 0.0753, 0.1359, 0.1359, 0.1010,

0.0772, 0.1359, 0.0761, 0.1359, 0.0772, 0.1359, 0.1200, 0.1600,

0.1620, 0.1423, 0.1139, 0.1113, 0.1219, 0.1082, 0.0901, 0.1114)′.

The opinions of all trainees following the in�uenes of both administrator and in-

strutor under di�erent information strutures are presented in Fig. 12-13. From

the equilibrium trajetories we know that under the same ost of ontrols, players'

ontrols only have a slightly deviation from eah of the onepts of equilibria. Thus

the equilibrium opinions of agents is lose to eah other under di�erent equilibria.

Although there are so many similarity, players have their preferene of information

struture. The administrator and instrutor will inur total equilibrium expenses as

their payo�s as shown in Table 2.

Table 2. Payo�s in Stakelberg Equilibria

Open-loop Feedbak

J1(u
∗s

1 , u∗s

2 ) 73.3216 74.1277

J2(u
∗s

1 , u∗s

2 ) 486.6995 483.4364

Instrutor ats as leader As instrutor is the leader, so x̂1 = 0.8, x̂2 = 0.4, then
all trainees in the lub have the same pro�le of initial opinions as in the previous

ase:

x0 =0.1× 132 + (x̂2 × 1
′
7,
x̂1 + x̂2

2
, x̂1, x̂2 × 1

′
3,
x̂1 + x̂2

2
, x̂1 × 1

′
2,

0, x̂2, x̂1,
x̂1 + x̂2

2
, x̂1, x̂2, x̂1 × 1

′
2, 0, 0, x̂1 × 1

′
5,
x̂1 + x̂2

2
, x̂1)

′.

The levels of in�uene of administrator and instrutor are presented in Fig. 14.

And the orresponding equilibrium terminal opinions of all trainees in the karate
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lub are presented as follows (See Fig. 15.):

x(T )OLSE = (0.1035, 0.0968, 0.1073, 0.1260, 0.1226, 0.1226, 0.1119, 0.0750,

0.0874, 0.1260, 0.1735, 0.1338, 0.0843, 0.0764, 0.0764, 0.1951,

0.1309, 0.0764, 0.0805, 0.0764, 0.1309, 0.0764, 0.0725, 0.1194,

0.1151, 0.0689, 0.0806, 0.0828, 0.0694, 0.0828, 0.0708, 0.0773)′,

x(T )FBSE = (0.1064, 0.0991, 0.1105, 0.1307, 0.1270, 0.1270, 0.11530.0763,

0.0884, 0.1307, 0.1793, 0.1386, 0.0864, 0.0764, 0.0764, 0.2015,

0.1354, 0.0764, 0.0825, 0.0764, 0.1354, 0.0764, 0.0728, 0.1206,

0.1160, 0.0683, 0.0815, 0.0839, 0.0696, 0.0840, 0.0718, 0.0781)′.
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Fig. 14. Stakelberg Equilibrium strategies
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Fig. 15. Initial and terminal opinions under

Stakelberg Equilibria
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Fig. 16. Open-loop Stakelberg equilib-

rium trajetories

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435

STAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
T

A
T

E
 T

R
A

J
E

C
T

O
R

Y

xFBSE(t)

Fig. 17. Feedbak Stakelberg equilibrium

trajetories

The opinions of all trainees following the in�uenes of both administrator and

instrutor under di�erent information strutures are presented in Fig. 16-17. The

administrator and instrutor will inur total equilibrium expenses as their payo�s

as shown in Table 3. Apparently, both of them prefer the feedbak information

struture.

As shown in Table 2 and 3, the instrutor ats as leader prefers the feedbak

Stakelberg equilibrium with a muh more lower expense 71.3626, whih is not the



Stakelberg Equilibrium of Opinion Dynamis Game in Soial Network 385

Table 3. Payo�s in Stakelberg Equilibria

Open-loop Feedbak

J1(u
∗s

1 , u∗s

2 ) 484.6106 485.5769

J2(u
∗s

1 , u∗s

2 ) 72.7073 71.3626

same information struture as previous ase. In ontrast, the administrator will

inur a muh more expense 484.6106 than previous ase.

5. Conlusion

This paper investigated a two-person disrete-time opinion dynamis game in a

soial network. The non-ooperative Stakelberg equilibrium was explored under

open-loop and feedbak information strutures. The statements of theoretial on-

tents were haraterized, whih draw support from Pontryagin's minimum priniple

and dynami programming theory. To perform numerial simulation, the ompar-

ison in a symmetri opinion dynamis network with the agents of three types was

examined, whats more the Zahary karate lub network was modeled as the opinion

dynamis game. Compared to Nash equilibrium in low senario of the �rst example,

player 1 will inur more under the same open-loop information struture, however

player 2 will inur less. Furthermore, players will have the same preferenes in high

senario ompared to Nash equilibrium. In the Zahary network, the equilibria were

obtained under di�erent leaderships of the administrator and the instrutor. As

it turns out that both administrator and instrutor prefer ating as the leader in

feedbak information struture.
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