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Abstract The alteration of opinions of individuals in groups over time is
a particular common phenomenon in social life. Taking into account the in-
fluence of homogeneous members and some special influential persons, an
opinion dynamics game is established. In a social network, two special in-
fluence nodes pursuing their certain goals with the process of influencing
the opinions of other normal nodes in discrete time is considered. From the
perspective of non-cooperation, Stackelberg equilibrium is selected as the
solution of the opinion dynamics game. Given distinct information knowl-
edge, players will derive different equilibrium strategies. The open-loop and
feedback information configurations are investigated. In the two-person non-
cooperative dynamic game, techniques of Pontryagin’s minimum principle
and dynamic programming are adopted to derive the equilibrium levels of
influence for influence nodes and the equilibrium opinions for other normal
nodes in the network. To compute and compare the various equilibrium con-
cepts under different information structures, numerical results are presented
for different scenarios.

Keywords: social network, influence, opinion dynamics, Stackelberg equi-
librium

1. Introduction

In the complex interpersonal social networks, some influential opinions will deter-
mine the formation and revision of individuals’ opinions. Delving into the tendency
of opinion dynamics of the agents in community is conducive to deep comprehending
of the progress of civilization, social development and stabilization. Furthermore,
it is the crucial foundation of social control. Incipiently, research on whether all
agents in the group would reach an opinion consensus is a hot topic. One of the
most classical is the DeGroot model (DeGroot, 1974). Establishing the algebra of
a Markov chain, DeGroot proposed the system framework of opinion dynamics,
in which the linear combination of agents’ opinions at the previous stage consti-
tutes his current stage opinion. The social influence network knowledge structure
was enriched by Friedkin and Johnsen (Friedkin and Johnsen, 1990; Friedkin and
Johnsen, 1999), in their works the social influence process affected by both endoge-
nous opinions and exogenous conditions was described. Literatures (Acemoglu and
Ozdaglar, 2011; Buechel et al., 2015; Dandekar et al., 2013) had extended the theory
of opinion dynamics, where the fields involved are economics, social and political sci-
ences, engineering and computer sciences. In (Hegselmann and Krause, 2002), the
bounded confidence framework for a Friedkin—Johnsen model was developed and
a series of simulations was presented to illustrate the theoretical knowledge. The
wisdom groups regarding to DeGroot model was examined in (Golub and Jackson,
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2010), while regarding the initial opinions the stubbornness of agents was consid-
ered in (Ghaderi and Srikant, 2014). Recently, (Bure et al., 2015; Bure et al., 2017)
constructed a specific structure of influence matrix to investigate the problem of
reaching a consensus of opinion dynamics with three groups of agents influenced by
two nodes.

There is no starting point from game-theoretic perspective in the aforemen-
tioned literatures. Actually, to analyse opinion dynamics, distinct game-theoretic
approaches can be adopted. For instance, the Hegselmann-Krause model in a well-
designed potential game was investigated in (Etesami and Bagar, 2015), while a
controlled DeGroot model of opinion dynamics was explored in (Barabanov et al.,
2010; Gubanov et al., 2011).

A special structure of dynamic games was considered in this paper, where the
influence in the opinion formation process is characterized by a discrete-time linear-
quadratic game. The theory of linear-quadratic games is based on optimal con-
trol, which is related to the system dynamics described by a set of linear differ-
ential/difference equations and the criterion described by a quadratic function. In
the proposed model, the opinion dynamics is established as an iteration of opin-
ions from agents and influence levels (control variables) from players in linear form.
Each player has his “desired" opinion, what players are concerned is whether they
can optimise their performance by minimizing the associated costs. Furthermore,
players’ objective is to make agents’ opinions close to their “desired" opinions in
quadratic form, which is close to those in (Krawczyk and Tidball, 2006).

There are two distinguished directions to investigate in game theory, i.e., cooper-
ation and non-cooperation. The popular non-cooperative solution concept Stackel-
berg equilibrium is examined in this paper. In Stackelberg competition, the follower
moves sequentially after the leader. Technique of backward induction is adopted to
solve the model. The follower can always react optimally after observing the strategy
taken by the leader, on the other hand, the leader should anticipate the predicted
best response of the follower then develop a strategy minimizing his payoff.

Fundamentally, open-loop and feedback configurations are designed to specify
different requirements in control system. Under the open-loop information struc-
ture, players will make decisions independently of the process state of the system,
which befitting case is the reduction in component count and complexity. The term
feedback implies players will have some knowledge of the state of the system, thus
the primary advantage is its ability to correct for outside disturbances. This paper
assumes that players only use the knowledge of the initial state and current stage
to determine their open-loop strategies, and the feedback strategies depend on both
the current stage and state of the system. The technique of solving open-loop op-
timal control problem is Pontryagin’s maximum (or minimum) principle, which we
express as a system of algebra equations. Applying the dynamic programming the-
ory, the equilibrium can be obtained under the feedback information knowledge by
solving the system of recurrence relations. With similar techniques, linear-quadratic
differential games are studied in (Wang et al., 2019).

As an illustration and comparison, the symmetric theoretical social network
constructed in (Sedakov and Zhen, 2019) is examined. The results of comparison of
two distinguished noncooperative solutions Nash and Stackelberg equilibrium are
presented. Indeed, sociological research usually take a long time based on tracking
observation of communities. This paper establishes the opinion dynamics game of
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Zachary karate club network (Zachary, 1977) lasting 36 months. The administrator
and the instructor stand at quite various positions on the price of karate lessons,
therefore this two players perform their own actions to achieve their objectives. The
comparison is conducted when administrator and instructor play the role of leader
respectively.

The outline of the rest of the paper is organized as follows. In Section 2, the opin-
ion dynamics model in a social network is described as a two-person discrete-time
linear-quadratic game. The subsequent actions of players described by Stackelberg
equilibrium are explored in Section 3, which is investigated under open-loop and
feedback information structures. At last, the numerical examples illustrate the the-
oretical findings in Section 4.

2. The opinion dynamics game model

The model of opinion dynamics game considered in this paper was proposed in
(Sedakov and Zhen, 2019). We start with the treatment of an opinion dynamics
game in a social network defined in finite discrete-time. Let the set of stages be T =
{0,1,...,T}. Denote the social communication structure by standard terminology
(V, E), where V is a finite set of nodes in the social network and F is a set of edges
between the nodes. Individuals in the social network are located in the nodes and
communicate with each other through edges between each pair of nodes. There are
two types of participants in the opinion dynamics game, for instance, sellers and
consumers in the business relationship network. Thus, we suppose that the set of
nodes can be decomposed as V = AUN, ANN = @. Each individual in A is called
an agent, meanwhile a player or influence node in N. Therefore, the set A is an
agent set and NV is a player set in the network.

First, we illustrate the role of agents in the opinion dynamics game. Suppose
there is a subject in the network, such as a new product, during the process of
learning more information of the new product each consumer may hold distinct
view about the product. In the opinion dynamics game we suppose that each agent
i € A in the network has his own opinion on this specific “subject” which can be
changed over time. To better measure and show the alterations of agents’ opinions,
we suppose that agents’ opinions are numerical values. Given z;0 € X C R as the
element 7 in the initial state vector g, which means the initial opinion of agent 7 in
the opinion dynamics game. The state of agent ¢ may change over time, denote by
x;(t) € X his opinion at stage t = 1,...,T. As an illustration, let X = [0,1] in the
business relationship network, z;(¢) = 0 implies consumer ¢ has no willingness to
buy the new product, and the bigger z;(t) € X, the more willingness of consumer ¢
to buy. Let state vectors x(t) = (x1(t),...,24/(t))" be the opinion profile of agents
at stage t = 1,..., T, further denote ¢ = (10, ... ,;C|A|0)’ as the initial opinions.

Then we discuss how players affect agents’ opinions in the opinion dynamics
game. Let us go back to our illustration, sellers who sell the new products usually
take diversified marketing promotional program to let more consumers know and
consumers know more about their new products. For simplicity, we assume that
there are two influence nodes in the network, i.e., N = {1,2}. Denote by u;(t) €
U C R the influence level (or a control) of player i € N on network agents selected at
staget =0,...,7 — 1. Also as an illustration, consider in the business relationship
network U = [0,1], then w;(t) = 0 implies seller i does not make any effort to
influence consumers’ opinions on his new product. and u;(t) € U can be considered
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as the investment of seller ¢ at stage t = 0,...,T —1 with his total assets of 1. Thus,
the more investment the greater the impact on consumers.

2.1. Opinion dynamics

As we all know, a particular consumer can form a new opinion on the product by
acquiring information from sellers and consumers including his own experiences. In
the game, we assume each agent evaluates his opinion at any stage aggregating the
opinions of other agents in the network as well as the influence efforts of players.
The opinion of agent i € A evolves according to the following system:

.Iz(t =+ 1) = Z ’UJij.Ij (t) =+ bilul(t) + biQUQ(t), t= 0, . ,T — 1, (].)
JEA

with 2;(0) = z40. In the transition function (1) from ¢ to ¢t + 1, w;; € [0,1] and
b;; € [0,1] are the levels of trust of agent ¢ € A to the opinion of agent j € A and
player j € N, respectively. It is not necessarily that w;; = wj;. Additionally, we
assume that Y ;. , wij + >,y bij = 1 for any agent i € A. The opinions of players
are considered to remain constant over time and hence are not included into the
model. Let W = {wj; }s jea, bi = (bi1,...,b;a))', i € N. Then the opinion dynamics
of agents in the network is given by:

x(t+ 1) = Wa(t) + brui () + baus(t), t =0,...,T —1, x(0) = xo, (2)

with the following property holds:
Wa(t) + biug(t) + bous(t) is continuously differentiable on XAl and convex on
XAlxyt,

Evidently, each consumer in the considered business relationship network has
two different types of channels for integrating information. That is, one channel is
between consumers, another is between consumer and seller. In the opinion dynam-
ics game, we also decompose the set of edges F into two disjoint sets F4 and Ey,
ie., E=FsUFEN, EoANEN = @, in which E4 describes all connections between
agents and En describes all connections between pairs “player—agent”. Furthermore,
matrix W and vectors b and by can identify the set of edges E:

(j,%) € Ea4, if and only if w;; > 0,
(j,i) € En, if and only if b;; > 0.

2.2. Criteria

Now we characterize the criteria for players in the opinion dynamics game. What
are the criteria of sellers in the considered business relationship network? Prefix-
ing a willingness to buy for consumers and starting from the initial willingness of
consumers to buy the product, sellers choose the investments at each stages. In the
business process, the costs to sellers come from two aspects, i.e., (i) how far is the
consumers’ willingness to the prefixed willingness; (ii) how much does the related
investment cost. The principle of sellers is to reduce total costs, thus increase their
net-income. Let u; = (u;(0),...,u;(T — 1)) € UT be an admissible profile of influ-
ence levels in T stages (or a strategy) selected by player ¢ € N, where U is a closed
and bounded (thereby compact) subset of R. Taking into account opinion dynamics
(2), player i € N aims at minimizing his stage-additive payoff function, which is
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given by:

T-1

Ji(u1,uz) = Z(:Ej(t) — &) +eui(t) | + Z(x] (T) — 2:)?,

t=0 \jeA jeA

where Z; € X is a given desired opinion for player i to which he tries to drive the
opinions of all agents in the network selecting his strategy u;, and ¢; > 0 mea-
sures the efforts of this player associated with the selection of u;. The profile of
states (zg,x(1), - ,z(T)) satisfying the opinion dynamics (2) is called a state tra-
jectory starting from initial state, which correspond to the strategy profile (uq,u2)
minimizing the payoff functions.

This model is a two-person non-cooperative discrete-time linear-quadratic game.
The payoff function of player i € N can be rewritten in a standard form for this
class of games:

N

= (o0 Qualt) + 3Ria0) + latt))

Ji(ur,ug) = 3

(]

t

N = <

+ 52(T)'Qix(T) + g;z(T) + 2, (3)
where 1 denotes a vector of ones of size |A|, @Q; = 2I, I is an identity matrix of
size |A|, R; = 2¢;, ¢; = —2%;1, z; = |A|(T + 1)27 for i € N. The considered payoff
functions have the following properties:

(i) J; is continuous on UT x UT,i € N,

(ii) J; is strictly convex on UL i € N,

(iii) The transition reward of player i € N, i.e., +x(t)Qx(t) + 3 RiuZ(t) + qx(t)
is continuously differentiable on X.

3. Stackelberg equilibrium

In this section, we investigate the solution when players perform subsequent ac-
tions. Here we focus on Stackelberg equilibrium with assuming player 1 moves first
and then player 2 moves sequentially. What is more, concepts of equilibrium vary
under different information structures. How to design strategies depends on what
information is available to the players. Let us make a brief overview of classification
of information in dynamic games.

(i) Open-loop information structure. An open-loop strategy of playeri € N is a
mapping that depends on stage ¢ and initial state zo. Formally, u;(t) = ¥§ (¢, z0) € U
where ¥¢ (-, zg) : {0,..., T — 1} = U.

(ii) Feedback information structure, also known as Markovian information struc-
ture. A feedback strategy of player i € N is a mapping that depends on stage ¢ and
the current state z(t), i.e., u;(t) = of(¢,x(t)) € U where of(-,-) : {0,..., T — 1} x
XAl .

Definition 1. A pair (u$*,u5*) is a Stackelberg equilibrium with player 1 as the
leader if:

s% 8% . —
Ji(ui®,u3") = min max  Jy(ui, U2)
u1 €UT wa€Ro (t,ur)
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where

Rg(t,ul) = {’LLQ S UT| minT Jg(ul,u2)}

uzelU
is the set of best response of the follower given arbitrary u; € UT.

The following of this section will describe the techniques of Pontryagin’s maxi-
mum principle (minimum principle in this considered opinion dynamics game) and
dynamic programming to derive open-loop and feedback Stackelberg equilibria re-
spectively (Haurie et al., 2012).

3.1. Open-loop Stackelberg equilibrium

For each fixed ¢§ € UT, the follower needs to minimize J»(¢)5,135) with the state
equations (2) hold. The payoff function of player i € N can be transformed as:

Ji (5, 5) = Ji(W5, v5) — as,

where
1
a; = EJCBQMO + qio + |A|(T + 1)23.

Apparentily, for each i € N

! = 1 ’ 1 s 2 !
Tt 09 = 3 (Golt+ 0/ Qualt+ 1)+ SRt + dlale + 1) (@

t=0

criteria (3) and (4) reach the minimum at the same profile (1)5*,15*). Let us inves-

tigate the model with transformed criteria (4), then the system of equations can be
derived as follows (Basar and Olsder, 1999).

Theorem 1. If (¢§*,15*) denotes an open-loop Stackelberg equilibrium strategy,
then there exist finite vector sequences (1), ,v(T), A\1(0),--- , A\ (T — 1), A2(0),
o A(T = 1), A3(0),--- , A\s(T — 1) that satisfy the following relations, for t =
0,---,T—1:

¥ (t+ 1) = Wa (t) + biobi* (¢, xo) + bath5* (¢, x0), (5)
aHl [,’E(t), wf(tv "EO)v ¢§(ta "EO)v 7(t + 1)7 )‘1 (t)v )‘2(t)7 )‘3 (t)]
O3 (t, zo)

= by Q1% (t + 1) + Rypi™ (t, z0) + b} [QI + M (f)}

F,Q, [WA2 (t) + b2A3(t)] -0

aHl [,’E(t), wf(tv "EO)v ¢§(ta "EO)v 7(t + 1)7 )‘1 (t)v )‘2(t)7 )‘3 (t)]
05 (t, zo)

= b5Qux™ (t + 1) + by [QI + )\l(t)} + 05Q2 {W)Q(t) + b2)\3(t)}
+ R2>\3(t) = 07 (7)
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Al(t - 1) = Vz(t)Hl [l‘(t), W (tv ,To), ’@[J;(tv ‘TO)v 7(t + 1)7 )‘l(t)v )‘2 (t)7 )‘3 (t)]
= W[Que™ (4 1)+ @+ A () + QaWAa(t) + Qaboda(D)]. (8)
aHl [:C(t)v wf(tv ,To), ¢§(ta ,To), 7(t + 1)7 )‘l(t)v )‘2 (t)v )‘3 (t)]

Ralt 1) = (1)
= Wa(t) + baA3(t), (9)
aH2 [:C(t)v wf(tv ,To), ¢§(ta ,To), 7(t + 1)]
05 (t, o)
= 0yQaa” (t+ 1) + Rot" (bao) + by a2 +(E+ 1) =0, (10)
At) = W' Qo (t+1) + a2 +7(t+ 1)), (1)

M(T'—1) =0, A&2(0) =0, v(T) =0,
where

Hy[2(t), i (t,xo), ¥3(t, m0), y(t + 1), A1(t), A2 (2), As(t)]
:%x(t +1)Qua(t+1) + %Rl (5 (t,20))* + ot + 1)
F M) 2+ 1)+ X&) W Qoa(t +1) + go +~(t + 1)]
+ Xa(t) [B(Qa(t + 1) + a2+t + 1)) + Ravi(t,20)]
Ha[x(t), pia(t, o), ¥3(t, z0), y(t + 1)]
:%x(t + 1) Qox(t +1) + %Rz(@/}g(t, 20))? + ghx(t + 1)
+(t+1) z(t +1).

For deriving the open-loop Stackelberg equilibrium we need to construct a sys-
tem of linear equations Ay = B, where y = (¢¥1(0,x¢),- -+ ,¥1(T — 1, x0),%2(0, zp),
e 7¢2(T —1,20), 5567 ‘T(l)lv e 7x(T)177(1)7 e 7’7(T)7 )‘1(0)7 T 7)‘1(T - 1)7 A2(0),
c (T = 1), 23(0), -, A3(T — 1)) € RAAIHITHAL

As the considered game is the linear-quadratic game, the following statement
can be obtained (Basar and Olsder, 1999).

Theorem 2. If the inverse matriz [[+Ry "bably Py (t+1)+Ry "oy by (I+Q4ba Ry 1bh) 1
X Py(t + 1)]71 ewists, then there exists an unique open-loop Stackelberg equilibrium
with player 1 acting as the leader, which is given by:

1 (o) =K (t)2* (t) + La(b),
57 (8, o) =Ka(t)z™ (t) + La(t),

8

8

with the unique state trajectory associated with this pair of strategies (V5* (¢, xo), 5"
(t,x0)) satisfies:

¥ (t+ 1) = )z (t) + 6(t), 2% (0) = xo,

where K;(t), L;(t), i € N, ®(t), 0(t) are presented as follows:
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K(t) = = R0 (1 + Qabo Ry '0h) " Pa(t + 1)@(1)

+ QI + ba B3 "0hQ5) T WP (1), (12)

Ly(t) = — Ry "Wy {(I + QbbaRy Mbh) M [Palt + 1)0(t) + pa(t + 1) + q1]
+Q5(I +ba Ry 105Q5) " Wps(1)} (13)
Ks(t) = = Ry "0y P (t + 1)(t), (14)
Lo(t) = = By '3[ Py (t+ 1)) + pr(t+ 1) + g2, (15)

B(t) = [I + Ry 'bobly Pyt + 1) + Ry 'bab) (I + Q4ba Ry ') ™ Pa(t + 1)} B
X [W = Ry b1t Qa(T + ba Ry '05Q8) " WPs(1)], (16)
o(t) = [I + Ry by Pr(t + 1) + Ry 'b1b) (I + Q4ba Ry ') ™ Pa(t + 1)} B
x (R0 (T + Q4ba By ) M pa(t + 1) + a1) + Qa1
o5 HQ8) T W (8)] — By 'bab(pr(t+ 1)+ a2) } (17)
Proof Rearrange equation (7):
No(t) = =(Ba + bpQhba) 105 [@ua(t +1) + qu + M () + QyWhe(D)].  (18)
Plug (18) into (6):
U3 (o) = = R0, { @1 — Qbba(Ra + bhQhba) 0501 | a(t + 1)
+ 1= @aba(Ra + h@5b2) 8y [ + M (1)
+ Qb[1 = ba(Ra + VQhba) 105 Qh | WA (1)}
Plug (18) into (8):
At =1) = W' { Q1 — Q4ba(Rz + byQaba) '0hQ1 |a(t +1)
+ [ = @hba(Ra + h@5b2) 0y [ + A (1)
+ QB[ = ba(Ra + b,Qhba) T H5Q8 | Wa(t) | A (T) = 0.
Plug (18) into (9):
Nalt +1) = WAs(t) = ba(Ra + 1hQ5ba) by | Qua(t + 1)
a1+ M) + QWA (8)], 22(0) = 0.
Assume that:
WE+1) = [Pt +1) = Qofalt+1) + pa(t + 1), (19)
() = [Pat+1) = Qu]alt + 1)+ pat + 1), (20)
Ao(t) = Pa(t)x(t) + pa(t). (21)
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Plug (19) into (10):
V3 (t,wo) = — Ry 'b} [Pl (t+Dz(t+1)+pi(t+1)+ qz} :
Following Woodbury matrix identity:
(A+UCV) ' = A =AU (C +VATID) vAT,
the strategy of the leader can be expressed:
U3t o) = — R {(1+ QabaRy '8) ™ [Pa(t + Da(t +1) + palt +1) + 1
+ Qb(I + ba Ry "05Q5) W Py(0)a(t) + ps(t)| }
If the inverse matrix
{1 + Ry Yool Py (t + 1) + Ry by (I + Qhba Ry b))~ Pa(t + 1)} B
exists, then state equation will be in following form:
z(t+1) = [I + Ry 'bobhy Py (t + 1) + Ry 'b1bi (I + Q4bo Ry '0h) "M Pa(t + 1)} B
< {[W = B0 Qa( + ba Ry 05,Q5) T W P () |a(t) — R b1t
% [(L+ QabaRy 1) ™ (pa(t + 1) + 1) + Qall + bRy H5Q5) ™
X Wps(D)] = By "babip(pa(t+1) +a2)
Denote
z(t+1) = D(t)xz(t) + 0(¢), (22)
where @(t), 0(t) are presented in equations (16), (17). Then denote

1(t, o) = K1 (t)z(t) + L (),
Y5t o) = Ka(t)z(t) + La(t),

where K;(t), L;(t), i € N are presented in equations (12)-(15). Plug (19), (22) into
(11):

(PL(E) — Qa)a(t) + pu (1) = W'Qs [#(0)(t) + 6(5)] + W'lps (£ + 1) + o]
+ W [(Pi(t+1) = Q)(@(B)a(t) + (1)), p2(T) =0,
Then the following system can be obtained:
Pi(t) — Q2 = WP (t + 1)®(t),
pu() = W/ [P+ 1)0() + it +1) + a2,
P(T) = Q2, p1(T) = 0.
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Equation (18) becomes:
Na(t) = = (B + bQhba) "0 { Q[ 8(D)() + 0(8)] + a1 + [Pa(t +1) — Q1]
x[@()() + 0(8)] + palt + 1) + QoW [ Pa()a(t) + pa(t)| }
= — (Ra + b5Q5b2) 105 {[Pa(t + 1)D(t) + Q5 W P3(t))a(t)
+ g1+ Pa(t+1)0(t) +pa(t +1) + QyWps(t)} . (23)
Denote
No(t) = M()a(t) + N(©),
where
M(t) = — (R + byQbbs) b, {Pz(t +1) [I + Ry Yool Py (t + 1) + Ry \byb,
1+ QbbaRy ") ™ Palt + 1)) [W = Ry 0abiQa(l + baRy "5Q3)
< WP(H)] + W P(1) } .

N(t) = = (Ra + b5Q5b2) "0 {a1 — Palt + D) [T+ Ry baby P +1)
-1

+ Ry, (1 + QbaRy 'by) 1Py (t + 1)} [Ry byb (I + QhbaRy b))~
X (p2(t +1) + q1) + QoI + b2 Ry 'b5Q5) ™ Wps(t)) + Ry baby
x (pr(t+1)+ fh)] +p2(t+1)+ Q’szs(t)} :
Plug (20), (21), (22), (23) into (8):
(Pa(t) = Qu)z(t) + pa(t) = W {Qu[@()a(t) + 0] +pa(t+1) +
+[Patt+ 1) = Q] (@) (1) + 6(6)] + QW
x [ Pa()e(t) + pa(t) Qhbs M (t) + N (1) } -
Then the second system can be obtained:
Py(t) — 1
pa(t) = W [Pa(t+ 1)O(E) + palt + 1) + a1 + Qbas(t) + QabaN (1)),
Py(T) = Q1, p2(T) = 0.
Plug (21), (23) into (9):

W[ Pa(t+ D)@(t) + QW P(t) + QabaM (),

—

Py(t+ D)@ (t) + 6] + ps(t +1) = W[ Pa(t)z(t) + ps(t)]
+ bo[M(t)x(t) + N(t)],
Finally, the last system will be the following form:
P3(t + 1)@(t) = WPs(t) — ba M (1),
P3(t +1)0(t) + ps(t + 1) = Wps(t) + baN(1),
P3(0) =0, p3(0) = 0. u
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3.2. Feedback Stackelberg equilibrium
The value function for player ¢ € N at staget =0,1,---,7 — 1 is defined as:
T—1

Vet = 3 (50" (1) Qua (1) + 3Rl (rn(r) 4l (1) )

b5 (1Y Qe (T) + gl (T),
V(T (T)) =" (TY Qi (T) + ™ (T),

where (05*, 05*) is the feedback Stackelberg equilibrium, (z°*(t), 2** (t+1), ---, *(T))
is the corresponding equilibrium state trajectory.

Reconsidering criteria (3), with the procedure of dynamic programming applied,
the feedback Stackelberg equilibrium is obtained as follows (Haurie et al., 2012).

Theorem 3. For the proposed opinion dynamics game, a pair of strategies (o5*, 05*)
with the following form:

o}" (t, ) = —p; (1) z(t) + ] (t),i € N,

constitutes a feedback Stackelberg equilibrium if and only if there exist functions
VE(t,-) : RIAL— R such that:

Vet x) = %x(t)/Sf(t)x(t) +hi(t) x(t) +si(t),ie N,teT,

where matrices S (t), vectors pi(t), hi(t) and numbers ri(t), si(t) satisfy:

Pi{ Ry + 0y [T + ba Ry 0555 (t 4+ 1)) S5 (¢ + 1)[1 + bo Ry 'b555(t + 1) 'by }

= W/[I 4 baRy ' 05S5(t + 1)] 1S5 (t + V[T + ba Ry '05S5(t + 1)] 1oy,
p5(t)[Ro + 1555 (t + 1)ba] + p3 (£)b7S5(t + 1)by = W' S5(t + 1)ba,
5 () { Ry + VL [T + bo Ry 0585 (t + 1)) 1S5 (t 4+ 1)[I 4 bRy '04S5(t + 1)] by}

= —{h3(t+1) = h3(t+1)'ba(Ry + by S5 (t + 1)by) 104 S5(t + 1)}

x [+ byRy *b5S5(t 4 1) 71by,
r5(t)[Re + b5S5(t + 1)ba] + 75 (£)b) S5 (t + 1)by = —h5(t + 1) b,
SI() = Qi+ R} (i (1) + [W' = 3 y(e)0)] S5+ DW= 3 im0y,
JEN JEN
B(1) = —riORpI (0 + ai + [W = 3 pi@0] S:t +1)
JEN
xS by () + W= ST )0 | mie 4+ 1),

JEN JEN

S0 = SRIZOP +3 S0 83+ 1) Y b0
jeEN jEN

FRI(E+1) D b () + 55+ 1),
JEN
fort=0,...,T —1, i€ N, with the boundary conditions:
Si(T) = Qs, hi(T) = ¢, s:(T)=0.
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Proof The follower will consider the following optimal problem:

, 1 1.
Vi) = min {200/ Qun(t) + L Ralof(t.0))? + ()
1 /
+3 [W:E(t) +biot(t, ) + baoi(t, x)} Ss(t+1)
X [Wx(t) + bio (¢, x) + baos (¢, x)] +hy(t+1)

x [W:v(t) +biot(t, ) + bao(t, x)} + 85t + 1)} .
Minimizing the expression in the brace with respect to o5(t, x), we have:
Roos(t, ) + by S5 (t + 1) [Wx(t) 4+ biof (t, x) + baos (t, )] + byh3(t+1) = 0. (24)

Plug the linear form of strategies in the statement of the theorem into (24), thus:

o3t x) = — [RQ LSSt + 1)b2} N,
X {s;(t +1) [Wx(t) + blaf(t,x)} RS+ 1)}. (25)

Considering the best response of the follower in form (25), the leader’s value function
will be the following:

1 1
VP(te) = min < oa(t)' Qua(t) + s Ri(o7(t, ) + gha(t)
o (t,x)eU 2 2
1
+5 (Wa(t) + bioi(t, @) = ba(Rs + byS3 (¢ + 1)b2) ™!

X [(bhS5(t + 1) (Wx(t) + bios (t, @) + byh3(t + 1)}
x S5 (t+ V){Waz(t) + bioj (t,z) — ba(R2 + b

x S3(t+ 1)bg) 1[4 S5 (t + 1)(Wa(t) + bios (t, )
+05h5(t+ 1))} + hi(t+ 1) {Wx(t) + bioj (t, )

— ba(Ry + by S5(t + 1)bg) " [b5S5(t + 1) (Wa(t)

+ biof(tx)) + byhi(t+ 1)]} +si(t+ 1)} .
Similar, minimize the expression in the bace with respect to o§ (¢, x):

Ri05(t,x) 4+ {[I — ba(Ry + bS5 (t + 1)by) " 585 (t + 1)]b1 }' S5 (¢ + 1)

x {Wx(t) + bio§ (t, ) — bo(Ry + byS5(t + 1)bg) "1 [b5S5(t + 1)(Wa(t)

+ b0y (¢, @) + b5hs(t+ )]} + {h(t + 1) [I — ba(R2 + b

x Sy(t 4 1)bg) 104 S5(t +1)]b1} = 0. (26)

Following Woodbury matrix identity, we obtain:

I — by[Ro + bS5 (t 4 1)ba) 10585 (t 4+ 1) = [I + baRy 04 S5 (t 4 1) L.
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Further, the value function satisfies:

St ST (Da(t) + 1 (1)(r) + 53()

Loty Qur(t) + L Ri(o? (1, ))? + (1)

+ = [Wa(t) + bioi(t, ) + baos (¢, 2)]'S;(t + 1)

Wa(t) + bios (t,x) + baos (t,2)] + hi(t + 1)

Wa(t) + bios (t, z) + baos (£, )] + 55 (¢ + 1). (27)

N =

X
X

Plug the assumed strategies into equations (24), (26) and (27). Then take the
coefficients in each equation the same as each other in both sides. At last, the
equations with respect to S?(t), pi(¢t), hi(t), rf(t) and si(t) described in Theorem 3
are derived. O

4. Numerical simulation

4.1. Example 1

Review the constructed symmetric opinion dynamics network game examined in
(Sedakov and Zhen, 2019) firstly. The network is composed of A = {1,---,10},
N = {PI.1, Pl.2} with a symmetric connection i.e., each agent has the same degree
of three, and each player only influences five of agents over twelve periods, so T = 12.
Players employ the level of influence to each connected agent with 41,92 € (0,1)
respectively. The influences demonstrated in matrix W and vectors b1, b2 are divided
equally among all connections. Perform the same values of parameters as evaluated
in (Sedakov and Zhen, 2019) i.e., the desired opinions for players are &; = 0.5, Zo =
0.6, the influence costs are ¢; = 0.3, ¢o = 0.4, the influence levels in low and
high scenarios are 6% = 0.1, §& = 0.05, 6 = 0.4, 6/ = 0.35, and the initial
opinion profile of agents is o = (1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1)". Hereon,
we consider six equilibria with:

(i) OLSEL implies open-loop Stackelberg equilibrium in low scenario,

(i) FBSEL implies feedback Stackelberg equilibrium in low scenario,

(i) FBNEL implies feedback Nash equilibrium in low scenario,

(iv) OLSEH implies open-loop Stackelberg equilibrium in high scenario,

(v) FBSEH implies feedback Stackelberg equilibrium in high scenario,

(vi) FBNEH implies feedback Nash equilibrium in high scenario.

Table 1. Payoffs in different equilibria

Pl 1 Pl. 2

OLSEL 1.5502  4.2825
FBSEL 1.8143  3.0788
FBNEL 1.7106  3.7534
OLSEH 1.7760  4.2298
FBSEH 2.6928  2.5586
FBNEH 1.6710  4.3867
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Fig. 1. Equilibrium strategies in low sce- Fig. 2. Initial and terminal opinions under
nario Equilibria in low scenario

The equilibrium strategies of players, equilibrium trajectories and terminal opin-
ions of agents in both low and high scenarios are presented in Fig. 1-8. As can be
seen from Table 1, player 1 incurs the lowest expense Jy(15*,¢5*) = 1.5502 em-
ploying open-loop Stackelberg equilibrium strategy in low scenario, while player 2
adopts feedback Stackelberg equilibrium strategy in high scenario with his lowest ex-
pense Jy(o5*, 05*) = 2.5586. Compared to Nash equilibrium in low scenario, player
1 will incur more under the same open-loop information structure, however player
2 will incur less. Players will have the same preference in high scenario compared to
Nash equilibrium. The terminal opinions of agents in the six equilibria are shown
as below:

x(T)9TSFL = (0.3742,0.3742,0.3952, 0.3980, 0.3983,
0.4150,0.4112,0.4117,0.4412, 0.4342)’,

x(T)FBIEL = (0.3946,0.3946, 0.4210, 0.4208, 0.4212,
0.4316,0.4311,0.4314, 0.4600, 0.4596)’,

x(T)FPNEL — (0.3790,0.3790,0.4017, 0.4025, 0.4028,
0.4139,0.4124,0.4127,0.4394, 0.4370)’,

z(T)OESEH — (0.4486,0.4485,0.4325,0.4486, 0.4467,
0.5222, 0.5041,0.5065, 0.5341, 0.4838)’,

z(T)FBSFH — (0.5048,0.5049, 0.5569, 0.5483, 0.5496,
0.4945,0.5035,0.5026, 0.5379, 0.5637),

x(T)FBNEH — (0.4517,0.4516,0.4273,0.4431, 0.4411,
0.5159,0.4986,0.5007, 0.5166, 0.4681)".

Compared to Nash equilibrium both in low and high scenarios, agents hold more sim-
ilar terminal opinions as in open-loop Stackelberg equilibrium. Furthermore, under
feedback Stackelberg influences agents hold the higher levels of terminal opinions
than under the other two equilibria in low scenario. Unlike low scenario, agents
1,2,3,4,5 and 10 hold a big difference in terminal opinions between the influences
of feedback Stackelberg equilibrium strategies and Nash equilibrium strategies in
high scenario. And whats more, agents 6,7,8 and 9 hold a similar terminal opinions
under the three different influences.
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4.2. Example 2: Zachary network

Fig. 9. Zachary karate club network

Now cousider a social network from (Zachary, 1977). Zachary observed a universi-
ty-based karate club for a period of three years from 1970 to 1972. The relationships
among the 34 individuals (i.e. V = {1, - , 34}) interacting in contexts outside those
of karate classes, workouts, and club meetings were presented in Fig. 9. The karate
club’s chief administrator (player 1, i.e., node 34 in Fig. 9) and the instructor (player
2, i.e., node 1 in Fig. 9) had an incipient conflict over the price of karate lessons, so
N = {1,34}. The administrator preferred stable prices, while the instructor wished
to raise prices substantially. As time passed there was a series of increasingly sharp
factional confrontations over the price of lessons. Below we explore the behaviours of
all members in the club under the proposed framework of opinion dynamics game.

The following procedure (Avrachenkov et al., 2017) estimates matrix W and
vectors by, ba. Denote N; = {j € V|(i,) € E} as the set of neighbors of player (or
agent) ¢ € N, and d; = |N,| is called the degree of player (or agent) i € N. Define
below function for ¢ € V:

07j¢N’ia
did; .

vij =\ 50 €N
L, j=1

where m = % > icv di is the total number of edges in the network. Based on func-
tions above, assume:

Vij

— 0 Vi,jeA
Uz‘i-f-zkeNiUz‘k’ ’ ’

Wiy =

L, Vie N, jeA.

b =
> ken, Vik
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Let the desired proportions of changing the price of karate lessons of the admin-
istrator and the instructor be 0.4 and 0.8 respectively. Consider both administrator
and instructor attempting to influence all trainees in the club with the same cost
of controls ¢; = ¢ = 40 during the horizon of 36 months, i.e. 7' = 36. Suppose
U =10,1].
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rium trajectories trajectories

Administrator acts as leader Let the set of states be X = [0, 1]. As administra-
tor is the leader so &1 = 0.4, &2 = 0.8. Assume all trainees in the club (i.e., nodes
indexed from 2 to 33 in Figure 9, so A = {2,---,32}) have the following initial
opinions:

T1+T2 , L1+ Ty /
2 , L2,T1 X 137 2 y Loy X 127

R i o B / A ;L1 4 T2
07x17x27 2 ,$2,$1,$2X12,0,0,(E2X15, 2

where 1, is the column vector of ones of size k.

As we can see in Fig. 10., administrator has lower controls than instructor in both
open-loop and feedback Stackelberg equilibria. Administrator needs to put stronger
control in feedback Nash equilibrium than in open-loop case, while instructor needs
to put stronger control in open-loop Nash equilibrium than in feedback case except
the last two months. From the numerical results, we find that both players have
non-monotonic controls.

xog =0.1 X 135 + (52'1 X 1’7,

7£i.2)la
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The corresponding equilibrium terminal opinions of all trainees in the karate
club are presented as follows (See Fig. 11.):

2(T)°F5F = (0.0790, 0.0920, 0.0765, 0.0590, 0.0581, 0.0581, 0.0776, 0.0863,
0.1239,0.0590, 0.0870, 0.0707, 0.0741,0.1367, 0.1367, 0.0963,
0.0744, 0.1367,0.0750, 0.1367, 0.0744, 0.1367, 0.1204, 0.1607,
0.1628,0.1437,0.1139,0.1110, 0.1224, 0.1078, 0.0899, 0.1114)’,

2(T)FPSF = (0.0806,0.0930,0.0783,0.0621, 0.0610, 0.0610, 0.0796, 0.0368,
0.1238, 0.0621,0.0910, 0.0738, 0.0753, 0.1359, 0.1359, 0.1010,
0.0772,0.1359,0.0761, 0.1359, 0.0772, 0.1359, 0.1200, 0.1600,
0.1620,0.1423,0.1139,0.1113,0.1219, 0.1082, 0.0901, 0.1114)’.

The opinions of all trainees following the influences of both administrator and in-
structor under different information structures are presented in Fig. 12-13. From
the equilibrium trajectories we know that under the same cost of controls, players’
controls only have a slightly deviation from each of the concepts of equilibria. Thus
the equilibrium opinions of agents is close to each other under different equilibria.
Although there are so many similarity, players have their preference of information
structure. The administrator and instructor will incur total equilibrium expenses as
their payoffs as shown in Table 2.

Table 2. Payoffs in Stackelberg Equilibria

Open-loop Feedback

Ji(ui® ui®)  73.3216  74.1277
Jo(ui® ub®)  486.6995 483.4364

Instructor acts as leader As instructor is the leader, so Z; = 0.8, &3 = 0.4, then
all trainees in the club have the same profile of initial opinions as in the previous
case:

N T1+32 . . T1+ 22 .
! li i
Zo =0.1 x 132 + (IQ X 17, —, 21,22 X 13, T,Il X 12,

I1—|—I2 ~ N\

SO T )
2 axl)-

05 T2,T1,

NoA A / A /
y L1, XL2,T1 X 12507051:1 X 155

The levels of influence of administrator and instructor are presented in Fig. 14.
And the corresponding equilibrium terminal opinions of all trainees in the karate
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club are presented as follows (See Fig. 15.):

=(T)°5E = (0.1035,0.0968,0.1073, 0.1260, 0.1226,0.1226, 0.1119, 0.0750,
0.0874,0.1260,0.1735,0.1338, 0.0843, 0.0764, 0.0764, 0.1951,
0.1309, 0.0764, 0.0805, 0.0764, 0.1309, 0.0764, 0.0725, 0.1194,
0.1151,0.0689, 0.0806, 0.0828, 0.0694, 0.0828, 0.0708, 0.0773)’,

=(T)FBSF = (0.1064,0.0991, 0.1105, 0.1307, 0.1270, 0.1270, 0.11530.0763,
0.0884,0.1307,0.1793,0.1386, 0.0864, 0.0764, 0.0764, 0.2015,
0.1354,0.0764, 0.0825, 0.0764, 0.1354, 0.0764, 0.0728, 0.1206,
0.1160,0.0683,0.0815, 0.0839, 0.0696, 0.0840, 0.0718, 0.0781)".
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The opinions of all trainees following the influences of both administrator and
instructor under different information structures are presented in Fig. 16-17. The
administrator and instructor will incur total equilibrium expenses as their payoffs
as shown in Table 3. Apparently, both of them prefer the feedback information
structure.

As shown in Table 2 and 3, the instructor acts as leader prefers the feedback
Stackelberg equilibrium with a much more lower expense 71.3626, which is not the
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Table 3. Payoffs in Stackelberg Equilibria

Open-loop Feedback

Ji(ui®, ui®)  484.6106 485.5769
Jo(wi® us®)  72.7073  71.3626

same information structure as previous case. In contrast, the administrator will
incur a much more expense 484.6106 than previous case.

5. Conclusion

This paper investigated a two-person discrete-time opinion dynamics game in a
social network. The non-cooperative Stackelberg equilibrium was explored under
open-loop and feedback information structures. The statements of theoretical con-
tents were characterized, which draw support from Pontryagin’s minimum principle
and dynamic programming theory. To perform numerical simulation, the compar-
ison in a symmetric opinion dynamics network with the agents of three types was
examined, whats more the Zachary karate club network was modeled as the opinion
dynamics game. Compared to Nash equilibrium in low scenario of the first example,
player 1 will incur more under the same open-loop information structure, however
player 2 will incur less. Furthermore, players will have the same preferences in high
scenario compared to Nash equilibrium. In the Zachary network, the equilibria were
obtained under different leaderships of the administrator and the instructor. As
it turns out that both administrator and instructor prefer acting as the leader in
feedback information structure.
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