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Abstrat In the paper, we onsider a stohasti game model of data trans-

mission with three asymmetri players (i.e. network nodes), in whih the

network is given and does not hange over time. The players aim to transmit

as many pakages as possible to the orresponding terminal nodes through

the ommon node whose apaity is two. We assume that eah player has

a �nite apaity bu�er for storing data pakages. The dynami proess of

data transmission is modeled as a stohasti game with �nite set of states.

Existene of the Nash equilibrium and a ooperative solution is proved. We

�nd the ooperative strategy pro�le and Nash equilibrium in pure strategies.

The estimation of the prie of anarhy is alulated for a numerial example.

Keywords: ALOHA-like sheme, stohasti game, data transmission, prie

of anarhy.

1. Introdution

Theory of stohasti games is an important part of dynami game theory. In on�it-

ontrolled systems with probabilisti transition from state to state, the proess an

be modeled by a stohasti game with the �nite or in�nite set of states. For example,

in (Bure and Parilina, 2019), a data transmission model with �nite set of states is

presented. A game-theoretial model of data transmission in a network is introdued

in (Afghah et al., 2013). The data transmission models with ALOHA-like sheme

are onsidered by Altman et al. (2004); Marban et al. (2013) and Sagduyu and

Ephremides (2006). The model of two players (i.e. network nodes) is introdued,

in whih players or nodes aim to transmit pakages to the terminal nodes inde-

pendently or under ooperation. But the transmission of pakages must go through

the ommon node whih have the given apaity. In the model, the appearane

of pakages at di�erent node has di�erent probabilities and we assume that the

probabilities do not vary on time (see Bure and Parilina, 2019).

Other data transmission models for the networks with di�erent strutures are

also introdued in (Bure and Parilina, 2017a, 2017b). Bure and Parilina (2017b)

onsider the data transmission model with imperfet information on the presene

of pakages in the other player's queue. They �nd the Nash equlibrium and the

pro�le of ooperative strategies. In order to show the omparison between these two

equlibria, the prie of anarhy is alulated. Fink (1964), Raghavan and Filar (1991)

onsider the non-ooperative stohasti games. In (Raghavan and Filar, 1991) the

⋆
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algorithms of �nding the Nash equilibria are onsidered. The existene of the Nash

equilibrium in n-person stohasti game is proved in Fink (1964). Moreover, the

onstrution of a model of a ooperative game of data transmission is represented

in (Bure and Parilina, 2019).

In the paper, we onsider a game theoreti model of data transmission with three

players based on the model proposed in (Bure and Parilina, 2019), in whih they

onsider a two-person stohasti game. We make an assumption that eah node has

a bu�er of �nite apaity for storing pakages. The next extension of the model

in (Bure and Parilina, 2019) is that the apaity of the ommon node is two. We

onsider non-ooperative and ooperative senarios of the game and de�ne the pure

strategy Nash equilibrium and the pro�le of ooperative strategies.

The struture of the paper is the following. In Setion 2, the model of data

transmission proess is introdued. In Setion 3, stohasti game is onstruted

based on assumptions given in Setion 2. In Setion 4, we make a simulation study.

Setion 5 onludes. The table ontaining transition probabilities used in three-

person stohasti game model is represented in Appendix.

2. Model

We onsider a network represented in Fig. 1 whih is a data transmission ALOHA-

like sheme. There are three players who are nodes 1, 2 and 3 aiming to send as

many data pakages as possible to the nodes r1, r2, r3, respetively. From the data

transmission sheme, the pakages should go through a ommon node whose apa-

ity is two. This node an be used by any of three players without any restritions.

Player i ∈ {1, 2, 3} has a bu�er of apaity ki whih means that it an store from

0 to ki data pakages of unit apaities at eah time period. If at the beginning of

eah period, Player i possesses less than ki pakages, then he may reeive a data

pakage of a unit apaity with probability υi ∈ (0, 1), respetively.

Fig. 1. Data transmission sheme.

We assume that player an transmit zero, one and two pakages to the destina-

tion node in eah time period. Eah player an transmit two pakages simultaneously

and they will be suessfully delivered if other players do not transmit. If three play-

ers simultaneously transit the pakages, the pakages are bak to the Nodes. We

use some parameters to model the data transmission. If the pakage is suessfully

delivered to the destination node, the payo� of this player is 1 minus the osts of

a pakage transmission equal to c ∈ (0, 1). And the osts of a player for one time

period delay per eah unit pakage is d ∈ [0, 1), d ≪ 1.
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We de�ne the state of the system in time period t as (ω1(t), ω2(t), ω3(t)), where
ωi(t) ∈ {0, 1, . . . , ki} is the number of data pakages at Player i's bu�er, i = 1, 2, 3.
The set of system states at any time period t is denoted by Ω, |Ω| = (k1 + 1)(k2 +
1)(k3 + 1).

Under the given assumptions, we de�ne a stohasti game with a �nite set of

states and �nite set of ations.

3. Stohasti Game

We assume that time is disrete. The set of states at eah time period is Ω = {ω =
(ω1, ω2, ω3) : ωi ∈ [0, ki], i = 1, 2, 3}. Suppose that any player does not know the

number of pakages at other players' bu�ers. At state ω the set of player i's ations
is Aω

i , that is

Aω
i =

{

{t, w}, if ωi > 0,

{w}, if ωi = 0,
(1)

where ation t means �to transmit� a pakage, w means �to wait�.

We onsider all possible states and de�ne the players' payo� funtions:

1. If ω = (ω1, ω2, ω3), where ω1 = ω2 = ω3 = 0, the payo� funtion of player i is
uω
i (a

ω
1 , a

ω
2 , a

ω
3 ) = 0 for any i = 1, 2, 3 and aω1 = aω2 = aω3 = w.

2. If ω = (ωi, ωj, ωl) suh that ωi > 0, ωj = 0, ωl = 0, then aωi ∈ {t, w} aωj =
aωl = w. And uω

i (a
ω
i , w, w) = 1− c− d(ωi − 1) when aωi = t and uω

i (a
ω
i , w, w) =

−dωi when aωi = w. The payo� funtions of player j and l are uω
j (a

ω
i , w, w) =

uω
l (a

ω
i , w, w) = 0 for any aωi .

3. If ω = (ωi, ωj, ωl) suh that ωi > 0, ωj > 0 and ωl = 0, then the payo� matries

are de�ned as follows

Player i:

(

1− c− d(ωi − 1) 1− c− d(ωi − 1)
−dωi −dωi

)

,

Player j:

(

1− c− d(ωj − 1) −dωj

1− c− d(ωj − 1) −dωj

)

,

Player l:

(

0 0
0 0

)

.

where the Player i hooses a row (row 1 orresponds to ation t, row 2 orre-

sponds to ation w) and Player j hooses a olumn (olumn 1 orresponds to

ation t, olumn 2 orresponds to ation w). Player l has a unique ation w.
4. If the state is ω = (ωi, ωj , ωl) suh that ωi > 0, ωj > 0, ωl > 0, where any Player

i, j and l has two ations t and w. De�ne the payo� matries in the following

way. If Player l hooses ation t, then the payo� matries of Players i, j and l
orrespondingly take the forms:

Player i:

(

−c− dωi 1− c− d(ωi − 1)
−dωi −dωi

)

,

Player j:

(

−c− dωj −dωj

1− c− d(ωj − 1) −dωj

)

,

Player l:

(

−c− dωl 1− c− d(ωl − 1)
1− c− d(ωl − 1) 1− c− d(ωl − 1)

)

.
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If Player l hooses the ation w, then the payo� matrix takes the form

Player i:

(

1− c− d(ωi − 1) 1− c− d(ωi − 1)
−dωi −dωi

)

,

Player j:

(

1− c− d(ωj − 1) −dωj

1− c− d(ωj − 1) −dωj

)

,

Player l:

(

−dωl −dωl

−dωl −dωl

)

.

In the last six matries Player i hooses a row (row 1 orresponds to ation

t, row 2 orresponds to ation w) and Player j hooses a olumn (olumn 1

orresponds to ation t, olumn 2 orresponds to ation w).

We assume that the players' strategies in the whole game are stationary. The sta-

tionary strategy depends on the state and does not depend on time and the history

of the stage. We assume that Player i uses the same strategy in any state (ωi, ωj, ωl),
where ωi ∈ {1, . . . , ki − 1}, and he may use another strategy in state (ωi, ωj, ωl),

where ωi = ki. Therefore, Player i's mixed stationary strategy ηi is (pfi , p
nf
i ), i =

1, 2, 3, where pfi ∈ [0, 1] is a probability of hoosing ation t in any state (ωi, ωj, ωl)

when ωi = ki, ωj ∈ [0, kj ], ωl ∈ [0, kl], or pfi is the probability of transmitting a

pakage when the bu�er of player i is full. Let pnfi ∈ [0, 1] is a probability of hoos-

ing ation t in any state (ωi, ωj , ωl), when ωi ∈ [1, ki − 1], ωj ∈ [0, kj], ωl ∈ [0, kl],

or pnfi is probability of transmitting a pakage when the bu�er of player i is not

full. The stationary strategy pro�le is (η1, η2, η3) = ((pf1 , p
nf
1 ), (pf2 , p

nf
2 ), (pf3 , p

nf
3 )).

Denote by Ξi the set of stationary strategies of Player i. The set of pure stationary
strategies of Player i = 1, 2, 3 is {(0, 0), (0, 1), (1, 0), (1, 1)}.

Next we need to de�ne the transition probabilities π(ω′′/ω′, η) whih are alu-

lated for any states ω′, ω′′ ∈ Ω and any strategy pro�le η. The transition probabili-

ties π(ω′′/ω′, η) are represented in Table 1 (see Appendix), where ω′ = (ω′

i, ω
′

j, ω
′

l),
ω′ = (ω′′

i , ω
′′

j , ω
′′

l ), i, j, l = 1, 2, 3, i 6= j 6= l and

η = (ηi, ηj , ηl) = ((pfi , p
nf
i ), (pfj , p

nf
j ), (pfl , p

nf
l )).

Therefore, we de�ne three-person stohasti game G by a tuple

〈Ω, {Aω
i }i=1,2,3;ω∈Ω, {Ξi}i=1,2,3, {π(ω

′′/ω′, η)}ω′∈Ω,ω′′∈Ω,η∈Ξ1×Ξ2×Ξ3
, δ〉 ,

where δ ∈ (0, 1) is a ommon disount rate.

We alulate the disounted expeted payo� in stohasti game G given by

Ei(η) = π0(I− δΠ(η))−1ui(η), (2)

where strategy pro�le η is given and π0 is an initial probability distribution over

the set of states Ω, I is an identity matrix of size m, Π(η) is a m × m matrix of

transition probabilities π(·/·, η) whose (l, n)th entry is a probability of transition

from state ω(l)
to state ω(n)

under the realization of pro�le η. The vetor ui(η) is
(uω

i (η(ω)) : ω ∈ Ω) whih the olletion of payo�s in states under realization of the

ation pro�les orresponding to strategy pro�le η. Here m is the ardinality of the

set of states, i. e., m = |Ω|.
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We onsider two approahes (ooperative and non-ooperative) to �nd a solution

in game G. We onsider the Nash equilibrium as an optimality priniple within a

non-ooperative approah. Following the ooperative approah, we �nd the pro�le

of ooperative stationary strategies maximizing the total players' expeted payo�

in game G.

Theorem 1 (Fink, 1964). In game G, there exist the Nash equilibrium and the

pro�le of ooperative stationary strategies.

To estimate the sel�shness in the network we alulate the prie of anarhy

(Koutsoupias and Papadimitriou, 1999) given by

PoA(G) =

∑3
i=1 Ei(η

∗)

minη∈NE(G)

∑3
i=1 Ei(η)

, (3)

where NE(G) is the set of the Nash equilibrium in game G, η∗ is the pro�le of

ooperative strategies. One an notie the PoA is not de�ned if the sum in the

denominator in (3) is null.

4. Simulation study

We onsider game G with the following parameters: c = 0.2, d = 0.03. Let Player 1
have a bu�er of the smallest apaity k1 = 1, and Players 2 and 3 have bu�ers of

apaities k2 = 2 and k3 = 3, respetively. Any player has a disount fator δ = 0.99.
The probabilities that the pakage ours at Player 1, 2 and 3 are v1 = 0.6, v2 = 0.6
and v3 = 0.3, respetively. There are 24 states in the game. We assume that it

starts from the state (0, 0, 0), when there are no pakages at the nodes. The set of

pure stationary strategy for Player 1 is {(0, 0), (1, 0)}. The sets of pure stationary

strategies of Player 2 and 3 are the same, whih is {(0, 0), (0, 1), (1, 0), (1, 1)}. Player

1's mixed strategy is de�ned by a probability pf1 . Player 2 and 3's mixed strategies

are de�ned by a vetor (pfi , p
nf
i ), i = 2, 3. And the size of transition matrix is 24×24.

In order to �nd the pro�le of ooperative strategies, we need to alulate the to-

tal players' payo� in the whole game for eah pure stationary strategy pro�le. There

are 32 pro�les in pure stationary strategies in the game with given parameters. The

maximal expeted total payo� is obtained under the pro�le of pure stationary strate-

gies. In non-ooperative setting, we fous on the Nash equilibria in pure stationary

strategies to avoid omputational di�ulties. In order to �nd the Nash equilibria,

we alulate the matries of Players' expeted payo�s by given above formulae as

follows. In eah payo� matrix, Player 1 hooses rows, Player 2 hooses olumns and

the Player 3 hooses matries.

When Player 3 hooses the pure stationary strategy (0, 0), the payo� matrix for

Player 1 is A1, for Player 2 is B1, and for Player 3 is C1:

A1 =

(

−2.9503 −2.9503 −2.9503 −2.9503
47.5200 47.5200 47.5200 47.5200

)

B1 =

(

−5.8518 47.5200 43.7829 47.5200
−5.8518 47.5200 43.7829 47.5200

)

C1 =

(

−8.4263 −8.4263 −8.4263 −8.4263
−8.4263 −8.4263 −8.4263 −8.4263

)
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When Player 3 hooses the pure stationary strategy (0, 1), the payo� matrix for

Player 1 is A2, for Player 2 is B2, and for Player 3 is C2:

A2 =

(

−2.9503 −2.9503 −2.9503 −2.9503
47.5200 46.4694 43.4095 43.3403

)

B2 =

(

−5.8518 47.5200 43.7829 47.5200
−5.8518 −1.0626 39.6724 43.7959

)

C2 =

(

23.7600 23.7600 23.7600 23.7600
23.7600 21.2132 −7.3135 −7.8366

)

When Player 3 hooses the pure stationary strategy (1, 0), the payo� matrix for

Player 1 is A3, for Player 2 is B3, and for Player 3 is C3:

A3 =

(

−2.9503 −2.9503 −2.9503 −2.9503
47.5200 47.9689 −13.4913 −13.5204

)

B3 =

(

−5.8518 47.5200 43.7829 47.5200
−5.8518 2.2479 −17.2284 −16.0455

)

C3 =

(

16.5273 16.5273 16.5273 16.5273
16.5273 17.3129 −24.1583 −24.1777

)

When Player 3 hooses the pure stationary strategy (1, 1), the payo� matrix for

Player 1 is A4, for Player 2 is B4, and for Player 3 is C4:

A4 =

(

−2.9503 −2.9503 −2.9503 −2.9503
47.5200 46.4402 −16.6203 −17.7001

)

B4 =

(

−5.8518 47.5200 43.7829 47.5200
−5.8518 −2.4115 −20.3574 −20.3981

)

C4 =

(

23.7600 23.7600 23.7600 23.7600
23.7600 23.3522 −24.1474 −24.9539

)

There are three Nash equilibria in pure strategies in the game de�ned by pay-

o� matries (A1, B1, C1), (A2, B2, C2), (A3, B3, C3), (A4, B4, C4). The �rst one is

ξ1 = (0, 1), ξ2 = (0, 0, 0, 1), ξ3 = (0, 1, 0, 0) and the payo� of Player 1, 2 and 3 is

43.3403, 43.7959, -7.8366, respetively. The seond one is ξ1 = (1, 0), ξ2 = (0, 0, 0, 1),
ξ3 = (0, 0, 0, 1) and the payo� of Player 1, 2 and 3 is -2.9503, 47.5200, 23.7600, re-

spetively. The third one is ξ1 = (0, 1), ξ2 = (0, 1, 0, 0), ξ3 = (0, 0, 0, 1) and the payo�

of Player 1, 2 and 3 is 46.4402, -2.4115, 23.3522, respetively. Among all of these

payo�s, the �worst� Nash equilibrium with the smallest total payo� is the third one

ξ1 = (0, 1), ξ2 = (0, 1, 0, 0), ξ3 = (0, 0, 0, 1). This pro�le of strategies in three-person

normal-form game orresponds to the pro�le in pure stationary strategies pf1 = 1

(to transit a pakage with probability 1 when the bu�er is full), pf2 = 0, pnf2 = 1 (to

transit a pakage with probability 0 when the bu�er is full, and to transit a pakage

with probability 1 when the bu�er is not full), pf3 = 1, pnf3 = 1 (to transit a pakage

with probability 1 when the bu�er is full, and to transit a pakage with probability

1 when the bu�er is not full). This total payo� in this pure strategy Nash equilibria

is 67.3809.
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There are two pro�le of ooperative strategies (η1, η2, η3), where η1 = (0, 1),
η2 = (0, 1, 0, 0), η3 = (1, 0, 0, 0) and the other one is η1 = (0, 1), η2 = (0, 0, 0, 1), η3 =
(1, 0, 0, 0), with the total payo� 86.6137. In ooperation, Player 3 never transmits

pakages whatever the other two players hoose. Then the prie of anarhy in game

G is not less than 1.2854. We alulate the lower bound of the prie of anarhy

beause we fous on the pure Nash equilibria. If we alulate all the equilibria

inluding mixed-strategies Nash equilibria, the prie of anarhy may inrease.

5. Conlusion

We have onsidered a model of data transmission with a given network topology as

a three-person stohasti game with �nite set of states. The players have the bu�ers

of �nite apaities for storing the data pakages. We have represented a simulation

study of the model. The pro�le of ooperative strategies and the pure strategy Nash

equilibria have been alulated, and lower bound of the prie of anarhy has been

alulated.
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Appendix

In Table 1 the probabilities are grouped by any three rows. In any group, the �rst

row ontains the transition probabilities π(ω′′/ω′, η) from state ω′
de�ned in the

seond row to state ω′′
de�ned in the third row. In the ases whih are not desribed

in Table 1, transition probabilities equal zero.
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Table 1. Transition probabilities.

π(ω′′/ω′, η) vivjvz vi(1− vj)(1− vz) vivj(1− vz)

ω′ = (ω′

i, ω
′

j , ω
′

z) ω′

i = ω′

j = ω′

z = 0 ω′

i = ω′

j = ω′

z = 0 ω′

i = ω′

j = ω′

z = 0

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z ) ω
′′

i = ω′′

j = ω′′

z = 1
ω′′

i = 1,
ω′′

j = ω′′

z = 0
ω′′

i = ω′′

j = 1,
ω′′

z = 0

π(ω′′/ω′, η)
(1− vi)(1− vj)·

·(1− vz)
(1− vi)(1− vj)·

·pnf
z (1− vz)

(1− vi)(1− vj)·

·[pnf
z vz + (1− vz)·
·(1− pnf

z )]

ω′ = (ω′

i, ω
′

j , ω
′

z) ω′

i = ω′

j = ω′

z = 0
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z ) ω
′′

i = ω′′

j = ω′′

z = 0
ω′′

i = ω′′

j = 0,
ω′′

z = ω′

z − 1
ω′′

i = ω′′

j = 0,
ω′′

z = ω′

z

π(ω′′/ω′, η)
(1− vi)(1− vj)·

·(1− pnf
z )vz

(1− vi)vj ·

·pnf
z (1− vz)

(1− vi)vj ·

·[(1− vz)(1− pnf
z )]+

+pnf
z vz

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′′

j = 0,
ω′′

z = ω′

z + 1
ω′′

i = 0, ω′′

j = 1,
ω′′

z = ω′

z − 1
ω′′

i = 0, ω′′

j = 1,
ω′′

z = ω′

z

π(ω′′/ω′, η)
(1− vi)vj ·

·(1− pnf
z )vz

vivj ·

·pnf
z (1− vz)

vivj [p
nf
z vz+

+(1− vz)(1− pnf
z )]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 0, ω′′

j = 1,
ω′′

z = ω′

z + 1
ω′′

i = ω′′

j = 1,
ω′′

z = ω′

z − 1
ω′′

i = ω′′

j = 1,
ω′′

z = ω′

z

π(ω′′/ω′, η)
vivj ·

·(1− pnf
z )vz

(1− vi)p
nf
j (1− vj)·

·pnf
z (1− vz)

(1− vi)p
nf
j (1− vj)·

·[pnf
z vz + (1− vz)·
·(1− pnf

z )]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ω′

j = 0,
ω′

z ∈ [1, kz − 1]

ω′

i = 0,
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′′

j = 1,
ω′′

z = ω′

z + 1

ω′′

i = 0,
ω′′

j = ω′

j − 1,
ω′′

z = ω′

z − 1

ω′′

i = 0,
ω′′

j = ω′

j − 1,
ω′′

z = ω′

z

π(ω′′/ω′, η)

(1− vi)·

·pnf
j (1− vj)·

·(1− pnf
z )vz

(1− vi)[p
nf
j vj+

(1− pnf
j )(1− vj)]·

·[pnf
z vz + (1− pnf

z )·
·(1− vz)]

(1− vi)(1− pnf
z )·

·vz [p
nf
j vj+

+(1− vj)(1− pnf
j )]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = 0,
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 0,
ω′′

j = ω′

j − 1,
ω′′

z = ω′

z + 1

ω′′

i = 0,
ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = 0,
ω′′

j = ω′

j ,

ω′′

z = ω′

z + 1
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π(ω′′/ω′, η)

(1− vi)·

·(1− pnf
j )vj ·

·(1− pnf
z )vz

vip
nf
j (1− vj)·

·pnf
z (1− vz)

vip
nf
j (1− vj)·

·[vzp
nf
z + (1− vz)·

·(1− pnf
z )]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 0,

ω′′

j = ω′

j + 1,

ω′′

z = ω′

z + 1

ω′′

i = 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z − 1

ω′′

i = 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

π(ω′′/ω′, η)
vip

nf
j (1− vj)·

·(1− pnf
z )vz

vi[p
nf
j vj+

(1− pnf
j )(1− vj)]·

·[pnf
z vz + (1− pnf

z )·
·(1− vz)]

vi(1− pnf
z )vz·

·[vjp
nf
j + (1− vj)·

·(1− pnf
j )]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z + 1

ω′′

i = 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z + 1

π(ω′′/ω′, η)
vi(1− pnf

j )vj ·

·(1− pnf
z )vz

(1− vi)p
nf
i ·

·pnf
j (1− vj)·

·(1− pnf
z )(1− vz)

(1− vi)p
nf
i ·

·pnf
j (1− vj)·

·(1− pnf
z )vz

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = 0,

ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 1,

ω′′

j = ω′

j + 1,

ω′′

z = ω′

z + 1

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z + 1

π(ω′′/ω′, η)

(1− vi)p
nf
i {vj ·

·pnf
j (1− pnf

z )(1− vz)+

+(1− pnf
j )(1− vj)·

·[pnf
z vz + (1− pnf

z )·
·(1− vz)]}

(1− vi)p
nf
i vz·

·(1− pnf
z )[(1− pnf

j )·

·(1− vj) + pnf
j vj]

(1− vi)p
nf
i ·

·(1− pnf
j )vj ·

·(1− pnf
z )vz

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i − 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z + 1

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j + 1,

ω′′

z = ω′

z + 1
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π(ω′′/ω′, η)

pnf
i pnf

j pnf
z (1− vi)·

·(1− vj)vz + pnf
i pnf

j ·

·(1− pnf
z )vivjvz+

+pnf
i (1− pnf

j )(1− pnf
z )·

·vi(1− vj)vz + (1− pnf
i )·

·pnf
j (1− pnf

z )(1− vi)vjvz+

+(1− pnf
i )(1− pnf

j )(1− pnf
z )·

·(1− vi)(1− vj)vz

pnf
i pnf

j pnf
z (1− vi)·

·(1− vj)(1− vz) + pnf
i pnf

j ·

·(1− pnf
z )vivj(1− vz)+

+pnf
i (1− pnf

j )pnf
z ·

·vi(1− vj)vz + pnf
j ·

·pnf
z (1− pnf

i )(1− vi)vjvz+

+pnf
i (1− pnf

j )(1− pnf
z )vi·

·(1− vj)(1− vz)+

+(1− pnf
i )pnf

j (1− pnf
z )·

·(1− vi)vj(1− vz)+

+(1− pnf
i )(1− pnf

j )pnf
z ·

·(1− vi)(1− vj)vz+

+(1− pnf
i )(1− pnf

j )(1− pnf
z )·

·(1− vi)(1− vj)(1− vz)

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i,

ω′′

j = ω′

j ,

ω′′

z = ω′

z + 1

ω′′

i = ω′

i,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

π(ω′′/ω′, η)

pnf
i pnf

j pnf
z (1− vi)vjvz+

+(1− pnf
j )vj(1− pnf

z )vz[p
nf
i vi·

·(1− pnf
i )(1− vi)]

pnf
i pnf

j pnf
z vivjvz + (1− pnf

i )·

·(1− pnf
j )(1− pnf

z )vivjvz

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z ∈ [1, kz − 1]

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i,

ω′′

j = ω′

j + 1,

ω′′

z = ω′

z + 1

ω′′

i = ω′

i + 1,

ω′′

j = ω′

j + 1,

ω′′

z = ω′

z + 1

π(ω′′/ω′, η) (1− vi)(1− vj)p
f
z (1− vz) (1− vi)(1− vj)[1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ω′

j = 0,

ω′

z = kz

ω′

i = ω′

j = 0,

ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′′

j = 0,

ω′′

z = ω′

z − 1
ω′′

i = ω′′

j = 0,

ω′′

z = ω′

z

π(ω′′/ω′, η) (1− vi)vjp
f
z (1− vz) (1− vi)vj [1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ω′

j = 0,

ω′

z = kz

ω′

i = ω′

j = 0,

ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 0, ω′′

j = 1,

ω′′

z = ω′

z − 1
ω′′

i = 0, ω′′

j = 1,

ω′′

z = ω′

z

π(ω′′/ω′, η) vivjp
f
z (1− vz) vivj [1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ω′

j = 0,

ω′

z = kz

ω′

i = ω′

j = 0,

ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′′

j = 1,

ω′′

z = ω′

z − 1
ω′′

i = ω′′

j = 1,

ω′′

z = ω′

z
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π(ω′′/ω′, η)
(1− vi)p

f
j (1− vj)·

·pfz (1− vz)

(1− vi)p
f
j (1− vj)·

·[1− pfz (1− vz)]

(1− vi)[1− pfj (1− vj)]·

·[1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = 0, ω′

j = kj ,
ω′

z = kz

ω′

i = 0, ω′

j = kj ,

ω′

z = kz

ω′

i = 0, ω′

j = kj ,

ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 0,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z − 1

ω′′

i = 0,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = 0,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

π(ω′′/ω′, η)
vip

f
j (1− vj)·

·pfz (1− vz)

vip
f
j (1− vj)·

·[1− pfz (1− vz)]

vi[1− pfj (1− vj)]·

·[1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = 0, ω′

j = kj ,
ω′

z = kz

ω′

i = 0, ω′

j = kj ,

ω′

z = kz

ω′

i = 0, ω′

j = kj ,

ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z − 1

ω′′

i = 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

π(ω′′/ω′, η)
pfi (1− vi)p

f
j ·

·(1− vj)(1− pfz )

pfi (1− vi)[p
f
j ·

·vj(1− pfz )+

+(1− pfj )·

·[1− pfz (1− vz)]

pfi p
f
j p

f
z+

+pfi p
f
j (1− pfz )vivj+

+pfi (1− pfj )p
f
zvivz+

+(1− pfi )p
f
j p

f
zvjvz+

+pfi (1− pfj )(1− pfz )vi+

+(1− pfi )p
f
j (1− pfz )vj+

+(1− pfi )(1− pfj )p
f
zvz+

+(1− pfi )(1− pfj )·

·(1− pfz )

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i = ki, ω
′

j = kj ,
ω′

z = kz

ω′

i = ki, ω
′

j = kj ,

ω′

z = kz

ω′

i = ki, ω
′

j = kj ,

ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i − 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = ω′

i,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

π(ω′′/ω′, η)
(1− vi)p

nf
i (1− vj)·

·pfj (1− pfz )

(1− vi)p
nf
i ·

·{pfj vj(1− pfz )+

+(1− pfj )·

·[1 − pfz (1− vz)]}

(1− vi)(1− pnf
i )pfj ·

·(1− vj)p
f
z (1− vz)

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j = kj ,

ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j = kj ,
ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j = kj ,
ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i − 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = ω′

i,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z − 1

π(ω′′/ω′, η)

(1− vj)p
f
j ·

·{pnf
i vi(1− pfz )+

+(1− pnf
i )(1− vi)·

·[1− pfz (1− vz)]}

vi(1− pnf
i )pfj ·

·(1− vj)p
f
z (1− vz)

vi(1− pnf
i )·

·pfj (1− vj)·

·[1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j = kj ,

ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j = kj ,
ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j = kj ,
ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = ω′

i + 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z − 1

ω′′

i = ω′

i + 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z
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π(ω′′/ω′, η)

(1− pnf
i )vi·

·[1 − pfj (1− vi)]·

·[1 − pfz (1− vz)]

(1− vi)p
nf
i ·

·(1− vj)p
nf
j ·

·(1− p
f)
z

(1− vi)p
nf
i ·

·(1− vz)p
f
z ·

·(1− pnf
j )(1− vj)

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j = kj ,
ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i + 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j − 1,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z − 1

π(ω′′/ω′, η)

pnf
i (1− vi)·

·{pnf
j vj(1− pfz )+

+(1− vj)(1− pnf
j )·

·[1− pfz (1− vz)]}

(1− vi)p
nf
i ·

·vj(1− pnf
j )·

·pfz (1− vz)

(1− vi)p
nf
i ·

·vj(1− pnf
j )·

·[1− pfz (1− vz)]

ω′ = (ω′

i, ω
′

j , ω
′

z)
ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z = kz

ω′

i ∈ [1, ki − 1],
ω′

j ∈ [1, kj − 1],
ω′

z = kz

ω′′ = (ω′′

i , ω
′′

j , ω
′′

z )
ω′′

i = ω′

i − 1,

ω′′

j = ω′

j ,

ω′′

z = ω′

z

ω′′

i = ω′

i − 1,

ω′′

j = ω′

j + 1,

ω′′

z = ω′

z − 1

ω′′

i = ω′

i − 1,

ω′′

j = ω′
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