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Abstract In the paper, we consider a stochastic game model of data trans-
mission with three asymmetric players (i.e. network nodes), in which the
network is given and does not change over time. The players aim to transmit
as many packages as possible to the corresponding terminal nodes through
the common node whose capacity is two. We assume that each player has
a finite capacity buffer for storing data packages. The dynamic process of
data transmission is modeled as a stochastic game with finite set of states.
Existence of the Nash equilibrium and a cooperative solution is proved. We
find the cooperative strategy profile and Nash equilibrium in pure strategies.
The estimation of the price of anarchy is calculated for a numerical example.
Keywords: ALOHA-like scheme, stochastic game, data transmission, price
of anarchy.

1. Introduction

Theory of stochastic games is an important part of dynamic game theory. In conflict-
controlled systems with probabilistic transition from state to state, the process can
be modeled by a stochastic game with the finite or infinite set of states. For example,
in (Bure and Parilina, 2019), a data transmission model with finite set of states is
presented. A game-theoretical model of data transmission in a network is introduced
in (Afghah et al., 2013). The data transmission models with ALOHA-like scheme
are considered by Altman et al. (2004); Marban et al. (2013) and Sagduyu and
Ephremides (2006). The model of two players (i.e. network nodes) is introduced,
in which players or nodes aim to transmit packages to the terminal nodes inde-
pendently or under cooperation. But the transmission of packages must go through
the common node which have the given capacity. In the model, the appearance
of packages at different node has different probabilities and we assume that the
probabilities do not vary on time (see Bure and Parilina, 2019).

Other data transmission models for the networks with different structures are
also introduced in (Bure and Parilina, 2017a, 2017b). Bure and Parilina (2017b)
consider the data transmission model with imperfect information on the presence
of packages in the other player’s queue. They find the Nash equlibrium and the
profile of cooperative strategies. In order to show the comparison between these two
equlibria, the price of anarchy is calculated. Fink (1964), Raghavan and Filar (1991)
consider the non-cooperative stochastic games. In (Raghavan and Filar, 1991) the
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algorithms of finding the Nash equilibria are considered. The existence of the Nash
equilibrium in n-person stochastic game is proved in Fink (1964). Moreover, the
construction of a model of a cooperative game of data transmission is represented
in (Bure and Parilina, 2019).

In the paper, we consider a game theoretic model of data transmission with three
players based on the model proposed in (Bure and Parilina, 2019), in which they
consider a two-person stochastic game. We make an assumption that each node has
a buffer of finite capacity for storing packages. The next extension of the model
in (Bure and Parilina, 2019) is that the capacity of the common node is two. We
consider non-cooperative and cooperative scenarios of the game and define the pure
strategy Nash equilibrium and the profile of cooperative strategies.

The structure of the paper is the following. In Section 2, the model of data
transmission process is introduced. In Section 3, stochastic game is constructed
based on assumptions given in Section 2. In Section 4, we make a simulation study.
Section 5 concludes. The table containing transition probabilities used in three-
person stochastic game model is represented in Appendix.

2. Model

We consider a network represented in Fig. 1 which is a data transmission ALOHA-
like scheme. There are three players who are nodes 1, 2 and 3 aiming to send as
many data packages as possible to the nodes r1, ra, r3, respectively. From the data
transmission scheme, the packages should go through a common node whose capac-
ity is two. This node can be used by any of three players without any restrictions.
Player ¢ € {1,2,3} has a buffer of capacity k; which means that it can store from
0 to k; data packages of unit capacities at each time period. If at the beginning of
each period, Player 7 possesses less than k; packages, then he may receive a data
package of a unit capacity with probability v; € (0, 1), respectively.

g
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Fig. 1. Data transmission scheme.

We assume that player can transmit zero, one and two packages to the destina-
tion node in each time period. Each player can transmit two packages simultaneously
and they will be successfully delivered if other players do not transmit. If three play-
ers simultaneously transit the packages, the packages are back to the Nodes. We
use some parameters to model the data transmission. If the package is successfully
delivered to the destination node, the payoff of this player is 1 minus the costs of
a package transmission equal to ¢ € (0,1). And the costs of a player for one time
period delay per each unit package is d € [0,1), d < 1.
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We define the state of the system in time period ¢ as (w1 (t),w2(t),ws(t)), where
w;(t) € {0,1,...,k;} is the number of data packages at Player i’s buffer, i = 1,2, 3.
The set of system states at any time period ¢ is denoted by 2, |£2| = (k1 + 1) (ko +
1) (ks + 1).

Under the given assumptions, we define a stochastic game with a finite set of
states and finite set of actions.

3. Stochastic Game

We assume that time is discrete. The set of states at each time period is 2 = {w =

(w1, w2, w3) : w; € [0,k;],4 = 1,2,3}. Suppose that any player does not know the

number of packages at other players’ buffers. At state w the set of player i’s actions

is AY, that is

As = {{t,w}, ?f w; >0, (1)
{w}, if w; =0,

where action ¢ means “to transmit” a package, w means “to wait”.
We consider all possible states and define the players’ payoff functions:

1. If w = (w1, we,ws), where w; = was = ws = 0, the payoff function of player i is
u¥(a¥,ay,a¥) =0 for any i = 1,2,3 and af = a§ = af = w.

2. If w = (wi,wj,wr) such that w; > 0, w; = 0, w = 0, then af € {t,w} af =
ay =w. And v¥(a¥, w,w) =1 —c—d(w; — 1) when a¥ =t and u¥(ay, w, w)
—dw; when a¥ = w. The payoff functions of player j and [ are u?(af,w,w) =
u (¥, w, w) = 0 for any a¥.

3. If w = (w;,wj,w;) such that w; > 0,w; > 0 and w; = 0, then the payoff matrices
are defined as follows

N l—c—dw;—1)1—-c—d(w; — 1)
Player i: ( —dw; —duw; ,

. (1=—c—d(wj—1) —dw,
Player J: (1 —C— d(wj - 1) —dwj ’

00
Player [: <O O> .

where the Player i chooses a row (row 1 corresponds to action ¢, row 2 corre-
sponds to action w) and Player j chooses a column (column 1 corresponds to
action t, column 2 corresponds to action w). Player [ has a unique action w.

4. If the state is w = (w;, wj, w;) such that w; > 0, w; > 0, w; > 0, where any Player
i, 7 and [ has two actions ¢ and w. Define the payoff matrices in the following
way. If Player [ chooses action ¢, then the payoff matrices of Players i, j and [
correspondingly take the forms:

Player i: <—c —dw; 1 —c—d(w; — 1)> 7

_dwl —d(Ui

. —c — dw; —dwj
Player j: <1 —c—dw;—1) —dwa‘>’

. —C—dwl 1—C—d(Wl_1)
Player l: (1_C_d(wl_1)1_c—d(wl—1) '
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If Player [ chooses the action w, then the payoff matrix takes the form

Player i: (1 —c—dw; —1)1—c—d(w; — 1)) 7

—dwl- —dwl-
. (1=—c—d(wj—1) —dw;
Player j: (1 —c—d(wj —1) —dw; )’

. —dwl —dwl
Player [: (—dwl —dwl> .

In the last six matrices Player ¢ chooses a row (row 1 corresponds to action
t, row 2 corresponds to action w) and Player j chooses a column (column 1
corresponds to action ¢, column 2 corresponds to action w).

We assume that the players’ strategies in the whole game are stationary. The sta-
tionary strategy depends on the state and does not depend on time and the history
of the stage. We assume that Player ¢ uses the same strategy in any state (w;, w;, w;),
where w; € {1,...,k; — 1}, and he may use another strategy in state (w;,w;,w;),
where w; = k;. Therefore, Player i’s mixed stationary strategy n; is (plf ,p?f ), i =
1,2, 3, where pif € [0,1] is a probability of choosing action ¢ in any state (w;, w;,w;)
when w; = k;, w; € [0,k;], w; € [0, k], or p{ is the probability of transmitting a
package when the buffer of player i is full. Let p?f € [0,1] is a probability of choos-
ing action ¢ in any state (w;,w;,w;), when w; € [1,k; — 1], w; € [0,k;], w; € [0, ki,
or p?f is probability of transmitting a package when the buffer of player i is not
full. The stationary strategy profile is (11,72,73) = ((p.{,pvlzf)’ (pg,pgf), (pg,pgf)).
Denote by =; the set of stationary strategies of Player i. The set of pure stationary
strategies of Player ¢ = 1,2,3 is {(0,0), (0,1), (1,0),(1,1)}.

Next we need to define the transition probabilities 7(w” /w’, n) which are calcu-
lated for any states w’,w” € §2 and any strategy profile . The transition probabili-
ties m(w"” /w’, n) are represented in Table 1 (see Appendix), where w’ = (W}, w}, w;),
W' = (Wi, Wi W), 4,5, =1,2,3,i % j # | and

n= (nin;,m) = (], 7). 0l 01). (o] .o 7)).

Therefore, we define three-person stochastic game G by a tuple

(2,{A¢}im1 2.3we2, {Sitim1,2.8, {m(W" W', n) }oreowrcomezi x x5, 0)

where § € (0,1) is a common discount rate.
We calculate the discounted expected payoff in stochastic game G given by

Ei(n) = mo(I = 611 (1))~ ui(n), (2)

where strategy profile n is given and m( is an initial probability distribution over
the set of states (2, I is an identity matrix of size m, II(n) is a m X m matrix of
transition probabilities m(-/-,7) whose (I,n)th entry is a probability of transition
from state w®) to state w(™ under the realization of profile 7. The vector u;(n) is
(u¥(n(w)) : w € £2) which the collection of payoffs in states under realization of the
action profiles corresponding to strategy profile . Here m is the cardinality of the
set of states, i. e., m = [£2|.
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We consider two approaches (cooperative and non-cooperative) to find a solution
in game G. We consider the Nash equilibrium as an optimality principle within a
non-cooperative approach. Following the cooperative approach, we find the profile
of cooperative stationary strategies maximizing the total players’ expected payoff
in game G.

Theorem 1 (Fink, 1964). In game G, there exist the Nash equilibrium and the
profile of cooperative stationary strategies.

To estimate the selfishness in the network we calculate the price of anarchy
(Koutsoupias and Papadimitriou, 1999) given by

23:1 Ei(n*)
PoA(G) = L ,
(@ minnENE(G) 23:1 Ei(n) ®)

where NE(G) is the set of the Nash equilibrium in game G, n* is the profile of
cooperative strategies. One can notice the PoA is not defined if the sum in the
denominator in (3) is null.

4, Simulation study

We consider game G with the following parameters: ¢ = 0.2, d = 0.03. Let Player 1
have a buffer of the smallest capacity k&1 = 1, and Players 2 and 3 have buffers of
capacities ko = 2 and k3 = 3, respectively. Any player has a discount factor § = 0.99.
The probabilities that the package occurs at Player 1, 2 and 3 are v; = 0.6, v = 0.6
and vs = 0.3, respectively. There are 24 states in the game. We assume that it
starts from the state (0,0,0), when there are no packages at the nodes. The set of
pure stationary strategy for Player 1 is {(0,0), (1,0)}. The sets of pure stationary
strategies of Player 2 and 3 are the same, which is {(0,0), (0,1), (1,0),(1,1)}. Player
1’s mixed strategy is defined by a probability p{ . Player 2 and 3’s mixed strategies
are defined by a vector (pzf, p?f), 1 = 2, 3. And the size of transition matrix is 24 x 24.

In order to find the profile of cooperative strategies, we need to calculate the to-
tal players’ payoff in the whole game for each pure stationary strategy profile. There
are 32 profiles in pure stationary strategies in the game with given parameters. The
maximal expected total payoff is obtained under the profile of pure stationary strate-
gies. In non-cooperative setting, we focus on the Nash equilibria in pure stationary
strategies to avoid computational difficulties. In order to find the Nash equilibria,
we calculate the matrices of Players’ expected payoffs by given above formulae as
follows. In each payoff matrix, Player 1 chooses rows, Player 2 chooses columns and
the Player 3 chooses matrices.

When Player 3 chooses the pure stationary strategy (0, 0), the payoff matrix for
Player 1 is Ay, for Player 2 is By, and for Player 3 is Cy:

A — —2.9503 —2.9503 —2.9503 —2.9503
17\ 47,5200 47.5200 47.5200 47.5200

B — —5.8518 47.5200 43.7829 47.5200
17\ —5.8518 47.5200 43.7829 47.5200

O — —8.4263 —8.4263 —8.4263 —8.4263
17\ —8.4263 —8.4263 —8.4263 —8.4263
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When Player 3 chooses the pure stationary strategy (0, 1), the payoff matrix for
Player 1 is As, for Player 2 is Bs, and for Player 3 is Cs:

A, — —2.9503 —2.9503 —2.9503 —2.9503
27\ 47.5200 46.4694 43.4095 43.3403

B, — —5.8518 47.5200 43.7829 47.5200
27\ —5.8518 —1.0626 39.6724 43.7959

O, — 23.7600 23.7600 23.7600 23.7600
27 \23.7600 21.2132 —7.3135 —7.8366

When Player 3 chooses the pure stationary strategy (1,0), the payoff matrix for
Player 1 is As, for Player 2 is Bs, and for Player 3 is Cj:

Aa — —2.9503 —2.9503 —2.9503 —2.9503
37\ 47.5200 47.9689 —13.4913 —13.5204
Ba— —5.8518 47.5200 43.7829 47.5200
87\ —5.8518 2.2479 —17.2284 —16.0455

O — 16.5273 16.5273 16.5273 16.5273
37 \16.5273 17.3129 —24.1583 —24.1777

When Player 3 chooses the pure stationary strategy (1, 1), the payoff matrix for
Player 1 is Ay, for Player 2 is By, and for Player 3 is Cy:

A, — (29503 ~2.9503 —2.9503 —2.9503
47\ 475200 46.4402 —16.6203 —17.7001

B (—5.8518 47.5200 43.7829 47.5200)
4 =

—5.8518 —2.4115 —20.3574 —20.3981

C — 23.7600 23.7600 23.7600 23.7600
+ 7 \23.7600 23.3522 —24.1474 —24.9539

There are three Nash equilibria in pure strategies in the game defined by pay-
off matrices (Al, Bl, Cl), (AQ, BQ, CQ), (Ag, Bg, Cg), (A4, B4, 04) The first one is
& =(0,1), & = (0,0,0,1), & = (0,1,0,0) and the payoff of Player 1, 2 and 3 is
43.3403, 43.7959, -7.8366, respectively. The second one is & = (1,0), & = (0,0,0,1),
&5 =(0,0,0,1) and the payoff of Player 1, 2 and 3 is -2.9503, 47.5200, 23.7600, re-
spectively. The third oneis & = (0,1), & = (0,1,0,0), & = (0,0, 0, 1) and the payoff
of Player 1, 2 and 3 is 46.4402, -2.4115, 23.3522, respectively. Among all of these
payoffs, the “worst” Nash equilibrium with the smallest total payoff is the third one
& =1(0,1), & = (0,1,0,0), & = (0,0,0,1). This profile of strategies in three-person
normal-form game corresponds to the profile in pure stationary strategies p{ =1
(to transit a package with probability 1 when the buffer is full), pg =0, pgf =1 (to
transit a package with probability 0 when the buffer is full, and to transit a package
with probability 1 when the buffer is not full), pg =1, pgf =1 (to transit a package
with probability 1 when the buffer is full, and to transit a package with probability
1 when the buffer is not full). This total payoff in this pure strategy Nash equilibria
is 67.3809.
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There are two profile of cooperative strategies (n1,72,73), where n; = (0, 1),
n2 = (0,1,0,0),n3 = (1,0,0,0) and the other oneisn; = (0,1), 72 = (0,0,0,1), 793 =
(1,0,0,0), with the total payoff 86.6137. In cooperation, Player 3 never transmits
packages whatever the other two players choose. Then the price of anarchy in game
G is not less than 1.2854. We calculate the lower bound of the price of anarchy
because we focus on the pure Nash equilibria. If we calculate all the equilibria
including mixed-strategies Nash equilibria, the price of anarchy may increase.

5. Conclusion

We have considered a model of data transmission with a given network topology as
a three-person stochastic game with finite set of states. The players have the buffers
of finite capacities for storing the data packages. We have represented a simulation
study of the model. The profile of cooperative strategies and the pure strategy Nash
equilibria have been calculated, and lower bound of the price of anarchy has been
calculated.
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Appendix

In Table 1 the probabilities are grouped by any three rows. In any group, the first
row contains the transition probabilities 7(w” /w’,n) from state w’ defined in the
second row to state w’ defined in the third row. In the cases which are not described
in Table 1, transition probabilities equal zero.
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Table 1. Transition probabilities.

m(w” W' n) ViUV, vi(1 —v;)(1 —vs) v;v;(1 —v,)
T 77 7 A A A T T T T T T
W= (whwjwy) |[wi=wj=w, =0 | wi=w;j=w, =0 | wi=w;=w,=0
W’ = (WN w? UJN) w' =W =w'=1 w{-/ - 17 wl{l - wé/ N 17
1y Wy Wz 7 J z w;/:wgzo wg:O

(1 —vi)(1—v5)
" (I—v)(1—v;) | (I =v))(1—v5) nf B
m(w"” /w',n) (1= vs) ~p?f(1—vz) [Pz E)lzj—lg}bf)]vZ)
w' = (wi,wj,w,) |wi =wj =w, =0 wi =w; =0, wi =w; =0,
v e ¢ z wi €1, k. — 1] wi €1, k. — 1]
W = (w/_/ W w//) Y/ w;/ = W;‘l =0, wzl'l = w;/ =0,
- 1 Wy W . — Wy — Wz — w;/:w;_l w;/:w;
(1 —vi)v;
"y (1 —v)(1 —v;) (1 —vi)v; nf
1—v)(1—p"
77(“) /w 777) .(1 _pvzbf)vz ~p?f(1 _ Uz) [( v+)p(nfv p )]+
! ! ! ! / !
’ o Wi:wj:()y Wz:wj:(): wz:wj:()y
W= Whep ) | ek =) | Wl e Lk — 1] Wl €1k, —1]
wl=wl=0 wl =00/ =1 w! =00/ =1
w' = (w;/7w;’7w;/) W = (3/ + 17 W = w/]_ 1 ’ W = Zdl '
(1 —vsi)vy- ViV viv»[pgfvz—l—
TS | e, | (me) |+ — )1 p2)]
T 7 T __ T __ I
w/_(w( W' w/) wi_wj_oy w; =w; =Y, wi_wj_()’
v w;e[lvkz_l] wée[lvkz_l] w;€[17k2_1]
" ( " " //) w;' = 07 w}' = 1, w,ﬁ' = w}' = 17 w;l = w]’.’ == 17
w Wi» @5, Wz wl=w,+1 wl=w,—1 wl = wl,
n 1—v)pl (1 — v))-
V05 (1 —wv)p™ (1 —v;)- ( J ’
m(w" Jw',n) o J P e+ (1 = v):
(11— Z z nf — Uz =z ?
(1=pZ)v pr (1 —vz) (1 - p)]
T T
/ roor (,U;:(JJ],-:O, / wi = 0, / “i %
W' = (wy, wj,w,) W€ 1k — 1] wj € [1,k; — 1], wj € [1,k; — 1],
© T w;e[lvkz_l] w;€[17k2_1]
w!=0 w! =0
W' = (Wi, wf,wl) wi =y =1, Wy = wj - 1 wi =w Z 1
(R RadV b} OJ;/ w/+1 J”_J, ) J//_J/ !
W, = W, — 1 Wy, = Wy
T A T T
O I I S v i e B L
Aopzhe T e
w; =0, w;, =0, wi =0,
wl:(w£7w],'7wlz) wé’e[lvkj_lh wé’e[l:k]’_lh w;E[l,k]‘—l],
w;e[lvkz_l] wée[lvkz_l] w;G[LkZ_l]
w! =0, w! =0, w! =0,
" o__ "noonn "o "o "o
W' = (Wi, wi, W) wi =w;—1, wi = wj, wi = wj,
w! =w,+1 wl = w w! =w,+1
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(1 —wi): vipi? (1 —v;)-
I B B S S L LR TR
(1 —P?f)vz : (1 —p2)]
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wy, =w, +1 wz—wz—l Wy = w,
fi-w) | a-p )(1 N P
v — vj)- —v
( N/len) Z(le_pZ )] [pnf +(1 pZLf) '[U]p]f+(1_vj)
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w; =0, w; =0, wi =0,
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wi =1, wi =1, wi =1,
w%’/:w%—l, wj'—w ﬁ.;)j':/w;-,
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Vi 1 _pnf v (7 (3 , 2
( N/wl777) ((1 _pfbf))vzj Lf(l - U]) ~pjlf(1 — ’Uj).
'(1 p?f)(l —v:) (1—p)v.
wi =0, w; €1,k — 1], we[lk—l],
W' = (wi,wj, w?) wé €1,k —1], w% €1, k; — 1], w]/ €1,k —1],
e[LkZ_l] wze[lvkz—l] wze[lvkz_l]
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[pnfv +(1_ ) ~(1—vJ)—|—pJ vy (1—172 v
(1 —v:)]}
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wi €1, k. —1] wh €1, k. — 1] wh €1, k. — 1]
] T T T 7
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P pE (1= wi)-
(1= v)(1 —v2) + pi'pj T
(1= p2 )oiw; (1 — v2)+
P Rt (1= vi)- +ppf (1= pyp2t
(1 —vj)v. +p;pr;-Lf~ i (1 —vj)vs —&—p?f-
(1= p2 )vivju.+ P2 (1= pi) (1 = vi)vjoa+
nf nf nf 7
() +p (1= pih)(1 —pznf)- +pit (1= pi) (A = p2 v
i1 =)+ (1= pi): (1 —v5)(1 —vz)+
27 (L=t —vivyoat |+ =i )p (1 - p2Y)-
+(1=pih) (1= piT) (1 —p2)- (1= vi)v; (1 —vz)+
(1 =) = vj)ve +(1 =) (1 = pyTyp2t-
(1 =)l —vj)va+
+(1 =) = p") (1 = p2T)-
(1= w)(1— (1 - )
wée[l,ki—l], wz{E[l,ki—ll,
w' = (wi, wj,w?) w; € [1,k; — 1], w; € [1,k; — 1],
w;e[lvkz—l] w;e[lvkz—l]
T 7 T 7
Wi = Wy, Wi = Wy,
" o__ v "no__ "no__
W' = (Wi, wi,wy) wi = wj, wi = wj,
w! =wl,+1 wl = w
nf nf nf
Dp; p] Pz (1 - Ui)vjvz—l— nf nf nf nf
n n n pz D; Pz ViU Uz + 1 _pz :
(/' n) |+ =y o (L= p2 s p} v (- p@f)(lj—p”f()v-m )
(=91 v0) L= oy
wi € [1,k; — 1], wi € [1,k; — 1],
w' = (wi, wj,w?) wi € [1,k; —1], wi € [1,k; —1],
w, €l k. —1] w, €l k. —1]
wi = wj, wi =w; +1,
W = (w£17 3/7 ;/) w;/ _ w; +1, w;/ _ w; +1,
w! =w,+1 wl! =w,+1
m(w"/w',n) (1—o0)(1 —wj)pl(1 —v:) |1 =wi)(1 —v;)[1 = pl(1 = v.)]
wi =w; =0, wi = wj; =0,
W' = (w£7w],'7wlz) o :sz o :sz
w! =w? =0, w! =w? =0,
W' = (i wr) Wl == 1 Wl = ]
m(w” /W' n) (1 = vi)opl(1 —v:) (1 = wi)vi[1 = pl(1 — vs)]
wi =wj; =0, wi = wj; =0,
wl_ (w’£7w;7w;) OJ, :Jk’z OJ, :Jk’z
/‘/ — (‘/ — " — 0 (‘/ — 1
OJN — (w£/7w§/7w;/) WZJH :07:?,]_ 11) w w” :ZJ/ )
m(w"/w',n) viv;pl (1 —v.) vivg[1—pl(1 —v.)]
’ ’o w;:w;:O; wz{:w;:O:
w = (wiijvwz) Wl =k, W=k,
w’-/:zw'»'zl w’-/:zw'»'zl
w// — (LAJ’E/7 ‘;/7 ;/) oj;, _ (3; B 17 ’Lw;, :]w; )
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m(w” /W' m)

(1 —v)p] (1 —v;)-

(1 —vi)p] (1 —v;)-

(1—vi)[1 —p](1—vy)]-

pL(1—vs) 1 —pl(1 —v.)] L —pl(1 —v.)]
w) =0, =kj, | wj=0,w;=kj, wi =0,w) = kj,
wl = (w;—,w;,w;) ' w'z :]kz ’ Z wl;zjkz ’ (U!:Jk‘z ’
o=, ST=0, ST=0,
"o__ noon "no__ "no__ "no__
W' = (Wi, Wi, w) wi =wj; — 1, wi =wj; — 1, wj = wj,
wy =w; — 1 wy = w} wy = w}
(o o) vipj{(l — ;)" vip] (1 = vy)- vi[l — p;(l — ;)]
’ pL(1 —v:) 1= pl(1—v.)] 1 —pl(1—v.)]
w; =0,w; =kj, | wj=0,w;=kj, wi =0,w) = kj,
W' = (wi,wj,w?) o :sz i w/z7:sz 3 w;_kaz J
wi =1, wi =1, wi =1,
"o__ noon "o__ "no__ "no__
W' = (wi', Wi, W) wi =w; —1, wi =w; —1, wj = wj,
wl! =w, -1 wl = w, wl = wl,
plplpl+
+p§pf(1 —fpﬁ)vivﬁ
f (1 — pHplusv,
Pl —vp | TP m P
F1 _ o\ (1 _f +(1 - p; )pjszjUZ""
"y p; (1 —wi)p;- v; (1= p2)+ ! i !
7T(w /wﬂ?) (1—1}‘)(1 _]pf) +(1_pf). +D; (1_pj)(1_pz)v’i+
j z j
[1— p£(1 i )] +(1 - p;{)pf(l —fpﬁf)vjd‘_
+(1 —pi)(l—pj)pzvz—k
+(1=p))(1 = p))-
I = [ T — kW= ks " — koW =k
W = (e, wh) | T R = =B ws =k =R @ =K
//i 7 1 //i 7 = /7_ 7
Wi =w; — 1, w; =w; — 1, Wi = Wy,
W' = (wi wi,wl)| Wi =w;—1, wi = w}, wi = w},
"o ’ "o / " o__ /
wl = w, wl = w, wl = w,
(1 — i)}
B (R R T A IR (e
(1 =pl) +(1—p])- (1 —v)pl (1 —v:)

ek —1]

e Lk —1],

w,:(w§7w37w.,z) wjl':kj: w;’:kh w;*kjy
wl, =k, wh, =k, wl =k,
wl'=wh—1 wl'=wi -1 Wi = w!
" __ noonon ?/_ , ’ ‘ //_Z P //Z_ ;Y
W' = (i, wi,wy) wi =wj — 1, wy = wj, wi =wj; — 1,
no_" no__ no__
Wy = Wy Wy, = w, wy, =w, —1
(1—v;)pl- nf
v | AT = D | - )
T G A~ )= o)t 02) Py (1 =)
; i )Pz [1—pl(1—0v.)]

! ! !
r_ roo I 1., / . I 1.,
w _(wi7wj7wz) wjfkja wj*kh wj*kjy
wh =k, wh, =k, wl =k,
" ! 1 ! 1 !
w; = Wi, w; _wz+17 w; :wz+17
" o_ "noomn "o__ 1 "o__ 1 "o__ 1
w *(wi7 7o z) wjfw] ) w]*wJ— ) inwJ_ ’
no__ "o "m0
Wy = Wy wy, =w, — 1 Wy = w,
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(1= p )i (1 =)} (1—vi)py!-
m(w"/w',m) 1 =pl(1 =) (1 —vy)p; 7 (1 —v:)p-
1= pl(1—v.)] (1-p! (1—pi) (1 — )
wi € [1, ki — 1], wi € [1,k; — 1], wi € [1, ki — 1],
W' = (w:hw;’w;) w;’ = kj7 w; € [ij - 1]7 UJ_; € [ij - 1}7
wl, =k, wl =k, wl =k,
wl =wl+1, w! =wl -1, wl =wl -1,
W= (Wi, wf,wy) wi = wj, i =wi—1, wi = wj,
"o ’ "o I "o /
w, = W, w, = w, w, =w, — 1
nf
pi’ (1= vi)- f f
"y '{pnfvj(l —pf)-‘r (1= yi)pgf . (1= Ui)pgf -
m(w"/w’,m) I T 05 (L=p}’): v (1 =p’)
+(1—v;)(1 pP; ) f f
fL-pfi—vgy | P07 - pel ~ )]
‘Ug € [17 ki — 1]7 wz{ € [11 ki — 1]7 wé € [17 ki — 1]7
w = (wi,whwt) | wi €Lk — 1], wj € [1,k; — 1], wj € [Lk; — 1],
w. =k, wl =k, wl =k,
wl =w]—1 wi =wi—1 w =w)—1
1 T 1 ) 1 T T b} 1 T T )
W = (wf,wf,wl) wi = wj, wi =wj+1, wi =wj+1,
wl! =w) wl!=w,—1 wl! =wl
f oo
pL(l —v.)- " viplvu.+
'rb;(v 1— )7Lf (1 _’Uz)pjzc' nf[pl P f f
{pz vl( pj ) v-(l—pﬂf)- +Pz vi(l_pz)+p2'
m(w’ ') (1 =) + (1= pi)- T (1= pi ) (1 —vi)+
(1 = o)™ v, Py vit _onfN(
( Uz)[pj vj+ T 7pnf)(1 — )] +(1 = p) (1 = vy)-
+(1—py") (1 —vy)]} ’ (1= pD)] + 0} p} pl-
(1 = vi)vy
wi €1,k —1], w; € [1, ki — 1], wi €1,k — 1],
W= (w£7w97w2) w; € [ij - 1}7 UJ; € [ij - 1]7 UJ]/- S [ij - 1}7
;o r_ [
w, =k w; = k2 w, =k
wi’ = wi, wi' = Wi, wi' = wi,
W’ = (wf,wf,wl) wi = wj, wi =wj+1, wi =wj+1,
UJ” — w/ _ 1 UJ,/ — w/ _ 1 w// — w/
(1 =p )o; nf f
! (1 =p;' v (1 —vi)p;
(W w/’77 1— nf Vi- ( J J @
R P AN IR gt A (RGO vt
pz(l 7’Uz) nf, nf f
+D; P Pz
wi €1,k — 1], w; € [1, ki — 1], w; =0,
w’:(wé,wé,w;) w;’ € [17’6]'71}7 w; € [ij*l]: w} € [lvkjfuz
wl, =k, wl =k, wl =k,
T W BT ST,
W= (wf,wf,wl) wi =wj+1, wi =wj +1, wi =wj —1,
" i no_ "o
w, =w, — 1 w, = w, w, =w, — 1
(1= v)pf A—v)lpiTot [ A =v)lp; T
" ’ T, 7
m(w" /W', m) (1= v)plo-t [+ —v)(A =P +(1 = v)(1 = p}T)]-
+(1 —pl)] pl(1—v:) [plv. + (1 —pl)]
w£:07 vaZO: W;IO,
w,:(wngévwé) w;’ € [17’6171}7 w; € [ij*l]: w} € [Lk]‘*”:
wl, =k, wl =k, wl =k,
=0 o= =0
W= (wf,wf,wl) wi =wj —1, Wi = wj, wi = wj,
m__" no_ w0
w, = w;, w, =w, —1 w, = w,
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(W /) (1—v:)(1 —p}T)v; (1 —v:)(1—p}T)v;
pl(1—v.) plv: + (1 —pl)]
wi =0, wi =0,
W= (w’£7w],'7w.,z) OJ],- € [17kj - 1]) w; € [17kj - 1])
wh =k, wl =k,
wi =0, wi =0,
w"’ = (wgl,w;',wg) w;/ = w; +1, w;/ = w; + 1,
w! =wl, —1 wl = wl
P Pl pl(1— i) (1 —v))+
P plp (1 —vi)+ njfp?fp?i}l;pg)mﬁ
+ppl (1 — pl)viv;+ (L= py Jpzvill = oot
ntd =t +(1=p!yp™M pl (1 = vi)vju.+
+pif (1= p))plviva+ bi Py Pels U0
N 2 (1= pi!)(1 — pf)-
"o +(1 —DP; )pjp2(1 - Ui)vjvz+ y nfy, nf
m(w" /W', n) nf f f wi(1—wvy) + (1 —p7)pt-
+pi” (L= pj)(1 = pjuit (1- nf)(l—vSv%—J
+(1=p )] (1= pD)(1 = vi)vj+ +a _pzr_zf)(l_ an; !
+(1 - p,’-lf)(l — pf)p£(1 —v)va+ P P Pz
-1 — ) —ph - T vt
: L N IR A
(L=pDA —vi)(1 —vy)
OJ,L( S [17k‘i — 1], OJ,L( S [17]62‘ — 1],
w/:(wéyw;v,w;) w;’:kh w;’ S [lvkj_l]:
wl, =k, wl, =k,
o = o =
1 1 1 )
W= (@) W W = o,
wy =w; wy =w;




