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Abstract We consider a game where manager’s (leader’s) aim is to maxi-
mize the gain of a large corporation by the distribution of funds between m
producers (followers). The manager selects a tuple of m non-negative incen-
tive functions, and the producers play a discounted stochastic game, which
results in a Nash equilibrium. Manager’s aim is to maximize her related
payoff over the class of admissible incentive functions. It is shown that this
problem is reduced to a Markov decision process.

1. Introduction

The problem of incentives plays a key role in economics and management. Its math-
ematical formalization is proposed by the theory of incentives (Laffont and Mar-
timort, 2002), mechanism design (Myerson, 1983), the theory of control in organi-
zational systems (Novikov, 2013). However, the majority of the respective problem
formulations are static.

A natural dynamic incentive model is provided by the dynamical inverse Stackel-
berg games, where the leader strategy depends on the followers’ actions (an incentive
mechanism). A general review can be found in (Olsder, 2009). In the paper (Rokhlin
and Ougolnitsky, 2018) (inspired by Novikov and Shokhina, 2003) we formalized the
incentive problem as a stochastic inverse Stackelberg game and obtained a simple
description of leader’s optimal strategy in the case of a single follower. In the present
paper we extend this result for the case of multiple followers.

Consider a game where manager’s (leader’s) aim is to maximize the gain of
a large corporation by the distribution of funds between m producers (followers).
To each follower the leader reports a non-negative stimulating (incentive) func-
tion ¢;(z,a), depending on the state of the system z (e.g., the market price of
the produced good) and the actions a = (a’,...,a™) of the producers (e.g., the
production levels). At each stage of the game the producers select their actions
al independently and get the rewards 7;(w¢, as) = c;(wy, at) — gi(x4, ar), where g;
are the production costs. The manager, or the corporation, one-stage gain equals
to f(xy,ar) — Yoiv, ¢i(wy, ar), where f can be regarded as the sales revenue. The
stochastic “law of motion” of the state variable x; is governed by a transition kernel
q: informally, P(x¢11 € Blxy, ar) = q(Blxe, at).

Each player’s gain is estimated over the infinite horizon with the common dis-
count factor . So,

m

EZﬁt <f(a:t,at) - Zci(xt,at)> — max
t=0

i=1
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is the objective functional of the leader, and
EZﬁt (ci(xe, ar) — gi(2e, ar)) — max
t=0

are the objective functionals of the followers. For each tuple (c1, ..., ¢y,) the pool of
producers responds by a Nash equilibrium in the corresponding discounted stochas-
tic game. The leader performs the optimization over the functions ¢; from an ap-
propriate class. From the previous work (Novikov and Shokhina, 2003; Rokhlin and
Ougolnitsky, 2018) it is known that it is optimal for the leader to economically mo-
tivate the followers to implement the strategies ai = u;(z¢), where u = (Uy, . .., Uy)
is an optimal stationary deterministic Markov strategy in the Markov decision prob-

lem
Ezﬁt (f(xtaat) - E gi(fct,at)) — max.
t=0

i=1

Passing to the case of multiple followers, draw some technical difficulties related
to the existence of a stationary Markov equilibrium. To overcome these technical
issues we modify the class of incentive functions, considered in (Rokhlin and Ougol-
nitsky, 2018), to make them continuous in actions. Furthermore, we confine ourselves
to the games with a coarser transition kernel (He and Sun, 2017). Other related as-
sumptions on the transition kernel g, providing the existence of a stationary Markov
equilibrium (see Jagkiewicz and Nowak, 2018), would be suffice.

In Section 2. we give a general formal description of a discounted stochastic
game and a Markov decision process. In Section 3. we use this formalism to precisely
describe an e-optimal strategy of the leader and her value function in our model,
formulated as a Stackelberg game: see Theorem 4. In two final remarks we compare
this theorem with the results of (Rokhlin and Ougolnitsky, 2018), and mention that
the technical coarser transition kernel condition can be dropped by passing to a
correlated equilibrium.

2. Basics of discounted stochastic games

Let (£2, #) be a measurable space, and let (Y, 7) be a topological space. A function
F: Q2 xY — Ris called a Caratheodory function if the function F(-,y) is -
measurable for each y € Y and the function F(w,-) is 7-continuous for each w € 2
(Aliprantis and Border, 2006Definition 4.50). If (Y,7) is a separable metrizable
space, then such function F' is jointly measurable Aliprantis and Border, 2006 Lemma
4.51. Denote by 6,(£2 x Y') the set of uniformly bounded Caratheodory functions.
Also, recall that a standard Borel space is a measurable space isomorphic to a
Borel subset of a Polish space (separable, completely metrizable topological space)
Srivastava, 1998.

Let I = {1,...,m} be the set of players. The discounted stochastic game is
determined by

— A standard Borel state space (X, Z(X)) with its Borel o-algebra #(X).

— Separable metrizable spaces (A;, 7;), i € I of players’ actions.

— Compact-valued mappings x — A;(x) C A;. A set A;(x) describes the admissi-
ble actions of i-th player in the state € X. It is assumed that the multivalued

mappings « — A;(z) are measurable (Hu and Papageorgiou, 1997Chapter 2,
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Definition 1.1), that is {z € X : A;(x) NU # 0} € H(X) for any open set
— Reward functions r; € %,(X x A), where A = A x --- x A,, is endowed with
the product topology 7.
— A transition probability Q(:|-) from X x A to X (Bogachev, 2007Definition
10.7.1), that is
e the function (z,a) — Q(B|z,a) is B(X) x B(A)-measurable for every B €
#(X),
e the function B — Q(B|z,a) is a probability measure on %B(X) for every
(x,a) € X x A.
It is assumed that the function a — [w(y)Q(dy|z,a) is continuous for any
z € X and any bounded Borel measurable function w on X.
— A discount factor 8 € [0,1).

We assume that the players use stationary Markov strategies, which can be
identified with the transitions probabilities o; from X to A; such that o;(x)(4;(x)) =
1. For x € X each tuple o = (0;)iecr induces the probability measure

Ps.o(dzodag . . . dziday) = 6, (dzo) H oi(z0)(dad) x
iel
X Q(dx1|zo, ag) ... Q(dxi|Ti—1,a:-1) H oi(w¢)(dal) (1)
iel

on the space of sequences (x, a)iez, , (T, a:) € X X A endowed with the product
o-algebra.
The expected discounted payoff of the player i equals to

oo

Ji(x,0) = Epo > Blri(ze,ar). (2)

t=0
A tuple 0* = (07 );er is called a Nash equilibrium if
Ji(x,0%) > Ji(x,0%,,04), i€l

for any strategies o; and any € X . We use the standard notation o_; = (Uj)je(]\i).

Formally, a Markov decision process is a stochastic game involving a single
player: m = 1. Omitting the index “1”, in this case we can write the objective
function (2) as follows:

J(x,0) =Ez 0 Z Blr(xze, ar).

t=0
Denote by v(x) = sup, J(z,0) the related value function.

Theorem 1. For the described Markov decision process the following assertions
hold true:

(i) v is the unique solution of the Bellman equation

o) = sw {riea) 45 [ vl 3)

acA(x)

in the space of bounded Borel measurable functions on X.
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(ii) There exists an optimal strategy o™ (x)(dy) = Oy=(2)(dy), which can be identified
with a Borel measurable selector

w*(z) € arg max { z,a +ﬂ/ Q(dy|z, a)}

a€A(x

(iii) If o™ is an optimal strategy: v(z) = J(x,0*), then

v(a:)—/A(w < .a +ﬂ/ Q(dylz, a)) *(2)(da) (@)

The proof of (i), (ii) can be found e.g. in (Himmelberg et al., 1976; Hu and
Papageorgiou, 2000, Section VII.2)). The relation (4) is known as the dynamic
programming principle or the “fundamental equation” (Dynkin and Yushkevich,
1979Chapter 6).

If (0])icr is a Nash equilibrium in an m-player game, m > 1, then each ¢ is an
optimal solutlon of the problem

Ji(x,0";,0;) — max. (5)

— o

A simple calculation shows that
Ji({E,Ui,O' 501,0' Zﬁ T xtaam )7

where

ri(x,ai;aii) = /_ ri(z,a’,a™?) U*_i(daﬂ') (6)
and the expectation Esﬁgi,gii is taken with respect to the measure generated by the
transition probabilities

Q- (Bloa') = [ @Bl ) (o)da”) )

and by the strategies o; on the space of sequences (24, af)icz, , (z4,ai) € X X A; in
the same way as (1).

It follows that (5) is a Markov decision process, satisfying the assumptions of
Theorem 1. Let V,- (x) = sup,, J(z,04,0*;) be the related value function. Since
o} is an optimal solution: V,+ (z) = J(z,07,0";), from the optimality principle (4)
and the Bellman equation (3) we get

Ve (1) = /A . (( o)+ B /X Voo (9)Qo (dyla >> o? (&) (da’)
> 1y, a0 ;) + B /X Vor (1)Qo (dylz.al), o € Ai(a). (8)

For fixed # and (07);es consider the one-shot game I'(z,0*) on Aj(z) x --- X
Ay, (z), where the payoff of i-th player equals to

Hi(z,a) = rix,a';0") + B /X Voo (4)Qor (dyla').
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From (8) it follows that (o) (x))ier is a mixed strategy Nash equilibrium in the game
I'(z,0*). So, we have proved the following well-known result: see (Jaskiewicz and
Nowak, 2018, He and Sun, 2017) for similar statements.

Theorem 2. For a discounted stochastic game with payoff functionals (2) and sta-
tionary Markov strategies (0 )icr the following conditions are equivalent.

(1) (¢})ier is a Nash equilibrium.

(ii) Each o}, i € I is an optimal solution of the Markov decision process with the
objective functional (5), transition kernel (7), and reward (6).

(iii) (o7 (x))ier is a mized strategy Nash equilibrium in the game I'(z,0*) for each
reX.

There are several additional assumptions that ensure the existence of a station-
ary Markov equilibrium: see the survey (Jaskiewicz and Nowak, 2018). We rely on
the results of (He, 2014; He and Sun, 2017).

Assume that

(A) Q(:|x,a) is absolutely continuous with respect to a probability measure A on
(X,%(X)) for each (v,a) € X x A. The related density (z,a,y) — q(y|z,a)
is assumed to be %(X) x %B(A) x %(X)-measurable. Here %(A) is the Borel
o-algebra of the topological space (A4, 7).

(B) For each z € X the mapping a — Q(+|x,a) is continuous in the total variation
norm:

lim  sup |Q(B|z,a,)— Q(Blz,a)] =0.
An =4 BeB(X)

Consider a probability space (§2,.%,P). A sub-o-algebra ¥4 C .Z is said to be
setwise coarser He, 2014 than Z if for every D € & with P(D) > 0 there exists a
set Do C D, Dg € % such that P(DgADy) > 0 for any D; € {D'ND: D €%}
(equivalently, % has no ¢-atom under P: see (He and Sun, 2017; He and Sun, 2018)
for this terminology). A stochastic game has a coarser transition kernel if there
exists a o-algebra ¥ € A(X) such that ¢(-|z,a) is ¥-measurable for all (z,a) €
X x A and 9 is setwise coarser than Z(X).

Theorem 3 (He and Sun, 2017, Theorem 1). Assume that the assumptions
(A), (B) are satisfied and the game has a coarser transition kernel. Then there exists
a Nash equilibrium (o] )icr.

In (He and Sun, 2017) Theorem 3 was formulated and proved under a more
general assumption that there exists a decomposable coarser transition kernel.

3. The result

We use the notation of Section 2. and assume that the conditions of Theorem 3 are
satisfied. A formal description of the game in question is given as follows.

(I) The manager selects a tuple ¢ = (¢;)ier of non-negative stimulating functions
¢ € 6 (X X A)
(II) The pool of m > 1 producers with the reward functions

ri(z,a) = ci(z,a) — gi(r,a), 0<gi € G (X x A)
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and payoffs
Ji(x,0,¢) =Eu 0 > B'(ci(x,a) - gi(z,a))
t=0

play the described stochastic game which results in a (stationary Markov) Nash
equilibrium (o7 )er.
(III) The manager gets the payoff

JL(I,O'*,C) = Em,cr* Zﬂt (f(xt;at
t=0

where f € 6,(X x A).

Mz

ci(wy, ay ) , 9)

=1

Denote by T'(c) the set of Nash equilibriums for a given stimulating function c.
The leader aim is to maximize her payoff for a worst Nash equilibrium:

G(z,c) = a*ienjf(c) Jr(x, 0", c).

The problem of this sort is known as a weak Stackelberg game: see (Breton et al.,
1988). Let us call

Vi (x) = sup{G(z,c) : c; € €(X x A), i € I}
the value of the leader. A tuple ¢ is called an e-Stackelberg solution, if
Vi(z) —e < G(z,¢c), z e X.

A pair (¢.,0*), 0* € T(¢.) is called an e-Stackelberg equilibrium.
Consider an auxiliary Markov decision process:

N
J(z,0) = EIUZﬁ ( T, ay) Z%(%,%)) — max . (10)
i=1

(0i)ier

This problem is attributed to the leader, who performs the maximization over the
tuples o = (0;);er- By Theorem 1 this problem has an optimal solution of the form
G = (0w, (s))ier, which can be identified with a Borel measurable selector

(Ui (x))ier Eargarenﬁx { x,a) Zgl z,a —I—ﬂ/ Q(dy|x, a)}

Here V() = sup, J(z,0) is the value function of the problem (10). It would coincide
with the optimal payoff of the leader if she was engaged in the production without
resorting to the services of producers.

We will assume that any producer suffers no cost if his production level is zero:

gi(z,0,a”) = 0. (11)

Theorem 4. Under the assumptions of Theorem 8 the following assertions hold
true.
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1) Vi(z) =V(z).
(ii) The tuple ¢. = (cic)ier,

Cie(®,a) = gi(z, a) + %(1 =B —la' —T(2))*, y* = max{y,0}

is an e-Stackelberg solution. The related Nash equilibrium is unique: T(¢.) =
{(07,(2))ier }-
Proof. For any o* € T'(c), 0 < ¢ € 6,(X x A) we have
Ji(z, 0% ¢) > Ji(z, (65,0%.),¢) >0

in view of (11). It follows that

Jr(z,0%,¢) < Jp(z,0",¢) + Z Ji(x, 0%, ¢c)

=1

=Eg o Zﬁt (x4, a) Zgi(xt,at)) = J(z,0") < V(z). (12)
i=1

Hence, Vi (z) < V(z).
Let o* € T(¢.). As was mentioned in Section 2., each component of the tuple
(0F)ier is an optimal solution of the Markov decision process

Ji(xv (Uiao'i ) =E; 00,0 Zﬂ Ci Itaata ) gl(xtaataa ))

=(1-p8)—Esci 0" Zﬁt (1 —|a? —a;(ze))" — max.
Clearly,
€ = €
Ji(fE, (O-i70—*_7;)7a€) S (1 - ﬁ)_ELE,Ui,U’ii ZB S -
m — m’
. €
Ji(:E, (6ai,0'_i),cg) = E
Hence,
Vo (x,Cc) :=sup J;(x, (0;,0%,),C) = <.
i o, m

By Theorem 2 for each = the tuple (0 x))ier is a mixed strategy Nash equilib-

rium in the one-shot game on Aj(x) X --- X A, (x), where the payoff of i-th player
equals to
Hi(z,a,¢.) = ci(z,al;0%,) — gi(xe,ak; 0 —I—ﬂ/ - (dy|z,a’)

— (1 Ja ~ o))" + =

In this trivial game the tuple (o] (z))icr = (03, (x))icr of pure strategies is the unique
Nash equilibrium.
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Finally, substituting ¢. in (9), we get

G(.I,EE) = JL(Ia (651')1'6]765) = Ew,(éﬁi)iel Zﬂt (f(xt; at) - Zgi(xt; at))
t=0 =1
~ (1= B)=Eatom,er D830 el =Tl = V() —<

t=0  i=1
By (12) it follows that ¢ is an e-Stackelberg solution, and Vi (z) = V(z).

Remark 1. In the case of a single follower (m = 1) similar results were obtained
in (Rokhlin and Ougolnitsky, 2018). However, the incentive premium in (Rokhlin
and Ougolnitsky, 2018) was discontinuous in a:

ce(r,a) — g(z,a) = (1 — B) [{a—m(a)} (13)

(we drop the index “1”). Furthermore, an analogue of Theorem 4 was proved either
under a strong assumption that in the auxiliary problem (10) there exists a contin-
uous optimal strategy w (by the way, this requires a topology on the state space), or
by working with the notion of (g, n)-Stackelberg solution and with the class of uni-
versally measurable stimulating functions ¢. The assumption of the present paper
that the production costs g;, the revenue function f and the stimulating functions
¢; belong to the class €,(X x A) leads to more natural and simple results. On the
other hand, in (Rokhlin and Ougolnitsky, 2018 Theorem 2) it was shown that for
the incentive premium (13) the follower can deviate from @ only at the expense of
“large losses”. Thus, such premium has its own merits.

In the case of finite state and action spaces, where arise no measure theoretic
difficulties, Theorem 4 remains valid for discontinuous incentive premium

3
Ci7€($, a) — gi(:E, a) = E(l — B)I{alzﬂl(m)}

Remark 2. In He and Sun, 2017 it is mentioned that Theorem 3 implies the ex-
istence of a stationary Markov correlated equilibrium under the assumptions (A),
(B). Closely following (He and Sun, 2017), we succintly describe this point as fol-
lows. Cousider the extended state space X’ = X x [0, 1] endowed with the product
o-algebra Z(X) ® %([0,1]) and the product measure N’ = A ® n, where 7 is the
Lebesgue measure on %([0,1]). In the related model at each stage all players ob-
tain a signal z; € [0,1]. These signals are independent random variables, which are
uniformly distributed on [0, 1]. The transition probability takes the form

Q'(B x Clz,z,a) = Q(Blz,a)n(C).
For the density ¢'(+|z, z,a) of Q'(-|z, z,a) with respect to A’ we have

q'(y, ulz, z,a) = q(ylz, a).

The function ¢'(-|z, z, a) = q(-|x, a) is measurable with respect to the o-algebra &’ =
PB(X){0, L} for all z, a, and this o-algebra is setwise coarser than Z(X)®%([0,1]).
Hence, the new model satisfies the condition of coarser transition kernel and pos-
sesses a stationary Markov equilibrium. By definition, this means the existence of
a correlated equilibrium in the original model, satisfying the assumptions (A), (B).
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So, if in the scheme (I) — (III), describing the Stackelberg game, at stage (II)
we replace a Nash equilibrium by a correlated equilibrium, then all assertions of
Theorem 4 remain valid, if the condition of coarser transition kernel is dropped.
The proof in fact does not change, since it is insensitive to the state space.

4. Conclusion

The present paper is related to the development of the theory of incentives in a
dynamical stochastic formulation. Essentially, it generalizes the results of (Rokhlin
and Ougolnitsky, 2018) for the case of multiple followers. Overall, the leader should
assume that she does not rely on producers’ services and attribute their costs to
herself. After determining optimal production strategies from the corresponding
Markov decision process she should economically motivate the producers to follow
these policies. The closely related problems of multiple leaders and continuous time
deserve further study.
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