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Abstra
t We 
onsider a game where manager's (leader's) aim is to maxi-

mize the gain of a large 
orporation by the distribution of funds between m

produ
ers (followers). The manager sele
ts a tuple of m non-negative in
en-

tive fun
tions, and the produ
ers play a dis
ounted sto
hasti
 game, whi
h

results in a Nash equilibrium. Manager's aim is to maximize her related

payo� over the 
lass of admissible in
entive fun
tions. It is shown that this

problem is redu
ed to a Markov de
ision pro
ess.

1. Introdu
tion

The problem of in
entives plays a key role in e
onomi
s and management. Its math-

emati
al formalization is proposed by the theory of in
entives (La�ont and Mar-

timort, 2002), me
hanism design (Myerson, 1983), the theory of 
ontrol in organi-

zational systems (Novikov, 2013). However, the majority of the respe
tive problem

formulations are stati
.

A natural dynami
 in
entive model is provided by the dynami
al inverse Sta
kel-

berg games, where the leader strategy depends on the followers' a
tions (an in
entive

me
hanism). A general review 
an be found in (Olsder, 2009). In the paper (Rokhlin

and Ougolnitsky, 2018) (inspired by Novikov and Shokhina, 2003) we formalized the

in
entive problem as a sto
hasti
 inverse Sta
kelberg game and obtained a simple

des
ription of leader's optimal strategy in the 
ase of a single follower. In the present

paper we extend this result for the 
ase of multiple followers.

Consider a game where manager's (leader's) aim is to maximize the gain of

a large 
orporation by the distribution of funds between m produ
ers (followers).

To ea
h follower the leader reports a non-negative stimulating (in
entive) fun
-

tion ci(x, a), depending on the state of the system x (e.g., the market pri
e of

the produ
ed good) and the a
tions a = (ai, . . . , am) of the produ
ers (e.g., the

produ
tion levels). At ea
h stage of the game the produ
ers sele
t their a
tions

ait independently and get the rewards ri(xt, at) = ci(xt, at) − gi(xt, at), where gi
are the produ
tion 
osts. The manager, or the 
orporation, one-stage gain equals

to f(xt, at) −
∑m

i=1 ci(xt, at), where f 
an be regarded as the sales revenue. The

sto
hasti
 �law of motion� of the state variable xt is governed by a transition kernel

q: informally, P(xt+1 ∈ B|xt, at) = q(B|xt, at).
Ea
h player's gain is estimated over the in�nite horizon with the 
ommon dis-


ount fa
tor β. So,

E

∞
∑

t=0

βt

(

f(xt, at)−
m
∑

i=1

ci(xt, at)

)

→ max

⋆
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is the obje
tive fun
tional of the leader, and

E

∞
∑

t=0

βt (ci(xt, at)− gi(xt, at)) → max

are the obje
tive fun
tionals of the followers. For ea
h tuple (c1, . . . , cm) the pool of
produ
ers responds by a Nash equilibrium in the 
orresponding dis
ounted sto
has-

ti
 game. The leader performs the optimization over the fun
tions ci from an ap-

propriate 
lass. From the previous work (Novikov and Shokhina, 2003; Rokhlin and

Ougolnitsky, 2018) it is known that it is optimal for the leader to e
onomi
ally mo-

tivate the followers to implement the strategies ait = ui(xt), where u = (u1, . . . , un)
is an optimal stationary deterministi
 Markov strategy in the Markov de
ision prob-

lem

E

∞
∑

t=0

βt

(

f(xt, at)−
m
∑

i=1

gi(xt, at)

)

→ max .

Passing to the 
ase of multiple followers, draw some te
hni
al di�
ulties related

to the existen
e of a stationary Markov equilibrium. To over
ome these te
hni
al

issues we modify the 
lass of in
entive fun
tions, 
onsidered in (Rokhlin and Ougol-

nitsky, 2018), to make them 
ontinuous in a
tions. Furthermore, we 
on�ne ourselves

to the games with a 
oarser transition kernel (He and Sun, 2017). Other related as-

sumptions on the transition kernel q, providing the existen
e of a stationary Markov

equilibrium (see Ja�skiewi
z and Nowak, 2018), would be su�
e.

In Se
tion 2. we give a general formal des
ription of a dis
ounted sto
hasti


game and a Markov de
ision pro
ess. In Se
tion 3. we use this formalism to pre
isely

des
ribe an ε-optimal strategy of the leader and her value fun
tion in our model,

formulated as a Sta
kelberg game: see Theorem 4. In two �nal remarks we 
ompare

this theorem with the results of (Rokhlin and Ougolnitsky, 2018), and mention that

the te
hni
al 
oarser transition kernel 
ondition 
an be dropped by passing to a


orrelated equilibrium.

2. Basi
s of dis
ounted sto
hasti
 games

Let (Ω,F ) be a measurable spa
e, and let (Y, τ) be a topologi
al spa
e. A fun
tion

F : Ω × Y → R is 
alled a Caratheodory fun
tion if the fun
tion F (·, y) is F -

measurable for ea
h y ∈ Y and the fun
tion F (ω, ·) is τ -
ontinuous for ea
h ω ∈ Ω

(Aliprantis and Border, 2006De�nition 4.50). If (Y, τ) is a separable metrizable

spa
e, then su
h fun
tion F is jointly measurable Aliprantis and Border, 2006Lemma

4.51. Denote by Cb(Ω × Y ) the set of uniformly bounded Caratheodory fun
tions.

Also, re
all that a standard Borel spa
e is a measurable spa
e isomorphi
 to a

Borel subset of a Polish spa
e (separable, 
ompletely metrizable topologi
al spa
e)

Srivastava, 1998.

Let I = {1, . . . ,m} be the set of players. The dis
ounted sto
hasti
 game is

determined by

� A standard Borel state spa
e (X,B(X)) with its Borel σ-algebra B(X).
� Separable metrizable spa
es (Ai, τi), i ∈ I of players' a
tions.

� Compa
t-valued mappings x 7→ Ai(x) ⊂ Ai. A set Ai(x) des
ribes the admissi-

ble a
tions of i-th player in the state x ∈ X . It is assumed that the multivalued

mappings x 7→ Ai(x) are measurable (Hu and Papageorgiou, 1997Chapter 2,
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De�nition 1.1), that is {x ∈ X : Ai(x) ∩ U 6= ∅} ∈ B(X) for any open set

U ⊂ Ai.

� Reward fun
tions ri ∈ Cb(X × A), where A = A1 × · · · × Am is endowed with

the produ
t topology τ .
� A transition probability Q(·|·) from X × A to X (Boga
hev, 2007De�nition

10.7.1), that is

• the fun
tion (x, a) 7→ Q(B|x, a) is B(X)×B(A)-measurable for every B ∈
B(X),

• the fun
tion B 7→ Q(B|x, a) is a probability measure on B(X) for every

(x, a) ∈ X ×A.
It is assumed that the fun
tion a 7→

∫

w(y)Q(dy|x, a) is 
ontinuous for any

x ∈ X and any bounded Borel measurable fun
tion w on X .

� A dis
ount fa
tor β ∈ [0, 1).

We assume that the players use stationary Markov strategies, whi
h 
an be

identi�ed with the transitions probabilities σi fromX to Ai su
h that σi(x)(Ai(x)) =
1. For x ∈ X ea
h tuple σ = (σi)i∈I indu
es the probability measure

Px,σ(dx0da0 . . . dxtdat) = δx(dx0)
∏

i∈I

σi(x0)(da
i
0)×

×Q(dx1|x0, a0) . . . Q(dxt|xt−1, at−1)
∏

i∈I

σi(xt)(da
i
t) (1)

on the spa
e of sequen
es (xt, at)t∈Z+
, (xt, at) ∈ X ×A endowed with the produ
t

σ-algebra.

The expe
ted dis
ounted payo� of the player i equals to

Ji(x, σ) = Ex,σ

∞
∑

t=0

βtri(xt, at). (2)

A tuple σ∗ = (σ∗
i )i∈I is 
alled a Nash equilibrium if

Ji(x, σ
∗) ≥ Ji(x, σ

∗
−i, σi), i ∈ I

for any strategies σi and any x ∈ X . We use the standard notation σ−i = (σj)j∈(I\i).

Formally, a Markov de
ision pro
ess is a sto
hasti
 game involving a single

player: m = 1. Omitting the index �1�, in this 
ase we 
an write the obje
tive

fun
tion (2) as follows:

J(x, σ) = Ex,σ

∞
∑

t=0

βtr(xt, at).

Denote by v(x) = supσ J(x, σ) the related value fun
tion.

Theorem 1. For the des
ribed Markov de
ision pro
ess the following assertions

hold true:

(i) v is the unique solution of the Bellman equation

v(x) = sup
a∈A(x)

{

r(x, a) + β

∫

X

v(y)Q(dy|x, a)

}

(3)

in the spa
e of bounded Borel measurable fun
tions on X.
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(ii) There exists an optimal strategy σ∗(x)(dy) = δu∗(x)(dy), whi
h 
an be identi�ed

with a Borel measurable sele
tor

u∗(x) ∈ arg max
a∈A(x)

{

r(x, a) + β

∫

X

v(y)Q(dy|x, a)

}

.

(iii) If σ∗
is an optimal strategy: v(x) = J(x, σ∗), then

v(x) =

∫

A(x)

(

r(x, a) + β

∫

X

v(y)Q(dy|x, a)

)

σ∗(x)(da) (4)

The proof of (i), (ii) 
an be found e.g. in (Himmelberg et al., 1976; Hu and

Papageorgiou, 2000, Se
tion VII.2)). The relation (4) is known as the dynami


programming prin
iple or the �fundamental equation�: (Dynkin and Yushkevi
h,

1979Chapter 6).

If (σ∗
i )i∈I is a Nash equilibrium in an m-player game, m > 1, then ea
h σ∗

i is an

optimal solution of the problem

Ji(x, σ
∗
−i, σi) → max

σi

. (5)

A simple 
al
ulation shows that

Ji(x, σi, σ
∗
−i) = Es,σi,σ

∗

−i

∞
∑

t=0

βtri(xt, a
i
t;σ

∗
−i),

where

ri(x, a
i;σ∗

−i) =

∫

A−i

ri(x, a
i, a−i)σ∗

−i(da
−i) (6)

and the expe
tation Es,σi,σ
∗

−i
is taken with respe
t to the measure generated by the

transition probabilities

Qσ∗

−i
(B|x, ai) =

∫

A−i

Q(B|x, ai, a−i)σ∗
−i(x)(da

−i) (7)

and by the strategies σi on the spa
e of sequen
es (xt, a
i
t)t∈Z+

, (xt, a
i
t) ∈ X ×Ai in

the same way as (1).

It follows that (5) is a Markov de
ision pro
ess, satisfying the assumptions of

Theorem 1. Let Vσ∗

−i
(x) = supσi

J(x, σi, σ
∗
−i) be the related value fun
tion. Sin
e

σ∗
i is an optimal solution: Vσ∗

−i
(x) = J(x, σ∗

i , σ
∗
−i), from the optimality prin
iple (4)

and the Bellman equation (3) we get

Vσ∗

−i
(x) =

∫

A(x)

(

ri(x, a
i;σ∗

−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai)

)

σ∗
i (x)(da

i)

≥ ri(x, a
i;σ∗

−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai), ai ∈ Ai(x). (8)

For �xed x and (σ∗
i )i∈I 
onsider the one-shot game Γ (x, σ∗) on A1(x) × · · · ×

Am(x), where the payo� of i-th player equals to

Hi(x, a) = ri(x, a
i;σ∗

−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai).
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From (8) it follows that (σ∗
i (x))i∈I is a mixed strategy Nash equilibrium in the game

Γ (x, σ∗). So, we have proved the following well-known result: see (Ja�skiewi
z and

Nowak, 2018, He and Sun, 2017) for similar statements.

Theorem 2. For a dis
ounted sto
hasti
 game with payo� fun
tionals (2) and sta-

tionary Markov strategies (σ∗
i )i∈I the following 
onditions are equivalent.

(i) (σ∗
i )i∈I is a Nash equilibrium.

(ii) Ea
h σ∗
i , i ∈ I is an optimal solution of the Markov de
ision pro
ess with the

obje
tive fun
tional (5), transition kernel (7), and reward (6).

(iii) (σ∗
i (x))i∈I is a mixed strategy Nash equilibrium in the game Γ (x, σ∗) for ea
h

x ∈ X.

There are several additional assumptions that ensure the existen
e of a station-

ary Markov equilibrium: see the survey (Ja�skiewi
z and Nowak, 2018). We rely on

the results of (He, 2014; He and Sun, 2017).

Assume that

(A) Q(·|x, a) is absolutely 
ontinuous with respe
t to a probability measure λ on

(X,B(X)) for ea
h (x, a) ∈ X × A. The related density (x, a, y) 7→ q(y|x, a)
is assumed to be B(X) × B(A) × B(X)-measurable. Here B(A) is the Borel
σ-algebra of the topologi
al spa
e (A, τ).

(B) For ea
h x ∈ X the mapping a 7→ Q(·|x, a) is 
ontinuous in the total variation
norm:

lim
an→a

sup
B∈B(X)

|Q(B|x, an)−Q(B|x, a)| = 0.

Consider a probability spa
e (Ω,F ,P). A sub-σ-algebra G ⊂ F is said to be

setwise 
oarser He, 2014 than F if for every D ∈ F with P(D) > 0 there exists a

set D0 ⊂ D, D0 ∈ F su
h that P(D0△D1) > 0 for any D1 ∈ {D′ ∩ D : D′ ∈ G }
(equivalently, F has no G -atom under P: see (He and Sun, 2017; He and Sun, 2018)

for this terminology). A sto
hasti
 game has a 
oarser transition kernel if there

exists a σ-algebra G ∈ B(X) su
h that q(·|x, a) is G -measurable for all (x, a) ∈
X ×A and G is setwise 
oarser than B(X).

Theorem 3 (He and Sun, 2017, Theorem 1). Assume that the assumptions

(A), (B) are satis�ed and the game has a 
oarser transition kernel. Then there exists

a Nash equilibrium (σ∗
i )i∈I .

In (He and Sun, 2017) Theorem 3 was formulated and proved under a more

general assumption that there exists a de
omposable 
oarser transition kernel.

3. The result

We use the notation of Se
tion 2. and assume that the 
onditions of Theorem 3 are

satis�ed. A formal des
ription of the game in question is given as follows.

(I) The manager sele
ts a tuple c = (ci)i∈I of non-negative stimulating fun
tions

ci ∈ Cb(X ×A).
(II) The pool of m ≥ 1 produ
ers with the reward fun
tions

ri(x, a) = ci(x, a)− gi(x, a), 0 ≤ gi ∈ Cb(X ×A)
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and payo�s

Ji(x, σ, c) = Ex,σ

∞
∑

t=0

βt(ci(x, a)− gi(x, a))

play the des
ribed sto
hasti
 game whi
h results in a (stationary Markov) Nash

equilibrium (σ∗
i )i∈I .

(III) The manager gets the payo�

JL(x, σ
∗, c) = Ex,σ∗

∞
∑

t=0

βt

(

f(xt, at)−
N
∑

i=1

ci(xt, at)

)

, (9)

where f ∈ Cb(X ×A).

Denote by T (c) the set of Nash equilibriums for a given stimulating fun
tion c.

The leader aim is to maximize her payo� for a worst Nash equilibrium:

G(x, c) = inf
σ∗∈T (c)

JL(x, σ
∗, c).

The problem of this sort is known as a weak Sta
kelberg game: see (Breton et al.,

1988). Let us 
all

VL(x) = sup{G(x, c) : ci ∈ Cb(X ×A), i ∈ I}

the value of the leader. A tuple cε is 
alled an ε-Sta
kelberg solution, if

VL(x)− ε ≤ G(x, cε), x ∈ X.

A pair (cε, σ
∗), σ∗ ∈ T (cε) is 
alled an ε-Sta
kelberg equilibrium.

Consider an auxiliary Markov de
ision pro
ess:

J(x, σ) = Ex,σ

∞
∑

t=0

βt

(

f(xt, at)−
N
∑

i=1

gi(xt, at)

)

→ max
(σi)i∈I

. (10)

This problem is attributed to the leader, who performs the maximization over the

tuples σ = (σi)i∈I . By Theorem 1 this problem has an optimal solution of the form

σ = (δui(x))i∈I , whi
h 
an be identi�ed with a Borel measurable sele
tor

(ui(x))i∈I ∈ arg max
a∈A(x)

{

f(x, a)−
m
∑

i=1

gi(x, a) + β

∫

X

V (y)Q(dy|x, a)

}

.

Here V (x) = supσ J(x, σ) is the value fun
tion of the problem (10). It would 
oin
ide

with the optimal payo� of the leader if she was engaged in the produ
tion without

resorting to the servi
es of produ
ers.

We will assume that any produ
er su�ers no 
ost if his produ
tion level is zero:

gi(x, 0, a
−) = 0. (11)

Theorem 4. Under the assumptions of Theorem 3 the following assertions hold

true.
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(i) VL(x) = V (x).
(ii) The tuple cε = (ci,ε)i∈I ,

ci,ε(x, a) = gi(x, a) +
ε

m
(1− β)(1 − |ai − ui(x)|)

+, y+ := max{y, 0}

is an ε-Sta
kelberg solution. The related Nash equilibrium is unique: T (cε) =
{(δui(x))i∈I}.

Proof. For any σ∗ ∈ T (c), 0 ≤ c ∈ Cb(X ×A) we have

Ji(x, σ
∗, c) ≥ Ji(x, (δ

i
0, σ

∗
−i), c) ≥ 0

in view of (11). It follows that

JL(x, σ
∗, c) ≤ JL(x, σ

∗, c) +

m
∑

i=1

Ji(x, σ
∗, c)

= Ex,σ∗

∞
∑

t=0

βt(f(xt, at)−
m
∑

i=1

gi(xt, at)) = J(x, σ∗) ≤ V (x). (12)

Hen
e, VL(x) ≤ V (x).
Let σ∗ ∈ T (cε). As was mentioned in Se
tion 2., ea
h 
omponent of the tuple

(σ∗
i )i∈I is an optimal solution of the Markov de
ision pro
ess

Ji(x, (σi, σ
∗
−i), c) = Ex,σi,σ

∗

−i

∞
∑

t=0

βt(ci(xt, a
i
t;σ

∗
−i)− gi(xt, a

i
t;σ

∗
−i))

= (1− β)
ε

m
Ex,σi,σ

∗

−i

∞
∑

t=0

βt(1− |ait − ui(xt)|)
+ → max

σi

.

Clearly,

Ji(x, (σi, σ
∗
−i), cε) ≤ (1− β)

ε

m
Ex,σi,σ

∗

−i

∞
∑

t=0

βt ≤
ε

m
,

Ji(x, (δui
, σ∗

−i), cε) =
ε

m
.

Hen
e,

Vσ∗

−i
(x, cε) := sup

σi

Ji(x, (σi, σ
∗
−i), cε) =

ε

m
.

By Theorem 2 for ea
h x the tuple (σ∗
i (x))i∈I is a mixed strategy Nash equilib-

rium in the one-shot game on A1(x)× · · · ×Am(x), where the payo� of i-th player

equals to

Hi(x, a, cε) = ci(xt, a
i
t;σ

∗
−i)− gi(xt, a

i
t;σ

∗
−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai)

= (1− |ai − ui(x)|)
+ +

ε

m
.

In this trivial game the tuple (σ∗
i (x))i∈I = (δui(x))i∈I of pure strategies is the unique

Nash equilibrium.
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Finally, substituting cε in (9), we get

G(x, cε) = JL(x, (δui
)i∈I , cε) = Ex,(δui

)i∈I

∞
∑

t=0

βt

(

f(xt, at)−
m
∑

i=1

gi(xt, at)

)

− (1− β)
ε

m
Ex,(δui

)i∈I

∞
∑

t=0

βt

m
∑

i=1

(1 − |ait − ui(xt)|)
+ = V (x)− ε.

By (12) it follows that cε is an ε-Sta
kelberg solution, and VL(x) = V (x).

Remark 1. In the 
ase of a single follower (m = 1) similar results were obtained

in (Rokhlin and Ougolnitsky, 2018). However, the in
entive premium in (Rokhlin

and Ougolnitsky, 2018) was dis
ontinuous in a:

cε(x, a)− g(x, a) = ε(1− β)I{a=u(x)} (13)

(we drop the index �1�). Furthermore, an analogue of Theorem 4 was proved either

under a strong assumption that in the auxiliary problem (10) there exists a 
ontin-

uous optimal strategy u (by the way, this requires a topology on the state spa
e), or

by working with the notion of (ε, η)-Sta
kelberg solution and with the 
lass of uni-

versally measurable stimulating fun
tions c. The assumption of the present paper

that the produ
tion 
osts gi, the revenue fun
tion f and the stimulating fun
tions

ci belong to the 
lass Cb(X ×A) leads to more natural and simple results. On the

other hand, in (Rokhlin and Ougolnitsky, 2018Theorem 2) it was shown that for

the in
entive premium (13) the follower 
an deviate from u only at the expense of

�large losses�. Thus, su
h premium has its own merits.

In the 
ase of �nite state and a
tion spa
es, where arise no measure theoreti


di�
ulties, Theorem 4 remains valid for dis
ontinuous in
entive premium

ci,ε(x, a)− gi(x, a) =
ε

m
(1 − β)I{ai=ui(x)}.

Remark 2. In He and Sun, 2017 it is mentioned that Theorem 3 implies the ex-

isten
e of a stationary Markov 
orrelated equilibrium under the assumptions (A),

(B). Closely following (He and Sun, 2017), we su

intly des
ribe this point as fol-

lows. Consider the extended state spa
e X ′ = X × [0, 1] endowed with the produ
t

σ-algebra B(X) ⊗ B([0, 1]) and the produ
t measure λ′ = λ ⊗ η, where η is the

Lebesgue measure on B([0, 1]). In the related model at ea
h stage all players ob-

tain a signal zt ∈ [0, 1]. These signals are independent random variables, whi
h are

uniformly distributed on [0, 1]. The transition probability takes the form

Q′(B × C|x, z, a) = Q(B|x, a)η(C).

For the density q′(·|x, z, a) of Q′(·|x, z, a) with respe
t to λ′
we have

q′(y, u|x, z, a) = q(y|x, a).

The fun
tion q′(·|x, z, a) = q(·|x, a) is measurable with respe
t to the σ-algebra G ′ =
B(X)⊗{∅, L} for all x, a, and this σ-algebra is setwise 
oarser than B(X)⊗B([0, 1]).
Hen
e, the new model satis�es the 
ondition of 
oarser transition kernel and pos-

sesses a stationary Markov equilibrium. By de�nition, this means the existen
e of

a 
orrelated equilibrium in the original model, satisfying the assumptions (A), (B).
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So, if in the s
heme (I) � (III), des
ribing the Sta
kelberg game, at stage (II)

we repla
e a Nash equilibrium by a 
orrelated equilibrium, then all assertions of

Theorem 4 remain valid, if the 
ondition of 
oarser transition kernel is dropped.

The proof in fa
t does not 
hange, sin
e it is insensitive to the state spa
e.

4. Con
lusion

The present paper is related to the development of the theory of in
entives in a

dynami
al sto
hasti
 formulation. Essentially, it generalizes the results of (Rokhlin

and Ougolnitsky, 2018) for the 
ase of multiple followers. Overall, the leader should

assume that she does not rely on produ
ers' servi
es and attribute their 
osts to

herself. After determining optimal produ
tion strategies from the 
orresponding

Markov de
ision pro
ess she should e
onomi
ally motivate the produ
ers to follow

these poli
ies. The 
losely related problems of multiple leaders and 
ontinuous time

deserve further study.
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