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Abstrat We onsider a game where manager's (leader's) aim is to maxi-

mize the gain of a large orporation by the distribution of funds between m

produers (followers). The manager selets a tuple of m non-negative inen-

tive funtions, and the produers play a disounted stohasti game, whih

results in a Nash equilibrium. Manager's aim is to maximize her related

payo� over the lass of admissible inentive funtions. It is shown that this

problem is redued to a Markov deision proess.

1. Introdution

The problem of inentives plays a key role in eonomis and management. Its math-

ematial formalization is proposed by the theory of inentives (La�ont and Mar-

timort, 2002), mehanism design (Myerson, 1983), the theory of ontrol in organi-

zational systems (Novikov, 2013). However, the majority of the respetive problem

formulations are stati.

A natural dynami inentive model is provided by the dynamial inverse Stakel-

berg games, where the leader strategy depends on the followers' ations (an inentive

mehanism). A general review an be found in (Olsder, 2009). In the paper (Rokhlin

and Ougolnitsky, 2018) (inspired by Novikov and Shokhina, 2003) we formalized the

inentive problem as a stohasti inverse Stakelberg game and obtained a simple

desription of leader's optimal strategy in the ase of a single follower. In the present

paper we extend this result for the ase of multiple followers.

Consider a game where manager's (leader's) aim is to maximize the gain of

a large orporation by the distribution of funds between m produers (followers).

To eah follower the leader reports a non-negative stimulating (inentive) fun-

tion ci(x, a), depending on the state of the system x (e.g., the market prie of

the produed good) and the ations a = (ai, . . . , am) of the produers (e.g., the

prodution levels). At eah stage of the game the produers selet their ations

ait independently and get the rewards ri(xt, at) = ci(xt, at) − gi(xt, at), where gi
are the prodution osts. The manager, or the orporation, one-stage gain equals

to f(xt, at) −
∑m

i=1 ci(xt, at), where f an be regarded as the sales revenue. The

stohasti �law of motion� of the state variable xt is governed by a transition kernel

q: informally, P(xt+1 ∈ B|xt, at) = q(B|xt, at).
Eah player's gain is estimated over the in�nite horizon with the ommon dis-

ount fator β. So,

E

∞
∑

t=0

βt

(

f(xt, at)−
m
∑

i=1

ci(xt, at)

)

→ max

⋆
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is the objetive funtional of the leader, and

E

∞
∑

t=0

βt (ci(xt, at)− gi(xt, at)) → max

are the objetive funtionals of the followers. For eah tuple (c1, . . . , cm) the pool of
produers responds by a Nash equilibrium in the orresponding disounted stohas-

ti game. The leader performs the optimization over the funtions ci from an ap-

propriate lass. From the previous work (Novikov and Shokhina, 2003; Rokhlin and

Ougolnitsky, 2018) it is known that it is optimal for the leader to eonomially mo-

tivate the followers to implement the strategies ait = ui(xt), where u = (u1, . . . , un)
is an optimal stationary deterministi Markov strategy in the Markov deision prob-

lem

E

∞
∑

t=0

βt

(

f(xt, at)−
m
∑

i=1

gi(xt, at)

)

→ max .

Passing to the ase of multiple followers, draw some tehnial di�ulties related

to the existene of a stationary Markov equilibrium. To overome these tehnial

issues we modify the lass of inentive funtions, onsidered in (Rokhlin and Ougol-

nitsky, 2018), to make them ontinuous in ations. Furthermore, we on�ne ourselves

to the games with a oarser transition kernel (He and Sun, 2017). Other related as-

sumptions on the transition kernel q, providing the existene of a stationary Markov

equilibrium (see Ja�skiewiz and Nowak, 2018), would be su�e.

In Setion 2. we give a general formal desription of a disounted stohasti

game and a Markov deision proess. In Setion 3. we use this formalism to preisely

desribe an ε-optimal strategy of the leader and her value funtion in our model,

formulated as a Stakelberg game: see Theorem 4. In two �nal remarks we ompare

this theorem with the results of (Rokhlin and Ougolnitsky, 2018), and mention that

the tehnial oarser transition kernel ondition an be dropped by passing to a

orrelated equilibrium.

2. Basis of disounted stohasti games

Let (Ω,F ) be a measurable spae, and let (Y, τ) be a topologial spae. A funtion

F : Ω × Y → R is alled a Caratheodory funtion if the funtion F (·, y) is F -

measurable for eah y ∈ Y and the funtion F (ω, ·) is τ -ontinuous for eah ω ∈ Ω

(Aliprantis and Border, 2006De�nition 4.50). If (Y, τ) is a separable metrizable

spae, then suh funtion F is jointly measurable Aliprantis and Border, 2006Lemma

4.51. Denote by Cb(Ω × Y ) the set of uniformly bounded Caratheodory funtions.

Also, reall that a standard Borel spae is a measurable spae isomorphi to a

Borel subset of a Polish spae (separable, ompletely metrizable topologial spae)

Srivastava, 1998.

Let I = {1, . . . ,m} be the set of players. The disounted stohasti game is

determined by

� A standard Borel state spae (X,B(X)) with its Borel σ-algebra B(X).
� Separable metrizable spaes (Ai, τi), i ∈ I of players' ations.

� Compat-valued mappings x 7→ Ai(x) ⊂ Ai. A set Ai(x) desribes the admissi-

ble ations of i-th player in the state x ∈ X . It is assumed that the multivalued

mappings x 7→ Ai(x) are measurable (Hu and Papageorgiou, 1997Chapter 2,



Optimal Inentive Strategy in a Disounted Stohasti Stakelberg Game 275

De�nition 1.1), that is {x ∈ X : Ai(x) ∩ U 6= ∅} ∈ B(X) for any open set

U ⊂ Ai.

� Reward funtions ri ∈ Cb(X × A), where A = A1 × · · · × Am is endowed with

the produt topology τ .
� A transition probability Q(·|·) from X × A to X (Bogahev, 2007De�nition

10.7.1), that is

• the funtion (x, a) 7→ Q(B|x, a) is B(X)×B(A)-measurable for every B ∈
B(X),

• the funtion B 7→ Q(B|x, a) is a probability measure on B(X) for every

(x, a) ∈ X ×A.
It is assumed that the funtion a 7→

∫

w(y)Q(dy|x, a) is ontinuous for any

x ∈ X and any bounded Borel measurable funtion w on X .

� A disount fator β ∈ [0, 1).

We assume that the players use stationary Markov strategies, whih an be

identi�ed with the transitions probabilities σi fromX to Ai suh that σi(x)(Ai(x)) =
1. For x ∈ X eah tuple σ = (σi)i∈I indues the probability measure

Px,σ(dx0da0 . . . dxtdat) = δx(dx0)
∏

i∈I

σi(x0)(da
i
0)×

×Q(dx1|x0, a0) . . . Q(dxt|xt−1, at−1)
∏

i∈I

σi(xt)(da
i
t) (1)

on the spae of sequenes (xt, at)t∈Z+
, (xt, at) ∈ X ×A endowed with the produt

σ-algebra.

The expeted disounted payo� of the player i equals to

Ji(x, σ) = Ex,σ

∞
∑

t=0

βtri(xt, at). (2)

A tuple σ∗ = (σ∗
i )i∈I is alled a Nash equilibrium if

Ji(x, σ
∗) ≥ Ji(x, σ

∗
−i, σi), i ∈ I

for any strategies σi and any x ∈ X . We use the standard notation σ−i = (σj)j∈(I\i).

Formally, a Markov deision proess is a stohasti game involving a single

player: m = 1. Omitting the index �1�, in this ase we an write the objetive

funtion (2) as follows:

J(x, σ) = Ex,σ

∞
∑

t=0

βtr(xt, at).

Denote by v(x) = supσ J(x, σ) the related value funtion.

Theorem 1. For the desribed Markov deision proess the following assertions

hold true:

(i) v is the unique solution of the Bellman equation

v(x) = sup
a∈A(x)

{

r(x, a) + β

∫

X

v(y)Q(dy|x, a)

}

(3)

in the spae of bounded Borel measurable funtions on X.
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(ii) There exists an optimal strategy σ∗(x)(dy) = δu∗(x)(dy), whih an be identi�ed

with a Borel measurable seletor

u∗(x) ∈ arg max
a∈A(x)

{

r(x, a) + β

∫

X

v(y)Q(dy|x, a)

}

.

(iii) If σ∗
is an optimal strategy: v(x) = J(x, σ∗), then

v(x) =

∫

A(x)

(

r(x, a) + β

∫

X

v(y)Q(dy|x, a)

)

σ∗(x)(da) (4)

The proof of (i), (ii) an be found e.g. in (Himmelberg et al., 1976; Hu and

Papageorgiou, 2000, Setion VII.2)). The relation (4) is known as the dynami

programming priniple or the �fundamental equation�: (Dynkin and Yushkevih,

1979Chapter 6).

If (σ∗
i )i∈I is a Nash equilibrium in an m-player game, m > 1, then eah σ∗

i is an

optimal solution of the problem

Ji(x, σ
∗
−i, σi) → max

σi

. (5)

A simple alulation shows that

Ji(x, σi, σ
∗
−i) = Es,σi,σ

∗

−i

∞
∑

t=0

βtri(xt, a
i
t;σ

∗
−i),

where

ri(x, a
i;σ∗

−i) =

∫

A−i

ri(x, a
i, a−i)σ∗

−i(da
−i) (6)

and the expetation Es,σi,σ
∗

−i
is taken with respet to the measure generated by the

transition probabilities

Qσ∗

−i
(B|x, ai) =

∫

A−i

Q(B|x, ai, a−i)σ∗
−i(x)(da

−i) (7)

and by the strategies σi on the spae of sequenes (xt, a
i
t)t∈Z+

, (xt, a
i
t) ∈ X ×Ai in

the same way as (1).

It follows that (5) is a Markov deision proess, satisfying the assumptions of

Theorem 1. Let Vσ∗

−i
(x) = supσi

J(x, σi, σ
∗
−i) be the related value funtion. Sine

σ∗
i is an optimal solution: Vσ∗

−i
(x) = J(x, σ∗

i , σ
∗
−i), from the optimality priniple (4)

and the Bellman equation (3) we get

Vσ∗

−i
(x) =

∫

A(x)

(

ri(x, a
i;σ∗

−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai)

)

σ∗
i (x)(da

i)

≥ ri(x, a
i;σ∗

−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai), ai ∈ Ai(x). (8)

For �xed x and (σ∗
i )i∈I onsider the one-shot game Γ (x, σ∗) on A1(x) × · · · ×

Am(x), where the payo� of i-th player equals to

Hi(x, a) = ri(x, a
i;σ∗

−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai).
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From (8) it follows that (σ∗
i (x))i∈I is a mixed strategy Nash equilibrium in the game

Γ (x, σ∗). So, we have proved the following well-known result: see (Ja�skiewiz and

Nowak, 2018, He and Sun, 2017) for similar statements.

Theorem 2. For a disounted stohasti game with payo� funtionals (2) and sta-

tionary Markov strategies (σ∗
i )i∈I the following onditions are equivalent.

(i) (σ∗
i )i∈I is a Nash equilibrium.

(ii) Eah σ∗
i , i ∈ I is an optimal solution of the Markov deision proess with the

objetive funtional (5), transition kernel (7), and reward (6).

(iii) (σ∗
i (x))i∈I is a mixed strategy Nash equilibrium in the game Γ (x, σ∗) for eah

x ∈ X.

There are several additional assumptions that ensure the existene of a station-

ary Markov equilibrium: see the survey (Ja�skiewiz and Nowak, 2018). We rely on

the results of (He, 2014; He and Sun, 2017).

Assume that

(A) Q(·|x, a) is absolutely ontinuous with respet to a probability measure λ on

(X,B(X)) for eah (x, a) ∈ X × A. The related density (x, a, y) 7→ q(y|x, a)
is assumed to be B(X) × B(A) × B(X)-measurable. Here B(A) is the Borel
σ-algebra of the topologial spae (A, τ).

(B) For eah x ∈ X the mapping a 7→ Q(·|x, a) is ontinuous in the total variation
norm:

lim
an→a

sup
B∈B(X)

|Q(B|x, an)−Q(B|x, a)| = 0.

Consider a probability spae (Ω,F ,P). A sub-σ-algebra G ⊂ F is said to be

setwise oarser He, 2014 than F if for every D ∈ F with P(D) > 0 there exists a

set D0 ⊂ D, D0 ∈ F suh that P(D0△D1) > 0 for any D1 ∈ {D′ ∩ D : D′ ∈ G }
(equivalently, F has no G -atom under P: see (He and Sun, 2017; He and Sun, 2018)

for this terminology). A stohasti game has a oarser transition kernel if there

exists a σ-algebra G ∈ B(X) suh that q(·|x, a) is G -measurable for all (x, a) ∈
X ×A and G is setwise oarser than B(X).

Theorem 3 (He and Sun, 2017, Theorem 1). Assume that the assumptions

(A), (B) are satis�ed and the game has a oarser transition kernel. Then there exists

a Nash equilibrium (σ∗
i )i∈I .

In (He and Sun, 2017) Theorem 3 was formulated and proved under a more

general assumption that there exists a deomposable oarser transition kernel.

3. The result

We use the notation of Setion 2. and assume that the onditions of Theorem 3 are

satis�ed. A formal desription of the game in question is given as follows.

(I) The manager selets a tuple c = (ci)i∈I of non-negative stimulating funtions

ci ∈ Cb(X ×A).
(II) The pool of m ≥ 1 produers with the reward funtions

ri(x, a) = ci(x, a)− gi(x, a), 0 ≤ gi ∈ Cb(X ×A)
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and payo�s

Ji(x, σ, c) = Ex,σ

∞
∑

t=0

βt(ci(x, a)− gi(x, a))

play the desribed stohasti game whih results in a (stationary Markov) Nash

equilibrium (σ∗
i )i∈I .

(III) The manager gets the payo�

JL(x, σ
∗, c) = Ex,σ∗

∞
∑

t=0

βt

(

f(xt, at)−
N
∑

i=1

ci(xt, at)

)

, (9)

where f ∈ Cb(X ×A).

Denote by T (c) the set of Nash equilibriums for a given stimulating funtion c.

The leader aim is to maximize her payo� for a worst Nash equilibrium:

G(x, c) = inf
σ∗∈T (c)

JL(x, σ
∗, c).

The problem of this sort is known as a weak Stakelberg game: see (Breton et al.,

1988). Let us all

VL(x) = sup{G(x, c) : ci ∈ Cb(X ×A), i ∈ I}

the value of the leader. A tuple cε is alled an ε-Stakelberg solution, if

VL(x)− ε ≤ G(x, cε), x ∈ X.

A pair (cε, σ
∗), σ∗ ∈ T (cε) is alled an ε-Stakelberg equilibrium.

Consider an auxiliary Markov deision proess:

J(x, σ) = Ex,σ

∞
∑

t=0

βt

(

f(xt, at)−
N
∑

i=1

gi(xt, at)

)

→ max
(σi)i∈I

. (10)

This problem is attributed to the leader, who performs the maximization over the

tuples σ = (σi)i∈I . By Theorem 1 this problem has an optimal solution of the form

σ = (δui(x))i∈I , whih an be identi�ed with a Borel measurable seletor

(ui(x))i∈I ∈ arg max
a∈A(x)

{

f(x, a)−
m
∑

i=1

gi(x, a) + β

∫

X

V (y)Q(dy|x, a)

}

.

Here V (x) = supσ J(x, σ) is the value funtion of the problem (10). It would oinide

with the optimal payo� of the leader if she was engaged in the prodution without

resorting to the servies of produers.

We will assume that any produer su�ers no ost if his prodution level is zero:

gi(x, 0, a
−) = 0. (11)

Theorem 4. Under the assumptions of Theorem 3 the following assertions hold

true.
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(i) VL(x) = V (x).
(ii) The tuple cε = (ci,ε)i∈I ,

ci,ε(x, a) = gi(x, a) +
ε

m
(1− β)(1 − |ai − ui(x)|)

+, y+ := max{y, 0}

is an ε-Stakelberg solution. The related Nash equilibrium is unique: T (cε) =
{(δui(x))i∈I}.

Proof. For any σ∗ ∈ T (c), 0 ≤ c ∈ Cb(X ×A) we have

Ji(x, σ
∗, c) ≥ Ji(x, (δ

i
0, σ

∗
−i), c) ≥ 0

in view of (11). It follows that

JL(x, σ
∗, c) ≤ JL(x, σ

∗, c) +

m
∑

i=1

Ji(x, σ
∗, c)

= Ex,σ∗

∞
∑

t=0

βt(f(xt, at)−
m
∑

i=1

gi(xt, at)) = J(x, σ∗) ≤ V (x). (12)

Hene, VL(x) ≤ V (x).
Let σ∗ ∈ T (cε). As was mentioned in Setion 2., eah omponent of the tuple

(σ∗
i )i∈I is an optimal solution of the Markov deision proess

Ji(x, (σi, σ
∗
−i), c) = Ex,σi,σ

∗

−i

∞
∑

t=0

βt(ci(xt, a
i
t;σ

∗
−i)− gi(xt, a

i
t;σ

∗
−i))

= (1− β)
ε

m
Ex,σi,σ

∗

−i

∞
∑

t=0

βt(1− |ait − ui(xt)|)
+ → max

σi

.

Clearly,

Ji(x, (σi, σ
∗
−i), cε) ≤ (1− β)

ε

m
Ex,σi,σ

∗

−i

∞
∑

t=0

βt ≤
ε

m
,

Ji(x, (δui
, σ∗

−i), cε) =
ε

m
.

Hene,

Vσ∗

−i
(x, cε) := sup

σi

Ji(x, (σi, σ
∗
−i), cε) =

ε

m
.

By Theorem 2 for eah x the tuple (σ∗
i (x))i∈I is a mixed strategy Nash equilib-

rium in the one-shot game on A1(x)× · · · ×Am(x), where the payo� of i-th player

equals to

Hi(x, a, cε) = ci(xt, a
i
t;σ

∗
−i)− gi(xt, a

i
t;σ

∗
−i) + β

∫

X

Vσ∗

−i
(y)Qσ∗

−i
(dy|x, ai)

= (1− |ai − ui(x)|)
+ +

ε

m
.

In this trivial game the tuple (σ∗
i (x))i∈I = (δui(x))i∈I of pure strategies is the unique

Nash equilibrium.
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Finally, substituting cε in (9), we get

G(x, cε) = JL(x, (δui
)i∈I , cε) = Ex,(δui

)i∈I

∞
∑

t=0

βt

(

f(xt, at)−
m
∑

i=1

gi(xt, at)

)

− (1− β)
ε

m
Ex,(δui

)i∈I

∞
∑

t=0

βt

m
∑

i=1

(1 − |ait − ui(xt)|)
+ = V (x)− ε.

By (12) it follows that cε is an ε-Stakelberg solution, and VL(x) = V (x).

Remark 1. In the ase of a single follower (m = 1) similar results were obtained

in (Rokhlin and Ougolnitsky, 2018). However, the inentive premium in (Rokhlin

and Ougolnitsky, 2018) was disontinuous in a:

cε(x, a)− g(x, a) = ε(1− β)I{a=u(x)} (13)

(we drop the index �1�). Furthermore, an analogue of Theorem 4 was proved either

under a strong assumption that in the auxiliary problem (10) there exists a ontin-

uous optimal strategy u (by the way, this requires a topology on the state spae), or

by working with the notion of (ε, η)-Stakelberg solution and with the lass of uni-

versally measurable stimulating funtions c. The assumption of the present paper

that the prodution osts gi, the revenue funtion f and the stimulating funtions

ci belong to the lass Cb(X ×A) leads to more natural and simple results. On the

other hand, in (Rokhlin and Ougolnitsky, 2018Theorem 2) it was shown that for

the inentive premium (13) the follower an deviate from u only at the expense of

�large losses�. Thus, suh premium has its own merits.

In the ase of �nite state and ation spaes, where arise no measure theoreti

di�ulties, Theorem 4 remains valid for disontinuous inentive premium

ci,ε(x, a)− gi(x, a) =
ε

m
(1 − β)I{ai=ui(x)}.

Remark 2. In He and Sun, 2017 it is mentioned that Theorem 3 implies the ex-

istene of a stationary Markov orrelated equilibrium under the assumptions (A),

(B). Closely following (He and Sun, 2017), we suintly desribe this point as fol-

lows. Consider the extended state spae X ′ = X × [0, 1] endowed with the produt

σ-algebra B(X) ⊗ B([0, 1]) and the produt measure λ′ = λ ⊗ η, where η is the

Lebesgue measure on B([0, 1]). In the related model at eah stage all players ob-

tain a signal zt ∈ [0, 1]. These signals are independent random variables, whih are

uniformly distributed on [0, 1]. The transition probability takes the form

Q′(B × C|x, z, a) = Q(B|x, a)η(C).

For the density q′(·|x, z, a) of Q′(·|x, z, a) with respet to λ′
we have

q′(y, u|x, z, a) = q(y|x, a).

The funtion q′(·|x, z, a) = q(·|x, a) is measurable with respet to the σ-algebra G ′ =
B(X)⊗{∅, L} for all x, a, and this σ-algebra is setwise oarser than B(X)⊗B([0, 1]).
Hene, the new model satis�es the ondition of oarser transition kernel and pos-

sesses a stationary Markov equilibrium. By de�nition, this means the existene of

a orrelated equilibrium in the original model, satisfying the assumptions (A), (B).
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So, if in the sheme (I) � (III), desribing the Stakelberg game, at stage (II)

we replae a Nash equilibrium by a orrelated equilibrium, then all assertions of

Theorem 4 remain valid, if the ondition of oarser transition kernel is dropped.

The proof in fat does not hange, sine it is insensitive to the state spae.

4. Conlusion

The present paper is related to the development of the theory of inentives in a

dynamial stohasti formulation. Essentially, it generalizes the results of (Rokhlin

and Ougolnitsky, 2018) for the ase of multiple followers. Overall, the leader should

assume that she does not rely on produers' servies and attribute their osts to

herself. After determining optimal prodution strategies from the orresponding

Markov deision proess she should eonomially motivate the produers to follow

these poliies. The losely related problems of multiple leaders and ontinuous time

deserve further study.
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