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Abstract We consider problems of "fair" distribution of several different
public resourses. If 7 is a partition of a finite set IV, each resourse c; is dis-
tributed between points of B; € 7. We suppose that either all resourses are
goods or all resourses are bads. There are finite projects, each project use
points from its subset of N (its coalition). A is the set of such coalitions.
The gain/loss function of a project at an allocation depends only on the
restriction of the allocation on the coalition of the project. The following
4 solutions are considered: the lexicographically maxmin solution, the lex-
icographically minmax solution, a generalization of Wardrop solution. For
fixed collection of gain/loss functions, we define envy stable allocations with
respect to I, where the projects compare their gains/losses at fixed alloca-
tion if their coalitions are adjacent in I". We describe conditions on A, T,
and I that ensure the existence of envy stable solutions, and conditions that
ensure the enclusion of the first three solutions in envy stable solution.
Keywords: lexicographically maxmin solution, Wardrop equilibrium, envy
stable solution, equal sacrifice solution.

1. Introduction

We consider problems of fair allocation of several public resourses ¢; > 0 between
points of finite set in the case when either all resourses are public goods or all
resourses are public bads. All resourses are distributed between points of finite set
N as follows. For partition 7 of N, a resourse c; is distributed between points
of B; € 7. There are finite projects, for each project a its gain/loss depends on
restriction of allocations on S(a) C N, i.e., S(a) is a coalition of a. We suppose that
S(a) are different for different a and denote the set of such coalitions by A.

The same problems arise when different B; correspond to different moments or
when different B; correspond to different financial sourses.

We use the following notations.

For fixed 7, let C = {¢; = ¢(B;)}B,er,

X:X(T,C):{xER":xiZO,in:cj,BjET}
i€ B

be the set of imputations. For S € A, © € X, let x5 = {z;}ies,
Gs be a continuous strictly increasing in each variable function defined on Xg =
{zs : © € X}, I be an undirected graph, where A is the set of nodes. We also
denote Gg(x) = Gg(zg) for x € X.

Special cases were considered for TU-cooperative games with restricted cooper-
ation in (Naumova, 2011; Naumova, 2012). In that models 7 = {N} and Gg(z) was
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either excess or proportional excess of coalition S at imputation z. The case when
Gs(zs) =U(x(S)) — U(v(S)), was considered in (Naumova, 2013).

For the case when Gg(zg) are the gains of S at x, one of the natural solutions is
the lexicographically maxmin solution (see Sudholter and Peleg, 1998 for example).
It generalizes the nucleolus of cooperative game.

If Gs(zg) are the losses of S at x, then the lexicographically minmax solution
seems to be natural. It generalizes the antinucleolus.

For continuous Gg, these solutions always exist. In fact, it was proved in (Schmei-
dler,1969) and formally proved in (Vilkov, 1974) for each compact set X. If, more-
over, Gg are concave functions, then Gg(xg) are uniquely determined in lexico-
graphically maxmin solution. If G are convex functions, then Gg(zg) are uniquely
determined in lexicographically minmax solution.

In this paper we consider a new solution for these problems and call it envy
stable solution. Let v be an undirected graph, where A is the set of vertices. Projects
compare their gains/losses iff their coalitions are adjacent in I". At allocation in envy
stable solution, even if a project envies to another project, it can’t object against
the allocation. Formally, envy stable solution generalizes sequal sacrifice solution
for claim problems, where all coalitions were singletons, each pair of singletons were
adjacent in I" and 7 = {N}.

All results of this paper concern characterisations of the collection of coalitions
A, the partition 7 of IV and the graph I" that either ensure existence result for envy
stable solution or ensure enclusion of other solutions in envy stable solution.

These conditions generalize the previous results of the author that were obtained
in (Naumova, 2011; Naumova, 2012) only for two types of functions Gs (excesses
and proportional excesses), 7 = {N}, and two types of graph I" (either each two
different coalitions are adjacent in I" of all pairs of disjoin coalitions are adjacent in
r.)

The problem of finding points in envy stable solution arises. We consider the
possibilities to use other solutions as subsets of envy stable solution. The results
are obtained only on special classes of functions Gg. For problems of enclusion
lexicographically maxmin/minmax solution in envy stable solution, we take the set
of functions GZ = {Gs : Gs(zs) = gs({z(SNB)}per)}-

The problem of inclusion Wardrop equilibrium solution in envy stable one is
considered for the case when Gg(z) = gs(x(S)). Wardrop equilibrium is natural
for road traffic problems, but we take it because it is the solution of a special
minimization problem that can be solved by standart methods for some functions.

The paper is organized as follows. In Section 2. we define envy stable solution
on X (7,C) with respect to I and describe completely conditions on A, 7, and I’
that ensure existence of {Gg}sea - envy stable solution with respect to I for all
continuous strictly increasing in each variable functions Gg.

In Section 3. we describe completely conditions on A, 7, and I" that ensure
inclusion of lexicographically maxmin/minmax solutions and Wardrop equilibrium
solution in {Ggs}sea - envy stable solution with respect to I

2. Envy stable solution

In this section we define envy stable solutions and describe conditions that ensure
its existence.

Definition 1. Let I" be an undirected graph, where A is the set of nodes.
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Let A C 2V, 7, I' be fixed. An imputation = € X(7,C) belongs to {Gs}sca -
envy stable solution w.r.t. I" if for each arc (P, Q) of I,
Gp(zp) > Go(zg) implies z(P) = 0.

This definition is a simplification of the definition of the generalized kernel for
games with restricted cooperation and a generalization of equal sacrifice solution
for claim problems.

It has the following motivation. For € X, only coalitions that are adjaent in
I" compare the values of their gains/losses. Let x belong to envy stable solution. If
goods are distributed and @ envies to P at = then @) can’t object against P since
P does not use goods. If bads are distributed and P envy to @ at x, then P can’t
object against @ because P does not get any bads at z.

The following theorem describes existence condition of envy stable solution.

Theorem 1. Let A C 2V, 7, I', C be fized. For all continuous strictly increasing
in each variable functions Gg (S € A), the {Gs}sca - envy stable solution w.r.t.
I is a nonempty set if and only if A, I', T satisfy the following condition.

CO(A,I',T). If a single node is taken out from each component of I', then each
B € 7 is not covered by the remaining elements of A.

Proof. Let A, I', 7 satisfy the condition CO(A, I, 1), {Gs}sea be a collection of
continuous strictly increasing in each variable functions. For x € X (7, C) we define
a directed binary relation >, on A as follows. K =, L iff K, L are adjacent in I,
Gk (z) < Gp(z) and (L) > 0. Then >, is an acyclic binary relation. Let

FE={zecX(1,C): K #, L forall K¢ A}.

Then F' is a closed set because the functions Gg are continuous ones. In view of
CO(A, I',7), it follows from Theorem 2 in Naumova, 1983 that there exists 20 €
X (7,C) such that 2° € F* for all L € A because the collection of binary relations
{=2}zex(r,c) is an M-system of relations (in terms of Naumova, 1983).

Now suppose that the condition CO(A, I',7) is not fulfilled. Let {Dx}7>, be a
collection of all components of I'. Then there exist B® € 7 and a collection {S;} C A
such that Sy, € Dy and for A% = A\ U{Sk},,

B°c |J T
TeA°

Let ¢ = > g, c(B), 0 < € < ¢(B%)/(¢|B°|). Take the following collection of func-
tions {GS}SEA-
Gs(xg) =x(S) for S=Si, k=1,...m
Gs(zs) = x(S5)/e otherwise.
Let y € X(7,C) and y belong to {Gs}se - envy stable solution w.r.t. I". Then for
T € A° we have

y(T) < ec < c(B°)/|B.

Thus, y; < ¢(BY)/|B°| at each i € B°, hence y(B°) < ¢(B") and y ¢ X(7,C). O

Ezample 1. Let A covers N, all nodes of I" be adjacent. Then CO(A, I, 7) is fulfulled
iff A is a minimal covering of each B € 7.
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Ezample 2. K,L € A are adjacent in I' iff KNL =0. [N| =4, 7 = {N}, A consists
of no more than 5 two-person coalitions. Then CO(A, I', 7) is fulfilled.

Ezample 8. K, L € A are adjacent in I'iff KNL = (. |N| =4, 7 = {N}, A consists
of all two-person coalitions. Then condition CO(A, I, 7) does not fulfill. Indeed, if
we take off the coalitions {1,2}, {1,3}, {2,3}, then the remaining elements of A
cover N.

Ezample 4. K,L € A are adjacent in I" iff K N L = 0.
N = {17 . 6}7 T = {{15 27354}7 {556}}7
A={{1,2,5),{3,4,6},{1,3},{2,4}}. Then CO(A, I, 7) is fulfilled.

3. Selectors of envy-stable solution

In this section we define lexicographically maxmin solution, lexicographically min-
max solution, Wardrop equilibrium solution and consider the problems of inclusion
these solutions in envy stable solution. Here we restrict the class of gain/loss func-
tions of coalitions as follows.

If 7 is a partition of N, S € A, denote by G the set of G such that Gs(zg) =
9s({z(S N B)}Ber), where gg are continuous strictly increasing in each variable
functions.

3.1. Lexicographically maxmin solution

The following solution seems natural if Gs(xg) are gains of S at .

Definition 2. For z € X (7,C), {Gs}seca, k = |A|, we enumerate S € A, such
that Gg, (xsl) < Gg, (ng) <...Gg, (,Tsk)
Denote 0(z) = (Gs, (zs,), Gs,(xs,), .- . Gs, (xs,.))-

A vector z € X belongs to the ({Gs}sea, 7, C)-lexicographically maxmin
solution if 6(y) #ie. 0(x) for all y € X (7,C).

If Gg are concave functions then for each S € A, Gg(ys) coincide at all y in
this solution.

Lexicographically maxmin solution coincides with restricted nucleolus of coop-
erative game if Gg(zs) = G5(zs) = z(S) — v(S) and coincides with restricted
proportional nucleolus if Gs(zs) = G%(zs) = z(S)/v(9).

For i € N, denote A; ={T' € A:ie€T}.

Definition 3. A is a (I, 7)—positive mixed collection of coalitions if for each
ieBeTr,QeA;, Se A and Q, S adjacent at I', there exists j € B such that

Aj D A U{SH\{Q}
(For the case when 7 = {N} and Q, S are adjacent in I' iff Q NS = 0, these

collections are called weakly mixed in previous papers.)

Ezample 5. |[N| = 4, K,L € A are adjacent in ' iff KNL =0,7={N}, A=
{{i. 5} {k, 1} {i kY, {5, 0},

A is (I, 7)-positive mixed collection of coalitions.

Ezample 6. |N| =5, K,L € A are adjacent in I" ifft K N L
{{i.j}, {k,Lm}, {i,k}, {4, 1}},

A is (I', 7)-positive mixed collection of coalitions.

0,7 = (N}, A=



Envy Stable Solutions for Allocation Problems with Public Resourses 265

Ezxample 7. [N| = 4, K,L € A are adjacent in I' if KNL=0,7={N}, A=
i, g} {k} {i,mb},

A is not (I, 7)-positive mixed collection of coalitions. Indeed, take @ = {i,;j},
S ={k}.

Theorem 2. Let SNQ = 0 for all S, Q € A that are adjacent in I'. For all {Gs}sca
with Gs € G, the ({Gs}sea, T, C)-lexicographically mazmin solution is contained
in the {Gg}tsca—envy stable solution w.r.t. I' if and only if A is a (I, 7)—positive
mized collection of coalitions.

Proof. Let A be a (I',7)-positive mixed collection of coalitions and = belong to
the ({Gs}seca, , C)-lexicographically maxmin solution. Suppose that z does not
belong to {Gs}seca—envy stable solution w.r.t. I, i.e., there exist S,Q € A such
that (S, Q) is an arc of I', Gs(zs) > Gg(zq) and x(S) > 0. Take iy € S such that
Zio > 0. Then ig € Q asif SNQ =0. Let ip € B€ 7.

Since A is a (I, 7)-positive mixed collection of coalitions, there exists j € B
such that A; D A;, U{Q} \ {S}.

For § > 0, let y° = {y; }ien, where y;, = iy — 6, y; = 2; + 8, Y. = 2, otherwise.
Take § > 0 such that § < z;, and

Gqyd) < Gs(y2).

Then Gp(yp) < Gp(z%) only for P = S and GQ(yg) > Gg(zg)- Since GQ(yg) <
Gs(y2), we obtain 6(y°) >, 0(z) and this contradicts the definition of the
({Gs}sea, T, C)-lexicographically maxmin solution.

Now let the ({Gs}seca, 7, C)-lexicographically maxmin solution be always con-
tained in the {Gg}seca—envy stable solution w.r.t. I'.

Suppose that A is not a (I, 7)—positive mixed collection of coalitions. Then there
exist B € 7,19y € B, Q € A;,, and S € A such that S and @) are adjacent in I,
SNQ=0,and A;  A;, U{S}\ {Q} for all j € B.

Let 0 < e < 1/(|7]||N|).

We take allocation problem with ¢; = cp, = 1/|7| at each B € 7 and the
following {Gs}sea:

Gs(ws) = (S),
Gplrr) = o(P)/INP for P& A, \ {Q},
Gr(zr) = x(T)/e otherwise.

Let « belong to the ({Gs(zs)}sea, T, C)-lexicographically maxmin solution and
to the {Gs}sea—envy stable solution w.r.t. I'.

Since x belongs to the ({Gs(zs)}sea, 7, C)-lexicographically maxmin solution,
2(P) > 0 for each P € A. Then since z belongs to {Gs}sca—envy stable solution,
we have z(Q) = ex(S) <.

There exists jo € B such that z;, > 1/(|7||B|) > 1/(|7||N|). Then jo ¢ @ and
Jjo # io. Hence, |B| > 2 and |7| < |N|.

Let § > 0, ¥° = {y;}ien, where y;, = xi, + 6, yj, = Tj, — 0, yi = x; otherwise.
We can take ¢ such that § < 1/(|7||N]) and for each T, P € A,

Gr(rr) < Gp(rp) implies Gr(y3) < Gp(yd).

Then y°(P) > x(P) for each P € A;, \ Aj,. In particular, y°(Q) > z(Q), i.e.,
Go(yy) > Golzq).
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It remains to prove that 0(y°) >e. 0(), i.e., z does not belong to the
{Gs(xzs)}sea, T, C}-lexicographically maxmin solution. In order to prove that, we
shall prove the following.

There exists P € A such that Gp(y%) > Gp(zp) and Gr(y$) < Gr(xr) implies
Gp(yp) < Gr(yr). By the choice of 6, it is sufficient to check that Gp(zp) <
GT(JJT).

Consider 2 cases.

Case 1. jp € S. Let GT(yﬁ}) < GT(CET), then T' 5 jo and GT(JZT) = CE(T)/E,
hence Gr(xr) > 7, /€ > 1. Since Gg(rg) = 2(Q)/e < 1 and ¥°(Q) > x(Q), we can
take P = Q.

Case 2. jo € S, then there exists P € A;, \ Aj, \ {@}. Then Gp(zp) =
z(P)/(IN?) < 1/(IN|?) and Gp(y3) > Gp(zp). If y°(T) < 2(T) then either
T = S and Gg(zs) = x(S) > 1/(|7|IN]) > 1/(IN]?) or Gr(zr) = x(T)/e and
Gr(z7) > 2, /e > 1. Thus, y°(T) < (T) implies Gr(z1) > Gp(xp). O

Remark 1. If some S, Q € A with SN Q # () are adjacent in I, then there exists
an allocation problem, where Gg(zs) = ksxz(S) with kg > 0 for S € A such
that the ({Gs}sea, T, C)-lexicographically maxmin solution does not intersect the
{Gs}sea—envy stable solution w.r.t. I'.

Proof. Let 6 < 1/(6|N]). Consider the following allocation problem: 7 = {N},
CN = 1,
Gs(ws) = 2(S),
Go(zq) = 22(Q),
Gr(zr) = x(T)/é otherwise.
Suppose that z is contained in both sets. Then x(S) > 0 and z(Q) > 0 be-
cause x belongs to the ({Gs}sea, 7, C)-lexicographically maxmin solution. Hence,
Gs(zs) = Gg(zg) and z(Q) < 1/2. Then there exists jo € N \ @ such that
zj, > 1/(2|N]) > 34. Let ip € SN Q.

Take the following y:
Yjo = Tjo — 0,
Yig = Tig + 67
y; = x; otherwise.
Then y(S) > z(5), y(Q) > z(Q) and y(T') < x(T) implies y(T) > 24, i.e., Gr(yr) >
2. Since Gs(ys) <1, Gglyg) < 2, we obtain Gr(yr) > Go(yq), Gr(yr) > Gs(ys),
50 0(y) >iex O(x) and x does not belong to the ({Gs}sea, 7, C)-lexicographically
maxmin solution. a

Remark 2. Theorem 2 is not valid without the condition Gg € GZ. We demon-
strate this by the following example.

Ezample 8. N ={1,2,3,4}, 7={N},c=cny =2,
A= {{1,2},{3.4}, {1,3}, {2, 4}},
the arcs of I" are ({1,2},{3,4}) and ({1, 3},{2,4}),
Gy (z) = o1 + 22, Gzay(x) = w3 + 14, Ggy(x) = 21/2 + 23, Ga(z) =
,’E2/2 + x4.

Let z belong to the ({Gs}sea, T, C)-lexicographically maxmin solution and to
the {Ggs}sea—envy stable solution w.r.t. I'. Since x belongs to the {Gg}seca—envy
stable solution w.r.t. I', the cases z({1,2}) = 0, z({3,4}) = 0, ({1,3}) = 0 and



Envy Stable Solutions for Allocation Problems with Public Resourses 267

x({2,4}) = 0 are impossible, so we have 1 + 2o = 23 + x4 = 1, G 3(z) =
Gra(r) = 1 — 2({1,2})/4 = 3/4 and O(x) = (3/4,3/4,1,1). But for
y = (2/5,2/5,3/5,3/5), 0(y) = (4/5,4/5,4/5,6/5) and 8(y) >1es 0(z) and = does
not belong to the ({Gs}sea, 7, C)-lexicographically maxmin solution.

3.2. Lexicographically minmax solution

If the functions Gg(zg) are losses of S at x, it is natural to consider the folowing
solution.

Definition 4. For z € X(7,C), {Gs}sca, k = |A|, we enumerate S € A, such
that GSI_(JZSI) > Gs,(rs,) > ...Gg, (fESk)
Denote Q(IE) = (Ggl (IESI), GS2 (IES2), v ng (:ES;C))

A vector x € X belongs to the ({Gs}sea, 7, C)—-lexicographically minmax
solution if O(y) # e, 0(z) for all y € X (1,C).

If G are convex functions then for each S € A, Gs(ys) coincide at all y in this
solution.

Lexicographically minmax solution coincides with restricted antinucleolus of co-
operative game if Gg(zs) = G5(zs) = z(S) — v(S) and coincides with restricted
proportional antinucleolus if Gg(zs) = G%(zs) = x(9)/v(S).

Definition 5. Ais a (I',7) — negative mixed collection of coalitions if for each
ieBeT,QeA;, Se A and Q, S adjacent at I', there exists j € B such that

Aj c AU{SH\{Q}.

Ezample 9. Let 7 = {N}. If A is a minimal cover of N, then A is a I, 7 — negative
mixed collection of coalitions for each I

Ezxample 10. |[N| =5, K,L € A are adjacent in I' iff KNL =10, ={N},
A={{1,2}, {3,4,5}, {1,3}, {2,4}},

A is not a (I, 7)—negative mixed collection of coalitions. Indeed, take @ = {3,4,5},
i=5,8=1{12}.

Theorem 3. For all {Ggs}sca withGgs € G, the ({Gs}sea, T, C)-lexicographically
minmax solution is contained in the {Gg}seca—envy stable solution w.r.t. I" if and
only if A is a (I, 7)—negative mized collection of coalitions.

Proof. Let A be a (I',7)-negative mixed collection of coalitions and z belong to
the ({Gs}sea, T, C)-lexicographically minmax solution. Suppose that = does not
belong to {Gs}seca—envy stable solution w.r.t. I', i.e., there exist S,Q € A such
that (S, Q) is an arc of I', Gs(zs) > Ggo(zg) and x(S) > 0. Take iy € S such that
Ty, > 0. Let 1o € BeT.

Since A is a (I', 7)—negative mixed collection of coalitions, there exists j € B
such that Aj C A, U{Q}\ {S}. Then j ¢ S.

For 6 > 0, let y® = {y;}icn, where Yip = Tiy — 0, Yj = xj + 0, Yy = x; otherwise.
Take 6 > 0 such that § < z;, and GQ(yg) < Gs(y2).

Then Gg(y® < Gg(x) because j ¢ S and Gp(y°) > Gp(x) only for P = Q.
Thus, 0(y®) <jer O(z) and this contradicts the definition of the (Gs}sea, T, C)-
lexicographically minmax solution.
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Now let the ({Gs}scu, T, C)-lexicographically minmax solution be always con-
tained in the {Gg}seca—envy stable solution w.r.t. I'.

Suppose that A is not a (I, 7)-negative mixed collection of coalitions. Then
there exist B € 7,99 € B, Q € A;,, and S € A such that S and @ are adjacent in
I'yand A; ¢ Ay U{S}\{Q} for all j € B.

Let 0 <e < 1/(|7||N]), M > 1.

We take the allocation problem with ¢; = cp; = 1/|7| at each B € 7 and the
following {Gs}sca:

Gs(zs) = 2(S),
Gp(zp) = x(P)/M for P € A;, \ {Q},
Gr(z7) = 2(T) /e otherwise.

Let « belong to the ({Gs(zs)}sea, T, C)-lexicographically minmax solution and
to the {Gs}sca—envy stable solution w.r.t. I'.

If (Q) > € then 2(Q)/e < (S) < 1 because = belongs to the ({Gs(xs)}seca, T,
C')-lexicographically minmax solution, hence z(Q) < e. for each P € A. Then since
x belongs to {Gg}sca—envy stable solution, we have 2(Q) = ex(S) <e.

There exists jo € B such that z;, > 1/(|7||B|) > 1/(|7||N|) > €. Then jo ¢ @
and jo }é io.

Let 6 > 0, y® = {y;}ien, where y;, = Tiy + 9, Yj, = Tjo — 0, y; = x; otherwise.
We can take ¢ such that 6 < 1/(|7||N|) and for each T, P € A,

Gr(zr) < Gp(xp) implies GT(yﬁfp) < Gp(yfp).

Since A; ¢ Ai, U{S}\ {Q} for all j € B, there exists P € A such that jo € P
and P ¢ A;, U{S}\{Q}. Then P # Q as if jo ¢ Q, hence ig ¢ P. This implies
y°(P) < z(P). B

Moreover, P # S implies G5(z) = x(P)/e, hence

Gp(x) > xj /e > 1.

Let y*(T) > «(T) then iy € T, jo ¢ T. Then either T = @Q and Gr(z) =
z(Q)/e > 1 or Gr(z) = z(T)/M < 1, thus,

Gp(x) > Gr(z).

It follows from the choice of § that Gp(y?) > Gr(y®) for each T with y°(T) > =(T).
Thus, 0(y°) <ier 0(x) and this contradicts the definition of the (G'g}sea, T, C)—
lexicographically minmax solution. a

Chernyshova proved this theorem for the case when 7 = { N}, the coalitions are
adjacent in I" iff they are disjoint, and Gs(x) = x(S)/v(S) (see Chernysheva, 2017).

Remark 3. Theorem is not valid without the condition Gs € Gf. We demonstrate
this by the following example.

Ezample 11. N ={1,2,3,4}, 7 ={N},c=cn =2,

A= {{17 2}7 {37 4}7 {17 3}7 {27 4}}7

the arcs of I" are ({1,2},{3,4}) and ({1, 3},{2,4}),

G12)(7) = 21+ 22, Gz.4y(2) = 23+ 34, G 3y (7) = 201+ 73, G2,y (7) = 222+ 24
Let 2 belong to the ({Gs}sea, T, C)-lexicographically minmax solution and to

the {Ggs}sea—envy stable solution w.r.t. I'. Since x belongs to the {Gg}seca—envy
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stable solution w.r.t. I', we have x1 +x2 = 23 + 24 = 1, Gy 33(2) = G4y (x) =
1+ 2({1,2})/2 = 3/2 and 0(z) = (3/2,3/2,1,1). But for y = (1/3,1/3,2/3,2/3),
O(y) = (4/3,4/3,4/3,2/3) and 0(y) <iee 6(x), and = does not belong to the
({Gs}sea, T, C)-lexicographically minmax solution.

4. Wardrop equilibrium

The following solution was defined in (Wardrop, 1952) for road traffic problems. In
our model, it can be used if Gs(x) = gs(x(5)), where gg are functions defined on
[0, 4+00).

Definition 6. Let {gs}sca be a collection of strictly increasing continuous func-
tions defined on [0,400), 7 be a partition of N, C' = {¢B)}per. An allocation
x € X(r,C) is a Wardrop equilibrium with respect to {gs}sca if for each
Ber,ijeB,

S gr@@)> Y gr(@(T)) implies z; =0.

TeA:T>i TeA:T>j5

Definition 7. Let {gs}sca be a collection of strictly increasing continuous func-
tions defined on [0, +00). A ({gs}sea, T, C)—solution is the set of solutions of the

problem
z(S)

E f gs(t)dt — min{z; zeX(1,C)}-
SeA 0

The following fact is well known (see, for example, Krylatov and Zakharov, 2017
Th.1 or Mazalov, 2010 Th.9.10).

Proposition 1. An allocation x € X (,C) belongs to ({gs}sea, T, C)-solution iff
it is a Wardrop equilibrium with respect to {gs}seca-

Definition 8. A collection of coalitions A is a (I', 7)—mixed collection if for each
Ber,ieB, Qe A; Se Aand Q, S adjacent at I', there exists j € B such that

Aj = A U{SH\{Q}.

Ezxample 12. [N| = 4, 7 = {N}, P and Q are adjacent in I iff PNQ =0, A
{{i,7}, {k,1}; {i,k}, {4,1}}, then Ais a (I', 7)—mixed collection.

Example 13. |[N| =5, 7 = {N}, P and Q are adjacent in I iff PNQ = 0, A
{{1,2}, {3,4,5}, {1,3}, {2,4}}.

It was demonstrated in 10 that A is not a (I, 7)—negative mixedcollection, hence it
is not a (I', 7)—mixed collection of coalitions.

Theorem 4. For all collections {gs}sea of strictly increasing continuous functions
defined on [0,4+00), if Gs(x) = gs(x(S)), then the ({gs}seca, T, C)-solutions are
contained in the {Gg}seca—envy stable solution w.r.t. I if and only if A is a (I',7)—
mized collection of coalitions.

Proof. Let Abe a (I, 7)—mixed collection of coalitions. Let x belong to a ({gs}sea, 7,
C)-solution.

Suppose that = does not belong to the {Gg}seca—envy stable solution w.r.t. I,
i.e., there exist @, S € A such that (Q,S) is an arc of I', z(Q) > 0, and go(z(Q)) >
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gs(x(S)). Take ig € Q with x;, > 0. Let iyp € B € 7. Since A is a (I, 7)—mixed
collection, there exists jo € B such that A;, = A;; U{S}\ {Q}. Thus, {T € A:
T % jo,T 30} ={Q}, {T € A: T 3 jo,T Fio} = {S}, hence

Yo ogr@@) = Y gr(@(T) = go(@(Q)) - gs(x(S) >0,

TeA: TSip TeA: T>j0

but this contradicts Proposition 1. Thus, = belongs to the {Gg}sca—envy stable
solution w.r.t. I'.

Let ({gs}sea, T, C)-solution be always contained in the {Gg}sc4—envy stable
solution w.r.t. I' for Gg(x) = gs(x(S)). Suppose that A is not a (I',7)-mixed
collection of coalitions. Then there exist B € 7,19 € B, Q € A;,, and S € A such
that (S, Q) is an arc of I', and for each j € B, A; # A;, U{S}\ {Q}.

Let 0 < e < 1/(|7||N]), M > 1. We take the following problem. cg = 1/7 for
each B € 1,
g5(2(S)) = #(8) — 1,
gr(2(P)) = 2(P)/M — 1 for P € A, \ {Q},
gr(x(T)) = 2(T)/e — 1 otherwise.

Let x belong to the ({gs}sea, T, C)-solution and to the {Gg}sec a—envy stable
solution w.r.t. I'. First, we prove that z(Q) < e. If 2(Q) > ¢, then ggo(z(Q)) <
gs(x(9), ie., z(Q) < ex(S) < e. There exists jo € B such that z;;, > 1/(|7||N]).
Then jo g Q

Note that go(2(Q)) < gs(z(S)) because if z(Q) = 0 then go(z(Q)) = —1,
gs(x(S)) > —1 since z;, > 0, and if 2(Q) > 0 then it follows from the definition of
envy stable solution.

We shall prove that

S @)<Y g@@)/uT)), 1)
TeA:T>ig TeA:T>j0

and this will contradict Proposition 1.

Since A;, # Ai, U{S}\ {Q}, the following 3 cases are possible.
1.jo €S.
2. j0 € S; Aio \ {Q} 7& (Z); and Jo g ﬂPGAiO\{Q} P.
3. jo € Aiy U{S}\ {Q} and there exists Tp € A;, \ (A;, U{S}).

Case 1. If T € A;, \ {Q} then ¢(T") < 0. Moreover, 2(Q) < ¢ in this case because
z(S) < 1 and z(Q) > € implies 2(Q) < ex(S) < e. Thus, go(x(Q)) < 0 and

Yo 9r((@(D) < gal(2(Q) < 0.
TeA: THjo,Tio
For all T € Aj, \ Ay, (T) > € and gr(z(T)) > 0 as if jo & S, therefore,
> gr((@(1) =0,
TeA: T3jo,THio

this implies (10).
Case 2. Since A;, \ Aj, \ {Q} # 0 and gr(z(T)) < 0 for all T € A;, \ {Q}, we
obtain

Yo gr((@(D) = go((2(@) + Yo ar(@(T) < go((=(Q).

TeA: THjo,T>ig TeAin \Ajp \{Q}
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IfT e Aj, \ A, then either T'= S or z(T') > € and gr(z(T')) > 0, therefore

gr((z(T)) > gs((z(9)).
TeA: T>j0,THi0

Since go(2(Q)) < gs(x(S)), we obtain (10).
Case 3. Here {T € A: T % jo,T 2 i0} = {Q}, so

Yo 9r((@(D) = ga((2(Q)):

TeA: T%jo, T>io

IET e A\ (A, U{S}) then gr(z(T)) > 0, so

Yo 9r((@(T) = gs((x(S)) + g1, (2(Th)) > gs((2(9))-

TeA:T>j50,THio

Since gg(z(Q)) < gs(x(S)), we obtain (1). O

5. Conclusion

The paper considered some solutions of allocation problems with different public
resourses. Each coalition from a fixed collection of coalitions estimates an allocation
by its gain/loss function, and the result of estimation depends only on restriction
of allocation on that coalition. A new solution concept (envy stable solution) was
introduced. Conditions on the collection of coalitions that ensure existence result
at all continuous gain/loss functions of coalitions are described. The conditions on
the collection of coalitions that ensure inclusion of lexmaxmin, lexminmax, and
Wardrop equlibrium solutions in envy stable solution are described in terms of the
collection of coalitions.
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