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Abstra
t A dis
ounted sto
hasti
 positional game is a sto
hasti
 game with

dis
ounted payo�s in whi
h the set of states is divided into several disjoint

subsets su
h that ea
h subset represents the position set for one of the player

and ea
h player 
ontrol the Markov de
ision pro
ess only in his position set.

In su
h a game ea
h player 
hooses a
tions in his position set in order to

maximize the expe
ted dis
ounted sum of his stage rewards. We show that an

arbitrary dis
ounted sto
hasti
 positional game with �nite state and a
tion

spa
es possesses a Nash equilibrium in pure stationary strategies. Based on

the proof of this result we present 
onditions for determining all optimal

pure stationary strategies of the players.
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1. Introdu
tion

Sto
hasti
 games where introdu
ed by Shapley, 1953. He 
onsidered two-person

zero-sum sto
hasti
 games with �nite state and a
tion spa
es for whi
h he proved

the existen
e of the value and the optimal stationary strategies of the players with

respe
t to a dis
ounted payo� 
riterion. Later this result has been extended to m-

person sto
hasti
 games and the existen
e of Nash equilibria in stationary strategies

have been obtained for a more general 
lass of dis
ounted sto
hasti
 games (see

Fink, 1964; Takahashi, 1964; Sobol, 1971; Solan, 1998). Shapley de�ned a stationary

strategy for a player as a map that provides in ea
h state of the game a probability

distribution over the set of feasible a
tions. Therefore a stationary strategy for a

player in a sto
hasti
 game 
an be treated as a mixed stationary strategy. So, the

existen
e of Nash equilibria results mentioned above are related to Nash equilibria

in mixed stationary strategies for the 
onsidered games.

In this paper we study the problem of the existen
e of Nash equilibria in pure

stationary strategies for a spe
ial 
lass of m-player dis
ounted sto
hasti
 games

that we 
all dis
ounted sto
hasti
 positional games. This 
lass of games has been

introdu
ed by Lozovanu and Pi
kl, 2015. An m-player sto
hasti
 positional game

with dis
ounted payo�s is an m-player sto
hasti
 game where the set of states is

divided into into m disjoint subsets su
h that ea
h subset represents the position

set for one of the players and ea
h player 
ontrols the Markov de
ision pro
ess only

in his position set. In su
h a game ea
h player 
hooses a
tions in his position set in

order to maximize the expe
ted dis
ounted sum of his stage rewards. We show that

for an arbitrary dis
ounted sto
hasti
 positional game with �nite state and a
tion
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spa
es there exists a Nash equilibrium in pure stationary strategies. Based on the

proof of this result we present 
onditions for determining all pure stationary Nash

equilibria.

The paper is organized as follows. In Se
tion 2 the general formulation of a dis-


ounted sto
hasti
 positional game is presented. Then in Se
tions 3 the formulation

of a dis
ounted sto
hasti
 positional game is spe
i�ed when the players use pure

and mixed stationary strategies of 
hoosing the a
tions in position sets. In Se
tion

4 some new basi
 properties of the solutions for a dis
ounted Markov de
ision prob-

lem in terms of stationary strategies are presented. Additionally, it is shown that

su
h a problem 
an be represented as a quasi-monotoni
 programming problem.

Based on these results in Se
tion 5 it is shown that a dis
ounted sto
hasti
 game


an be formulated in terms of stationary strategies, where the payo� of ea
h player

is quasi-monotoni
 with respe
t to his strategy. Using these properies a new proof

of the existen
e of stationary Nash equilibrium for a dis
ounted sto
hasti
 game is

derived and new 
onditions for determining the optimal strategies of the players are

obtained. In Se
tion 6 it is shown that a sto
hasti
 positional game with dis
ounted

payo� represents a parti
ulary 
ase of a dis
ounted sto
hasti
 game and the 
or-

responding 
onditions for determining the stationary strategies of the players are

spe
i�ed. In Se
tion 6 the proof of the existen
e of pure stationary Nash equilibria

for an arbitrary dis
ounted sto
hasti
 positional game is presented.

2. Formulation of the Dis
ounted Sto
hasti
 Positional Game in the

Term of Stationary Strategies

First we present the general model for a dis
ounted sto
hasti
 positional game and

then we spe
ify the formulation of the game when the players use pure and mixed

stationary strategies of 
hoosing the a
tions in their state positions.

2.1. The General Model of a Dis
ounted Sto
hasti
 Positional Game

A dis
ounted sto
hasti
 positional game with m players 
onsists of the following

elements:

- a state spa
e X (whi
h we assume to be �nite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set of

player i ∈ {1, 2, . . . ,m};

- a �nite set A(x) of a
tions in ea
h state x ∈ X ;

- a step reward f i(x, a) with respe
t to ea
h player i ∈{1, 2, . . . ,m} in ea
h

state x ∈ X and for an arbitrary a
tion a ∈ A(x);

- a transition probability fun
tion p : X ×
∏

x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X

for a �xed a
tion a ∈ A(x), where

∑

y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a dis
ount fa
tor γ, 0 < γ < 1;

- a starting state x0 ∈ X .

The game starts at the moment of time t = 0 in the state x0 where the player i ∈
{1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) 
hooses an a
tion

a0 ∈ A(x0) and determines the rewards f1(x0, a0), f
2(x0, a0), . . . , f

m(x0, a0) for the
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orresponding players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X

a

ording to a probability distribution {pa0

x0,y
}. At the moment of time t = 1 the

player k ∈ {1, 2, . . . ,m} who is the owner of the state position x1 (x1 ∈ Xk) 
hooses

an a
tion a1 ∈ A(x1) and players 1, 2, . . . ,m re
eive the 
orresponding rewards

f1(x1, a1), f
2(x1, a1), . . . , f

m(x1, a1). Then the game passes to a state y = x2 ∈ X

a

ording to a probability distribution {pa1

x1,y
} and so on inde�nitely. Su
h a play

of the game produ
es a sequen
e of states and a
tions x0, a0, x1, a1, . . . , xt, at, . . .

that de�nes a stream of stage rewards f1(xt, at), f
2(xt, at), . . . , f

m(xt, at), t =
0, 1, 2, . . . . The dis
ounted sto
hasti
 positional game is the game with payo�s of

the players

σi
x0

= E

(

∞
∑

τ=0

γτf i(xτ , aτ )

)

, i = 1, 2, . . . ,m

where E is the expe
tation operator with respe
t to the probability measure in the

Markov pro
ess indu
ed by a
tions 
hosen by players in their position sets and given

starting state x0. Ea
h player in this game has the aim to maximize the expe
ted

dis
ounted sum of his stage rewards. In the 
ase m = 1 this game be
omes the

dis
ounted Markov de
ision problem with given a
tion sets A(x) for x ∈ X , a

transition probability fun
tion p : X ×
∏

x∈X

A(x) × X → [0, 1] , step rewards

f(x, a) = f1(x, a) for x ∈ X, a ∈ A(x), given dis
ount fa
tor λ and starting

state x0.

In the paper we will study the dis
ounted sto
hasti
 positional game when the

players use pure and mixed stationary strategies of 
hoosing the a
tions in the

states.

2.2. A Dis
ounted Sto
hasti
 Positional Games in Pure and Mixed

Stationary Strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a sto
hasti
 positional game is a mapping

si that provides for every state xt ∈ Xi a probability distribution over the set of

a
tions A(xt). If these probabilities take only values 0 and 1, then si is 
alled a

pure strategy, otherwise si is 
alled a mixed strategy. If these probabilities depend

only on the state xt = x ∈ Xi (i. e. si does not depend on t), then si is 
alled a

stationary strategy, otherwise si is 
alled a non-stationary strategy.

Thus, we 
an identify the set of mixed stationary strategies Si
of player i with

the set of solutions of the system







∑

a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(1)

Ea
h basi
 solution si of this system 
orresponds to a pure stationary strategy of

player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si
of player i


orresponds to the set of basi
 solutions of system (1).

Let s = (s1, s2, . . . , sm) ∈ S = S
1 × S2 × · · · × Sm

be a pro�le of stationary

strategies (pure or mixed strategies) of the players. Then the elements of probability

transition matrix P s = (psx,y) in the Markov pro
ess indu
ed by s 
an be 
al
ulated

as follows:



Pure Stationary Nash Equilibria for Dis
ounted Sto
hasti
 Positional Games 249

psx,y =
∑

a∈A(x)

six,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (2)

Let us 
onsider the matrix W s = (ws
x,y) where W s = (I − γP s)−1

. Then in a

dis
ounted sto
hasti
 positional game the payo� of player i ∈ {1, 2, . . . ,m} for a

given pro�le s and initial state x0 ∈ X is determined as follows

σi
x0
(s) =

m
∑

k=1

∑

y∈Xk

ws

x0,y
f i(y, sk), i = 1, 2, . . . ,m, (3)

where

f i(y, sk) =
∑

a∈A(y)

sky,af
i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (4)

The fun
tions σ1
x0
(s), σ2

x0
(s), . . . , σm

x0
(s) on S = S1 × S2 × · · · × Sm

, de-

�ned a

ording to (3),(4), determine a game in normal form that we denote by

〈{Si}i=1,m, {σi
x0
(s)}i=1,m 〉. This game 
orresponds to a dis
ounted sto
has-

ti
 positional game in mixed stationary strategies that in extended form is de-

termined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, γ, x0). The

fun
tions σ1
x0
(s), σ2

x0
(s), . . . , σm

x0
(s) on S = S1×S2×· · ·×Sm

, determine the game

〈{Si}i=1,m, {σ
i
x0
(s)}i=1,m 〉 that 
orresponds to a dis
ounted sto
hasti
 positional

game in pure strategies.

A sto
hasti
 positional games 
an be 
onsidered also for the 
ase when the

starting state is 
hosen randomly a

ording to a given distribution {θx} on X .

So, for a given sto
hasti
 positional game we may assume that the play starts in

the state x ∈ X with probability θx > 0 where

∑

x∈X

θx = 1. If the players use

mixed stationary strategies then the payo� fun
tions

σi
θ(s) =

∑

x∈X

θxσ
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉 that in extended

form is determined by ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a)}i=1,m, p, γ, {θx}x∈X). In

the 
ase θx = 0, ∀x ∈ X \ {x0}, θx0
= 1 the 
onsidered game be
omes a sto
hasti


positional game with a �xed starting state x0.

3. Some Auxiliary Results

To prove the main results we need some properties of reward optimality equations

for a dis
ounted Markov de
ision problem with �nite state and a
tion spa
es. Based

on these properties we show how to determine the solutions of a dis
ounted Markov

de
ision problem and how to formulate su
h a problem in terms of stationary strate-

gies as a quasi-monotoni
 programming problem. We shall use these results in the

sequel for the dis
ounted sto
hasti
 positional games.
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3.1. Optimality Equations for a Dis
ounted Markov De
ision Pro
ess

Here we present the optimality equations for a dis
ounted Markov de
ision pro
ess

determined by a tuple (X, {A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p, γ) where X is a �nite

set of states; A(x) is a �nite set of a
tions in x ∈ X ; f(x, a) is a step reward in

x ∈ X for a ∈ A(x), p : X ×
∏

x∈X

A(x) × X → [0, 1] is a probability transition

fun
tion that satis�es the 
ondition

∑

y∈X pay∈X = 1, ∀x ∈ X, a ∈ A(x) and γ is a

dis
ount fa
tor.

Theorem 1. Let a Markov de
ision pro
ess (X,{A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p, γ)
be given. Then the system of equations

σx = max
a∈A(x)

{

f(x, a) + γ
∑

y∈X

pax,yσy

}

, ∀x ∈ X ; (5)

has a unique solution with respe
t to σx, x ∈ X. If σ∗

x, x ∈ X, is the solution of

system (5) then

max
a∈A(x)

{

f(x, a) + γ
∑

y∈X

pax,yσ
∗

y − σ∗

x

}

= 0 ∀x ∈ X

and an arbitrary stationary strategy

s∗ : x → a ∈ A(x) for x ∈ X

su
h that

s∗(x) = a∗ ∈ argmax
a∈A(x)

{

f(x, a) + γ
∑

y∈X

pax,yσ
∗

y − σ∗

x

}

for x ∈ X

represents an optimal stationary strategy for the dis
ounted Markov de
ision problem

with an arbitrary starting state x ∈ X; the values ω∗

x for x ∈ X represent the optimal

expe
ted dis
ounted sum of the rewards that 
orrespond to optimal strategy s∗ when

the pro
ess starts in x.

The proof of this theorem 
an be found in Puterman, 2005. Based on this the-

orem the optimal values ω∗

x, x ∈ X for a dis
ounted Markov de
ision problem 
an

be determined by solving the following linear programming problem:

Minimize

φθ(σ) =
∑

x∈X

θxσx (6)

subje
t to

σx ≥ f(x, a) + γ
∑

y∈X

pax,yσy, ∀x ∈ X, ∀a ∈ A(x) (7)

where θx, x ∈ X represent arbitrary positive values su
h that

∑

x∈X

θx = 1.
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3.2. Dual Linear Programming Model for a Dis
ounted Markov

De
ision Problem

The dual problem for the linear programming problem (6), (7) is the following:

Maximize

ϕθ(α) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (8)

subje
t to







∑

a∈A(y)

αy,a − γ
∑

x∈X

∑

a∈A(x)

pax,y αx,a = θy, ∀y ∈ X ;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(9)

where θy for y ∈ X represent arbitrary positive values that satisfy the 
ondition

∑

y∈X

θy = 1. Here θy for y ∈ X 
an be treated as the probabilities of 
hoosing the

starting state y ∈ X in the de
ision problem. In the 
ase θy = 1 for y = x0 and

θy = 0 for y ∈ X \ {x0} we obtain the linear programming model for the dis
ounted

Markov de
ision problem with �xed starting state x0.

In Puterman, 2005 the following relationship is shown between feasible solutions

of problem (8), (9) and stationary strategies in the dis
ounted Markov de
ision

problem determined by the tuple (X, {A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p): If α
is an arbitrary feasible solution of the linear programming problem (8), (9) then

∑

a∈A(x)

αx,a > 0, ∀x ∈ X and a stationary strategy s : x → a ∈ A(x) for x ∈ X

that 
orresponds to this feasible solution is determined as follows

sx,a =
αx,a

∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x), (10)

where sx,a expresses the probability of 
hoosing the a
tion a ∈ A(x) in x ∈ X .

3.3. A Dis
ounted Markov De
ision Problem in Terms of Stationary

Strategies

Using the relationship between feasible solutions of problem (8), (9) and stationary

strategies (12) we 
an formulate the dis
ounted Markov de
ision problem in terms

of stationary strategies as follows:

Maximize

ψθ(s,q) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (11)

subje
t to































qy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aqx = θy, ∀y ∈ X ;

∑

a∈A(y)

sy,a = 1, ∀y ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x);

(12)
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where θy are the same values as in problem (8), (9) and sx,a, qx for x ∈ X , a ∈ A(x)
represent the variables that must be found. It is easy to observe that for �xed

sx,a, x ∈ X, a ∈ A(x) system (12) uniquely determines qx for x ∈ X . This means

that ψθ(s,q) depends only on s and for a given s ∈ S we have ψθ(s,q) = σθ(s)
i.e. in (11) we 
an set

σθ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx.

So the de
ision problem in stationary strategies (problem (11), (12)) 
an be

derived from (8), (9) if we introdu
e the following notations

qx =
∑

a∈A(x)

αx,a, ∀x ∈ X ; sx,a =
αx,a

∑

a∈A(x)

αx,a

, ∀x ∈ X, a ∈ A(x). (13)

This means that if αx,a, x ∈ X, a ∈ A(x) is a feasible solution of problem (8), (9)

then sx,a, x ∈ X, a ∈ A(x) and qx, x ∈ X , determined a

ording to (13), represent

a feasible solution of problem (11),(12). Conversely, if sx,a, x ∈ X, a ∈ A(x);
qx, x ∈ X is a feasible solution of problem (11),(12) then αx,a = sx,aqx,

x ∈ X, a ∈ A(x) represent a feasible solution of problem (8), (9).

3.4. A Quasi-Monotoni
 Programming Model in Stationary Strategies

for a Dis
ounted Markov De
ision Problem

Based on the results from the previous se
tion we show that a dis
ounted Markov

de
ision problem in stationary strategies 
an be represented as a quasi-monotoni


programming problem. We assume that an average Markov de
ision problem is

determined by a tuple (X, {A(x)}x∈X , {f(x, a)}x∈X , p, {θx}x∈X , λ).

Theorem 2. Let an average Markov de
ision problem be given and 
onsider the

fun
tion

σθ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx,

where qx for x ∈ X satisfy the 
ondition

qy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aqx = θy, ∀y ∈ X. (14)

Then on the set S of solutions of the system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

the fun
tion σθ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and σθ(s) is

quasi-monotoni
 on S ( i.e. σθ(s) is quasi-
onvex and quasi-
on
ave on S).

Proof. For an arbitrary s ∈ S system (14) uniquely determines qx for x ∈ X and

therefore ψ(s) is determined uniquely for an arbitrary s ∈ S, i.e. the �rst part of

the theorem holds.
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Now let us prove the se
ond part of the theorem. We show that the fun
tion ψ(s)
is quasi-monotoni
 on S. To prove this it is su�
ient to show that for an arbitrary

c ∈ R1
the sublevel set

L−

c (σθ) = {s ∈ S| σθ(s) ≤ c}

and the superlevel set

L+
c (σθ) = {s ∈ S| σθ(s) ≥ c}

of fun
tion σ(s) are 
onvex. These sets 
an be obtained respe
tively from the sublevel

set L−

c (ϕθ) = {α| ϕθ(α) ≤ c} and the superlevel set L+
c (ϕθ) = {α| ϕθ(α) ≥ c} of

fun
tion ϕθ(α) for the linear programming problem (8), (9).

Denote by αi, i = 1, k the basi
 solutions of system (9). All feasible strategies of

problem (8), (9) 
an be obtained as 
onvex 
ombination of basi
 solutions αi, i =
1, k. Ea
h αi ∈ {1, 2, . . . , k} determines a stationary strategy

s(i)x,a =
αi
x,a

qix
, x ∈ X, a ∈ A(x) (15)

for whi
h σ(s(i)) = ϕ(αi) where

qix =
∑

a∈A(x)

αi
x,a, ∀x ∈ X. (16)

An arbitrary feasible solution α of system (9) determines a stationary strategy

sx,a =
αx,a

qx
for x ∈ X, a ∈ A(x) (17)

for whi
h σθ(s) = ϕθ(α) where qx =
∑

a∈A(x)

αx,a, ∀x ∈ X. Taking into a

ount that

α 
an be represented as α =
∑k

i=1 λ
iαi, where

∑k

i=1 λ
i = 1, λi ≥ 0, i = 1, k we

have ϕθ(α) =
k
∑

i=1

ϕθ(α
i)λi and we 
an 
onsider

α =

k
∑

i=1

λiαi; q =

k
∑

i=1

λiqi; (18)

Using (15)�(18) we obtain

sx,a =
αx,a

qx
=

k
∑

i=1

λiαk
x,a

qx
=

k
∑

i=1

λisix,aq
i
x

qx
=

k
∑

i=1

λiqix
qx

s(i)x,a, ∀x ∈ Xα, a ∈ A(x)

and

qx =

k
∑

i=1

λiqix, for x ∈ X. (19)

So,

sx,a =

k
∑

i=1

λiqix
qx

s(i)x,a for x ∈ X, a ∈ A(x) (20)
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where qx for x ∈ X are determined a

ording to (19). The strategy s de�ned by

(20) is a feasible strategy be
ause sx,a ≥ 0, ∀x ∈ X, a ∈ A(x) and

∑

a∈A(x) sx,a =

1, ∀x ∈ X . Moreover, we 
an observe that qx =
k
∑

i=1

λiqix, for x ∈ X represent a

solution of system (14) for the strategy s de�ned by (20). This 
an be veri�ed by

introdu
ing (19) and (20) in (14); after su
h a substitution all equations from (14)

are transformed into identities. For σ(s) we have

σθ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx =
∑

x∈X

∑

a∈A(x)

f(x, a)

k
∑

i=1

(

λiqix
qx

s(i)x,a

)

qx =

k
∑

i=1

(

∑

x∈X

∑

a∈A(x)

f(x, a)s(i)x,aq
i
x

)

λi =

k
∑

i=1

σθ(s
(i))λi,

i.e.

σθ(s) =

k
∑

i=1

σθ(s
(i))λi, (21)

where s is the strategy that 
orresponds to α. This means that if strategies

s(1), s(2), . . . , s(k) 
orrespond to basi
 solutions α1, α2, . . . , αk, of problem (8), (9)

and s ∈ S 
orresponds to an arbitrary solution α that 
an be expressed as 
onvex


ombination of basi
 solutions of problem (8), (9) with the 
orresponding 
oe�
ients

λ1, λ2, . . . , λk then we 
an express the strategy s and the 
orresponding value σθ(s)
by (19)�(21).

Thus, an arbitrary strategy s ∈ S is determined a

ording to (19), (20) where

λ1, λ2, . . . , λk 
orrespond to a solution of the following system

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

Consequently, the sublevel set L−

c (σθ) of fun
tion σ(s) represents the set of strategies
s determined by (19), (20), where λ1, λ2, . . . , λk satisfy the 
ondition















k
∑

i=1

σθ(s
i)λi ≤ c;

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k

(22)

and the superlevel set L+
c (σθ) of σθ(s) represents the set of strategies s determined

by (19),(20), where λ1, λ2, . . . , λk satisfy the 
ondition















k
∑

i=1

σθ(s
(i))λi ≥ c;

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

(23)

Let us show that L−

c (σθ), L
+
c (σθ) are 
onvex sets. We present the proof of


onvexity of sublevel set L−

c (σθ). The proof of 
onvexity of L+
c (σθ) is similar to the

proof of 
onvexity of L−

c (σθ).
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Denote by Λ the set of solutions (λ1, λ2, . . . , λk) of system (22). Then from (19),

(20), (22) we have

L−

c (σθ) =
∏

x∈X

Ŝx

where Ŝx represents the set of strategies

sx,a =

∑k
i=1 λ

iqixs
(i)
x,a

∑k
i=1 λ

iqix
, for a ∈ A(x)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ. Here
∑k

i=1 λ
iqix > 0

and sx,a for a given x ∈ X represents a linear-fra
tional fun
tion with respe
t

to λ1, λ2, . . . , λk de�ned on a 
onvex set Λx and Ŝx is the image of sx,a on Λx.

Therefore Ŝx is a 
onvex set (see Boyd and Vandenberghe, 2004). ⊓⊔

4. Stationary Nash Equilibria for Dis
ounted Sto
hasti
 Games

As we have noted the problem of the existen
e of stationary Nash equilibria for

dis
ounted sto
hasti
 games have been studied by Fink, 1964; Takahashi, 1964;

Sobol, 1971 and Solan, 1998. In this se
tion we present a normal form game for a

dis
ounted sto
hasti
 game in mixed stationary strategy and show that the payo�s

of the players in su
h a game are 
ontinuous and quasi-monotoni
 with respe
t

to the 
orresponding strategies of the players. Based on these properties and the

results of Dasgupta and Maskin, 1986 we obtain a new proof of the existen
e of

stationary equilibria in a dis
ounted sto
hasti
 game. Moreover using su
h a model

we 
an derive the 
onditions for determining the optimal stationary strategies of

the players..

4.1. A Normal Form of a Dis
ounted Sto
hasti
 Game in Stationary

Strategies

In general, an m-player dis
ounted sto
hasti
 game is determined by the following

elements:

- a state spa
e X (whi
h we assume to be �nite);

- a �nite set Ai(x) of a
tions with respe
t to ea
h player i ∈ {1, 2, . . . , n}
for an arbitrary state x ∈ X ;

- a payo� f i(x, a) with respe
t to ea
h player i ∈ {1, 2, . . . , n} for ea
h

state x ∈ X and for an arbitrary a
tion ve
tor a ∈
∏

i

Ai(x);

- a transition probability fun
tion p : X ×
∏

x∈X

n
∏

i=1

Ai(x)×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a �xed a
tion ve
tor a ∈
∏

i

Ai(x), where

∑

y∈X

pax,y = 1, ∀x ∈ X, a ∈
∏

i

Ai(x);

a dis
ount fa
tor γ, 0 < γ < 1;

- a starting state x0 ∈ X .
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The game starts in the state x0 and the play pro
eeds in a sequen
e of stages.

At stage t the players observe state xt and simultaneously and independently


hoose a
tions ait ∈ Ai(xt), i = 1, 2, . . . , n. Then nature sele
ts a state y =
xt+1 a

ording to probability transitions pat

xt,y
for the given a
tion ve
tor at =

(a1t , a
2
t , . . . , a

n
t ). Su
h a play of the game produ
es a sequen
e of states and a
-

tions x0, a0, x1, a1, . . . , xt, at, . . . that de�nes a stream of stage payo�s f1
t =

f1(xt, at), f
2
t = f2(xt, at), . . . , f

n
t = fn(xt, at), t = 0, 1, 2, . . . . The dis
ounted

sto
hasti
 game is the game with payo�s of the players

σi
x0

= E

(

∞
∑

τ=0

γτf i(xτ , aτ )

)

, i = 1, 2, . . . ,m

We will assume that players use stationary strategies of 
hoosing the a
tions in the

states. A stationary strategy si of player i ∈ {1, 2, . . . ,m} we de�ne as a mapping

si that provides for for every state x ∈ X a probability distribution over the set of

a
tions A(x). So we 
an identify the set of stationary (mixed stationary strategies)

strategies Si
of player i with the set of solutions of the system







∑

a∈A(x)

six,a = 1, ∀x ∈ X ;

six,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x).
(24)

Ea
h basi
 solution si of this system 
orresponds to a pure stationary strategy of

player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si
of player i


orresponds to the set of basi
 solutions of system (24).

Let s = (s1, s2, . . . , sm) ∈ S = S
1×S2×· · ·×Sm

be a pro�le of stationary strate-

gies (pure or mixed strategies) of the players. Then the elements of the probability

transition matrix P s = (psx,y) in the Markov pro
ess indu
ed by s 
an be 
al
ulated

as follows:

psx,y =
∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

skx,akp
(a1,a2,...,an)
x,y . (25)

Let us 
onsider the matrix W s = (ws
x,y) where W s = (I − γP s)−1

. Then in a

dis
ounted sto
hasti
 positional game the payo� of player i ∈ {1, 2, . . . ,m} for a

given pro�le s and initial state x0 ∈ X is determined as follows

σi
x0
(s) =

∑

y∈X

ws
x0,y

f i(y, s), i = 1, 2, . . . , n, (26)

where

f i(y, s) =
∑

(a1,a2,...,an)∈A(y)

n
∏

k=1

sky,akf
i(y, a1, a2, . . . , an) (27)

The fun
tions σ1
x0
(s), σ2

x0
(s), . . . , σm

x0
(s) on S = S1 × S2 × · · · × Sm

, de-

termined a

ording to (26),(27), de�ne a game in normal form that we denote by

〈{Si}i=1,m, {σi
x0
(s)}i=1,m 〉. This game 
orresponds to a dis
ounted sto
hasti


game in stationary strategies.

The dis
ounted sto
hasti
 game 
an be 
onsidered also for the 
ase when the

starting state is 
hosen randomly a

ording to a given distribution {θx} on X .

This means that for a given sto
hasti
 game the play starts in the state x ∈ X
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with probability θx > 0 where

∑

x∈X

θx = 1. If the players use mixed stationary

strategies then the payo� fun
tions

σi
θ(s) =

∑

x∈X

θxσ
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉. In the 
ase θx =

0, ∀x ∈ X \ {x0}, θx0
= 1 the 
onsidered game be
omes a dis
ounted sto
hasti


game with a �xed starting state x0.

Bellow we show how to represent expli
itly the payo� fun
tions σi
θ(s

1, s2, . . . , sm)
on S = S1 × S2 × · · · × Sm

. Based on Theorem 2 and (26), (27) the payo�s in the

game 〈{Si}i=1,m, {σ
i
θ(s)}i=1,m 〉 
an be de�ned as follows















σi
θ(s

1, s2, . . . , sm)=
∑

x∈X

∑

(a1,a2,...,am)∈A(x)

m
∏

k=1

sk
x,akf

i(x, a1, a2 . . . am)qx,

i = 1, 2, . . . ,m,

(28)

where qx, x ∈ X are determined uniquely from the following system of equations

qy − γ
∑

x∈X

∑

(a1,a2,...,am)∈A(x)

m
∏

k=1

skx,akp
(a1,a2,...,am)
x,y qx = θy, ∀y ∈ X ; (29)

for an arbitrary s = (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm
, where ea
h Si, i ∈

{1, 2, . . . ,m} represents the set of solutions of system (24).

Ea
h payo� fun
tion σi
θ(s

1, s2, . . . , sm) on S is 
ontinuous. Additionally, a
-


ording to Theorem 2, ea
h σi
θ(s

1, s2, . . . , sm) is quasi-monotoni
 with with respe
t

to strategy si on Si
. Therefore, based on results of Dasgupta and Maskin, 1986 and

Debreu, 1952 we obtain the following theorem.

Theorem 3. The game 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉 has a Nash equilibrium s =

(s1, s2, . . . , sm) ∈ S = S
1 × S2 × · · · × Sm

that is a stationary Nash equilibrium of

the dis
ounted sto
hasti
 game with an arbitrary starting state x ∈ X.

4.2. A Normal Form of a Dis
ounted Sto
hasti
 Positional Game in

Stationary Strategies

It is easy to see that a dis
ounted sto
hasti
 positional game determined by a tuple

({Xi}i=1,n, {A(x)}x∈X , {f i(x, a}i=1,m, p, {θy}y∈X) represent a parti
ulary 
ase

of the dis
ounted sto
hasti
 game from Se
tion 4.1. Therefore if we spe
ify the game

model from the previous se
tion for the positional game then we obtain the normal

form of the positional game in stationary strategies 〈{Si}i=1,m, {σi
x0
(s)}i=1,m 〉,

where Si
and σi

x0
(s), i ∈ {1, 2, . . . ,m} are de�ned as follows.

Let Si, i ∈ {1, 2, . . .m} be the set of solutions of the system (1) that determines

the set of stationary strategies of player i. On the set S = S1 ×S2 × · · · ×Sm
we

de�ne m payo� fun
tions

σi
θ(s

1, s2, . . . , sm) =

m
∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m, (30)
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where qx for x ∈ X are determined uniquely from the following system of linear

equations

qy − γ

m
∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,a p
a
x,y qx = θy, ∀y ∈ X ; (31)

for an arbitrary s = (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm
.

Note that here the payo� fun
tions σi
θ(s

1, s2, . . . , sm) de�ned a

ording to

(30), (31) for the positional game di�er from the payo� fun
tions σi
θ(s

1, s2, . . . , sm)
de�ned a

ording (28), (29) in the general 
ase of the game. As a 
orollary from

Theorem 3 we obtain that for the game 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉, de�ned a
-


ording to (1), (30), (31), there exists a Nash equilibrium s = (s1, s2, . . . , sm) ∈
S = S1 × S2 × · · · × Sm

that is a stationary Nash equilibrium of the dis
ounted

sto
hasti
 positional game with an arbitrary starting state x ∈ X .

5. Existen
e of Pure Stationary Equilibria for a Dis
ounted Sto
hasti


Positional Game

The existen
e of Nash equilibria in pure stationary strategies for a dis
ounted

sto
hasti
 positional game 
an be derived on the basis of the following theorem.

Theorem 4. Let a dis
ounted sto
hasti
 positional game be given that is determined

by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a}i=1,m, p). Then there exist the values

σi
x for x ∈ X, i = 1, 2, . . . ,m that satisfy the following 
onditions:

1) f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

x ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

2) max
a∈A(x)

{f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

x} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on ea
h position set Xi, i ∈{1, 2, . . . ,m} there exists a map si
∗

:Xi→∪x∈Xi
A(x)

su
h that

si
∗

(x) = a∗ ∈ Arg max
a∈A(x)

{

f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

x

}

and

f j(x, a∗) + γ
∑

y∈X

pa
∗

x,yσ
j
y − σj

x = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m.

The maps s1
∗
, s2

∗
, . . . , sm∗

determine a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sm∗)

for the dis
ounted sto
hasti
 positional game determined by ({Xi}i=1,m, {A(x)}x∈X ,

{f i(x, a}i=1,m, p, γ) and s∗ = (s1
∗
, s2

∗
, . . . , sm∗) is a pure stationary Nash equilib-

rium for the game with an arbitrary starting position x ∈ X.

Proof. A

ording to Theorem 3 for the dis
ounted sto
hasti
 positional game deter-

mined by ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a}i=1,m, p) there exists a stationary Nash

equilibrium s∗ = (s1
∗

, s2
∗

, . . . , s∗). If si
∗

is a mixed stationary strategy of player

i ∈ {1, 2, . . . ,m} then for a �xed x ∈ Xi the strategy si
∗

(x) represents a 
on-

vex 
ombination of a
tions determined by the probability distribution {si
∗

x,a} on

A∗(x) = {a ∈ A(x)| si
∗

x,a > 0}.
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Let us 
onsider the Markov pro
ess indu
ed by the pro�le of mixed stationary

strategies s∗ = (s1
∗

, s2
∗

, . . . , s∗). Then a

ording to (2) the elements of transition

probability matrix P s
∗

= (ps
∗

x,y) of this Markov pro
ess 
an be 
al
ulated as follows

ps
∗

x,y =
∑

a∈A(x)

si
∗

x,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (32)

and the step rewards in the states indu
ed by s 
an be determined a

ording to (4),

i. e.

f i(x, sk
∗

) =
∑

a∈A(x)

sk
∗

x,af
i(x, a), for x ∈ Xk, k ∈ {1, 2, . . . ,m}. (33)

Based on Theorem 1 for this Markov pro
ess we 
an write the following equations

f j(x, si
∗

) + γ
∑

y∈X

ps
i∗

x,yσ
j
y − σj

x = 0, ∀x ∈ Xi, ∀i, j ∈ {1, 2, . . . ,m}. (34)

From these equations we determine uniquely σi, i = 1, 2, . . . ,m (Puterman, 2005).

These values satisfy the 
ondition

f j(x, a) + γ
∑

y∈X

pax,yσ
j
y − σj

x ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x) ∀i, j ∈ {1, 2, . . . ,m}. (35)

By introdu
ing (32) and (33) in (34) we obtain

∑

a∈A(x)

si
∗

x,af
j(x, a))+γ

∑

y∈X

∑

a∈A(x)

si
∗

x,ap
a
x,yσ

j
y−σ

j = 0, ∀x ∈ Xi, ∀i, j ∈ {1, 2, . . . ,m}.

In these equations we 
an set σi
x =

∑

a∈A(x)

si
∗

x,aσ
j
x. After these substitutions and

some elementary transformations of the equations we obtain

∑

a∈A(x)

si
∗

x,a(f
j(x, a) + γ

∑

y∈X

pax,yσ
j
y − σj) = 0, ∀x ∈ Xi, ∀i, j ∈ {1, 2, . . . ,m}.

So, for the Markov pro
ess indu
ed by the pro�le of mixed stationary strategies

s∗ = (s1
∗

, s2
∗

, . . . , s∗) there exists the values σi
x, x ∈ X, i = 1, 2, . . . ,m that satisfy

the following 
ondition

f j(x, a) + γ
∑

y∈X

pax,yσ
j
y − ωj

x = 0, ∀x ∈ Xi, ∀a ∈ A∗(x), j = 1, 2, . . . ,m. (36)

Now let us �x the strategies s1
∗

, s2
∗

, . . . , si−1∗, si+1∗, . . . , s∗ of the players

1, 2, . . . , i− 1, i+1, . . . , m and 
onsider the problem of determining the maximal

expe
ted total dis
ounted reward with respe
t to player i ∈ {1, 2, . . . ,m}.Obviously,
if we solve this de
ision problem then we obtain the strategy si

∗

. However for

this de
ision problem there exists also a pure optimal strategy si
∗

. If we write the

optimality equations for the dis
ounted Markov de
ision problem with respe
t to

player i then we obtain that there exists the values ωi
x for x ∈ X su
h that

1) f i(x, a) +
∑

y∈X

pax,yε
i
y − εix − ωi ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x);
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2) max
a∈A(x)

{

f i(x, a) +
∑

y∈X

pax,yε
i
y − εix − ωi

}

= 0, ∀x ∈ Xi.

We 
an observe that σi
x, x ∈ X, determined from (34), satisfy 
onditions 1), 2)

above and (36) holds. So, if for an arbitrary i ∈ {1, 2, . . . ,m} we �x a map

si
∗

: Xi → ∪x∈Xi
A(x) su
h that

si
∗

(x) = a∗ ∈ Arg max
a∈A(x)

{

f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

}

, ∀x ∈ X

and

f j(x, a∗) + γ
∑

y∈X

pa
∗

x,yσ
j
y − σj = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m

then we obtain a Nash equilibrium in pure stationary strategies. ⊓⊔

6. Con
lusion

Dis
ounted sto
hasti
 positional games represents a spe
ial 
lass of dis
ounted

sto
hasti
 games with �nite state and a
tion spa
es for whi
h pure stationary Nash

equilibria exist. The 
onsidered 
lass of games represents a generalization of dis-


ounted deterministi
 positional games on graphs 
onsidered by Gurvi
h et al.,

1988. A pure and a mixed stationary Nash equilibria for a dis
ounted sto
hasti


positional game 
an be obtained by using the game models and 
onditions from

Se
tions 6,7. Stationary Nash equilibria for a dis
ounted sto
hasti
 game 
an be

determined by using the game model in mixed stationary strategies from Se
tion 5.
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