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Abstract A discounted stochastic positional game is a stochastic game with
discounted payoffs in which the set of states is divided into several disjoint
subsets such that each subset represents the position set for one of the player
and each player control the Markov decision process only in his position set.
In such a game each player chooses actions in his position set in order to
maximize the expected discounted sum of his stage rewards. We show that an
arbitrary discounted stochastic positional game with finite state and action
spaces possesses a Nash equilibrium in pure stationary strategies. Based on
the proof of this result we present conditions for determining all optimal
pure stationary strategies of the players.
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1. Introduction

Stochastic games where introduced by Shapley, 1953. He considered two-person
zero-sum stochastic games with finite state and action spaces for which he proved
the existence of the value and the optimal stationary strategies of the players with
respect to a discounted payoff criterion. Later this result has been extended to m-
person stochastic games and the existence of Nash equilibria in stationary strategies
have been obtained for a more general class of discounted stochastic games (see
Fink, 1964; Takahashi, 1964; Sobol, 1971; Solan, 1998). Shapley defined a stationary
strategy for a player as a map that provides in each state of the game a probability
distribution over the set of feasible actions. Therefore a stationary strategy for a
player in a stochastic game can be treated as a mixed stationary strategy. So, the
existence of Nash equilibria results mentioned above are related to Nash equilibria
in mixed stationary strategies for the considered games.

In this paper we study the problem of the existence of Nash equilibria in pure
stationary strategies for a special class of m-player discounted stochastic games
that we call discounted stochastic positional games. This class of games has been
introduced by Lozovanu and Pickl, 2015. An m-player stochastic positional game
with discounted payoffs is an m-player stochastic game where the set of states is
divided into into m disjoint subsets such that each subset represents the position
set for one of the players and each player controls the Markov decision process only
in his position set. In such a game each player chooses actions in his position set in
order to maximize the expected discounted sum of his stage rewards. We show that
for an arbitrary discounted stochastic positional game with finite state and action
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spaces there exists a Nash equilibrium in pure stationary strategies. Based on the
proof of this result we present conditions for determining all pure stationary Nash
equilibria.

The paper is organized as follows. In Section 2 the general formulation of a dis-
counted stochastic positional game is presented. Then in Sections 3 the formulation
of a discounted stochastic positional game is specified when the players use pure
and mixed stationary strategies of choosing the actions in position sets. In Section
4 some new basic properties of the solutions for a discounted Markov decision prob-
lem in terms of stationary strategies are presented. Additionally, it is shown that
such a problem can be represented as a quasi-monotonic programming problem.
Based on these results in Section 5 it is shown that a discounted stochastic game
can be formulated in terms of stationary strategies, where the payoff of each player
is quasi-monotonic with respect to his strategy. Using these properies a new proof
of the existence of stationary Nash equilibrium for a discounted stochastic game is
derived and new conditions for determining the optimal strategies of the players are
obtained. In Section 6 it is shown that a stochastic positional game with discounted
payoff represents a particulary case of a discounted stochastic game and the cor-
responding conditions for determining the stationary strategies of the players are
specified. In Section 6 the proof of the existence of pure stationary Nash equilibria
for an arbitrary discounted stochastic positional game is presented.

2. Formulation of the Discounted Stochastic Positional Game in the
Term of Stationary Strategies

First we present the general model for a discounted stochastic positional game and
then we specify the formulation of the game when the players use pure and mixed
stationary strategies of choosing the actions in their state positions.

2.1. The General Model of a Discounted Stochastic Positional Game

A discounted stochastic positional game with m players consists of the following
elements:

- a state space X (which we assume to be finite);

- a partition X = X; UXoU---UX,, where X, represents the position set of
player i € {1,2,...,m};
- a finite set A(x) of actions in each state z € X;

- a step reward fi(x,a) with respect to each player i €{1,2,...,m} in each
state © € X and for an arbitrary action a € A(x);
- a transition probability function p: X x [[ A(z) x X — [0,1] that gives

zeX
the probability transitions pg , from an arbitrary x € X to an arbitrary y € X

for a fixed action a € A(z), where » pj, =1, Ve X, ac€ Az);
yeX
- a discount factor v, 0 <~y < 1;
- a starting state zg € X.

The game starts at the moment of time ¢t = 0 in the state xo where the player i €
{1,2,...,m} who is the owner of the state position zg (2o € X;) chooses an action
ap € A(xp) and determines the rewards f!(xo,ao), f*(20, ao), ..., f™(xo, ao) for the
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corresponding players 1,2, ..., m. After that the game passes to a state y =z € X
according to a probability distribution {p3°  }. At the moment of time ¢ = 1 the
player k € {1,2,...,m} who is the owner of the state position z1 (1 € Xj) chooses
an action a; € A(z1) and players 1,2,...,m receive the corresponding rewards
fYx1,a1), f2(21,a1),. .., f™(21,a1). Then the game passes to a state y =z € X
according to a probability distribution {pgiy} and so on indefinitely. Such a play
of the game produces a sequence of states and actions xg, ag, 1,01, ..., T, a, - . -
that defines a stream of stage rewards f!(z;,a¢), f2(x¢,ae), ..., f™(xs,a¢), t =
0,1,2,.... The discounted stochastic positional game is the game with payoffs of
the players

Uﬂiﬁo :E<27Tfi(xraar)>7 i=1,2,...,m

7=0

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and given
starting state xg. Each player in this game has the aim to maximize the expected
discounted sum of his stage rewards. In the case m = 1 this game becomes the
discounted Markov decision problem with given action sets A(z) for x € X, a
transition probability function p: X x [] A(z) x X — [0,1] , step rewards
reX

f(z,a) = fY(z,a) for = € X, a € A(z), given discount factor X and starting
state xg.

In the paper we will study the discounted stochastic positional game when the
players use pure and mixed stationary strategies of choosing the actions in the
states.

2.2. A Discounted Stochastic Positional Games in Pure and Mixed
Stationary Strategies

A strategy of player i € {1,2,...,m} in a stochastic positional game is a mapping
s’ that provides for every state x; € X; a probability distribution over the set of
actions A(x;). If these probabilities take only values 0 and 1, then s is called a
pure strategy, otherwise s’ is called a mized strategy. If these probabilities depend
only on the state 7, = x € X; (i. e. s* does not depend on t), then s’ is called a
stationary strategy, otherwise s is called a non-stationary strategy.

Thus, we can identify the set of mixed stationary strategies S’ of player i with
the set of solutions of the system

>osh.=1, Vo e X;;
a€A(x) (]_)
st o >0, Vo e X;, Vae Az).

Each basic solution s’ of this system corresponds to a pure stationary strategy of
player i € {1,2,...,m}. So, the set of pure stationary strategies S of player i
corresponds to the set of basic solutions of system (1).

Let s = (s',5%,...,5™) € S=8'x 82 x --- x 8™ be a profile of stationary
strategies (pure or mixed strategies) of the players. Then the elements of probability
transition matrix P° = (p5 ) in the Markov process induced by s can be calculated
as follows:
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Doy = Z s;)ap‘;ﬁy for ze€X;, i=1,2,...,m. (2)
a€A(z)
Let us consider the matrix W° = (wj ) where W® = (I —~yP%)~! . Then in a
discounted stochastic positional game the payoff of player i € {1,2,...,m} for a
given profile s and initial state zo € X is determined as follows

U;O(S) :Z Z wio,yfi(yask)v 1= 1527"'ama (3)

k=1yeXy
where
iy, s*) = Z sZ)afi(y,a), for ye Xy, ke {l,2,...,m} 4)
a€A(y)
The functions o} (s), 02, (s), ..., op(s) on S =8' x 8% x ... x 8™, de-

fined according to (3),(4), determine a game in normal form that we denote by
({S*}ietm> {04,(8)}iztm )- This game corresponds to a  discounted stochas-
tic positional game in mized stationary strategies that in extended form is de-
termined by the tuple ({Xl-}i:L—m, {A(2)}rex, {fz(x,a)}i:L—W, D, ¥, o). The
functions oy, (s), 02, (s),..., 00 (s) on S = S'xS?x .. xS™, determine the game
({S*}ictm {04, (8) }izim ) that corresponds to a discounted stochastic positional
game in pure strategies.

A stochastic positional games can be considered also for the case when the
starting state is chosen randomly according to a given distribution {6,} on X.
So, for a given stochastic positional game we may assume that the play starts in

the state z € X with probability 6, > 0 where > 60, = 1. If the players use
reX
mixed stationary strategies then the payoff functions

oh(s) = Y 0.04(s), i=1,2,....m

zeX

on S define a game in normal form ({S'}, 1., {oj(s)},_15; ) that in extended
form is determined by ({X:};,—17 {A(@)}eex, {f"(2,0)}imi7m: 27> {O2}eex). In
the case 8, = 0,Vz € X \ {zo}, 6., =1 the considered game becomes a stochastic
positional game with a fixed starting state z.

3. Some Auxiliary Results

To prove the main results we need some properties of reward optimality equations
for a discounted Markov decision problem with finite state and action spaces. Based
on these properties we show how to determine the solutions of a discounted Markov
decision problem and how to formulate such a problem in terms of stationary strate-
gies as a quasi-monotonic programming problem. We shall use these results in the
sequel for the discounted stochastic positional games.
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3.1. Optimality Equations for a Discounted Markov Decision Process

Here we present the optimality equations for a discounted Markov decision process

determined by a tuple (X, {A(z)}sex, {f(%,a)}rex aca(x), P,7) Where X is a finite

set of states; A(x) is a finite set of actions in = € X; f(z,a) is a step reward in

x € X forae Alx), p: X x [] A(x) x X — [0,1] is a probability transition
reX

function that satisfies the condition ZyEX Pyex =1, Vo € X,a € A(z) and v is a
discount factor.

Theorem 1. Let a Markov decision process (X {A(z)}zex, {f (%, a)}sex,acA(@), P> V)
be given. Then the system of equations

0y = max {f(x,a)—i—prg)yay}, Vo e X, (5)

acA(x) vex

has a unique solution with respect to o, x € X. If 0%, x € X, is the solution of
system (5) then

max z,a) + o U*—a;}_o Ve e X
i {0+ Sotr,

and an arbitrary stationary strategy

*

s*1x - a€Ax) forxe X

such that

s*(z) =a* € argmax{f(x,a) +7 Z PayOy — O';} for xe X
acA(x) yex

represents an optimal stationary strategy for the discounted Markov decision problem
with an arbitrary starting state x € X ; the values w;, for x € X represent the optimal
expected discounted sum of the rewards that correspond to optimal strategy s* when
the process starts in x.

The proof of this theorem can be found in Puterman, 2005. Based on this the-
orem the optimal values w?, x € X for a discounted Markov decision problem can
be determined by solving the following linear programming problem:

Minimize
(bG (U) - Z ozaz (6)

reX

subject to

ozr > f(z,a) +7 Z Pey0y, Vo € X, Va € A(x) (7)
yeX

where 0, x € X represent arbitrary positive values such that > 6, = 1.
rzeX
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3.2. Dual Linear Programming Model for a Discounted Markov
Decision Problem

The dual problem for the linear programming problem (6), (7) is the following:

Mazimaze

po(a) = Z Z f(z,a)azq (8)

z€X acA(z)

subject to

Do o Qya—v > D, Pay Qo =0y, Vy € X;
a€A(y) z€X acA(z) (9)

Qg4 > 0, Ve € X, a € A(x),

where 0, for y € X represent arbitrary positive values that satisfy the condition

> 0, =1. Here 0, for y € X can be treated as the probabilities of choosing the
yex
starting state y € X in the decision problem. In the case 6, = 1 for y = z¢ and

8, =0 for y € X \ {0} we obtain the linear programming model for the discounted
Markov decision problem with fixed starting state xg.

In Puterman, 2005 the following relationship is shown between feasible solutions
of problem (8), (9) and stationary strategies in the discounted Markov decision
problem determined by the tuple (X, {A(z)}sex, {f(%,0)}rexaca@) P): If
is an arbitrary feasible solution of the linear programming problem (8), (9) then

> ape >0, Yz € X and a stationary strategy s : x — a € A(x) for z € X
a€A(z)
that corresponds to this feasible solution is determined as follows

ail)(l

Spa = ———— for z € X,, a€ Ax), (10)
Qg a
a€A(x)

where s, , expresses the probability of choosing the action a € A(z) in z € X.

3.3. A Discounted Markov Decision Problem in Terms of Stationary
Strategies

Using the relationship between feasible solutions of problem (8), (9) and stationary

strategies (12) we can formulate the discounted Markov decision problem in terms
of stationary strategies as follows:

Maximize
1/}9(Sa q) = Z Z f(xv a)sz,an (11)
z€X acA(z)
subject to
Q=7 >, > DiySeals =0y, Yy € X;
z€X acA(zx)
> Sya=1, Yy € X; (12)
a€A(y)

Sz,a >0, Vz € X, Ya € A(.’IJ),
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where 0, are the same values as in problem (8), (9) and s ,4,¢; for z € X, a € A(x)
represent the variables that must be found. It is easy to observe that for fixed
Sz.a, T € X,a € A(x) system (12) uniquely determines g, for z € X. This means
that s (s, q) depends only on s and for a given s € S we have ¥y(s,q) = os(s)

i.e. in (11) we can set
$)= > f(x,a)ss.a0a-

rzeX aeX

So the decision problem in stationary strategies (problem (11), (12)) can be
derived from (8), (9) if we introduce the following notations

= Z Oza, V2 €X;  Sga= L, Ve X, a € A(x). (13)
a€A(x) Z Ag.q
acA(x)

This means that if oy, ¢ € X,a € A(z) is a feasible solution of problem (8), (9)
then s;4, z € X,a € A(z) and ¢z, * € X, determined according to (13), represent
a feasible solution of problem (11),(12). Conversely, if s;q4, © € X,a € A(x);
gz, © € X is a feasible solution of problem (11),(12) then oagzq6 = Sz aqs,
xz € X,a € A(x) represent a feasible solution of problem (8), (9).

3.4. A Quasi-Monotonic Programming Model in Stationary Strategies
for a Discounted Markov Decision Problem

Based on the results from the previous section we show that a discounted Markov
decision problem in stationary strategies can be represented as a quasi-monotonic
programming problem. We assume that an average Markov decision problem is
determined by a tuple (X, {A(2)}iex, {f(z,a)}eex, Py {Oz}zex, N).

Theorem 2. Let an average Markov decision problem be given and consider the

function
S Y S

z€X acA(z)
where q, for © € X satisfy the condition

’yz Z pmyszaqm—ﬁy, vy € X. (14)

z€X acA(x
Then on the set S of solutions of the system

Spa=1, VzelX,;
acA(x)

S$p0>0, VzxeX, ac Alx)

the function og(s) depends only on sy o for © € X, a € A(x) and op(s) is
quasi-monotonic on S (i.e. og(s) is quasi-convexr and quasi-concave on S).

Proof. For an arbitrary s € S system (14) uniquely determines ¢, for z € X and
therefore 1(s) is determined uniquely for an arbitrary s € S, i.e. the first part of
the theorem holds.
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Now let us prove the second part of the theorem. We show that the function 1 (s)
is quasi-monotonic on S. To prove this it is sufficient to show that for an arbitrary
c € R! the sublevel set

L (0g) ={s €S| ou(s) <c}

and the superlevel set

L{(09) = {s € 8| oy(s) = c}
of function o(s) are convex. These sets can be obtained respectively from the sublevel
set L7 (pg) = {a] po(a) < c} and the superlevel set LT (pg) = {a| pg(a) > ¢} of
function pg(a) for the linear programming problem (8), (9).

Denote by of, i = 1,k the basic solutions of system (9). All feasible strategies of
problem (8), (9) can be obtained as convex combination of basic solutions o, i=
1,k. Each of € {1,2,...,k} determines a stationary strategy

. ol
s =2 z€X, ae A (15)

,a
x

for which o(s()) = p(a’) where
=Y a, VreX. (16)
a€A(x)

An arbitrary feasible solution « of system (9) determines a stationary strategy
a
Spa=—2" for z€ X, a€ A(z) (17)
qx

for which og(s) = @g(a) where ¢ = . g4, Vo € X. Taking into account that
acA(x)

a can be represented as o = Zle Mo, where Zle No=1 XN>0,i=1kwe

k . .
have pg(a) = > pp(a’)\" and we can consider
=1

k k
oz:Z/\iozi; q:Z/\i ‘ (18)
i=1 i=1

Using (15)—(18) we obtain

ko ko
Z )\za}’; a E )‘lSZ;E aq;ln /\z 7
_ Qga =1 T =1 ’ B D)
Sx,a = = = = Sma,VIEXQ,CLEA{E
and
k
G = Z)\lq;, for ze€ X. (19)
i=1
So,
kg
Sg,a = Z isg)a for € X, a€ A(x) (20)

i=1 T
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where ¢, for x € X are determined according to (19). The strategy s defined by
(20) is a feasible strategy because sz, > 0,Vz € X,a € A(x) and EaeA(w) Sp.a =

koo
1, Vz € X. Moreover, we can observe that ¢, = >, A\'q%., for z € X represent a
i=1
solution of system (14) for the strategy s defined by (20). This can be verified by
introducing (19) and (20) in (14); after such a substitution all equations from (14)

are transformed into identities. For o(s) we have

k
Z Z f.faszaqm—z Z flz,a) Z(/\qm () > (o =
z€X acA(x) z€X acA(x) i=1
k
Z(Z Z f(z,a)s ma%))\i :ZUQ(S(i)))\
i=1 “x€X acA(x) i=1
i.e.
k
co(s) = 3 au(sON, (21)
i=1

where s is the strategy that corresponds to «. This means that if strategies
s 5@ . s®) correspond to basic solutions a’,a?,...,a*, of problem (8), (9)
and s € S corresponds to an arbitrary solution « that can be expressed as convex
combination of basic solutions of problem (8), (9) with the corresponding coefficients
AU AZ . AF then we can express the strategy s and the corresponding value og(s)
by (19)—(21).

Thus, an arbitrary strategy s € S is determined according to (19), (20) where

AL, A2, ..., AP correspond to a solution of the following system
k [ES—
dXN=1 N>0, i=Lk
=1

Consequently, the sublevel set L_ (0g) of function o(s) represents the set of strategies
s determined by (19), (20), where A', A2, ... A satisfy the condition

k

> oa(sHN < ¢

jl (22)
SA=1; XN>0, i=1,k

=1

and the superlevel set L (0g) of og(s) represents the set of strategies s determined
by (19),(20), where A', A2, ... A* satisfy the condition

k L
> oa(sN > ¢
z;l | | - (23)
SN =1; MN>0, i=1Lk
1=1

Let us show that L (0g), L} (0g) are convex sets. We present the proof of
convexity of sublevel set L (0g). The proof of convexity of LT (0g) is similar to the
proof of convexity of L. (og).
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Denote by A the set of solutions (A!, A2, ..., A\F) of system (22). Then from (19),

(20), (22) we have
L (‘79) = H S’z
reX

where S, represents the set of strategies

k i (9
y A xr,a
Spa = 721:1 qws‘ — for a € A(x)

k .
dic1 A

in the state 2 € X determined by (A,A\%,...,\F) € A. Here Zle Nigt > 0
and s, for a given & € X represents a linear-fractional function with respect
to AL, A2, ... \F defined on a convex set A, and S, is the image of s, on A,.
Therefore S, is a convex set (see Boyd and Vandenberghe, 2004). O

4. Stationary Nash Equilibria for Discounted Stochastic Games

As we have noted the problem of the existence of stationary Nash equilibria for
discounted stochastic games have been studied by Fink, 1964; Takahashi, 1964;
Sobol, 1971 and Solan, 1998. In this section we present a normal form game for a
discounted stochastic game in mixed stationary strategy and show that the payoffs
of the players in such a game are continuous and quasi-monotonic with respect
to the corresponding strategies of the players. Based on these properties and the
results of Dasgupta and Maskin, 1986 we obtain a new proof of the existence of
stationary equilibria in a discounted stochastic game. Moreover using such a model
we can derive the conditions for determining the optimal stationary strategies of
the players..

4.1. A Normal Form of a Discounted Stochastic Game in Stationary
Strategies

In general, an m-player discounted stochastic game is determined by the following
elements:

- a state space X (which we assume to be finite);

- a finite set A%(z) of actions with respect to each player i € {1,2,...,n}
for an arbitrary state z € X

- a payoff fi(x,a) with respect to each player i € {1,2,...,n} for each

state z € X and for an arbitrary action vector a € [[ A%(z);
i

s .
- a transition probability function p: X x [] J] A%(z) x X — [0,1]
rzeX i=1
that gives the probability transitions pg , from an arbitrary =€ X

to an arbitrary y € Y for a fixed action vector a € [[ A'(x), where
i

s, =1, VzeX, ae [TA (=);
yeX i

a discount factor v, 0 <~y < 1;

- a starting state zg € X.
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The game starts in the state xp and the play proceeds in a sequence of stages.
At stage t the players observe state x; and simultaneously and independently
choose actions a! € A%(x;), i = 1,2,...,n. Then nature selects a state y =
x¢41 according to probability tran51t10ns pmt , for the given action vector a; =
(a},a?,...,a}?). Such a play of the game produces a sequence of states and ac-
tions @, ag,T1,0a1,-..,T¢, at,... that defines a stream of stage payoffs f! =
Y, a0), 2= (2 ae),..., [ = fY(x,a0), t=0,1,2,.... The discounted
stochastic game is the game with payoffs of the players

0-;0 =E (Z’y‘rfi(xraaf)> ) 1= 1,2,...,m
T7=0

We will assume that players use stationary strategies of choosing the actions in the
states. A stationary strategy s’ of player i € {1,2,...,m} we define as a mapping
s' that provides for for every state x € X a probability distribution over the set of
actions A(x). So we can identify the set of stationary (mixed stationary strategies)
strategies S’ of player 7 with the set of solutions of the system

>osh.=1, Vo € X;
acA(x) (24)
st 4 >0, Vz € X, Vae A(z).

Each basic solution s’ of this system corresponds to a pure stationary strategy of
player i € {1,2,...,m}. So, the set of pure stationary strategies S of player i
corresponds to the set of basic solutions of system (24).

Lets = (st,s%,...,s™) €S = S' % S2x---xS™ be a profile of stationary strate-
gies (pure or mixed strategies) of the players. Then the elements of the probability
transition matrix P° = (p5 ) in the Markov process induced by s can be calculated
as follows:

n
Pry = Z H wakpw,uya e, (25)
(a',a?,...,a™)€A(x) k=1

Let us consider the matrix Ws = (w3 ) where WS = (I —~P%)~! . Then in a
discounted stochastic positional game the payoff of player i € {1,2,...,m} for a

given profile s and initial state zp € X is determined as follows

=Y w  fiy,s), i=12...n, (26)

yeX
where .
fas = > H Spaef (W0, 0%, ") (27)
(al,a?,...,am)€A(y) k=1
The functions o} (s), 02,(s), ..., ofi(s) on S = 8" x 82 x ... x 8" de-

termined according to (26),(27), define a game in normal form that we denote by
({S"}i—t7m> {0L,(8)} ;17w )- This game corresponds to a discounted stochastic
game in stationary strategies.

The discounted stochastic game can be considered also for the case when the
starting state is chosen randomly according to a given distribution {6,} on X.
This means that for a given stochastic game the play starts in the state z € X
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with probability 6, > 0 where Y 6, = 1. If the players use mixed stationary
reX
strategies then the payoff functions

oh(s) = Y O.04(s), i=1,2,....m

zeX

on S define a game in normal form ({S'},_1, {0§(s)};—17 )- In the case 0, =
0,Vz € X \ {zo}, 04, = 1 the considered game becomes a discounted stochastic
game with a fixed starting state xo.

Bellow we show how to represent explicitly the payoff functions o (s!,s?,...,s™)
on S=8!x82x-..x 8™, Based on Theorem 2 and (26), (27) the payoffs in the
game ({S'},_17, {04(s)};—17 ) can be defined as follows

op(sts? ., M) =20 > [1s% wfi(x,a',a® ... a™)qq,
z€X (al,a?,..., am)eA(x) k=1 ’ (28)

i=1,2,...,m,

where ¢,, * € X are determined uniquely from the following system of equations

Qy — Z Z H s’;’akpgg;,a? ..... ) gy = 0y, Vye X; (29)

for an arbitrary s = (s!,s2,...,5™) € S = S! x S x ... x 8™, where each S’, i €
{1,2,...,m} represents the set of solutions of system (24).

Each payoff function o} (s', s, ..., s™) on S is continuous. Additionally, ac-

cording to Theorem 2, each o} (s', s?, ..., s™) is quasi-monotonic with with respect
to strategy s* on S*. Therefore, based on results of Dasgupta and Maskin, 1986 and

Debreu, 1952 we obtain the following theorem.

Theorem 3. The game ({S'},_17, {04(s)},—1 ) has a Nash equilibrium s =
(s',s2,...,8m) €S = S' % S2x ... x S™ that is a stationary Nash equilibrium of
the discounted stochastic game with an arbitrary starting state x € X.

4.2. A Normal Form of a Discounted Stochastic Positional Game in
Stationary Strategies

It is easy to see that a discounted stochastic positional game determined by a tuple
{Xi}ictm> {A@)}aex, {f'(z,a},i_17m, P, {0y}yex) represent a particulary case
of the discounted stochastic game from Section 4.1. Therefore if we specify the game
model from the previous section for the positional game then we obtain the normal
form of the positional game in stationary strategies ({S'},_17, {04, (8)} izt )
where S* and o’ (s), i€ {1,2,...,m} are defined as follows.

Let S*, i € {1,2,...m} be the set of solutions of the system (1) that determines
the set of stationary strategies of player i. On the set S =SS! x 82 x---x S™ we
define m payoff functions

05(51,32,...,‘9”):% Z Z s];’afi(:t,a)qw, i=1,2,...,m, (30)

k=1 z€Xr acA(x)
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where ¢, for z € X are determined uniquely from the following system of linear
equations

qy — 'YZ Z Z Sg,a pi,y qz = Oy, Vy € X; (31)

k=1 z€X) acA(x)

for an arbitrary s = (s!,s2,...,8™) €S =8 x 82 x ... x ™,

Note that here the payoff functions o} (s!,s? ...,s™) defined according to
(30), (31) for the positional game differ from the payoff functions o (s', s?,...,s™)
defined according (28), (29) in the general case of the game. As a corollary from
Theorem 3 we obtain that for the game ({S'},_17, {04(s)},—15 ), defined ac-
cording to (1), (30), (31), there exists a Nash equilibrium s = (s!,s2,...,s™) €
S =8! x 82 x --- x S™ that is a stationary Nash equilibrium of the discounted
stochastic positional game with an arbitrary starting state z € X.

5. Existence of Pure Stationary Equilibria for a Discounted Stochastic
Positional Game

The existence of Nash equilibria in pure stationary strategies for a discounted
stochastic positional game can be derived on the basis of the following theorem.

Theorem 4. Let a discounted stochastic positional game be given that is determined
by the tuple ({Xi},—17m, {A(@) }rex, {f*(x,a},—17,p). Then there exist the values
ol forx € X, i=1,2,...,m that satisfy the following conditions:

1) fiz,a)+~ Y pl ol —o0k <0, VeeX;, VaeA(x), i=1,2,...,m,
yeX

2) max {f'(z,a)+v Y pi,o,—oL}=0, VeeX; i=12,...,m;

a€A(x) yeX ’
3) on each position set X;,i €{1,2,...,m} there exists a map s* : X;—Ue x,A(x)

such that

s (r) = a* € Arg ax, {fi(% a) +7 ) Phyoy - Ui}
yeXx
and _ _ _
fj(x,a*)—F’yZp‘;’yaé -0l =0, VzeX;, j=1,2,...,m.
yex

The maps s**,s2",...,s™* determine a Nash equilibrium s* = (sl*, s2 . L, 8™
for the discounted stochastic positional game determined by ({Xi},_17, {A(®)}zex,
{fi(x,a}i:L—m,p, v) and s* = (s**,s%",...,s™") is a pure stationary Nash equilib-

rium for the game with an arbitrary starting position x € X.

Proof. According to Theorem 3 for the discounted stochastic positional game deter-
mined by ({Xi},_17, {A()}eex, {f*(x,a},_75, p) there exists a stationary Nash
equilibrium s* = (31*,32*, oS I 5" is a mixed stationary strategy of player
i€ {1,2,...,m} then for a fixed = € X; the strategy 5" (z) represents a con-
vex combination of actions determined by the probability distribution {Ei;a} on

A*(z) = {a € A(z)| 5, , > 0}
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Let us consider the Markov process induced by the profile of mixed stationary

strategies 5* = (3'7,5%7,...,5"). Then according to (2) the elements of transition

probability matrix PS* = (p$ ) of this Markov process can be calculated as follows

pit’y = Z gi:,apz,y for zeX;, i=12,...,m. (32)
acA(z)

and the step rewards in the states induced by § can be determined according to (4),
i.e.
filz,5°7) = Z Ek;afi(;v,a), for z € Xy, ke {1,2,...,m}. (33)
acA(z)

Based on Theorem 1 for this Markov process we can write the following equations

+72pwuaj—aj =0, VeeX;, Vi,je{l,2,....m}. (34)
yeX

From these equations we determine uniquely o, i = 1,2,...,m (Puterman, 2005).
These values satisfy the condition

(w,a) +7 Y ps 00 —0l <0, Vo€ X;,Va€ Alx) Vi,je{l,2,...,m}. (35)
yeX

By introducing (32) and (33) in (34) we obtain

Z zafjxa —I—”yz Z smapmyaj—aj—() Vo e X;,Vi,j€{1,2,...,m}.

a€A(z) YEX acA(x)

In these equations we can set of = > 3, ,0J. After these substitutions and
acA(x)
some elementary transformations of the equations we obtain

> 5 a(FPlaa)+y) ph ol —0) =0, VoeX;, Vije{l,2,...,m}.
acA(x) yeX
So, for the Markov process induced by the profile of mixed stationary strategies
5 = (31",5%",...,5") there exists the values 0%, z € X, i =1,2,...,m that satisfy
the following condition

fj(az,a)—l—”yZp;yai—wi:O, Ve € X;, Vae A*(z), j=1,2,...,m. (36)

yeX
Now let us fix the strategies s8N, L, s, gt 5 of the players
1,2,...,i—1,4i+1,..., m and consider the problem of determining the maximal

expected total discounted reward with respect to playeri € {1,2,...,m}. Obviously,
if we solve this decision problem then we obtain the strategy 5. However for
this decision problem there exists also a pure optimal strategy s° . If we write the
optimality equations for the discounted Markov decision problem with respect to
player i then we obtain that there exists the values w? for z € X such that

1) fiw,a)+ X po el —eh —w' <0, VoeX;, Vae Az);
yex
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2) max {fi(x,a) + 3 plel —el —wi} =0, VrelX,.
a€A(x) yeX ?

We can observe that of, x € X, determined from (34), satisfy conditions 1), 2)
above and (36) holds. So, if for an arbitrary i € {1,2,...,m} we fix a map
s X — Uzex,; A(z) such that

s (z) = a* € Arg max {fi(x,a) + Z p‘;ﬁyo‘; - Ui}, Ve e X

acA(x) vex
and _ _ _
flla,a)+7) phyol—0l =0, VeeX;, j=1,2,...,m
yeX
then we obtain a Nash equilibrium in pure stationary strategies. a

6. Conclusion

Discounted stochastic positional games represents a special class of discounted
stochastic games with finite state and action spaces for which pure stationary Nash
equilibria exist. The considered class of games represents a generalization of dis-
counted deterministic positional games on graphs considered by Gurvich et al.,
1988. A pure and a mixed stationary Nash equilibria for a discounted stochastic
positional game can be obtained by using the game models and conditions from
Sections 6,7. Stationary Nash equilibria for a discounted stochastic game can be
determined by using the game model in mixed stationary strategies from Section 5.
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