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Abstrat A disounted stohasti positional game is a stohasti game with

disounted payo�s in whih the set of states is divided into several disjoint

subsets suh that eah subset represents the position set for one of the player

and eah player ontrol the Markov deision proess only in his position set.

In suh a game eah player hooses ations in his position set in order to

maximize the expeted disounted sum of his stage rewards. We show that an

arbitrary disounted stohasti positional game with �nite state and ation

spaes possesses a Nash equilibrium in pure stationary strategies. Based on

the proof of this result we present onditions for determining all optimal

pure stationary strategies of the players.
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1. Introdution

Stohasti games where introdued by Shapley, 1953. He onsidered two-person

zero-sum stohasti games with �nite state and ation spaes for whih he proved

the existene of the value and the optimal stationary strategies of the players with

respet to a disounted payo� riterion. Later this result has been extended to m-

person stohasti games and the existene of Nash equilibria in stationary strategies

have been obtained for a more general lass of disounted stohasti games (see

Fink, 1964; Takahashi, 1964; Sobol, 1971; Solan, 1998). Shapley de�ned a stationary

strategy for a player as a map that provides in eah state of the game a probability

distribution over the set of feasible ations. Therefore a stationary strategy for a

player in a stohasti game an be treated as a mixed stationary strategy. So, the

existene of Nash equilibria results mentioned above are related to Nash equilibria

in mixed stationary strategies for the onsidered games.

In this paper we study the problem of the existene of Nash equilibria in pure

stationary strategies for a speial lass of m-player disounted stohasti games

that we all disounted stohasti positional games. This lass of games has been

introdued by Lozovanu and Pikl, 2015. An m-player stohasti positional game

with disounted payo�s is an m-player stohasti game where the set of states is

divided into into m disjoint subsets suh that eah subset represents the position

set for one of the players and eah player ontrols the Markov deision proess only

in his position set. In suh a game eah player hooses ations in his position set in

order to maximize the expeted disounted sum of his stage rewards. We show that

for an arbitrary disounted stohasti positional game with �nite state and ation
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spaes there exists a Nash equilibrium in pure stationary strategies. Based on the

proof of this result we present onditions for determining all pure stationary Nash

equilibria.

The paper is organized as follows. In Setion 2 the general formulation of a dis-

ounted stohasti positional game is presented. Then in Setions 3 the formulation

of a disounted stohasti positional game is spei�ed when the players use pure

and mixed stationary strategies of hoosing the ations in position sets. In Setion

4 some new basi properties of the solutions for a disounted Markov deision prob-

lem in terms of stationary strategies are presented. Additionally, it is shown that

suh a problem an be represented as a quasi-monotoni programming problem.

Based on these results in Setion 5 it is shown that a disounted stohasti game

an be formulated in terms of stationary strategies, where the payo� of eah player

is quasi-monotoni with respet to his strategy. Using these properies a new proof

of the existene of stationary Nash equilibrium for a disounted stohasti game is

derived and new onditions for determining the optimal strategies of the players are

obtained. In Setion 6 it is shown that a stohasti positional game with disounted

payo� represents a partiulary ase of a disounted stohasti game and the or-

responding onditions for determining the stationary strategies of the players are

spei�ed. In Setion 6 the proof of the existene of pure stationary Nash equilibria

for an arbitrary disounted stohasti positional game is presented.

2. Formulation of the Disounted Stohasti Positional Game in the

Term of Stationary Strategies

First we present the general model for a disounted stohasti positional game and

then we speify the formulation of the game when the players use pure and mixed

stationary strategies of hoosing the ations in their state positions.

2.1. The General Model of a Disounted Stohasti Positional Game

A disounted stohasti positional game with m players onsists of the following

elements:

- a state spae X (whih we assume to be �nite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set of

player i ∈ {1, 2, . . . ,m};

- a �nite set A(x) of ations in eah state x ∈ X ;

- a step reward f i(x, a) with respet to eah player i ∈{1, 2, . . . ,m} in eah

state x ∈ X and for an arbitrary ation a ∈ A(x);

- a transition probability funtion p : X ×
∏

x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X

for a �xed ation a ∈ A(x), where

∑

y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a disount fator γ, 0 < γ < 1;

- a starting state x0 ∈ X .

The game starts at the moment of time t = 0 in the state x0 where the player i ∈
{1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) hooses an ation

a0 ∈ A(x0) and determines the rewards f1(x0, a0), f
2(x0, a0), . . . , f

m(x0, a0) for the
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orresponding players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X

aording to a probability distribution {pa0

x0,y
}. At the moment of time t = 1 the

player k ∈ {1, 2, . . . ,m} who is the owner of the state position x1 (x1 ∈ Xk) hooses

an ation a1 ∈ A(x1) and players 1, 2, . . . ,m reeive the orresponding rewards

f1(x1, a1), f
2(x1, a1), . . . , f

m(x1, a1). Then the game passes to a state y = x2 ∈ X

aording to a probability distribution {pa1

x1,y
} and so on inde�nitely. Suh a play

of the game produes a sequene of states and ations x0, a0, x1, a1, . . . , xt, at, . . .

that de�nes a stream of stage rewards f1(xt, at), f
2(xt, at), . . . , f

m(xt, at), t =
0, 1, 2, . . . . The disounted stohasti positional game is the game with payo�s of

the players

σi
x0

= E

(

∞
∑

τ=0

γτf i(xτ , aτ )

)

, i = 1, 2, . . . ,m

where E is the expetation operator with respet to the probability measure in the

Markov proess indued by ations hosen by players in their position sets and given

starting state x0. Eah player in this game has the aim to maximize the expeted

disounted sum of his stage rewards. In the ase m = 1 this game beomes the

disounted Markov deision problem with given ation sets A(x) for x ∈ X , a

transition probability funtion p : X ×
∏

x∈X

A(x) × X → [0, 1] , step rewards

f(x, a) = f1(x, a) for x ∈ X, a ∈ A(x), given disount fator λ and starting

state x0.

In the paper we will study the disounted stohasti positional game when the

players use pure and mixed stationary strategies of hoosing the ations in the

states.

2.2. A Disounted Stohasti Positional Games in Pure and Mixed

Stationary Strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a stohasti positional game is a mapping

si that provides for every state xt ∈ Xi a probability distribution over the set of

ations A(xt). If these probabilities take only values 0 and 1, then si is alled a

pure strategy, otherwise si is alled a mixed strategy. If these probabilities depend

only on the state xt = x ∈ Xi (i. e. si does not depend on t), then si is alled a

stationary strategy, otherwise si is alled a non-stationary strategy.

Thus, we an identify the set of mixed stationary strategies Si
of player i with

the set of solutions of the system







∑

a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(1)

Eah basi solution si of this system orresponds to a pure stationary strategy of

player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si
of player i

orresponds to the set of basi solutions of system (1).

Let s = (s1, s2, . . . , sm) ∈ S = S
1 × S2 × · · · × Sm

be a pro�le of stationary

strategies (pure or mixed strategies) of the players. Then the elements of probability

transition matrix P s = (psx,y) in the Markov proess indued by s an be alulated

as follows:
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psx,y =
∑

a∈A(x)

six,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (2)

Let us onsider the matrix W s = (ws
x,y) where W s = (I − γP s)−1

. Then in a

disounted stohasti positional game the payo� of player i ∈ {1, 2, . . . ,m} for a

given pro�le s and initial state x0 ∈ X is determined as follows

σi
x0
(s) =

m
∑

k=1

∑

y∈Xk

ws

x0,y
f i(y, sk), i = 1, 2, . . . ,m, (3)

where

f i(y, sk) =
∑

a∈A(y)

sky,af
i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (4)

The funtions σ1
x0
(s), σ2

x0
(s), . . . , σm

x0
(s) on S = S1 × S2 × · · · × Sm

, de-

�ned aording to (3),(4), determine a game in normal form that we denote by

〈{Si}i=1,m, {σi
x0
(s)}i=1,m 〉. This game orresponds to a disounted stohas-

ti positional game in mixed stationary strategies that in extended form is de-

termined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, γ, x0). The

funtions σ1
x0
(s), σ2

x0
(s), . . . , σm

x0
(s) on S = S1×S2×· · ·×Sm

, determine the game

〈{Si}i=1,m, {σ
i
x0
(s)}i=1,m 〉 that orresponds to a disounted stohasti positional

game in pure strategies.

A stohasti positional games an be onsidered also for the ase when the

starting state is hosen randomly aording to a given distribution {θx} on X .

So, for a given stohasti positional game we may assume that the play starts in

the state x ∈ X with probability θx > 0 where

∑

x∈X

θx = 1. If the players use

mixed stationary strategies then the payo� funtions

σi
θ(s) =

∑

x∈X

θxσ
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉 that in extended

form is determined by ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a)}i=1,m, p, γ, {θx}x∈X). In

the ase θx = 0, ∀x ∈ X \ {x0}, θx0
= 1 the onsidered game beomes a stohasti

positional game with a �xed starting state x0.

3. Some Auxiliary Results

To prove the main results we need some properties of reward optimality equations

for a disounted Markov deision problem with �nite state and ation spaes. Based

on these properties we show how to determine the solutions of a disounted Markov

deision problem and how to formulate suh a problem in terms of stationary strate-

gies as a quasi-monotoni programming problem. We shall use these results in the

sequel for the disounted stohasti positional games.
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3.1. Optimality Equations for a Disounted Markov Deision Proess

Here we present the optimality equations for a disounted Markov deision proess

determined by a tuple (X, {A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p, γ) where X is a �nite

set of states; A(x) is a �nite set of ations in x ∈ X ; f(x, a) is a step reward in

x ∈ X for a ∈ A(x), p : X ×
∏

x∈X

A(x) × X → [0, 1] is a probability transition

funtion that satis�es the ondition

∑

y∈X pay∈X = 1, ∀x ∈ X, a ∈ A(x) and γ is a

disount fator.

Theorem 1. Let a Markov deision proess (X,{A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p, γ)
be given. Then the system of equations

σx = max
a∈A(x)

{

f(x, a) + γ
∑

y∈X

pax,yσy

}

, ∀x ∈ X ; (5)

has a unique solution with respet to σx, x ∈ X. If σ∗

x, x ∈ X, is the solution of

system (5) then

max
a∈A(x)

{

f(x, a) + γ
∑

y∈X

pax,yσ
∗

y − σ∗

x

}

= 0 ∀x ∈ X

and an arbitrary stationary strategy

s∗ : x → a ∈ A(x) for x ∈ X

suh that

s∗(x) = a∗ ∈ argmax
a∈A(x)

{

f(x, a) + γ
∑

y∈X

pax,yσ
∗

y − σ∗

x

}

for x ∈ X

represents an optimal stationary strategy for the disounted Markov deision problem

with an arbitrary starting state x ∈ X; the values ω∗

x for x ∈ X represent the optimal

expeted disounted sum of the rewards that orrespond to optimal strategy s∗ when

the proess starts in x.

The proof of this theorem an be found in Puterman, 2005. Based on this the-

orem the optimal values ω∗

x, x ∈ X for a disounted Markov deision problem an

be determined by solving the following linear programming problem:

Minimize

φθ(σ) =
∑

x∈X

θxσx (6)

subjet to

σx ≥ f(x, a) + γ
∑

y∈X

pax,yσy, ∀x ∈ X, ∀a ∈ A(x) (7)

where θx, x ∈ X represent arbitrary positive values suh that

∑

x∈X

θx = 1.
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3.2. Dual Linear Programming Model for a Disounted Markov

Deision Problem

The dual problem for the linear programming problem (6), (7) is the following:

Maximize

ϕθ(α) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (8)

subjet to







∑

a∈A(y)

αy,a − γ
∑

x∈X

∑

a∈A(x)

pax,y αx,a = θy, ∀y ∈ X ;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(9)

where θy for y ∈ X represent arbitrary positive values that satisfy the ondition

∑

y∈X

θy = 1. Here θy for y ∈ X an be treated as the probabilities of hoosing the

starting state y ∈ X in the deision problem. In the ase θy = 1 for y = x0 and

θy = 0 for y ∈ X \ {x0} we obtain the linear programming model for the disounted

Markov deision problem with �xed starting state x0.

In Puterman, 2005 the following relationship is shown between feasible solutions

of problem (8), (9) and stationary strategies in the disounted Markov deision

problem determined by the tuple (X, {A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p): If α
is an arbitrary feasible solution of the linear programming problem (8), (9) then

∑

a∈A(x)

αx,a > 0, ∀x ∈ X and a stationary strategy s : x → a ∈ A(x) for x ∈ X

that orresponds to this feasible solution is determined as follows

sx,a =
αx,a

∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x), (10)

where sx,a expresses the probability of hoosing the ation a ∈ A(x) in x ∈ X .

3.3. A Disounted Markov Deision Problem in Terms of Stationary

Strategies

Using the relationship between feasible solutions of problem (8), (9) and stationary

strategies (12) we an formulate the disounted Markov deision problem in terms

of stationary strategies as follows:

Maximize

ψθ(s,q) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (11)

subjet to































qy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aqx = θy, ∀y ∈ X ;

∑

a∈A(y)

sy,a = 1, ∀y ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x);

(12)
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where θy are the same values as in problem (8), (9) and sx,a, qx for x ∈ X , a ∈ A(x)
represent the variables that must be found. It is easy to observe that for �xed

sx,a, x ∈ X, a ∈ A(x) system (12) uniquely determines qx for x ∈ X . This means

that ψθ(s,q) depends only on s and for a given s ∈ S we have ψθ(s,q) = σθ(s)
i.e. in (11) we an set

σθ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx.

So the deision problem in stationary strategies (problem (11), (12)) an be

derived from (8), (9) if we introdue the following notations

qx =
∑

a∈A(x)

αx,a, ∀x ∈ X ; sx,a =
αx,a

∑

a∈A(x)

αx,a

, ∀x ∈ X, a ∈ A(x). (13)

This means that if αx,a, x ∈ X, a ∈ A(x) is a feasible solution of problem (8), (9)

then sx,a, x ∈ X, a ∈ A(x) and qx, x ∈ X , determined aording to (13), represent

a feasible solution of problem (11),(12). Conversely, if sx,a, x ∈ X, a ∈ A(x);
qx, x ∈ X is a feasible solution of problem (11),(12) then αx,a = sx,aqx,

x ∈ X, a ∈ A(x) represent a feasible solution of problem (8), (9).

3.4. A Quasi-Monotoni Programming Model in Stationary Strategies

for a Disounted Markov Deision Problem

Based on the results from the previous setion we show that a disounted Markov

deision problem in stationary strategies an be represented as a quasi-monotoni

programming problem. We assume that an average Markov deision problem is

determined by a tuple (X, {A(x)}x∈X , {f(x, a)}x∈X , p, {θx}x∈X , λ).

Theorem 2. Let an average Markov deision problem be given and onsider the

funtion

σθ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx,

where qx for x ∈ X satisfy the ondition

qy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aqx = θy, ∀y ∈ X. (14)

Then on the set S of solutions of the system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

the funtion σθ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and σθ(s) is

quasi-monotoni on S ( i.e. σθ(s) is quasi-onvex and quasi-onave on S).

Proof. For an arbitrary s ∈ S system (14) uniquely determines qx for x ∈ X and

therefore ψ(s) is determined uniquely for an arbitrary s ∈ S, i.e. the �rst part of

the theorem holds.
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Now let us prove the seond part of the theorem. We show that the funtion ψ(s)
is quasi-monotoni on S. To prove this it is su�ient to show that for an arbitrary

c ∈ R1
the sublevel set

L−

c (σθ) = {s ∈ S| σθ(s) ≤ c}

and the superlevel set

L+
c (σθ) = {s ∈ S| σθ(s) ≥ c}

of funtion σ(s) are onvex. These sets an be obtained respetively from the sublevel

set L−

c (ϕθ) = {α| ϕθ(α) ≤ c} and the superlevel set L+
c (ϕθ) = {α| ϕθ(α) ≥ c} of

funtion ϕθ(α) for the linear programming problem (8), (9).

Denote by αi, i = 1, k the basi solutions of system (9). All feasible strategies of

problem (8), (9) an be obtained as onvex ombination of basi solutions αi, i =
1, k. Eah αi ∈ {1, 2, . . . , k} determines a stationary strategy

s(i)x,a =
αi
x,a

qix
, x ∈ X, a ∈ A(x) (15)

for whih σ(s(i)) = ϕ(αi) where

qix =
∑

a∈A(x)

αi
x,a, ∀x ∈ X. (16)

An arbitrary feasible solution α of system (9) determines a stationary strategy

sx,a =
αx,a

qx
for x ∈ X, a ∈ A(x) (17)

for whih σθ(s) = ϕθ(α) where qx =
∑

a∈A(x)

αx,a, ∀x ∈ X. Taking into aount that

α an be represented as α =
∑k

i=1 λ
iαi, where

∑k

i=1 λ
i = 1, λi ≥ 0, i = 1, k we

have ϕθ(α) =
k
∑

i=1

ϕθ(α
i)λi and we an onsider

α =

k
∑

i=1

λiαi; q =

k
∑

i=1

λiqi; (18)

Using (15)�(18) we obtain

sx,a =
αx,a

qx
=

k
∑

i=1

λiαk
x,a

qx
=

k
∑

i=1

λisix,aq
i
x

qx
=

k
∑

i=1

λiqix
qx

s(i)x,a, ∀x ∈ Xα, a ∈ A(x)

and

qx =

k
∑

i=1

λiqix, for x ∈ X. (19)

So,

sx,a =

k
∑

i=1

λiqix
qx

s(i)x,a for x ∈ X, a ∈ A(x) (20)
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where qx for x ∈ X are determined aording to (19). The strategy s de�ned by

(20) is a feasible strategy beause sx,a ≥ 0, ∀x ∈ X, a ∈ A(x) and

∑

a∈A(x) sx,a =

1, ∀x ∈ X . Moreover, we an observe that qx =
k
∑

i=1

λiqix, for x ∈ X represent a

solution of system (14) for the strategy s de�ned by (20). This an be veri�ed by

introduing (19) and (20) in (14); after suh a substitution all equations from (14)

are transformed into identities. For σ(s) we have

σθ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx =
∑

x∈X

∑

a∈A(x)

f(x, a)

k
∑

i=1

(

λiqix
qx

s(i)x,a

)

qx =

k
∑

i=1

(

∑

x∈X

∑

a∈A(x)

f(x, a)s(i)x,aq
i
x

)

λi =

k
∑

i=1

σθ(s
(i))λi,

i.e.

σθ(s) =

k
∑

i=1

σθ(s
(i))λi, (21)

where s is the strategy that orresponds to α. This means that if strategies

s(1), s(2), . . . , s(k) orrespond to basi solutions α1, α2, . . . , αk, of problem (8), (9)

and s ∈ S orresponds to an arbitrary solution α that an be expressed as onvex

ombination of basi solutions of problem (8), (9) with the orresponding oe�ients

λ1, λ2, . . . , λk then we an express the strategy s and the orresponding value σθ(s)
by (19)�(21).

Thus, an arbitrary strategy s ∈ S is determined aording to (19), (20) where

λ1, λ2, . . . , λk orrespond to a solution of the following system

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

Consequently, the sublevel set L−

c (σθ) of funtion σ(s) represents the set of strategies
s determined by (19), (20), where λ1, λ2, . . . , λk satisfy the ondition















k
∑

i=1

σθ(s
i)λi ≤ c;

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k

(22)

and the superlevel set L+
c (σθ) of σθ(s) represents the set of strategies s determined

by (19),(20), where λ1, λ2, . . . , λk satisfy the ondition















k
∑

i=1

σθ(s
(i))λi ≥ c;

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

(23)

Let us show that L−

c (σθ), L
+
c (σθ) are onvex sets. We present the proof of

onvexity of sublevel set L−

c (σθ). The proof of onvexity of L+
c (σθ) is similar to the

proof of onvexity of L−

c (σθ).
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Denote by Λ the set of solutions (λ1, λ2, . . . , λk) of system (22). Then from (19),

(20), (22) we have

L−

c (σθ) =
∏

x∈X

Ŝx

where Ŝx represents the set of strategies

sx,a =

∑k
i=1 λ

iqixs
(i)
x,a

∑k
i=1 λ

iqix
, for a ∈ A(x)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ. Here
∑k

i=1 λ
iqix > 0

and sx,a for a given x ∈ X represents a linear-frational funtion with respet

to λ1, λ2, . . . , λk de�ned on a onvex set Λx and Ŝx is the image of sx,a on Λx.

Therefore Ŝx is a onvex set (see Boyd and Vandenberghe, 2004). ⊓⊔

4. Stationary Nash Equilibria for Disounted Stohasti Games

As we have noted the problem of the existene of stationary Nash equilibria for

disounted stohasti games have been studied by Fink, 1964; Takahashi, 1964;

Sobol, 1971 and Solan, 1998. In this setion we present a normal form game for a

disounted stohasti game in mixed stationary strategy and show that the payo�s

of the players in suh a game are ontinuous and quasi-monotoni with respet

to the orresponding strategies of the players. Based on these properties and the

results of Dasgupta and Maskin, 1986 we obtain a new proof of the existene of

stationary equilibria in a disounted stohasti game. Moreover using suh a model

we an derive the onditions for determining the optimal stationary strategies of

the players..

4.1. A Normal Form of a Disounted Stohasti Game in Stationary

Strategies

In general, an m-player disounted stohasti game is determined by the following

elements:

- a state spae X (whih we assume to be �nite);

- a �nite set Ai(x) of ations with respet to eah player i ∈ {1, 2, . . . , n}
for an arbitrary state x ∈ X ;

- a payo� f i(x, a) with respet to eah player i ∈ {1, 2, . . . , n} for eah

state x ∈ X and for an arbitrary ation vetor a ∈
∏

i

Ai(x);

- a transition probability funtion p : X ×
∏

x∈X

n
∏

i=1

Ai(x)×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a �xed ation vetor a ∈
∏

i

Ai(x), where

∑

y∈X

pax,y = 1, ∀x ∈ X, a ∈
∏

i

Ai(x);

a disount fator γ, 0 < γ < 1;

- a starting state x0 ∈ X .
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The game starts in the state x0 and the play proeeds in a sequene of stages.

At stage t the players observe state xt and simultaneously and independently

hoose ations ait ∈ Ai(xt), i = 1, 2, . . . , n. Then nature selets a state y =
xt+1 aording to probability transitions pat

xt,y
for the given ation vetor at =

(a1t , a
2
t , . . . , a

n
t ). Suh a play of the game produes a sequene of states and a-

tions x0, a0, x1, a1, . . . , xt, at, . . . that de�nes a stream of stage payo�s f1
t =

f1(xt, at), f
2
t = f2(xt, at), . . . , f

n
t = fn(xt, at), t = 0, 1, 2, . . . . The disounted

stohasti game is the game with payo�s of the players

σi
x0

= E

(

∞
∑

τ=0

γτf i(xτ , aτ )

)

, i = 1, 2, . . . ,m

We will assume that players use stationary strategies of hoosing the ations in the

states. A stationary strategy si of player i ∈ {1, 2, . . . ,m} we de�ne as a mapping

si that provides for for every state x ∈ X a probability distribution over the set of

ations A(x). So we an identify the set of stationary (mixed stationary strategies)

strategies Si
of player i with the set of solutions of the system







∑

a∈A(x)

six,a = 1, ∀x ∈ X ;

six,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x).
(24)

Eah basi solution si of this system orresponds to a pure stationary strategy of

player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si
of player i

orresponds to the set of basi solutions of system (24).

Let s = (s1, s2, . . . , sm) ∈ S = S
1×S2×· · ·×Sm

be a pro�le of stationary strate-

gies (pure or mixed strategies) of the players. Then the elements of the probability

transition matrix P s = (psx,y) in the Markov proess indued by s an be alulated

as follows:

psx,y =
∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

skx,akp
(a1,a2,...,an)
x,y . (25)

Let us onsider the matrix W s = (ws
x,y) where W s = (I − γP s)−1

. Then in a

disounted stohasti positional game the payo� of player i ∈ {1, 2, . . . ,m} for a

given pro�le s and initial state x0 ∈ X is determined as follows

σi
x0
(s) =

∑

y∈X

ws
x0,y

f i(y, s), i = 1, 2, . . . , n, (26)

where

f i(y, s) =
∑

(a1,a2,...,an)∈A(y)

n
∏

k=1

sky,akf
i(y, a1, a2, . . . , an) (27)

The funtions σ1
x0
(s), σ2

x0
(s), . . . , σm

x0
(s) on S = S1 × S2 × · · · × Sm

, de-

termined aording to (26),(27), de�ne a game in normal form that we denote by

〈{Si}i=1,m, {σi
x0
(s)}i=1,m 〉. This game orresponds to a disounted stohasti

game in stationary strategies.

The disounted stohasti game an be onsidered also for the ase when the

starting state is hosen randomly aording to a given distribution {θx} on X .

This means that for a given stohasti game the play starts in the state x ∈ X
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with probability θx > 0 where

∑

x∈X

θx = 1. If the players use mixed stationary

strategies then the payo� funtions

σi
θ(s) =

∑

x∈X

θxσ
i
x(s), i = 1, 2, . . . ,m

on S de�ne a game in normal form 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉. In the ase θx =

0, ∀x ∈ X \ {x0}, θx0
= 1 the onsidered game beomes a disounted stohasti

game with a �xed starting state x0.

Bellow we show how to represent expliitly the payo� funtions σi
θ(s

1, s2, . . . , sm)
on S = S1 × S2 × · · · × Sm

. Based on Theorem 2 and (26), (27) the payo�s in the

game 〈{Si}i=1,m, {σ
i
θ(s)}i=1,m 〉 an be de�ned as follows















σi
θ(s

1, s2, . . . , sm)=
∑

x∈X

∑

(a1,a2,...,am)∈A(x)

m
∏

k=1

sk
x,akf

i(x, a1, a2 . . . am)qx,

i = 1, 2, . . . ,m,

(28)

where qx, x ∈ X are determined uniquely from the following system of equations

qy − γ
∑

x∈X

∑

(a1,a2,...,am)∈A(x)

m
∏

k=1

skx,akp
(a1,a2,...,am)
x,y qx = θy, ∀y ∈ X ; (29)

for an arbitrary s = (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm
, where eah Si, i ∈

{1, 2, . . . ,m} represents the set of solutions of system (24).

Eah payo� funtion σi
θ(s

1, s2, . . . , sm) on S is ontinuous. Additionally, a-

ording to Theorem 2, eah σi
θ(s

1, s2, . . . , sm) is quasi-monotoni with with respet

to strategy si on Si
. Therefore, based on results of Dasgupta and Maskin, 1986 and

Debreu, 1952 we obtain the following theorem.

Theorem 3. The game 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉 has a Nash equilibrium s =

(s1, s2, . . . , sm) ∈ S = S
1 × S2 × · · · × Sm

that is a stationary Nash equilibrium of

the disounted stohasti game with an arbitrary starting state x ∈ X.

4.2. A Normal Form of a Disounted Stohasti Positional Game in

Stationary Strategies

It is easy to see that a disounted stohasti positional game determined by a tuple

({Xi}i=1,n, {A(x)}x∈X , {f i(x, a}i=1,m, p, {θy}y∈X) represent a partiulary ase

of the disounted stohasti game from Setion 4.1. Therefore if we speify the game

model from the previous setion for the positional game then we obtain the normal

form of the positional game in stationary strategies 〈{Si}i=1,m, {σi
x0
(s)}i=1,m 〉,

where Si
and σi

x0
(s), i ∈ {1, 2, . . . ,m} are de�ned as follows.

Let Si, i ∈ {1, 2, . . .m} be the set of solutions of the system (1) that determines

the set of stationary strategies of player i. On the set S = S1 ×S2 × · · · ×Sm
we

de�ne m payo� funtions

σi
θ(s

1, s2, . . . , sm) =

m
∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m, (30)
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where qx for x ∈ X are determined uniquely from the following system of linear

equations

qy − γ

m
∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,a p
a
x,y qx = θy, ∀y ∈ X ; (31)

for an arbitrary s = (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm
.

Note that here the payo� funtions σi
θ(s

1, s2, . . . , sm) de�ned aording to

(30), (31) for the positional game di�er from the payo� funtions σi
θ(s

1, s2, . . . , sm)
de�ned aording (28), (29) in the general ase of the game. As a orollary from

Theorem 3 we obtain that for the game 〈{Si}i=1,m, {σi
θ(s)}i=1,m 〉, de�ned a-

ording to (1), (30), (31), there exists a Nash equilibrium s = (s1, s2, . . . , sm) ∈
S = S1 × S2 × · · · × Sm

that is a stationary Nash equilibrium of the disounted

stohasti positional game with an arbitrary starting state x ∈ X .

5. Existene of Pure Stationary Equilibria for a Disounted Stohasti

Positional Game

The existene of Nash equilibria in pure stationary strategies for a disounted

stohasti positional game an be derived on the basis of the following theorem.

Theorem 4. Let a disounted stohasti positional game be given that is determined

by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a}i=1,m, p). Then there exist the values

σi
x for x ∈ X, i = 1, 2, . . . ,m that satisfy the following onditions:

1) f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

x ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

2) max
a∈A(x)

{f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

x} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on eah position set Xi, i ∈{1, 2, . . . ,m} there exists a map si
∗

:Xi→∪x∈Xi
A(x)

suh that

si
∗

(x) = a∗ ∈ Arg max
a∈A(x)

{

f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

x

}

and

f j(x, a∗) + γ
∑

y∈X

pa
∗

x,yσ
j
y − σj

x = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m.

The maps s1
∗
, s2

∗
, . . . , sm∗

determine a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sm∗)

for the disounted stohasti positional game determined by ({Xi}i=1,m, {A(x)}x∈X ,

{f i(x, a}i=1,m, p, γ) and s∗ = (s1
∗
, s2

∗
, . . . , sm∗) is a pure stationary Nash equilib-

rium for the game with an arbitrary starting position x ∈ X.

Proof. Aording to Theorem 3 for the disounted stohasti positional game deter-

mined by ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a}i=1,m, p) there exists a stationary Nash

equilibrium s∗ = (s1
∗

, s2
∗

, . . . , s∗). If si
∗

is a mixed stationary strategy of player

i ∈ {1, 2, . . . ,m} then for a �xed x ∈ Xi the strategy si
∗

(x) represents a on-

vex ombination of ations determined by the probability distribution {si
∗

x,a} on

A∗(x) = {a ∈ A(x)| si
∗

x,a > 0}.
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Let us onsider the Markov proess indued by the pro�le of mixed stationary

strategies s∗ = (s1
∗

, s2
∗

, . . . , s∗). Then aording to (2) the elements of transition

probability matrix P s
∗

= (ps
∗

x,y) of this Markov proess an be alulated as follows

ps
∗

x,y =
∑

a∈A(x)

si
∗

x,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (32)

and the step rewards in the states indued by s an be determined aording to (4),

i. e.

f i(x, sk
∗

) =
∑

a∈A(x)

sk
∗

x,af
i(x, a), for x ∈ Xk, k ∈ {1, 2, . . . ,m}. (33)

Based on Theorem 1 for this Markov proess we an write the following equations

f j(x, si
∗

) + γ
∑

y∈X

ps
i∗

x,yσ
j
y − σj

x = 0, ∀x ∈ Xi, ∀i, j ∈ {1, 2, . . . ,m}. (34)

From these equations we determine uniquely σi, i = 1, 2, . . . ,m (Puterman, 2005).

These values satisfy the ondition

f j(x, a) + γ
∑

y∈X

pax,yσ
j
y − σj

x ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x) ∀i, j ∈ {1, 2, . . . ,m}. (35)

By introduing (32) and (33) in (34) we obtain

∑

a∈A(x)

si
∗

x,af
j(x, a))+γ

∑

y∈X

∑

a∈A(x)

si
∗

x,ap
a
x,yσ

j
y−σ

j = 0, ∀x ∈ Xi, ∀i, j ∈ {1, 2, . . . ,m}.

In these equations we an set σi
x =

∑

a∈A(x)

si
∗

x,aσ
j
x. After these substitutions and

some elementary transformations of the equations we obtain

∑

a∈A(x)

si
∗

x,a(f
j(x, a) + γ

∑

y∈X

pax,yσ
j
y − σj) = 0, ∀x ∈ Xi, ∀i, j ∈ {1, 2, . . . ,m}.

So, for the Markov proess indued by the pro�le of mixed stationary strategies

s∗ = (s1
∗

, s2
∗

, . . . , s∗) there exists the values σi
x, x ∈ X, i = 1, 2, . . . ,m that satisfy

the following ondition

f j(x, a) + γ
∑

y∈X

pax,yσ
j
y − ωj

x = 0, ∀x ∈ Xi, ∀a ∈ A∗(x), j = 1, 2, . . . ,m. (36)

Now let us �x the strategies s1
∗

, s2
∗

, . . . , si−1∗, si+1∗, . . . , s∗ of the players

1, 2, . . . , i− 1, i+1, . . . , m and onsider the problem of determining the maximal

expeted total disounted reward with respet to player i ∈ {1, 2, . . . ,m}.Obviously,
if we solve this deision problem then we obtain the strategy si

∗

. However for

this deision problem there exists also a pure optimal strategy si
∗

. If we write the

optimality equations for the disounted Markov deision problem with respet to

player i then we obtain that there exists the values ωi
x for x ∈ X suh that

1) f i(x, a) +
∑

y∈X

pax,yε
i
y − εix − ωi ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x);
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2) max
a∈A(x)

{

f i(x, a) +
∑

y∈X

pax,yε
i
y − εix − ωi

}

= 0, ∀x ∈ Xi.

We an observe that σi
x, x ∈ X, determined from (34), satisfy onditions 1), 2)

above and (36) holds. So, if for an arbitrary i ∈ {1, 2, . . . ,m} we �x a map

si
∗

: Xi → ∪x∈Xi
A(x) suh that

si
∗

(x) = a∗ ∈ Arg max
a∈A(x)

{

f i(x, a) + γ
∑

y∈X

pax,yσ
i
y − σi

}

, ∀x ∈ X

and

f j(x, a∗) + γ
∑

y∈X

pa
∗

x,yσ
j
y − σj = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m

then we obtain a Nash equilibrium in pure stationary strategies. ⊓⊔

6. Conlusion

Disounted stohasti positional games represents a speial lass of disounted

stohasti games with �nite state and ation spaes for whih pure stationary Nash

equilibria exist. The onsidered lass of games represents a generalization of dis-

ounted deterministi positional games on graphs onsidered by Gurvih et al.,

1988. A pure and a mixed stationary Nash equilibria for a disounted stohasti

positional game an be obtained by using the game models and onditions from

Setions 6,7. Stationary Nash equilibria for a disounted stohasti game an be

determined by using the game model in mixed stationary strategies from Setion 5.
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