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Abstrat This paper fouses on two approahes for alulating optimal

ontrols in ooperative di�erential games with hybrid struture: namely, the

(joint) payo� funtion has a form of sum of integrals with di�erent but ad-

joint time intervals. Our methods had been applied for the game-theoretial

model with random time horizon T where T has a disrete struture. But

the area of appliation an be more wide.
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1. Introdution

In the paper the partiular problem of alulating optimal ontrols in open-loop

form is onsidered (Pontryagin, 1961). In many ontinuous optimal ontrol prob-

lems inluding game-theoreti formulation (Basar and Olsder, 1995) in ooperative

form the objetive funtional an be written as an integral from t0 to T . But in

a hybrid formulation (Gromov and Gromova, 2017) where, for example, the payo�

an be onsidered as a sum of integrals with di�erent but adjoint time intervals

there is a lak of onrete algorithms for solving the problem. We onsider the

lass of ooperative di�erential games with disrete random time horizon (Gromova

and Tur, 2017; Gromova et al., 2018) to demonstrate the methods whih are based

on using Pontryagin's maximum priniple. The general formulation of the di�eren-

tial games with ontinuous random time horizon an be found in (Petrosjan and

Shevkoplyas, 2000) and the fully disrete ase of the dynami games with disrete

random time horizon had been published in (Gromova and Plekhanova, 2019). In

the paper we onsider hybrid model, namely, ontinuous dynamis and disontin-

uous umulative distribution funtion whih orresponds to disrete random time

horizon. Another approah with hybrid umulative distribution funtion had been

onsidered in (Gromov and Gromova, 2017).

The paper is strutured as follows. In setion 2 the problem statement with ran-

dom disrete time horizon is given, in subsetions more partiular ases with 1 and

2 points of disontinuity are onsidered. In setion 3 we onsider a new approah

of solving di�erential game based on parametrization. In setion 5 we analyze an-

other more formal bakward approah whih inludes terminal payo� for results

from previous stage, the same example is solved and the results oinide. Numerial

example is given in 6. In setions 7, 8 these two methods are applied for the ase of

⋆
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two points of disontinuity and it is shown that results oinides.

2. Game formulation

Consider a di�erential game with n players (Basar and Olsder, 1995). The game

starts at the time t0 and ends at the random moment T , where T is the random

variable with known umulative distribution funtion F (t), t ∈ [t0, Tf ], Tf an

be in�nite (Gromova and Tur, 2017) or �nite (Petrosjan and Murzov, 1966). The

random variable T is formed as follows (see similar approah in (Gromova et al.,

2016; Kostyunin et al., 2014)). Let Ti be the random variable with known umulative

distribution funtion Fi(t), t ∈ [t0, Tf ], i = 1, n. Ti � the time instant of the proess

stop for the player i, i = 1, n. {Ti}
n

i=1
are assumed to be independent random

variables. We assume, that game starts at the time t0 and ends at the time of the

game stop for the �rst player, whih means

T = min{T1, T2, ...Tn}. (1)

Sine T1,. . . , Tn are independent, we have:

F (t) = 1−

n
∏

l=1

(1− Fl(t)). (2)

The dynamis is de�ned by the equation:

ẋ = g(x, u1, u2, ...un), x(t0) = x0. (3)

Payo� of the player i is de�ned as follows:

Ki(t0, x, u) = E(

Tf
∫

t0

hi(x(t), u(t))dt), i = 1, n, (4)

where hi(x, u1...un) is the instantaneous payo� funtion of the player i.

It was shown in (Kostyunin and Shevkoplyas, 2011) that uder some mild oni-

ditions the payo� (3) an be transformed to the more simple form:

Ki(·) =

Tf
∫

t0

(1− F (t))hi(·)dt. (5)

Below we will onsider the ase of disrete random variables Ti, i = 1, . . . , n. It
means that for all players there are known time instants {t1, t2, ..., tk} in whih the

game may stop with some probabilities {p1, p2, ..., pk}.
For the simpliity let us onsider the ase of 2 players. Let T1 and T2 be disrete

random variables with known umulative distribution funtions F1(t) and F2(t).
Let {t1, t2, ..., tk} and {τ1, τ2, ..., τk} be time instants, when distribution funtions

F1(t), F2(t) have simple disontinuity. Let

P{T1 = tm} = pm, P{T2 = τj} = ̺j , m, j = 1, k.
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It is assumed, that the game ends at the time of the game stop for the �rst player:

T = min {T1, T2}. Sine T1, T2 are independent, hense:

F (t) = 1−

2
∏

l=1

(1− Fl(t)). (6)

2.1. Problem statement for one point of disontinuity

Consider the following ase: F1(t), F2(t) have simple disontinuities in points t1 =
τ1, t2 = τ2 (Fig. 1., Fig. 2.).

Fig. 1. .d.f. F1 Fig. 2. .d.f. F2

Aording to (6), umulative distribution funtion of the random variable T is:

F (t) =







0 t < t1,

ρ1 = 1− (1− p1)(1 − ̺1) t1 ≤ t < t2,

1 t ≥ t2.

From (5) for disrete random time horizon (see (Gromova and Tur, 2017)), we have

payo� of the player i, i = 1, 2 in the following form:

Ki(·) =

t1
∫

t0

hi(x(t), u(t))dt + (1− ρ1)

t2
∫

t1

hi(x(t), u(t))dt.

Let u(t) = (u1(t), u2(t)).
Consider the ooperative form of the game (Petrosjan and Danilov, 1982). Then

the optimal ontrol problem is to maximize the total payo� of the players:

max
u1,u2

∑

2

i=1
Ki(t0, x0, u1, u2) =

t1
∫

t0

(h1(x
∗(t), u∗(t)) + h2(x

∗(t), u∗(t))dt+

+(1− ρ1)
t2
∫

t1

(h1(x
∗(t), u∗(t)) + h2(x

∗(t), u∗(t))dt,

(7)
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Fig. 3. .d.f. F (t)

where x∗(t), u∗(t) � optimal trajetory and ontrols.

The solution will be onsidered in the lass of open-loop strategies (Afanasyev et

al., 2003).

2.2. Problem statement for two points of disontinuity

Consider more ompliated ase of disrete distribution. Let F1(t), F2(t) have simple

disontinuities in points t1 = τ1, t2 = τ2, t3 = τ3 (Fig. 4., Fig 5.).

Fig. 4. .d.f. F1 Fig. 5. .d.f. F2

Then

F (t) = 1−

2
∏

i=1

(1− Fi) = 1− (1 − F1)(1 − F2),
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F (t) =















0 t ≤ t1,

ρ1 = 1− (1− p1)(1− ̺1) t1 < t ≤ t2,

ρ2 = 1− (1− p1 − p2)(1 − ̺1 − ̺2) t2 < t ≤ t3,

1 t > t3.

Fig. 6. .d.f. F (t)

From (5) and (Gromova and Tur, 2017), we get payo� of the player i, i = 1, 2:

Ki(·) =

t1
∫

t0

hi(x(t), u(t))dt+ (1− ρ1)

t2
∫

t1

hi(x(t), u(t))dt+ (1− ρ2)

t3
∫

t2

hi(x(t), u(t))dt.

(8)

Consider the ooperative form of the game. Then the optimal ontrol problem is to

maximize the total payo� of the players:

max
u1,u2

∑

2

i=1
Ki(t0, x0, u1, u2) =

t1
∫

t0

(h1(x
∗(t), u∗(t)) + h2(x

∗(t), u∗(t))dt+

+(1− ρ1)
t2
∫

t1

(h1(x
∗(t), u∗(t)) + h2(x

∗(t), u∗(t))dt+

+(1− ρ2)
t3
∫

t2

(h1(x
∗(t), u∗(t)) + h2(x

∗(t), u∗(t))dt,

(9)

where x∗(t), u∗(t) � optimal trajetory and ontrols.

3. First approah. One point of disountinuity

Let us demonstrate the �rst approah of alulation open-loop ontrols for (7) by the

example of resoure extration di�erential game (Gromova, 2016) based on models

(Breton et al., 2005; Haurie et al., 2012; Jørgensen and Zaour, 2007):
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The dynamis of total amount of resoure x is de�ned by the equation:

ẋ(t) = −

2
∑

i=1

ui(t), x(t0) = x0. (10)

The instantaneous payo� of i-th player is de�ned as:

hi(x, u) = ri(u)− dix, ri(ui) = ui(ai −
1

2
ui), ai, di > 0, ∀i = 1, 2. (11)

The solution will be onsidered in the lass of open-loop strategies (Afanasyev et

al., 2003). Let u(t) = (u1(t), u2(t)).
We will apply the Pontryagin's maximum priniple (Pontryagin, 1961) and �nd the

solution on two intervals I1 = [0, t1] and I2 = [t1, t2], the problem will be solved

with two �xed ends on the �rst interval, and at the seond � with a loose right

end. We introdue x(t1) = x1 as a parameter of the solution, we will �nd it's value

at the end of the solution from the maximization ondition (7).

Interval I1.

To �nd the pro�le of optimal ontrols and trajetory we have to solve the max-

imization problem

t1
∫

t0

(h1(x(t), u(t)) + h2(x(t), u(t))dt for dynami (10) and initial

onditions x(t0) = x0, x(t1) = x1, where x1 � parameter.

The Hamiltonian is:

H(x, u, ψ) = −ψ

2
∑

i=1

ui + h1(x(t), u(t)) + h2(x(t), u(t)) =

−ψ

2
∑

i=1

ui + u1(a1 −
1

2
u1) + u2(a2 −

1

2
u2)− d1x− d2x, (12)

its �rst order partial derivatives w.r.t. ui's are

∂H

∂ui
= −ψ + (ai − ui) = 0,

u∗i (t) = −ψ + ai.

The Hessian matrix is negative de�nite hene we onlude that Hamiltonian H is

onave w.r.t. ui., t ∈ [0, t1],
∂2H

∂u2i
= −1 < 0.

The adjoint equations:

∂ψ

∂t
= −

∂H(x, u, ψ)

∂x
= d̂, d̂ = d1 + d2. (13)

Hene,

ψ(t) = ψ0 + d̂t,

u∗i (t) = −ψ0 − d̂t+ ai.
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Dynami is:

ẋ(t) = −
2
∑

i=1

ui(t) = 2ψ0 + 2d̂t− â, â = a1 + a2.

We use the initial onditions:

x(0) = x0, x(t1) = x1, (14)

x(t) = 2ψ0t+ d̂t2 − ât+ x0.

Let us �nd ψ0 aording to the initial ondition and x(t):

ψ0 =
x1 − d̂t2

1
+ ât1 − x0

2t1
.

Then the optimal trajetory for the interval I1:

x∗(t)I1 =
x1 − d̂t2

1
+ ât1 − x0

t1
t+ d̂t2− ât+x0 = (x1−x0)

t

t1
+ d̂t(t− t1)+x0. (15)

Optimal player ontrols for the interval I1:

u∗i (t)I1 = −
x1 − d̂t2

1
+ ât1 − x0

2t1
− d̂t+ ai. (16)

Interval I2.

To �nd the pro�le of optimal ontrols and trajetory we have to solve the max-

imization problem

t2
∫

t1

(h1(x(t), u(t)) + h2(x(t), u(t))dt for dynami (10) and initial

ondition x(t1) = x1, where x1 � parameter. The Hamiltonian is:

H(x, u, ψ) = −ψ

2
∑

i=1

ui + (1 − ρ1)h1(x(t), u(t)) + (1 − ρ1)h2(x(t), u(t)) =

−ψ
∑

2

i=1
ui + (1− ρ1)u1(a1 −

1

2
u1) + (1− ρ1)u2(a2 −

1

2
u2)−

−(1− ρ1)d1x− (1 − ρ1)d2x, (17)

its �rst order partial derivatives w.r.t. ui's are

∂H

∂ui
= −ψ + (1− ρ1)(ai − ui) = 0,

u∗i (t) =
−ψ + (1− ρ1)ai

(1− ρ1)
.

The Hessian matrix is negative de�nite hene we onlude that Hamiltonian H is

onave w.r.t. ui., t ∈ [t1, t2]:

∂2H

∂u2i
= −(1− ρ1) < 0.
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The adjoint equations:

∂ψ

∂t
= −

∂H(x, u, ψ)

∂x
= (1− ρ1)d̂, d̂ = d1 + d2, (18)

ψ(t) =

t
∫

t1

(1− ρ1)d̂dt = (1− ρ1)d̂(t− t1) + ψ1.

The transversality ondition:

ψ(t2) = 0.

We get:

ψ(t) = (1− ρ1)d̂(t− t2).

Dynamis:

ẋ(t) = −

2
∑

i=1

ui(t) = 2
ψ

(1− ρ1)
− â, â = a1 + a2.

Aording to the initial ondition: x(t1) = x1, we get

x(t) = −2d̂t2t+ d̂t2 − ât+ 2d̂t2t1 − d̂t2
1
+ ât1 + x1.

Optimal ontrol:

u∗i (t)I2 = −d̂(t− t2) + ai. (19)

Optimal trajetory:

x∗(t)I2 = −2d̂t2t+ d̂t2 − ât+ 2d̂t2t1 − d̂t2
1
+ ât1 + x1. (20)

Intervals I1, I2
Aording to (7) we have to solve the maximization problem, taking into aount

(15), (16), (20), (19) i.e.

max
x1

2
∑

i=1

Ki(t0, x0, u
∗(t, x1)).

Substituting (15), (16), (20), (19) into (7), we get:

t1
∫

0

(u∗
1
(t)I1 (a1 −

1

2
u∗
1
(t)I1) + u∗

2
(t)I1(a2 −

1

2
u∗
2
(t)I1 )− d1x

∗(t)I1 − d2x
∗(t)I1)dt+

+(1−ρ1)
t2
∫

t1

(u∗
1
(t)I2 (a1−

1

2
u∗
1
(t)I2)+u

∗

2
(t)I2(a2−

1

2
u∗
2
(t)I2)−d1x

∗(t)I2−−d2x
∗(t)I2 )dt =

= −
x2
1

4t1
+
x1(−ât1 + x0)

2t1
−
d̂x1t1

2
+ (1− ρ1)d̂x1(t1 − t2) + C(t1, t2), (21)

where C(t1, t2) � expression independent of x1.

The maximum (21) is reahed at:

x1 = −ât1 + x0 − d̂t2
1
+ 2t1(1− ρ1)d̂(t1 − t2).
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Substituting the obtained value for x1 into (15), (16), (20), (19), we �nally get

expressions for the optimal trajetory and ontrols on the intervals I1, I2:

x∗I1(t) = −ât+ 2(1− ρ1)d̂(t1 − t2)t+ d̂t(t− 2t1) + x0,

u∗iI1
(t) = d̂t1 − (1− ρ1)d̂(t1 − t2)− d̂t+ ai, t ∈ [t0; t1],

x∗I2(t) = −2d̂t2t+ d̂t2 − ât+ 2d̂t2t1 − 2d̂t2
1
+ x0 + + 2t1(1− ρ1)d̂(t1 − t2),

u∗iI2
(t) = −d̂(t− t2) + ai, t ∈ (t1; t2].

4. Seond approah. One point of disountinuity

Consider the previous example, starting the solution from the seond interval I2. The

value (1 − ρ1)
t2
∫

t1

(h1(x(t), u(t)) + h2(x(t), u(t))dt will be onsidered as the terminal

payo� for the interval I1. Let us substitute (19), (20) and �nd the value of the

terminal payo�:

Φ(x1) = (1 − ρ1)
t2
∫

t1

(u∗
1
(t)I2 (a1 − 1

2
u∗
1
(t)I2 ) + u∗

2
(t)I2 (a2 − 1

2
u∗
2
(t)I2 ) − d1x

∗(t)I2 −

d2x
∗(t)I2 )dt =

=
(t1 − t2)(ρ1 − 1)

6
(3a2

1
+ 3a2

2
+ 2d̂2(t1 − t2)

2 − 3âd̂t1 + 3âd̂t2 − 6x1d̂). (22)

Interval I1.

To �nd the pro�le of optimal strategies we have to solve the maximization problem

t1
∫

t0

(h1(x(t), u(t))+h2(x(t), u(t))dt+Φ(x1) for dynami (10), initial ondition x(t0) =

x0 and terminal payo� (22). The Hamiltonian is:

H(x, u, ψ) = −ψ
2
∑

i=1

ui + h1(x(t), u(t)) + h2(x(t), u(t)) =

−ψ

2
∑

i=1

ui + u1(a1 −
1

2
u1) + u2(a2 −

1

2
u2)− d1x− d2x, (23)

its �rst order partial derivatives w.r.t. ui's are

∂H

∂ui
= −ψ + (ai − ui) = 0,

u∗i (t) = −ψ + ai.

The Hessian matrix is negative de�nite hene we onlude that Hamiltonian H is

onave w.r.t. ui., t ∈ [0, t1]:
∂2H

∂u2i
= −1 < 0.

The adjoint equations:

∂ψ

∂t
= −

∂H(x, u, ψ)

∂x
= d̂, d̂ = d1 + d2. (24)
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Hene,

ψ(t) = ψ0 + d̂t,

u∗i (t) = −ψ0 − d̂t+ ai.

Dynamis:

ẋ(t) = −

2
∑

i=1

ui(t) = 2ψ0 + 2d̂t− â, â = a1 + a2.

We use the initial ondition:

x(0) = x0, (25)

x(t) = 2ψ0t+ d̂t2 − ât+ x0.

Aording to the terminal payo� ondition (22)

ψ(t1) =
∂Φ(x1)

∂x1
,

ψ(t1) = (t1 − t2)(1 − ρ1)d̂.

Then

ψ0 = d̂(−t1ρ1 − t2 + t2ρ1).

Optimal ontrols for the I1 interval:

u∗i (t)I1 = −d̂(−t1ρ1 − t2 + t2ρ1)− d̂t+ ai. (26)

Optimal trajetory for the interval I1:

x∗I1(t) = 2d̂(−t1ρ1 − t2 + t2ρ1)t+ d̂t2 − ât+ x0. (27)

Let us substitute the optimal ontrol and trajetory into

t1
∫

t0

(h1(x(t), u(t))+

h2(x(t), u(t))dt + Φ(x1) and get:

t1
∫

0

(u∗
1
(t)I1(a1−

1

2
u∗
1
(t)I1)+u

∗

2
(t)I1 (a2−

1

2
u∗
2
(t)I1 )−d1x

∗(t)I1 −d2x
∗(t)I1)dt+Φ(x1)

= Φ(x1) + C(t1, t2), (28)

where C(t1, t2)� expression independent of x1.

We know that

x∗I1(t1) = x1.

Then x1:

x1 = 2d̂(−t1ρ1−t2+t2ρ1)t1+ d̂t
2

1
− ât1+x0 = −ât1+x0− d̂t

2

1
+2t1(1−ρ1)d̂(t1−t2).

(29)

Substitute (29) into (19), (20) and get expressions for optimal trajetories and

ontrols:
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x∗I1(t) = 2d̂(−t1ρ1 − t2 + t2ρ1)t+ d̂t2 − ât+ x0 =

− ât+ 2(1− ρ1)d̂(t1 − t2)t+ +d̂t(t− 2t1) + x0,

u∗iI1
(t) = −d̂(−t1ρ1−t2+t2ρ1)−d̂t+ai = d̂t1−(1−ρ1)d̂(t1−t2)−d̂t+ai, t ∈ [t0; t1],

x∗I2 (t) = −2d̂t2t+ d̂t2 − ât+ 2d̂t2t1 − 2d̂t2
1
+ x0 + 2t1(1− ρ1)d̂(t1 − t2),

u∗iI2
(t) = −d̂(t− t2) + ai, t ∈ (t1; t2].

5. Numerial example

Consider the previous example with numeri parameters.

Let a1 = 5, a2 = 6, d1 = 1, d2 = 2, p1 = 0.3, ̺1 = 0.7, ρ1 = 0.79, t1 = 1,
t2 = 2, x0 = 40.
Consequently:

x∗I1 (t) = 3t2 − 18.26t+ 40,

u∗
1I1

(t) = −3t+ 8.63,

u∗
2I1

(t) = −3t+ 9.63, t ∈ [t0; t1],

x∗I2 (t) = 3t2 − 23t+ 44.74,

u∗
1I2

(t) = −3t+ 11,

u∗
2I2

(t) = −3t+ 12, t ∈ [t1; t2].

Fig. 7. Optimal ontrol for the �rst player
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Fig. 8. Optimal trajetory

6. First approah. Two points of disountinuity

Let us demonstrate the �rst approah of alulation open-loop ontrols for (9),

dynamis (10), instantaneous payo� (11) by the example of resoure extration

di�erential game (Jørgensen and Zaour, 2007):

We will apply the Pontryagin's maximum priniple (Pontryagin, 1961) and �nd

the solution on three intervals I1 = [0, t1], I2 = [t1, t2], I3 = [t2, t3], the problem

will be solved with two �xed ends on the �rst and seond intervals, and at the third

� with a loose right end. We introdue x(t1) = x1, x(t2) = x2 as a parameters of

the solution, we will �nd its value at the end of the solution from the maximization

ondition (9).

Interval I1.

To �nd the pro�le of optimal strategies we have to solve the maximization problem

t1
∫

t0

(h1(x(t), u(t)) + h2(x(t), u(t))dt for dynami (10) and initial onditions x(t0) =

x0, x(t1) = x1, where x1 � parameter.

By using the Pontryagin's maximum priniple we get:

optimal trajetory:

x∗(t)I1 =
x1 − d̂t2

1
+ ât1 − x0

t1
t+ d̂t2 − ât+ x0 =

(x1 − x0)
t

t1
+ d̂t(t− t1) + x0, (30)

optimal ontrols:

u∗i (t)I1 = −
x1 − d̂t2

1
+ ât1 − x0

2t1
− d̂t+ ai. (31)

Interval I2.
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To �nd the pro�le of optimal strategies we have to solve the maximization problem

t2
∫

t1

(h1(x(t), u(t)) + h2(x(t), u(t))dt for dynami (10) and initial onditions x(t1) =

x1, x(t2) = x2, where x1, x2 � parameters. By using the Pontryagin's maximum

priniple we get:

optimal trajetory:

x∗(t)I2 =
(x2 − x1 + â(t2 − t1)− d̂(t2

2
− t2

1
))(t− t1)

t2 − t1
+ d̂(t2 − t2

1
)− −â(t− t1) + x1,

(32)

optimal ontrols:

u∗i (t)I2 = −
x2 − x1 + â(t2 − t1)− d̂(t2

2
− t2

1
)

2(t2 − t1)
− d̂t+ ai. (33)

Interval I3.

To �nd the pro�le of optimal strategies we have to solve the maximization problem

t3
∫

t2

(h1(x(t), u(t))+h2(x(t), u(t))dt for dynami (10) and initial ondition x(t2) = x2,

where x2 � parameter. By using the Pontryagin's maximum priniple we get:

optimal ontrols:

u∗i (t)I3 = −d̂(t− t3) + ai, (34)

optimal trajetory:

x∗(t)I3 = −2d̂t3t+ d̂t2 − ât+ 2d̂t3t2 − d̂t2
2
+ ât2 + x2. (35)

Intervals I1, I2, I3
Aording to (9) we have to solve the maximization problem, taking into aount

(30), (31), (32), (33), (34), (35) i.e.

max
x1,x2

2
∑

i=1

Ki(t0, x0, u
∗(t, x1)).

Substituting (30), (31), (32), (33), (34), (35) into (9), we get:

t1
∫

0

(u∗
1
(t)I1 (a1 −

1

2
u∗
1
(t)I1 ) + u∗

2
(t)I1 (a2 −

1

2
u∗
2
(t)I1)− d1x

∗(t)I1 − d2x
∗(t)I1)dt+

(1 − ρ1)

t2
∫

t1

(u∗
1
(t)I2 (a1 −

1

2
u∗
1
(t)I2) + u∗

2
(t)I2(a2 −

1

2
u∗
2
(t)I2 )− d̂x∗(t)I2dt+

(1− ρ2)

t3
∫

t2

(u∗
1
(t)I3(a1 −

1

2
u∗
1
(t)I3 ) + u∗

2
(t)I3 (a2 −

1

2
u∗
2
(t)I3)− d̂x∗(t)I3dt =

= −
x2
1

4t1
+
x1(−ât1 + x0)

2t1
−
d̂x1t1

2
+ (1− ρ1)

(

−
(−x2 + x1)

2

4(t2 − t1)
+
â(−x2 + x1)

2

)

+
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+(1− ρ1)

(

d̂(x2 − x1)(t1 − t2)

2
− d̂x1(t2 − t1)

)

+ (1 − ρ2)d̂x2(t2 − t3)+

+C(t1, t2, t3, x0), (36)

where C(t1, t2) � expression independent of x1, x2.

The maximum (36) is reahed at:

x1 = −ât1 + x0 − d̂t2
1
+ 2t1(1− ρ2)d̂(t2 − t3) + 2t1(1− ρ1)d̂(t1 − t2),

x2 = −â(t2 − t1)− d̂(t1 − t2)
2 +

2(1− ρ2)d̂(t2 − t3)(t2 − t1)

1− ρ1
+ x1.

Hene,

x∗(t)I1 = 2td̂(−t1 + (1− ρ1)(t1 − t2) + (1− ρ2)(t2 − t3)) + d̂t2 − ât+ x0,

u∗i (t)I1 = d̂(t1 − (1 − ρ1)(t1 − t2)− (1− ρ2)(t2 − t3))− d̂t+ ai, t ∈ [t0; t1],

x∗(t)I2 =

(

−2d̂t2 +
2(1− ρ2)d̂(t2 − t3)

1− ρ1

)

(t− t1) + d̂t2 − ât− 2d̂t2
1
+ x0+

+ 2t1(1 − ρ2)d̂(t2 − t3) + 2t1(1− ρ1)d̂(t1 − t2),

u∗i (t)I2 = d̂t2 −
(1− ρ2)d̂(t2 − t3)

1− ρ1
− d̂t+ ai, t ∈ (t1; t2],

x∗(t)I3 = d̂t2 − ât− 2d̂t3t+ 2d̂t3t2 − 2d̂t2
2
− 2d̂t2

1
+ 2d̂t1t2+

+
2(1− ρ2)d̂(t2 − t3)(t2 − t1)

1− ρ1
+x0 +2t1(1− ρ2)d̂(t2 − t3)+ 2t1(1− ρ1)d̂(t1 − t2),

u∗i (t)I3 = −d̂(t− t3) + ai, t ∈ (t2; t3].

7. Seond approah. Two points of disountinuity

Consider the previous example, starting the solution from the third interval I3. The

value (1 − ρ2)
t3
∫

t2

(h1(x(t), u(t)) + h2(x(t), u(t))dt will be onsidered as the terminal

payo� for the interval I2. Let us substitute (34), (35) and �nd the value of the

terminal payo�:

Φ3(x2) = (1 − ρ2)
t3
∫

t2

(u∗
1
(t)I3(a1 − 1

2
u∗
1
(t)I3 ) + u∗

2
(t)I3 (a2 −

1

2
u∗
2
(t)I3) − d1x

∗(t)I2 −

d2x
∗(t)I2)dt =

=
(t2 − t3)(ρ2 − 1)

6
(3a2

1
+ 3a2

2
+ 2d̂2(t2 − t3)

2 − 3âd̂t2 + 3âd̂t3 − 6x2d̂. (37)

Interval I2.

To �nd the pro�le of optimal strategies we have to solve the maximization problem
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t2
∫

t1

(h1(x(t), u(t))+h2(x(t), u(t))dt for dynami (10), initial ondition x(t1) = x1 and

terminal payo� (37). By using the Pontryagin's maximum priniple we get:

optimal trajetory for the interval I2:

x∗(t)I2 =
2d̂(t2 − t3)(1 − ρ2)(t− t1)

1− ρ1
+ d̂(t2− t2

1
)− â(t− t1)−2d̂t2(t− t1)+x1, (38)

optimal ontrols for the interval I2:

u∗i (t)I2 = −
d̂(t2 − t3)(1 − ρ2)

(1− ρ1)
+ d̂t2 − d̂t+ ai. (39)

We know that x∗(t2)I2 = x2, hene

x2 = −â(t2 − t1)− d̂(t1 − t2)
2 +

2(1− ρ2)d̂(t2 − t3)(t2 − t1)

1− ρ1
+ x1. (40)

The value (1− ρ1)
t2
∫

t1

(h1(x(t), u(t)) + h2(x(t), u(t))dt+Φ3(x2) will be onsidered as

the terminal payo� for the interval I1. Substitute (38), (39), (40) and �nd the value

of the terminal payo�:

Φ2(x1) = (1 − ρ1)
t2
∫

t1

(u∗
1
(t)I2 (a1 −

1

2
u∗
1
(t)I2 ) + u∗

2
(t)I2(a2 − 1

2
u∗
2
(t)I2 ) − d1x

∗(t)I2 −

d2x
∗(t)I2 )dt =

= (1− ρ1)d̂x1(t1 − t2) + (1− ρ2)(t2 − t3)d̂x1 + C(t1, t2, t3), (41)

where C(t1, t2, t3) � expression independent of x1.

Interval I1.

To �nd the pro�le of optimal strategies we have to solve the maximization problem

t1
∫

t0

(h1(x(t), u(t))+h2(x(t), u(t))dt+Φ2(x1) for dynami (10), initial ondition x(t0) =

x0 and terminal payo� (41). By using the Pontryagin's maximum priniple we get:

optimal ontrols for the interval I1:

u∗i (t)I1 = −(t1 − t2)(1 − ρ1)d̂− (t2 − t3)(1 − ρ2)d̂+ d̂t1 − d̂t+ ai, (42)

optimal trajetory for the interval I1:

x∗I1 (t) = 2((t1 − t2)(1 − ρ1)d̂+ (t2 − t3)(1 − ρ2)d̂− d̂t1)t+ d̂t2 − ât+ x0. (43)

Notie, that x∗I1 (t1) = x1, hene,

x1 = 2((t1 − t2)(1 − ρ1)d̂+ (t2 − t3)(1− ρ2)d̂)t1 − d̂t2
1
− ât1 + x0. (44)

Let us substitute (40), (44) in (34), (35), (38), (39) and get expressions for optimal

trajetories and ontrols:

x∗(t)I1 = 2td̂(−t1 + (1− ρ1)(t1 − t2) + (1− ρ2)(t2 − t3)) + d̂t2 − ât+ x0,
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u∗i (t)I1 = d̂(t1 − (1 − ρ1)(t1 − t2)− (1− ρ2)(t2 − t3))− d̂t+ ai, t ∈ [t0; t1],

x∗(t)I2 =

(

−2d̂t2 +
2(1− ρ2)d̂(t2 − t3)

1− ρ1

)

(t− t1) + d̂t2 − ât−

−2d̂t2
1
+ x0 + 2t1(1− ρ2)d̂(t2 − t3) + 2t1(1− ρ1)d̂(t1 − t2),

u∗i (t)I2 = −
d̂(t2 − t3)(1− ρ2)

(1− ρ1)
+ d̂t2 − d̂t+ ai, t ∈ (t1; t2],

x∗(t)I3 = d̂t2−ât−2d̂t3t+2d̂t3t2−2d̂t2
2
−2d̂t2

1
+2d̂t1t2+

2(1− ρ2)d̂(t2 − t3)(t2 − t1)

1− ρ1
+

+x0 + 2t1(1 − ρ2)d̂(t2 − t3) + 2t1(1− ρ1)d̂(t1 − t2),

u∗i (t)I3 = −d̂(t− t3) + ai, t ∈ (t2; t3].

8. Numeri example

Consider the previous example with numeri parameters.

Let a1 = 5, a2 = 6, d1 = 1, d2 = 2, p1 = 0.2, p2 = 0.4, ̺1 = 0.7, ̺2 = 0.2, ρ1 = 0.76,
ρ2 = 0.96, t1 = 1, t2 = 2, t3 = 4, x0 = 80.
Consequently:

x∗I1(t) = 3t2 − 18.92t+ 80,

u∗
1I1

(t) = −3t+ 8.96,

u∗
2I1

(t) = −3t+ 9.96, t ∈ [t0; t1],

x∗I2(t) = 3t2 − 25t+ 86.08,

u∗
1I2

(t) = −3t+ 12,

u∗
2I2

(t) = −3t+ 13, t ∈ [t1; t2],

x∗I3 (t) = 3t2 − 35t+ 106.08,

u∗
1I3

(t) = −3t+ 17,

u∗
2I3

(t) = −3t+ 18, t ∈ [t2; t3]



Solution of the Di�erential Game with Hybrid Struture 175

Fig. 9. Optimal trajetory

Fig. 10. Optimal ontrol for the player 1

9. Conlusion

In this paper we onsidered two di�erent approahes to the alulation of optimal

ontrols and trajetory in di�erential games with random duration. It was on-

struted a new approah � parametrization, whih gives the same answer as the

traditional method by using terminal payo�.
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