Contributions to Game Theory and Management, XII, 159-176

Solution of the Differential Game with Hybrid Structure*

Ekaterina V. Gromova' and Natalya G. Magnitskaya?®

1 St. Petersburg State University,

7/9 Universitetskaya nab., St. Petersburg, 199084, Russia
E-mail: e.v.gromova@spbu.ru
2 St. Petersburg State University,
7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
E-mail: magnitsnatalya@gmail.com

Abstract This paper focuses on two approaches for calculating optimal
controls in cooperative differential games with hybrid structure: namely, the
(joint) payoff function has a form of sum of integrals with different but ad-
joint time intervals. Our methods had been applied for the game-theoretical
model with random time horizon 7" where 7' has a discrete structure. But
the area of application can be more wide.
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1. Introduction

In the paper the particular problem of calculating optimal controls in open-loop
form is considered (Pontryagin, 1961). In many continuous optimal control prob-
lems including game-theoretic formulation (Basar and Olsder, 1995) in cooperative
form the objective functional can be written as an integral from ¢y to 7. But in
a hybrid formulation (Gromov and Gromova, 2017) where, for example, the payoff
can be considered as a sum of integrals with different but adjoint time intervals
there is a lack of concrete algorithms for solving the problem. We consider the
class of cooperative differential games with discrete random time horizon (Gromova
and Tur, 2017; Gromova et al., 2018) to demonstrate the methods which are based
on using Pontryagin’s maximum principle. The general formulation of the differen-
tial games with continuous random time horizon can be found in (Petrosjan and
Shevkoplyas, 2000) and the fully discrete case of the dynamic games with discrete
random time horizon had been published in (Gromova and Plekhanova, 2019). In
the paper we consider hybrid model, namely, continuous dynamics and discontin-
uous cumulative distribution function which corresponds to discrete random time
horizon. Another approach with hybrid cumulative distribution function had been
considered in (Gromov and Gromova, 2017).

The paper is structured as follows. In section 2 the problem statement with ran-
dom discrete time horizon is given, in subsections more particular cases with 1 and
2 points of discontinuity are considered. In section 3 we consider a new approach
of solving differential game based on parametrization. In section 5 we analyze an-
other more formal backward approach which includes terminal payoff for results
from previous stage, the same example is solved and the results coincide. Numerical
example is given in 6. In sections 7, 8 these two methods are applied for the case of

* The reported study was funded by RFBR according to the research project N 18-00-
00727 (18-00-00725)



160 Ekaterina V. Gromova, Natalya G. Magnitskaya

two points of discontinuity and it is shown that results coincides.

2. Game formulation

Consider a differential game with n players (Basar and Olsder, 1995). The game
starts at the time ¢y and ends at the random moment 7', where T is the random
variable with known cumulative distribution function F(t), t € [to,T¢], Tf can
be infinite (Gromova and Tur, 2017) or finite (Petrosjan and Murzov, 1966). The
random variable T is formed as follows (see similar approach in (Gromova et al.,
2016; Kostyunin et al., 2014)). Let T; be the random variable with known cumulative
distribution function F;(t), t € [to,T¢], i = 1,n.T; — the time instant of the process
stop for the player i, i = 1,n. {T;}!_, are assumed to be independent random
variables. We assume, that game starts at the time to and ends at the time of the
game stop for the first player, which means

T = min{Ty,Ts,..T,}. (1)
Since T1,..., T, are independent, we have:
Pty =1- [ - Ft)). (2)
=1
The dynamics is defined by the equation:
z = g(z,ur,ug,...uy), x(to) = zo. (3)

Payoff of the player i is defined as follows:

Ty

Kilto.0) = B( [ hi(a(®)u@)d), i =T, (4)

to
where h;(z,u;...u,) is the instantaneous payoff function of the player i.

It was shown in (Kostyunin and Shevkoplyas, 2011) that uder some mild coni-
ditions the payoff (3) can be transformed to the more simple form:

Ty
Kil) = [~ FO)h)ar (5)
to
Below we will consider the case of discrete random variables T;,¢ = 1,...,n. It

means that for all players there are known time instants {¢1,to, ..., {5} in which the
game may stop with some probabilities {p1, p2, ..., Pk}

For the simplicity let us consider the case of 2 players. Let 77 and T5 be discrete
random variables with known cumulative distribution functions Fj(t) and Fy(t).
Let {t1,t2,...,tx} and {71, 72,..., 7x} be time instants, when distribution functions
Fy(t), F»(t) have simple discontinuity. Let

P{Th =tn} =pn, P{la=7}=05 m,j=1k
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It is assumed, that the game ends at the time of the game stop for the first player:
T = min {73, T}. Since T, T» are independent, hense:

2
Fit)=1-T[(1 - F@). (6)

1=1
2.1. Problem statement for one point of discontinuity

Consider the following case: Fi(t), F»(t) have simple discontinuities in points ¢; =
T1, lfz = T2 (Flg ].., Flg 2)

Fl FZ
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Fig. 1. cdf. Fi Fig. 2. c.d.f. F>

According to (6), cumulative distribution function of the random variable T is:

0 t <ty
Ft)=¢p=1—(1—-p1)(1—o01) t1 <t <ty
1 t>ts.

From (5) for discrete random time horizon (see (Gromova and Tur, 2017)), we have
payoff of the player i, ¢ = 1,2 in the following form:

K;(\) = /hi(x(t),u(t))dt +(1—p1) / hi(x(t), u(t))dt.

Let u(t) = (uy(t), ua(t)).
Consider the cooperative form of the game (Petrosjan and Danilov, 1982). Then
the optimal control problem is to maximize the total payoff of the players:

t1

max Zle K;(to, w0, ut,u2) = [(ha(x*(t), u*(t)) + ho(z*(t), u*(t))dt+

Ur,u2 to

y (7)
F(L = p1) [(n (@ (), () + hala™ (), u* (1)),

ty
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Fig. 3. c.d.f. F(t)

where z*(t), u*(t) — optimal trajectory and controls.
The solution will be considered in the class of open-loop strategies (Afanasyev et
al., 2003).

2.2. Problem statement for two points of discontinuity

Consider more complicated case of discrete distribution. Let F (), F»(t) have simple
discontinuities in points t; = 71, t2 = T2, t3 = 13 (Fig. 4., Fig 5.).

I Fy
1 ) 1 r
| 1
P1tp2 =] 01+ @2 =
| I | |
P — | 21 — |
| N |
| I i 1 | ]
t to t3 t t1 12 13

Fig. 4. cdf. Fi Fig. 5. c.d.f. I»
Then
2

Ft)=1- H(l -F)=1-(01-FR")1-F),
=1
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0 tgtla
F(t) _ )= 1- (1 _pl)(l - Ql) t1 <t <o,
pr=1—(1—p1—p2)(1 —01—02) t2a <t <ts,
1 t>13.
F
1 .
P2 :'—]:
S
I
| | 1
t1 to 13 t

Fig. 6. c.d.f. F(t)

From (5) and (Gromova and Tur, 2017), we get payoff of the player ¢, i = 1,2:

zwu:/mwmmmMvawn/m@@w@ﬂﬂwrwa/m@mw@Mt

(8)
Consider the cooperative form of the game. Then the optimal control problem is to
maximize the total payoff of the players:

t1

max Z?:l K;(to, zo, u1,us) = f(hl(x*(t),u*(t)) + ho(z*(t), w*(t))dt+

0= ) it (007 (0) + B (0w () )
+u—mf%wwmmm+mwwmmm%

where z*(t), u*(t) — optimal trajectory and controls.

3. First approach. One point of discountinuity

Let us demonstrate the first approach of calculation open-loop controls for (7) by the
example of resource extraction differential game (Gromova, 2016) based on models
(Breton et al., 2005; Haurie et al., 2012; Jorgensen and Zaccour, 2007):
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The dynamics of total amount of resource z is defined by the equation:

i(t) = — Zui(t), z(to) = xo. (10)

The instantaneous payoff of i-th player is defined as:

1
Eui),ai,di >0, Vi=1,2 (].].)

hi(z,u) = ri(u) — diz,  ri(uw;) = ui(a; —

The solution will be considered in the class of open-loop strategies (Afanasyev et
al., 2003). Let u(t) = (u1(t), ua(t)).

We will apply the Pontryagin’s maximum principle (Pontryagin, 1961) and find the
solution on two intervals I; = [0,¢1] and Iy = [t1, 2], the problem will be solved
with two fixed ends on the first interval, and at the second — with a loose right
end. We introduce z(t1) = =1 as a parameter of the solution, we will find it’s value
at the end of the solution from the maximization condition (7).

Interval I;.

To find the profile of optimal controls and trajectory we have to solve the max-

ty

imization problem [(hq(z(t),u(t)) + ho(z(t),u(t))dt for dynamic (10) and initial
to

conditions z(tg) = o, x(t1) = x1, where x; — parameter.

The Hamiltonian is:

H(z,u,¢) = —¢ Z ui + ha(2(t), u(t)) + ha(x(t), u(t)) =

2

1 1
_¢;ul “+ uy (al — 5’11,1) =+ ’u,g(az — 5’(1,2) —dix — dg!E, (12)

its first order partial derivatives w.r.t. u;’s are

0H
8’U,i

=—¢+(a; —u;) =0,

ul(t) = = + a;.

The Hessian matrix is negative definite hence we conclude that Hamiltonian H is
concave w.r.t. u;., t € [0,t1],

88271;[ =-1<0.
The adjoint equations:
%_@f _ _7‘9*’{(2;“””) —d, d=di +do. (13)
Hence, A
Y(t) = tho + dt,
wl(t) = —o — dt + a;.
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Dynamic is:
i(t) = — iui(t) = o +2dt — 4, @ = ai+ as.
i=1
We use the initial conditions:
x(0) = xo, x(t1) = 1, (14)

z(t) = 2ot + dt* — at + xo.

Let us find g according to the initial condition and z(t):

- thf +dt1 — X

T
Yo = o

Then the optimal trajectory for the interval I:

. xy —dd+aty —xo, o . t
x (t)h =t 1t1 ! Ot+dt2—at+x0 = (,’El—!’Eo)E—l—dt(t—tl)ﬁ-!Eo. (15)

Optimal player controls for the interval I:

—dt} + ity —x

0 -
—dt i 1
T +a (16)

X
Ur(t)h = -

Interval I5.
To find the profile of optimal controls and trajectory we have to solve the max-

ta

imization problem [(hq(x(t),u(t)) + ho(z(t),u(t))dt for dynamic (10) and initial
ty

condition z(t;) = 21, where 21 — parameter. The Hamiltonian is:

H(z,u,¢) = —1/12% (1 = po)ha(x(t),u(t)) + (1 — p1)ha(x(t), u(t)) =
2w+ (1= pr)us(ar — Juy) + (1 = pr)uz(as — Sug)—

—(1 — pl)dlx - (1 - pl)dzx, (17)

its first order partial derivatives w.r.t. u;’s are

gf = -+ (1—pi)(ai —u;) =0,
vy Y+ A —pi)a
R

The Hessian matrix is negative definite hence we conclude that Hamiltonian H is
concave w.r.t. u;., t € [t1,ta]:

82H
ouZ

3

—(1=p1) <0.
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The adjoint equations:

0 oH i
00 _ _Mewd) iy dmdyra (18)
t
B(t) = /(1 — pr)ddt = (1= p1)d(t —t1) + ¢
t1

The transversality condition:

¥(t2) = 0.
We get: A
P(t) = (1 = pr)d(t — t2).
Dynamics: ,
B(t) == ui(t) =2 v —a, a=a+as.
p (1= p1)

According to the initial condition: z(t1) = x1, we get
x(t) = —2dbot + dt? — at + 2dtoty — di? + aty + 1.

Optimal control:

uf(t)b = —d(t - tz) + a;. (].9)
Optimal trajectory:
¥ (t)1, = —2dtot + di? — at + 2dtaty — di? + aty + ;. (20)

Intervals I, I
According to (7) we have to solve the maximization problem, taking into account

(15), (16), (20), (19) i.e.

2
H;?'X;Ki(t()vx()a u (tvxl))

Substituting (15), (16), (20), (19) into (7), we get:

(13 ()1, (an — 53 (60,) + 3 ()1, (a2 — 3 ()s,) — (), — o (0), )+
0
1) O, o= b 00 43O, (b)) —dua” ()5, —— o (0, )t =

2 —aty + drt X
L vi(—dh +2)  doity + (1 — p1)dzy(ty — t2) 4 C(t1, ts), (21)
4t 2t 2

where C(t1,t2) — expression independent of z;.
The maximum (21) is reached at:

T = —&tl + To — dt% + 2t1(1 - pl)CZ(tl - tg).
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Substituting the obtained value for z; into (15), (16), (20), (19), we finally get
expressions for the optimal trajectory and controls on the intervals I, Is:

% (1) = —at + 2(1 — p1)d(ts — ta)t + di(t — 2t1) + o,
qul (t) = thl — (1 — pl)dA(tl — tz) — dAt +a;,, t€ [to;tl],

af, (t) = —2dtat + dt? — at + 2dtaty — 2dt3 + xo + + 2t1(1 — p1)d(ts — t2),

wr (t) = —d(t — t2) +a;, te€ (tl;tQ].

’i12
4. Second approach. One point of discountinuity

Consider the previous example, starting the solution from the second interval I5. The
ta

value (1 — p1) [(h1(z(t),u(t)) + ho(x(t), u(t))dt will be considered as the terminal
¢

1
payoff for the interval I;. Let us substitute (19), (20) and find the value of the

terminal payoff:
to

P(x1) = (1 - pl)tf(u’{(f)lz (a1 — 3ui(t)r,) + us(t)r, (a2 — Jus(t)r,) — dva*(t)r, —
dgl'*(t)]z)dt =

t1 —1 -1 A A A A
= %(3& + 3a2 4 2d%(t; — t2)* — 3adt, + 3adty — 6x1d).  (22)
Interval I;.

To find the profile of optimal strategies we have to solve the maximization problem
t1

J(ha(z(t), u(t))+ ho(z(t), u(t))dt+P(z1) for dynamic (10), initial condition z(ty) =
to

zo and terminal payoff (22). The Hamiltonian is:

H(z,u,) = —@[JZui + ha(z(t),u(t)) + ha(z(t), u(t)) =

2
1 1
_w 2’(}4 —+ ul(al — 5’(},1) =+ ’u,g(az — 5’(1,2) —dix — dgx, (23)
its first order partial derivatives w.r.t. u;’s are

OH
8ui

=Y+ (a; —u;) =0,

ul(t) = = + a;.

The Hessian matrix is negative definite hence we conclude that Hamiltonian H is
concave w.r.t. u;., t € [0,%1]:

0*H
The adjoint equations:
H .
%f_m:dv d=di +dy (24)

ot ox
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Hence,

¥(t) = o + dt,
wi(t) = —t — dt + a;.
Dynamics:
i(t) = — iui(t) =P+ 2dt —a, = a1+ a.

i=1

We use the initial condition:
z(0) = xo, (25)
2(t) = 2ot + dt* — at + xo.

According to the terminal payoff condition (22)

8@(1‘1)

Y(t) = D,

Y(t1) = (t1 —t2)(1 — p1)d.
Then

Yo = d(—t1p1 — t2 + tap1).
Optimal controls for the I; interval:
wi(t), = —d(—t1py — ta +tap1) — dt + a;. (26)
Optimal trajectory for the interval I;:
2 (t) = 2d(—tipr — ta + tap1 )t + dt* — at + xo. (27)

t1
Let us substitute the optimal control and trajectory into [(hi(z(t),u(t))+

ho(z(t),u(t))dt + (z1) and get: ’

[0 @1 = ui0n) 4 w301 (@2 - 5u30n) ~ duz ()1, ~daa” O, e+ Do)
0

= B(@1) + Cltr, 1), (28)
where C(t1,t2)— expression independent of x.
We know that
Iz (tl) =T.

Then z1:

xr] = 262(—1f1p1 —t9 +t2p1)f1 +dAt% —at1+x9 = —at1 +xo— thf +2t4 (1 - pl)CZ(tl — tz).

(29)
Substitute (29) into (19), (20) and get expressions for optimal trajectories and
controls:
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a7}, (t) = 2d(—t1p1 — ta + topy)t + dt* — at + xo =

—at +2(1 — p1)d(ty — ta)t + +dt(t — 2t,) + xo,
ufll (t) = —&(—tlpl—tz—ktgpl)—czt—l—ai = thl—(1—p1)c2(t1—t2)—cft+ai, te [to; tl],

@}, (t) = —2dtat + dt? — at + 2dtaty — 2dt3 + w0 + 2t (1 — p1)d(t — t2),

™ (ﬁ) = —d(t — ﬁg) +a;, te€ (ﬁl;tg].

5. Numerical example

Consider the previous example with numeric parameters.
Let ay; = 5, a9 = 6, dl = 1, d2 = 2, pP1 = 0.3, 01 = 0.7, pP1 = 0.79, tl = 1,
tz = 2, o = 40.

Consequently:
z; (t) = 3t* — 18.26t + 40,
uy, (t) = =3t +8.63,
us, (t) = —3t+9.63, t€ [to;ta],
a7, (t) = 3t — 23t + 44.74,
uiy, (£) = =3t + 11,
up, (t) = =3t+12, t€ [ti;ta].
—uj, (?)
—uj,, ()
8
y 7
6 -
5
0 0.5 1 1.5 7

Fig. 7. Optimal control for the first player
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40 — 7, (1)
— (t)

30

5
20
10
0 0.5 1 1.5 2
+

Fig. 8. Optimal trajectory

6. First approach. Two points of discountinuity

Let us demonstrate the first approach of calculation open-loop controls for (9),
dynamics (10), instantaneous payoff (11) by the example of resource extraction
differential game (Jergensen and Zaccour, 2007):

We will apply the Pontryagin’s maximum principle (Pontryagin, 1961) and find
the solution on three intervals Iy = [0,t1], Is = [t1,%2], I3 = [t2,t3], the problem
will be solved with two fixed ends on the first and second intervals, and at the third
— with a loose right end. We introduce z(t1) = x1, x(t2) = x2 as a parameters of
the solution, we will find its value at the end of the solution from the maximization
condition (9).

Interval I;.

To find the profile of optimal strategies we have to solve the maximization problem
ty

J(ha(z(t),u(t)) + ho(z(t),u(t))dt for dynamic (10) and initial conditions x(to) =
to

xo, x(t1) = x1, where x; — parameter.

By using the Pontryagin’s maximum principle we get:

optimal trajectory:

xrp — Czt% + &tl —
t

o (t), = D04+ dt? —at +zo =

t R
(Il —ZEo)t— +dt(t—t1)+$0, (30)
1
optimal controls:

;vl—cft%—i—dtl—x

0 -
—dt i 1
T +a (31)

Uf(t)h = -

Interval I5.



Solution of the Differential Game with Hybrid Structure 171

To find the profile of optimal strategies we have to solve the maximization problem
ta

J(ha(z(t),u(t)) + ho(z(t),u(t))dt for dynamic (10) and initial conditions z(t1) =
t1

21, ©(ta) = za, where x1, xs — parameters. By using the Pontryagin’s maximum
principle we get:

optimal trajectory:

(22 — 21 4 @ty — 1) — d(12 — 12))(t — t1)

z*(t)g, = +d(t? —t2) — —a(t—t1) + 1,
to — 11
(32)
optimal controls:
— a(te —t1) —d(t2 —2) -
up(t)r, = -2 Tl m ) A=) Gy, (33)

2(t — t1)

Interval I3.

To find the profile of optimal strategies we have to solve the maximization problem
t3

J(ha(z(t), u(t)) + ho(z(t), u(t))dt for dynamic (10) and initial condition z(t2) = w2,
ta

where x9 — parameter. By using the Pontryagin’s maximum principle we get:
optimal controls:

ui (t)r, = —d(t — t3) + ai, (34)
optimal trajectory:
2*(t)g, = —2dtst + dt? — at + 2dtsty — dt? + aty + o (35)

Intervals I, I, I3
According to (9) we have to solve the maximization problem, taking into account
(30), (31), (32), (33), (34), (35) ie.

2
g?gg;Ki(tvaOa u (tvxl))

Substituting (30), (31), (32), (33), (34), (35) into (9), we get:

[ @i @ = Jui(n) + w30 (02 — Fu3E)n) i (O, — das” (O, )+
0
(1= p0) [(WiOn(ar - 3ui(O)n) + 63O (@2 - Jus(O)r) - da* @O nde
(1= p2) [ (i 0)s, (= i 00) + w30 02 — Ju3(0)s) = ()t =

_ _.I_l .Il(—fl,tl + .I()) . cletl T (1 _ pl) _ (—:EQ “+ I1)2 d(—.TEQ + .Il) +
4t1 2t1 2 4(f2 — tl) 2
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"1‘(1 - p1) <d($2 — .%'12)(t1 — t2) — (i.%‘l (tg — t1)> +(1- pg)Czwg(tg —t3)+

+C(t1,t2,t3,$0), (36)

where C(t1,t2) — expression independent of 1, xa.
The maximum (36) is reached at:

Xr, = —dtl —|— o — Jt% —|— 2t1(1 — pQ)Cz(tQ — tg) —|— 2t1(1 — pl)CZ(tl — tQ),

2(1 — pg)d(fg — t3)(f2 — tl)
IL—p1

To = —d(tg — tl) — dA(tl - t2)2 + + .

Hence,
,T*(t)[l = th(—tl + (1 - pl)(tl - tg) + (1 - pz)(tg — tg)) + thQ — at + xo,

wi(t), =d(ts — (1= p1)(tr — ta) — (1 — p2)(t2 —t3)) — dt +as, ¢ € [to; ta],

2(1 — pz)d(tg — tg)
I—p1

¥ (t), = <—2dt2 + ) (t —t1) 4 dt* — at — 2dt? + zo+

+ 2t1(1 - pQ)CZ(tQ - tg) + 2t1(1 - pl)CZ(tl - tg),

R 1— po)d(ty —t .
uf(t)b:dtz—( pf)_(pf 3)—dt+ai, t € (t1;ta],

a*(t)g, = dt* — at — 2dtst + 2dtsty — 2dt3 — 2dt? + 2dt,ty+

+ 2(1 — pg)d(fz — t3)(f2 — tl)
L—p1

+ 2o+ 2t1(1 — pg)dA(tQ — tg) + 2t1(1 — pl)dA(tl — tg),

up(t)r, = —d(t —t3) +a;, t€ (t2;t3].

7. Second approach. Two points of discountinuity

Consider the previous example, starting the solution from the third interval I3. The
t3

value (1 — p2) [(h1(2(t), u(t)) + ha(x(t), u(t))dt will be considered as the terminal

to
payoff for the interval I. Let us substitute (34), (35) and find the value of the

terminal payoff:
t3

P3(x2) = (1= p2) [(ui(t)rs(ar — Jui(t)ry) + us(t) 1, (a2 — Sus(t)r,) — drz*(t)1, —
ta
dz,T* (t)[z)dt =
to —t -1 5 . . .
= %(3& +3a3 + 2d*(ty — t3)* — 3adty + 3adts — 6xod.  (37)

Interval I5.
To find the profile of optimal strategies we have to solve the maximization problem
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ta

J(ha(z(t),u(t)) + ho(x(t), u(t))dt for dynamic (10), initial condition z(t1) = x1 and
t1

terminal payoff (37). By using the Pontryagin’s maximum principle we get:
optimal trajectory for the interval Is:

Qd(tg — tg)(l — pz)(t — tl)
IL—p1

¥ (t), = +d(t?—t3)—a(t—ty) —2dta(t—t1) + 21, (38)

optimal controls for the interval Is:

. _ dlta—t3) A —p2) s s @
ui(t)b— (1—[)1) +dt2 dt—F g (39)

We know that z*(t2)1, = x2, hence

2(1 — p2)d(tz — t3)(t2 — t1)

To = —a(ty —t1) — d(ty — t2)? + T +21.  (40)
—p1
ta
The value (1 — p1) [(h1(z(t), u(t)) + ha(z(t), u(t))dt + P3(x2) will be considered as

ty
the terminal payoff for the interval I;. Substitute (38), (39), (40) and find the value

of the terminal payoff:
ta

Pa(z1) = (1 - Pl)tf(u’f(t)fz (a1 — 3ui(t),) + us(t)1, (a2 — Sus(t)r,) — dia™ ()1, —
dor*(t))dt =

= (1 - p1)dwi(ty — t2) + (1 — pa)(t2 — t3)dz1 + C(t1, ta, t3), (41)

where C(t1,t2,t3) — expression independent of x.
Interval I;.

To find the profile of optimal strategies we have to solve the maximization problem
ty

J(ha(z(t), u(t))+ho(x(t), u(t))dt+P2 (z1) for dynamic (10), initial condition z(ty) =
to

zo and terminal payoff (41). By using the Pontryagin’s maximum principle we get:
optimal controls for the interval I:

wi (), = =t — t2)(1 = p1)d = (ts — ta)(1 = pa)d + dtr —dt + a;,  (42)
optimal trajectory for the interval I;:
2 (1) = 2((t1 — t2)(1 — p1)d + (ta — t3)(1 — p2)d — dt1)t +dt* — at +xo.  (43)

Notice, that 27, (t1) = 71, hence,

21 =2((t1 — t2)(1 — p1)d + (ta — t3)(1 — po)d)ty — dt? — aty + 2. (44)

Let us substitute (40), (44) in (34), (35), (38), (39) and get expressions for optimal
trajectories and controls:

x* (), = 2tCZ(—t1 +(1—p1)(t1 —t2) + (1 — p2)(ta — t3)) + dt? — at + o,
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uf(t)h = dA(tl — (1 - pl)(tl - tg) - (1 - pz)(tg - t3)) - dAt +a;, te [to;tl],

2(1 — pg)d(fg — t3)
L—p1

o*(t), = (—2th2 + ) (t —t1) + dt* — at—

—2(&% + Zo —|— 2t1(1 — pQ)Cz(tQ — tg) —|— 2t1(1 — pl)CZ(tl — tg),
d(ty —t3)(1 — N
(0, =~ Py e, v (i)
(1—p1)

21 = po)dlts —t5)(t2 = t1)
I1—m

+xzo + 261 (1 — pg)CZ(tQ — tg) + 2t (1 — pl)(i(tl — tg),
[0, = —d(t —t3) +ai, t€ (to;ts].

o (t) 1, = dt*—at—2dtst+2dtsto—2dt2—2dt3 +2dt to+

u

8. Numeric example

Consider the previous example with numeric parameters.
Let a; = 5, as = 6, dl = 1, dg = 2, pP1 = 02, P2 = 04, 01 = 07, 02 = 02, p1 = 076,
p2 = 096, tl = 1, t2 = 2, tg = 4, To = 80.
Consequently:
7}, (t) = 3t* — 18.92t + 80,

uj, (t) = =3t + 8.96,
us, (t) = =3t +9.96, ¢ € [to;ta],
7}, (t) = 3t° — 25t + 86.08,
ui,, () = =3t +12,
u, () = =3t+13, € [ti;ta],
z; (t) = 3t — 35t + 106.08,
ui,, () = =3t +17,

’U,;IS (t) =-3t+18, te [tg; t3]



Solution of the Differential Game with Hybrid Structure

80 — 7, (t)
z3, (1)
60
5
40
20
0 1 2 3 4
Fig. 9. Optimal trajectory
—uf, (1)
)
10 . o tl‘TfB (t)
=) 8
6
0 1 2 3 4

Fig. 10. Optimal control for the player 1

9. Conclusion
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In this paper we considered two different approaches to the calculation of optimal
controls and trajectory in differential games with random duration. It was con-
structed a new approach — parametrization, which gives the same answer as the

traditional method by using terminal payoff.
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