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Abstract A consideration of economic corruption is introduced in the dy-
namic social and private interests coordination engine (SPICE) models re-
lated to the resource allocation. The investigation is based on the hierarchical
game theoretic approach in principal-agents systems. From the point of view
of the agents a differential game in normal form arises which results in Nash
equilibrium. The addition of a principal forms an inverse differential Stack-
elberg game in open-loop strategies. The related optimal control problems
are solved by the Pontryagin maximum principle together with a method
of qualitatively representative scenarios of simulation modeling. The algo-
rithms of building of the Nash and Stackelberg equilibria are proposed, the
numerical examples are described and analyzed.
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els, inverse differential Stackelberg games, corruption, principal-agents sys-
tems

1. Introduction

A big stream of literature is concerned with mathematical modeling of corruption.
In most of the papers static models of struggle with corruption are built and investi-
gated (Blackburn et al, 2006; Blackburn and Powell, 2011; Levin and Satarov, 2013;
Antonenko et al, 2013). Dynamic models are studied for the special forms of model
functions or strong requirements to the feasible strategies of agents (Kolokoltsov
and Malafeev, 2017; Grass et al., 2008).

In this paper an authors’ approach of sustainable management in active systems
is used (Gorbaneva et al, 2016; Ugol’nitskii and Usov, 2014; Ougolnitsky and Usov,
2015; Ougolnitsky and Usov, 2014; Ougolnitsky and Usov, 2019; Ugol’nitskii and
Usov, 2013; Ougolnitsky and Usov, 2018). In relation with corruption, an extended
active system is considered which consists of a principal, one or several supervisors,
several agents, and a controlled dynamic system. The agents propose bribes to the
supervisor in exchange to some privileges or resources. The principal is not cor-
rupted, while the supervisor(s) and agents maximize their payoffs in the conditions
of a possible corruption. The relations between the principal and supervisor(s) as
well as between the supervisor(s) and the agents are modeled by the differential
inverse Stackelberg games (Basar and Olsder, 2016; Dockner et al, 2000).

The paper develops the previous works (Ougolnitsky and Usov, 2015; Ougol-
nitsky and Usov, 2014; Ougolnitsky and Usov, 2019; Ugol’nitskii and Usov, 2013;
Ougolnitsky and Usov, 2018). In (Ugol'nitskii and Usov, 2014; Ougolnitsky and
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Usov; 2015) the methods of struggle with administrative corruption in the models
of optimal harvesting are considered. In (Ougolnitsky and Usov, 2014) the meth-
ods of struggle with economic corruption are proposed for the surface water quality
control systems, in (Ougolnitsky and Usov, 2019) for general SPICE-models.

In this paper the dynamic SPICE-models of struggle with corruption in resource
allocation are built and analyzed. The respective differential inverse Stackelberg
games in open-loop strategies are solved by the Pontryagin maximum principle
(Basar and Olsder, 2016) together with the method of qualitatively representative
scenarios in simulation modeling (Ougolnitsky and Usov, 2018).

2. The problem setup

Consider a three-level extended active system which consists of a principal, a super-
visor, several agents, and a controlled dynamical system. The supervisor allocates
a (financial) resource between the agents who divide it between their private activ-
ities and the production of a common social good. The supervisor can increase the
allocated resource in exchange of a bribe from the agents. The principal controls
the supervisor and punish her in case of the found bribe.

The following information structure is assumed. The principal chooses his strat-
egy first and reports it to the supervisor and the agents. Then the supervisor chooses
her control and reports it to the agents. The agents exert influence to the controlled
dynamical system (the production of a social good). Given the supervisor’s strategy
they play a differential game in normal form which results in Nash equilibrium in
open-loop strategies. This equilibrium is treated as the best response of the agents
to the supervisor’s strategy. The principal has no his own payoff functional, and
only implicitly controls the supervisor. The supervisor and the agents maximize
their payoff functionals in the following form:

- for the supervisor

Jo({ri()}ily, {bi( )}y, 2() =
= /0 e P {so(t)C(z(t)) + [l — 2 — M2] Zbi(t)ri(t)}dt — max (1)

=1

- for the agents (i =1,2,...,N)
Ji(ri(-),bi(), 2(1)) =
T
= [ e ) = 50 = ) + s OC G — ik )

Here s + Zfil si(t) = 1.

It is assumed that the supervisor and the agents receive their share of the pro-
duced social good (so(t) and s;(t), i = 1,2, ..., N) respectively in each moment of
time.

Denote by N the number of agents; T' - the period of time (the length of the
game); p - the discount factor; z(t) - the probability for the supervisor to be caught
with bribe; M - the penalty coeflicient; x - a social good; if it is not material (for
example, an environmental quality) then a function C(z) of its financial estimation
is used; so, s;(t) (i = 1,2,...,N) - the shares of the supervisor and the agents in
C(z); pi(t) - the agents’ functions of revenue from their private activities; r;(t) - an



142 Olga 1. Gorbaneva, Anatoly B. Usov, Gennady A. Ougolnitsky

amount of resource allocated by the supervisor (her control) to the i-th agent with
consideration of a bribe; b;(¢) - the bribe ("kickback") of the i-th agent (his control)
to the supervisor; u;(t) - a share of the received resource that the i-th agent uses
in the production of the social good. The payoff functionals (1), (2) are considered
with the following constraints for the controls:

- the supervisor

N
Z = (3)
- the agents

Here R(t) is the amount of resource allocated by the supervisor.
The system dynamics equation (for the social good) has the form

(Zuz )—u:v) #(0) = zo. (5)

Here f is a production function for the social good; u - the deterioration rate; xg -
an initial amount of the social good.

Assume that ¢, f, p; (i = 1,2,..., N) are concave monotone increasing functions,
¢(0) = f(0) = p;(0) = 0 . For definiteness, consider the case of power functions:

C(z) = kxﬂ;f(y) = Ay";pi(y) = y*; k, A, B,v,; = const;i =1,2,...,N.  (6)

(6) The values R(t), z, M, so are given by the principal. Thus, a dynamic SPICE-
model in resource allocation (1) - (6) is considered.

3. The Nash equilibrium

From the point of view of the agents the functions r;(¢) (supervisor’s controls) in
the model (1) - (6) are given. Consider two natural forms of the functions:

=’ i=1,2,..,.N (7)

and

ri(t) =ro; + <R Zr0k> ZJ 0, ;1=1,2,...,N. (8)

The values 70 (i = 1,2, ..., N) determine the amounts of resource allocated to the
agents in the absence of corruption. The case (7) relates to the extortion when
agents should give a bribe or not receive any resource. The case (8) describes the
capture when a fixed allocated amount of the resource may be increased in exchange
of a bribe.

The solution of the N - player game (2), (4) - (6) s. t. (7) or (8) is a set of Nash
equilibriums in open-loop strategies. Respectively, for each agent an optimal control
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problem is solved basing on the Pontryagin maximum principle (Basar and Olsder,
2016). The Hamilton function for the i-th agent takes the form

Hi(x(t), bi(t), ui(t), )\z(t)) =

N ¥
= e 7" ((rit) — by —w;)* + ksilvﬂ) -\ <A <Z uj) - Mx> ) (9)
i=1

where functions r;(t) are defined by the formulas (7) or (8).

Substitute the problem (2), (4) - (6) s. t. (7) or (8) by an equivalent problem of
maximization of the Hamilton function (9) with known constraints for the controls
(Basar and Olsder, 2016) (¢ = 1,2,..., N) which results in the system of equations
(i=1,2,..,N):

- in the case of (7)

a;—1 N
Hi bl ‘ R Z‘: b_bz
9 —eptai<R7b—bi—ui> ( Jj=1"J )_1 =0; (10)
1Y

Ob; ;V: Z;\,:l b
ZZIZ = —e Pla; <R1\?71b —b; — uz) " — N Ay iui " =0; (11)
j=1"3 =
.
%:Zl)f:_uz+A iuj ;2i(0) = xo; (12)
j=1
%): = _5;;1- = pu\; + e Pts; fkaP Xi(T) =0 (13)

- in the case of (8) the equations (10), (11) take the form

Oti—l
N
0H,; b;
l:e_ptai T‘Oi—l—(R—ZTQj)Nil—bi—ui X
0bi j=1 Zj:l bj
(7= S0 r05) (X065 — bi)
X ~ —1] =0; (14)
Zj:l b
oH, o b, "
L — —e_ptozi r0i + (R — ZTOJ') Nl —b; —u; —
Ou; j=1 > j=1b;
N 71
Ay Yy = 0; (15)
j=1

In (10) - (15) A\;(¢) (i = 1,2,...,n) are the conjugate functions. It is required to find
the set of functions {(b;, u;, \i)Y_,, z}, satisfying the system of equations (10) - (13)
or (12) - (15) (i = 1,2,...,n). This set of functions is the maximizer of the Hamilton
function (9).
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From (10), (11) or (14), (15) the optimal controls of agents that form the Nash
equilibrium are determined by one of the formulas:

uMF = 0;0NF =0;i=1,2,...,N (16)
N
ulNE:o;ZbéVE:R;izl,z,...,N (17)
j=1

or as a solution of the system of equations:
- in the case (10), (11):

RZ?’:l bj = (Zjv:1 bj)2

ai—l — (18)
_ b; N v _
—e Pty <RZ§\71 5 b; — Uz> — XAy (Ej:l uj) =0
- in the case (14), (15):
2
N N N
(R— Ej:l Toj) Ej:l bj = (Ej:l bj)
a;—1
_ N : ' N i
—e Ptay ((R =i TOj)ﬁ —b; — uz) — NAy (Zj:l “j) =0
(19)

The systems of equations (18) or (19) are considered together with (12), (13)
and are the systems of non-linear (3N+1) equations with (3N+1 ) unknowns which
are solved by the Newton method. Thus, the Nash equilibria in the game of agents
(2), (4), (5) s. t. (6) are expressed by the formulas (16), (17) or are the solutions of
the systems of equations (18), (19).

Ezample 1. In the case (d. - days; c.u. - conventional financial units) N = 3; p =
0.01; T = 1095d.; s; = 0.2; a; = 0.5; ro; = 10cu.; i = 1,2,3; g = 100c.u.;
R =100c.u.; k =6; 8 =0.6; v = 0.5; A = 0.05; 4 = 0.01d~"! the Nash equilibrium
and the payoffs are determined by the formulas

- in the case of capture: b ¥ (t) = Oc.u.; uNE(t) = 10c.u.; J; = 14560c.u. i =
=1,2,3.

- in the case of extortion: bNF(t) = uMNE(t) = Ocu. (i = 1,2,3) and J; =
= 12400c.u. i = 1,2, 3.

The amount of the social good decreases in time both in the case of extortion
(2(T) = 44c.u.), and in the case of capture (x(T) = 76c.u.).

Ezxample 2. In the case of the input data from the Example 1 and decreasing of
the agents’ shares in the social good in 10 times (s; = 0.02 ¢ = 1,2, 3) the optimal
strategies of all agents change, their payoffs decrease and coincide for capture and
extortion:

uNE(t) = Ocu. (i = 1,2,3); bVE(t) = R; bYE(t) = bYE(t) = Ocu; J1 =
= 16230c.u.; Jo = J3 = 1240c.u.

The final value of social good decreases (x(T) = 27c.u.) in comparison with
Example 1.

Ezample 3. In the case of the input data from the Example 1 and decreasing of the
agents’ gain from the production of social good (k = 0.5) the results for capture and
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extortion coincide again. The payoffs of all agents decrease, the final amount of the
social good increases (z(T) = 73c.u.): bV E(t) = uNE(t) = R/3 and J; = 11194c.u.
i=1,2,3

Ezxample 4. In the case of the input data from the Example 1 and a3 = 2; as = 3;
a3 = 1.5 we receive:

- for the capture:

ulVE(t) = 22c.u; BYE(t) = 17cu; ud B(t) = 32¢c.u.; bYE(t) = 23c.u; ud E(t)
= e WY E(t) = 10c.u.; J; = 25346¢.u.; Jo = 34769c.u.; J3 = 19171c.u.

- for the extortion:

ulVE(t) = 12c.u.; bYE(t) = 22cu.; ud B (t) = 17cu.; bYE(t) = 28c.u.; ud E(t)
= 8c.u.; bYE(t) = 13c.u.; J1 = 21621c.u.; Jo = 32540c.u.; J3 = 17323c.u.

The final value of the social good increases in comparison with the Example 1:
in the case of extortion z(T") = 78c.u., in the case of capture z(T") = 92c.u.

4. The Stackelberg equilibrium

From the point of view of the supervisor the model (1) - (6) represents an inverse
differential Stackelberg game with N followers (agents) and one leader (supervisor)
in open-loop strategies. Now the bribe functions r;(t) are the agents’ strategies that
are determined by the solution of the game. The following algorithm of building of
the Stackelberg equilibrium is proposed.

1. The supervisor’s strategy of punishment of agents 71 (¢) when they refuse to
cooperate with her is built as follows:

PP =l O} rf (0) =arg  min L), u (), (1), 2 (1))
ri>0;3 0 ri=R

Here rf(t) = 0. Assume that {bNE(t),sN E(t)}Y, is a Nash equilibrium in the
game of agents when 77 (t) = 0; i = 1,2,..., N. Then bNE(t) = 0; uP’ NE}(t) = 0;
i=1,2,..,N.

If an agent refuses to cooperate then his guaranteed payoff is equal to (i =
=1,2,...,N):

T
L= i JiONE ), ulNE(t),rF (t),2(t) = af | sike P1tdt.
T ol oA, i(0 7 (), ug " (t), (), 2(t) = g | sike

2. The optimal control problem (1), (3) - (6) is solved with conditions
T
L; = J,'g/ Sikeiﬁ‘utdt < Ji(bi(t), ui(t), ri(t),x(t));i =1,2,...,N.
0

which make the strategy of reward more profitable for the agents than the strategy
of punishment.

A maximum in (1) is found by (3N) functions (r;(t),u;(t),b;(t)); i =1,...,N in
the same time. Denote the solution of the respective optimal control problem by
{rE(t), bl (t), ult(t)} ¥, where rf (t) is the strategy of reward of the i-th agent when
he chooses b*(t) and uf(t).

3. The supervisor reports to each agent the control feedback strategy:

rit(t)  if bi(t) =bR(t) and wu(t) =ull(t) Vte€[0;00),
i) = {7 z z

ri (1) otherwise
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Then the Stackelberg equilibrium takes the form {rf(t), b2(¢), uZ(t)} Y.

The step 2 of the algorithm is implemented numerically by means of digitaliza-
tion (Ugol’nitskii and Usov, 2013) and the method of qualitatively representative
scenarios (Ougolnitsky and Usov, 2018).

It is supposed that the supervisor and the agents cannot change their strategies
in any moment of time due to a natural inertia. The strategies remain constant

during some sufficiently long periods of time, so that

ai, Zf 0§t<t17

as, if 1 <t <t

Alt) = (20)

ar, Zf tK71§t<T7

where the function A(t) represents the strategies of the agents (b;(¢t), ui(t), i =
= 1,2,...,N) and the supervisor (r;(t); ¢ = 1,2,...,N); a; = const; t; = j </ t;
vt=T/K;j=1,2,..,K,and K stands for the number of the intervals of constancy
of the strategies. Thus, from (20):

B'D” the functional (1) transforms into a payoff function

ti—1

K t;
Tt X NS =3 [ e rsokoat @)+

K N t;
+ Z ( bijrij / e Pl —z— Mz]dt) — max (21)
j=1 1

tj—1

- the functionals (2) transform into payoff functions (i = 1,2, ..., N):

K
1 I .
Jil{riy iy b ey {ui Yoy, a() = ;Z(Tw — bij — wij) i (e7 Pt — e P
=1
K t;
+> / e Pt so(t)k(t)x? (t))dt — max (22)
j=1"ti-1
- the constraints (3) take the form
N
rig 2 0) rij=Rij=1,2,.,K1=12,.,N (23)
=1

- the constraints (4) (i = 1,2,..., N) take the form
Ogbij—I—sijSrij;jzl,Q,...,K. (24)

The equation of system dynamics (5) does not change.

Thus, the problem (1)-(6) takes the form (5), (6), (21) - (24). In more details,
the supervisor’s optimal control problem (1), (3)-(6) that is solved at step 2 of the
algorithm, is reduced to the problem of maximization of the objective function (21)

by 3 - K - N variables {Tij}i\jj(fl), {bij}ij;(g),{ufij}i\fj(fl) with constraints (23), (24)
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and

T K
1
Ig/ Sikeiﬁﬂtdt < ; E (Tij — bij — ’U,ij)ai (67ptj71 — eiptj) +
0

j=1

+ / Vet kW) dt . (25)

tj71

This problem is not tractable analytically for the functions of general type, so the
method of qualitatively representative scenarios (QRS) of simulation modeling is
used (Ougolnitsky and Usov, 2018). The idea of the QRS method is that in the
majority of applied dynamical models of the complex real-world social-economic
systems (in differential games as well) it is possible to choose a very small number
of scenarios that give a satisfactory good picture of qualitatively different ways of
the system development.
In the considered case the QRS set is the Cartesian product of N x K sets:

QRS = QRSH X QRSlg X - X QRSlK X QRSgl X - X QRSNK. (26)

The set QR.S;; is a set of qualitatively representative scenarios for the j-th moment

of time of the supervisor in relation to the i-th agent and the i-th agent itself. This
. . . QRS QRS , QRS

set contains the triples of strategies (r;77, b5, u% ™).

Assume that all sets QRS;; consist of 15 elements:

i—1 i—1
QRS;; = (r2"% p2R% u2) v 2R = {o; (R ST R=Y gl (27)
k=1 k=1
QRS QRS
(375, 5259) = 20,003 (0, L ); (0,r); (“L—,0); (427, 0);
,SU ) I ) 2 I aTij I 2 I ) 1] I )
QRS QRS QRS QRS
Tig T Tig T .
( 2 7 2 )i ( 4 7 4 )

j=1,2,..,K;i=1,2,...,N.

Then the cardinality of the QRS set is equal to m = [[N ] ) |QRS| = 155N After
identification of the model the QRS set is checked for sufficiency and redundancy
(Ougolnitsky and Usov, 2018), and it is extended or reduced by the necessity.

Thus, the numerical algorithm of solution of the problem from the step 2 of the
above algorithm consists in the following actions.

1. All model functions and parameters N, K, R, T', Xo, k, u, p, M, z, 3, x, 4,
S0, @4, i (1 =1,2,...,N) are given.

2. An initial QRS set (26), (27) is checked for sufficiency and redundancy (Ougol-
nitsky and Usov, 2018), and it is extended or reduced by the necessity.

3. The next (I-th) strategy from the QRS set is fixed:

O}
({rgRS, b3357 uiQ]RS}%V-(k) ) _

1,j=1

Initially I = 1.
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4. The determined I-th strategy from the QRS set is substituted in (5). The
values of the variable z(t) are calculated numerically (for example, by an explicit
method of finite differences). Then the value of the supervisor’s objective function
(21) is calculated. With consideration of (25) the greater value of the function (21),
and the respective set of maximizing controls are saved.

5. If not all qualitatively representative strategies are scanned then go to the
next strategy (I := 1+ 1) and return to the step 3 of algorithm.

6. Scanning of all qualitatively representative strategies (initially there are 1
of them) determines the strategy maximizing the objective function (21) s. t. (23)-
(25), i. e.

5N~K

QRS bQRS QRS N (k) *) .
g oPig oY i,j=1 N
N(K N(K
=arg o omax o ({2 (bl ()
T b g i,jZIEQRS

The found maximizing strategy is the strategy of reward.

5. The numerical results

The simulations for the considered game are conducted at the computer with a
microprocessor of the A10 series, Intel Pentium G4620 with operative memory 4 Gb
on C# object oriented programming language according the described algorithm.
A mean time of the simulations for the input data from below was equal to 3 years.
The main part of the time was consumed by the numerical solution of the equation
(5) by the explicit method of finite differences for each qualitatively representative
strategy.

Ezample 5. In the case of N = 2; p=0.01; T = 1095d.; s; = 0.2; o; = 0.5; 1 =1, 2;
so = 0.6; k = 6; R =129 = 100c.u.; 8 =0.6; v =0.5; A =0.05, M = 1; z = 0.05;
w=0.01d"" we receive:

L1 = L2 = 12400c.u.;

ri(T/10) = r(T/2) = r;(T) = 50c.u.;

bNE(T/10) = bNE(T/2) = bNE(T) = 50c.u.;

uVE(T/10) = uVE(T/2) = uVE(T) = 0; i = 1,2;

Jo = 24877c.u.; J1 = jo = 15238c.u.

The value of social good increases in time (zV¥(T') = 136¢c.u.). In the considered
information structure of an inverse Stackelberg game the supervisor compels the
agents to take her bribes and to spend all their resources to the production of social
good. Thus, the corruption has a type of extortion, it is profitable to the supervisor
and not profitable to the agents.

Ezxample 6. In the case of the input data from the Example 5 and the growth of the
agents’ gains from their private activities («; = 3; i = 1,2) the strategies of agents
and their payoffs does not change. It would be more profitable to the agents to use
their resources in private purposes but the supervisor compels them to not change
the strategies in comparison with the Example 5.

Ezample 7. In the case of the input data from the Example 5 and decreasing of
the agents’ shares in the social good in 10 times (s; = 0.02; ¢ = 1,2) the optimal
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strategies of agents do not change again. The supervisor’s payoffs is the same while
the agents’ payoffs decrease abruptly: J; = J; = 1523c.u.

Exzample 8. In the case of the input data from the Example 5 and increasing the
probability of the bribe-taker catch up to 30% (z = 0.3) and a modest penalty
M =1 the corruption holds but the supervisor’s payoff decreases: Jy = 18238c.u.

Ezample 9. A stronger reduction of the corruption (increasing the probability of
the bribe-taker catch up to 65% or the coefficient M double increase) results in
the corruption elimination. Now bribe taking is not profitable for the supervisor.
The agents assign all their resources in the production of social good. The agents’
optimal strategies and their payoffs in the case z = 0.3 are given by the formulas:

ri(T/10) = r;(T/2) = r;(T) = 50c.u.;

bNE(T/10) = bNE(T/2) = bNE(T) = Oc.u.;

ulNE(T/10) = uNE(T/2) = uNE(T) =505 i = 1,2;

Jo = 21324c.u.; J1 = jo = 20659c.u.

6. Conclusion

The information structure of the inverse differential Stackelberg game gives priority
to the supervisor, while the interests of agents are not in fact considered. In this
case for the successful struggle with corruption the principal should provide such
economic conditions which make the bribe-taking not profitable for the supervisor.
The numerical examples show that a certain increase of the probability for the
bribe-taker to be caught and the respective penalty is sufficient for this purpose
(Examples 8,9). If the corruption is absent then the supervisor’s payoff decreases
(by 30 % approximately for the used input data), and the agents’ payoffs increase.
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