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Abstra
t In this paper, we 
onsider the following problem � what a�e
ts

the Nash equilibrium amount of investment in knowledge when some agents

of the 
omplete graph enter another full one. The solution of this problem will

allow us to understand exa
tly how game agents will behave when de
iding

whether to enter the other net, what 
onditions and externalities a�e
t it

and how the level of future equilibrium amount of investments in knowledge


an be predi
ted.
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luster.

1. Introdu
tion

The pro
esses of globalization, post-industrial development and digitalization of the

e
onomy make studying of the role of innovative �rms in the world e
onomi
 de-

velopment extremely signi�
ant. In papers (Al
a
er and Chung, 2007; Chung and

Al
�a
er, 2002) mathemati
al models of the international innovative e
onomy are


onstru
ted, on the basis of whi
h the behavior of innovative �rms is analyzed. In

parti
ular, authors of this arti
le 
onsider an important topi
: how do �rms realize

their investment strategy in the development of knowledge, in
luding outside their

own region or 
ountry. The behavior of agents is determined by various externali-

ties, whi
h 
an have a 
ompletely di�erent nature. Des
ription of se
ondary e�e
ts

is one of the most important dire
tions in network game theory that authors of

di�erent arti
les try to analyze (for example, (Katz and Shapiro, 1985) and (Ja�e,

Trajtenberg and Henderson, 1993).

There is also another aspe
t of the question: how to stru
ture and organize their

behavior in the best way in 
onstantly 
hanging e
onomi
 and so
ial 
onditions. In

(Bres
hi and Lissoni, 2001), the authors of the arti
le try to take a new look at the

system of organizing the a
tions of agent-innovators. It is important to take into

a

ount the impa
t (externalities) that in�uen
e agents by the environment, in
lud-

ing other network entities. The arti
le (Cooke, 2001) shows the ne
essity of 
reation

of regional innovative systems based on 
lusters. From this follows the relevan
e of

the model des
ription of the pro
ess of 
reating more extensive innovative 
lusters

based on existing ones.

In addition, there is a need to model the pro
ess of 
hanging the Nash equilibrium

investment values, as well as the sear
h for new internal or angular ones.
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This arti
le 
ontinues the study of Nash equilibria and its 
hanges in the pro-


ess of uni�
ation 
omplete graphs. However, this paper 
ontains a number of new

elements in 
omparison with previous studies.

To begin with, we study dynami
 behavior of agents, not only by generalizing the

simple two-period model of endogenous growth of Romer with the produ
tion and

externalities of knowledge (as in papers (Matveenko and Korolev, 2015; Matveenko

and Korolev, 2017)), but also by using di�eren
e equations, whi
h makes possible

to 
onsider the transitional dynami
s by uni�
ation of networks.

This simulation allows us to 
reate a base, whi
h has the potential for its 
om-

pli
ation and improvement in order to in
rease the applied nature of the model, for

mathemati
al des
ription of the game behavior of agents.

We show that at di�erent levels of produ
tivity and sizes of the united networks,

the equilibrium investment values also 
hange.

Our arti
le 
onsiders both internal equilibria and 
orner ones, whi
h in studies,

for the most part, were ignored by resear
hers.

In this arti
le, we 
onsider the 
ase of uni�
ation two 
omplete graphs with some

group 
onne
tion agents, whi
h tend to another network for a number of di�erent

reasons: in
reasing the re
eiving externalities, the level of produ
tivity, et
.

The 
ontent of the arti
le is as follows. Se
tion 2 des
ribes a two-period growth

model, 
hara
terizes internal Nash equilibrium investments, and analyzes the be-

havior of network agents. Se
tion 3 de�nes adjusting dynami
s in networks and

dynami
 stability of equilibria. Se
tion 4 des
ribes the following situation. There

are two 
omplete networks. The �rst network 
ontains nodes. All the agents of this

network have the same produ
tivity . The se
ond network 
ontains nodes, with

the same agents' produ
tivity . The both networks are initially in inner equilibria.

Then in some moment of time any agents of the �rst network 
onne
ted to the all

agents of the se
ond network. Then transient dynami
s o

urs and the united net-

work 
omes in the 
orner equilibrium, in whi
h the agents are hypera
tive. Se
tion

5 summarizes, and lists possible dire
tions for future resear
hes.

2. Model des
ription

There is a network (undire
ted graph) with n nodes, i = 1, 2, . . . , n; ea
h node

represents an agent. In period 1 ea
h agent i possesses initial endowment of good,

e, and uses it partially for 
onsumption in �rst period of life, ci1, and partially for

investment into knowledge, ki:

ci1 + ki = e, i = 1, 2, . . . , n.

Investment immediately transforms one-to-one into knowledge whi
h is used in pro-

du
tion of good for 
onsumption in se
ond period, ci2.
Preferen
es of agent i are des
ribed by quadrati
 utility fun
tion:

Ui

(

ci1, c
i
2

)

= ci1
(

e− aci1
)

+ bic
i
2,

where bi > 0; a is a satiation 
oe�
ient, bi is a parameter, 
hara
terized the value of


omfort and health in the se
ond period of life 
ompared to 
onsumption in the �rst

period. It is assumed that ci1 ∈ [0, e], the utility in
reases in ci1, and is 
on
ave (the

marginal utility de
reases) with respe
t to ci1. These assumptions are equivalent to


ondition 0 < a < 1/2.
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Produ
tion in node i is des
ribed by produ
tion fun
tion:

F (ki,Ki) = BikiKi, Bi > 0

whi
h depends on the state of knowledge in i-th node, ki, and on environment, Ki,

Bi is a te
hnologi
al 
oe�
ient. The environment is the sum of investments by the

agent himself and her neighbors:

Ki = ki + K̃i, K̃i =
∑

j∈N(i)

kj ,

where N (i) � is the set of neighboring nodes of node i.

We will denote the produ
t biBi by Ai and assume that a < Ai. Sin
e in
rease

of any of parameters bi, Bi promotes in
rease of the se
ond period 
onsumption, we

will 
all Ai �produ
tivity�. We will assume that Ai 6= 2a, i = 1, 2, ..., n. If Ai > 2a,
we will say that i-th agent is produ
tive, and if Ai < 2a, we will say that i-th agent

is unprodu
tive.

Three ways of behavior are possible: agent i is 
alled passive if she makes zero

investment, ki = 0 (i.e. 
onsumes the whole endowment in period 1); a
tive if

0 < ki < e; hypera
tive if she makes maximally possible investment e (i.e. 
onsumes

nothing in period 1).

Let us 
onsider the following game. Players are the agents i = 1, 2, . . . , n. Pos-
sible a
tions (strategies) of player i are values of investment ki from the segment

[0, e]. Nash equilibrium with externalities (for shortness, equilibrium) is a pro�le of

knowledge levels (investments) (k∗1 , k
∗
2 , . . . , k

∗
n), su
h that ea
h k∗i is a solution of the

following problem P (Ki) of maximization of i-th player's utility given environment

Ki:

Ui

(

ci1, c
i
2

)

−→
ci
1
,ci

2
,ki

max







ci1 ≤ e − ki,
ci2 ≤ F (ki,Ki) ,

ci1 ≥ 0, ci2 ≥ 0, ki ≥ 0,

where the environment Ki is de�ned by the pro�le (k∗1 , k
∗
2 , . . . , k

∗
n):

Ki = k∗i +
∑

j∈N(i)

k∗j

The �rst two 
onstraints of problem P (Ki) in the optimum point are evidently

satis�ed as equalities. Substituting into the obje
tive fun
tion, we obtain a new

fun
tion (payo� fun
tion):

Vi (ki,Ki) = Ui

(

e − ki, Fi (ki,Ki)
)

= (e− ki)
(

e− a (e−Ki)
)

+AikiKi =

= e2 (1− a)− kie (1− 2a)− ak2i +AikiKi. (1)

If all players' solutions are internal, i.e. all players are a
tive, the equilibrium will

be referred as inner equilibrium else it be referred as 
orner equilibrium. Clearly,

the inner equilibrium (if it exists for given values of parameters) is de�ned by the

system

D1Vi (ki,Ki) = 0, i = 1, 2, . . . , n, (2)
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or

D1Vi (ki,Ki) = e (2a− 1)− 2aki +AiKi = 0, i = 1, 2, . . . , n. (3)

Let us introdu
e the following notations: Ã - diagonal matrix, whi
h has numbers

A1, A2, . . . , An on the main diagonal, I � unit n×n matrix, M � network adja
en
y

matrix. In this matrix Mij = Mji = 1, if there is the edge of the matrix, 
onne
ting

vertexes i and j, and Mij = Mji = � otherwise. It is believed, that Mii = 0 for all

i = 1, 2, . . . , n. The system of equations (3) takes the form:

(

Ã− 2aI
)

k + ÃM k = ē, (4)

where k = (k1, k2, . . . , kn)
T
, ē =

(

e (1− 2a) , e (1− 2a) , . . . , e (1− 2a)
)T

.

Theorem 1. (Matveenko, Korolev and Zhdanova, 2017, Theorem 1.1). The system

of equations (4) for a 
omplete network with homogeneous agents has only de
ision.

We introdu
e the following notation. Regardless of agent type of behavior the

equation root

D1Vi (ki,Ki) = (Ai − 2a)ki +AiK̃i − e (1− 2a) = 0

will be denoted by k̃si . Thus,

k̃si =
e(2a− 1) +AiK̃i

2a−Ai

,

where K̃i � pure externality of agent i. It is obvious, that if agent i is a
tive, then

his investments will be equal to k̃si in equilibrium. To analyze equilibriums we need

the following statement.

Proposition 1. (Matveenko, Korolev and Zhdanova, 2017, Lemma 2.1 and Corol-

lary 2.1) A set of investment agent values (k1, k2, . . . , kn) 
an be an equilibrium only

if for ea
h i = 1, 2, . . . , n it is true that

1. if ki = 0, then K̃i ≤ e(1−2a)
Ai

;

2. if 0 < ki < e, then ki = k̃Si ;

3. if ki = e, then K̃i ≥ e(1−Ai)
Ai

.

Lemma 1. (Matveenko, Korolev and Zhdanova, 2017, Lemma 2.2) In equilibrium,

the agent i is passive if and only if

Ki ≤
e (1− 2a)

Ai

;

the agent i is a
tive if and only if

e (1− 2a)

Ai

< Ki <
e

Ai

;

the agent i is hypera
tive if and only if

Ki ≥
e

Ai

.

In 
omplete network there is the same environment for all agents, so we get the

following 
onsequen
e.
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Corollary 1. In equilibrium in a 
omplete network, agents with the same produ
-

tivity make the same investments. If all agents in the full network have the same

produ
tivity, then there is homophilia, that is, all agents behave identi
ally.

Remark 1. In a 
omplete network, there 
annot be situations when in equilibrium

an agent with a high produ
tion value is a
tive or passive, and an agent with a

lower produ
tivity is hypera
tive, or when an agent with a higher produ
tion value

is passive, and an agent with a lower produ
tivity is a
tive or hypera
tive.

Speaking of a 
omplete network, we will omit the index in the designation of the

agent environment, sin
e in a 
omplete network the environment for all agents is the

same. Thus, K is denoted the amount of investment of all agents of the 
omplete

network.

Corollary 2. (Matveenko, Korolev and Zhdanova, 2017, Corollary 2.3) The equi-

librium, in whi
h all agents are passive, is possible in a 
omplete network if and

only if

K ≤ e (1− 2a)

max
i

Ai

.

The equilibrium, in whi
h all agents are a
tive, is possible in a 
omplete network

if and only if

e (1− 2a)

min
i
Ai

< K <
e

max
i

Ai

.

The equilibrium, in whi
h all agents are hypera
tive, is possible in a 
omplete

network if and only if

K ≥ e

min
i
Ai

.

Corollary 3. Equilibrium, in whi
h all agents are hypera
tive, is possible in a 
om-

plete network, if and only if

min
i
Ai ≥

1

n
.

Equilibrium, in whi
h all agents are passive, is always possible.

3. Adjusting dynami
s in networks and dynami
 stability of equilibria

We introdu
e adjustment dynami
s whi
h may start after a small deviation from

equilibrium or after jun
tion of networks ea
h of whi
h was initially in equilibrium.

We model the adjustment dynami
s in the following way.

De�nition 1. Ea
h agent maximizes her utility by 
hoosing a level of investment;

at the moment of de
ision-making she 
onsiders her environment as exogenously

given. Correspondingly, if kti = 0 and D1Vi(ki,Ki)|ki=0 ≤ 0, then kt+1
i = 0, and if

kti = e and D1 Vi (ki,Ki)|ki=e ≥ 0, then kt+1
i = e; in all other 
ases, kt+1

i solves the

di�eren
e equation:

−2akt+1
i +AiK

t
i − e (1− 2a) = 0, t = 0, 1, 2, . . . .

De�nition 2. The equilibrium is 
alled dynami
ally stable if, after a small devia-

tion of one of the agents from the equilibrium, dynami
s starts whi
h returns the

equilibrium ba
k to the initial state. In the opposite 
ase the equilibrium is 
alled

dynami
ally unstable.
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Lemma 2. In any network, a 
orner equilibrium, in whi
h all the agents are pas-

sive, is stable.

Proof. As follows from (3), for any agent i the inequality D1Vi (ki,Ki) ≤ 0 holds

as stri
t: D1Vi (ki,Ki) = e (2a− 1) < 0. ⊔⊓

Lemma 3. In any network, an inner equilibrium is unstable.

Proof. Let the network 
onsist of n nodes, and all agents have the same produ
tiv-

ity A. Let M be the n × n-matrix of di�eren
e equations system , des
ribing the

dynami
s in the network. Then the matrix M has the form M = A
2a (A + I), where

A � the adja
ent matrix of the network, I � identity n × n-matrix. In this way,

the matrix M is symmetri
 and therefore has orthogonal basis of eigenve
tors. Let

v1, v2, . . . , vn be an orthogonal basis, and x be arbitrary real n-dimensional ve
tor.

We expand it in terms of the basis:

x =

n
∑

i=1

civi
.

Then:

xTMx

xTx
=

∑n
i=1 civ

T
i M

∑n
j=1 cjvj

∑n

i=1 civ
T
i

∑n

j=1 cjvj
=

∑n
i,j=1 cicjλjv

T
i vj

∑n

i,j=1 cicjv
T
i vj

=

=

∑n

j=1 c
2
jλj

∑n
j=1 c

2
j

≤
∑n

j=1 c
2
jλ1

∑n
j=1 c

2
j

= λ1, (5)

where λ1 means the greatest eigenvalue. Choosing as a x ve
tor, all 
omponents of

whi
h are equal to 1, we get:

λ1 ≥ A

2a
· 2m+ n

n
, (6)

where m means the number of edges in network, and n means the number of nodes.

Let h be the number of node, having the greatest degree dmax. Consider the

ve
tor x, the 
omponents of whi
h are given in the following way:

xi =







√
dmax, if i = h,

1, if Aih = 1,
0, else.

Then

n
∑

j=1

Mijxj ≥
A

2a







√
dmax + dmax, if i = h,√
dmax + 1, if Mih = 1,
0, else







=
A

2a

(

√

dmax + 1
)

xi. (7)

Multiplying both sides of (7) by xi and summing over i, we obtain the inequality

xTMx ≥ A

2a

(

√

dmax + 1
)

xTx,
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and, applying (5), we get

λ1 ≥ xTMx

xTx
≥ A

2a

(

√

dmax + 1
)

. (8)

Similarly to (5), we get

xTMx

xTx
=

∑n
i=1 civ

T
i M

∑n
j=1 cjvj

∑n

i=1 civ
T
i

∑n

j=1 cjvj
=

∑n
i,j=1 cicjλjv

T
i vj

∑n

i,j=1 cicjv
T
i vj

=

=

∑n

j=1 c
2
jλj

∑n
j=1 c

2
j

≥
∑n

j=1 c
2
jλn

∑n
j=1 c

2
j

= λn, (9)

where λn means the least eigenvalue of matrix M. We now 
onsider the ve
tor x,

whi
h 
omponents are given as follows:

xi =







−
√
dmax, if i = h,

−1, if Aih = 1,
0, otherwise.

Then

n
∑

j=1

Mijxj ≤
A

2a







−
√
dmax − dmax, if i = h,

−
√
dmax − 1, if Mih = 1,

0, otherwise







=
A

2a

(

−
√

dmax − 1
)

xi. (10)

Multiplying both sides of (10) by xi and summing over i, we obtain the inequality

xTMx ≤ A

2a

(

−
√

dmax − 1
)

xTx,

and, applying (9), we get

λn ≤ xTMx

xTx
≤ − A

2a

(

√

dmax + 1
)

. (11)

So, in the 
ase when all agents have the same produ
tivity and there is at least

one edge in the network, the largest eigenvalue of the equation system, des
ribing

the dynami
s, a

ording to (8), is always greater than unity. If the network does

not have any edges (all agents are isolated), then an internal equilibrium is possible

only if all agents are produ
tive

(A > 2a), but then a

ording to (8) the largest eigenvalue is greater then unit. ⊔⊓

4. Network dynami
s model of net uni�
ation

Let us 
onsider the following situation. There are two 
omplete networks with n1+
n3 nodes with produ
tivities A1 and with n2 nodes with produ
tivities A2. Let's

pretend that n3 agents of the �rst network de
ide to 
onne
t with agents of the

se
ond network. So there are three types of agents in the united network. The

a
tors of the �rst type are all the agents of the �rst network, besides the agents of

the �rst network, whi
h 
onne
ted to the agents of the se
ond network. A
tors of

the se
ond type are all agents of the se
ond network. The third type of a
tors is n3

agents of the �rst network that 
onne
ted to all a
tors of the se
ond network. Sin
e
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all agents of the same type will have the same environment, they will behave in the

same way, not only in equilibrium, but also in dynami
s. Therefore, the investment

of ea
h agent of the type i will be denoted ki, and the environment of ea
h agent

of the type i will be denoted Ki.

Both the 
omplete networks are initially in inner equilibrium. It follows imme-

diately from (3) that the initial investment of agents is the following

k01 = k03 =
e(1− 2a)

(n1 + n3)A1 − 2a
, (12)

k02 = k03 =
e(1− 2a)

n2A2 − 2a
. (13)

The system (3) for inner equilibrium in joined network is











(n1A1 − 2a)k1 +A1n3k3 = e(1− 2a),

(n2A2 − 2a)k2 +A2n3k3 = e(1− 2a),

n1A1k1 + n2A1k2 + (n3A1 − 2a)k3 = e(1− 2a).

(14)

De�nition 1 implies that the dynami
s in model under 
onsideration is des
ribed

by the system of di�erential equations:











kt+1
1 = n1A1

2a kt1 +
n3A1

2a kt3 +
e(2a−1)

2a ,

kt+1
2 = n2A2

2a kt2 +
n3A2

2a kt3 +
e(2a−1)

2a , where t = 0, 1, 2 . . .

kt+1
3 = n1A1

2a kt1 +
n2A1

2a kt2 +
n3A1

2a kt3 +
e(2a−1)

2a .

(15)

Chara
teristi
 equation for this system is

∣

∣

∣

∣

∣

∣

n1A1

2a − λ 0 n3A1

2a

0 n2A2

2a − λ n3A2

2a
n1A1

2a
n2A1

2a − λ n3A1

2a − λ

∣

∣

∣

∣

∣

∣

=

=

(

n1A1

2a
− λ

)[

λ2 − 2
n3A1 + n2A2

2a
λ− n2A2n3A1

4a2

]

= 0 (16)

To �nd an expli
it solution of a system of di�eren
e equations (3.1) we need to

impose the restri
tions

n1 = n3, n1A1 = n2A2, (17)

i.e. all the three nets have the same total produ
tivity.

Then the system (15) takes the form











kt+1
1 = n1A1

2a kt1 +
n1A1

2a kt3 +
e(2a−1)

2a ,

kt+1
2 = n1A1

2a kt2 +
n1A2

2a kt3 +
e(2a−1)

2a ,

kt+1
3 = n1A1

2a kt1 +
n2A1

2a kt2 +
n1A1

2a kt3 +
e(2a−1)

2a .

(18)

and the equation (16) takes the form

(

n1A1

2a
− λ

)

(

λ2 − 2
n1A1

2a
λ−

(

n1A1

2a

)2
)

= 0,
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hen
e

λ1 =
n1A1

2a
,

λ2,3 =
n1A1

2a
±
√
2
n1A1

2a
.

Let us �nd the eigenve
tors. For the eigenvalue λ1 = n1A1

2a , we obtain the system of

equations





0 0 n1A1

2a

0 0 n1A2

2a
n1A1

2a
n2A1

2a 0









x1

x2

x3



 =





0
0
0



 ,

thus as the �rst eigenve
tor we 
an take

e1 =





n2

−n1

0



 .

For the se
ond eigenvalue λ2 = (1 +
√
2n1A1

2a ) we obtain the system





−
√
2n1A1

2a 0 n1A1

2a

0 −
√
2n1A1

2a
n1A2

2a
n1A1

2a
n2A1

2a −
√
2n1A1

2a









x1

x2

x3



 =





0
0
0



 ,

or in view of (17),











−
√
2n1A1

2a x1 +
n1A1

2a x3 = 0,

−
√
2n1A1

2a x2 +
n1A2

2a x3 = 0,
n1A1

2a x1 +
n2A1

2a x2 −
√
2n1A1

2a x3 = 0,

(19)

thus as the se
ond eigenve
tor we 
an take

e2 =







A1√
2

A2√
2

A1






.

For the third eigenvalue λ3 = (1−
√
2)n1A1

2a we obtain the system





√
2n1A1

2a 0 n1A1

2a

0
√
2n1A1

2a
n1A2

2a
n1A1

2a
n2A1

2a

√
2n1A1

2a









x1

x2

x3



 =





0
0
0



 ,

or in view of (17),











√
2n1A1

2a x1 +
n1A1

2a x3 = 0,√
2n1A1

2a x2 +
n1A2

2a x3 = 0,
n1A1

2a x1 +
n2A1

2a x2 +
√
2n1A1

2a x3 = 0,

thus as the third eigenve
tor we 
an take

e2 =







−A1√
2

−A2√
2

A1






.
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Thus, dynami
s in joined network is des
ribed with following ve
tor equation





kt1
kt2
kt3



 = C1

(

n1A1

2a

)t





n2

−n1

0



+ C2

(

(

1 +
√
2
)n1A1

2a

)t







A1√
2

A2√
2

A1.






+

+ C3

(

(

1 +
√
2
)n1A1

2a

)t







−A1√
2

−A2√
2

A1.






+





k∗1
k∗2
k∗3



 , t = 0, 1, 2, . . . . (20)

The 
onstants C1, C2, C3 
an be found from initial 
onditions. Before uni�
ation

the both networks were in symmetri
 inner equilibria (12)-(13). Thus, the initial


onditions, taking into a

ount (17), are

k01 = k03 =
e(1− 2a)

2n1A1 − 2a
, k02 =

e(1− 2a)

n1A1 − 2a
=

e(1− 2a)

n2A2 − 2a
.

The system (14) in view of (17) takes the form











(n1A1 − 2a)k1 + n1A1k3 = e(1− 2a),

(n1A1 − 2a)k2 + n1A2k3 = e(1− 2a),

n1A1k1 + n2A1k2 + (n1A1 − 2a)k3 = e(1− 2a).

Solving this system by Kramer formulas, we obtain

k∗1 =
e(1− 2a)

[

4a2 − 2an1A1 + n1n2A1(A1 −A2)
]

(n1A1 − 2a)3
,

k∗2 =
e(1− 2a)

(

4a2 − 4an1A1 + 2an1A2)
)

(n1A1 − 2a)3
,

k∗2 =
−e(1− 2a)(n1A1 − 2a)(n2A1 + 2a))

(n1A1 − 2a)3
,

Hen
e by t = 0 we re
eive the following equations











C1n2 + C2
A1√
2
− C3

A1√
2
+ k∗1 = k01 ,

−C1n1 + C2
A2√
2
− C3

A2√
2
+ k∗2 = k02 ,

C2A1 + C3A1 + k∗3 = k03 .

Multiplying the �rst equation of the system by n1 and the se
ond equation by n2

and adding two �rst equations, we obtain

{

C2(n1A1 + n2A2)− C3(n1A1 + n2A2) =
(

k01 − k∗1

)

n1

√
2 +

(

k02 − k∗2

)

n2

√
2

C2A1 + C3A1 = k03 − k∗3

Thus we have

C2

(

k01 − k∗1

)

n1

√
2 +

(

k02 − k∗2

)

n2

√
2

2(n1A1 + n2A2)
+

k03 − k∗3
2A1

,
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or in view of (17),

C2

(

k01 − k∗1

)

n1

√
2 +

(

k02 − k∗2

)

n2

√
2 + 2n1

(

k03 − k∗3

)

4n1A1
.

Thus at reasonable parameters the 
onstant at the largest positive eigenvalue is also

positive. Hen
e the transition pro
ess will pass to 
orner equilibrium, where all the

agents are hypera
tive.

Let us 
he
k that the 
orner solution, where k1 = k2 = k3 = e, is stable equilib-
rium:

D1V1(k1,K1)|k1=k2=k3=e = e(2a− 1)− 2ae+(n1 +n3)A1e = A1(n1 +n3)e− e ≥ 0,

i� A1 ≥ 1
n1+n3

,

D1V2(k2,K2)|k1=k2=k3=e = e(2a− 1)− 2ae+(n2 +n3)A2e = A2(n2 +n3)e− e ≥ 0,

i� A2 ≥ 1
n2+n3

,

D1V3(k3,K3)|k1=k2=k3=e = e(2a−1)−2ae+(n1+n2+n3)A1e = A1(n1+n2+n3)e−e ≥ 0,

i� A1 ≥ 1
n1+n2+n3

, 
orresponding to Corollary 2.4 in (Matveenko, Korolev and

Zhdanova, 2017).

Thus, if A1 ≥ 1
n1+n3

and A2 ≥ 1
n2+n3

, then the state k1 = k2 = k3 = e is

a 
orner equilibrium. Besides if A1 ≥ 1
n1+n3

and A2 ≥ 1
n2+n3

, then this equilib-

rium is dynami
ally stable a

ording to de�nition 2. The transient rate is dire
tly

proportional to total produ
tivity of nets, as seen from (20).

5. Con
lusion

In this paper, we have des
ribed the pro
ess of 
hange in game equilibrium during

graphs uni�
ation using two-stage and dynami
s models. We have highlighted the

signi�
an
e of the produ
tivity role that in�uen
e the agents' behavior. Moreover,

we determined the importan
e of graphs sizes, whi
h also e�e
t on agents' de
isions

that they take during uni�
ation pro
ess.

We believe that this arti
le o�ers the base model of game equilibria 
hange that


an be improved with in
reasing the amount of parameters and modi�
ation graphs'

type to in
omplete nets or non-oriented graphs.
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