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Abstrat In this paper, we onsider the following problem � what a�ets

the Nash equilibrium amount of investment in knowledge when some agents

of the omplete graph enter another full one. The solution of this problem will

allow us to understand exatly how game agents will behave when deiding

whether to enter the other net, what onditions and externalities a�et it

and how the level of future equilibrium amount of investments in knowledge

an be predited.
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1. Introdution

The proesses of globalization, post-industrial development and digitalization of the

eonomy make studying of the role of innovative �rms in the world eonomi de-

velopment extremely signi�ant. In papers (Alaer and Chung, 2007; Chung and

Al�aer, 2002) mathematial models of the international innovative eonomy are

onstruted, on the basis of whih the behavior of innovative �rms is analyzed. In

partiular, authors of this artile onsider an important topi: how do �rms realize

their investment strategy in the development of knowledge, inluding outside their

own region or ountry. The behavior of agents is determined by various externali-

ties, whih an have a ompletely di�erent nature. Desription of seondary e�ets

is one of the most important diretions in network game theory that authors of

di�erent artiles try to analyze (for example, (Katz and Shapiro, 1985) and (Ja�e,

Trajtenberg and Henderson, 1993).

There is also another aspet of the question: how to struture and organize their

behavior in the best way in onstantly hanging eonomi and soial onditions. In

(Breshi and Lissoni, 2001), the authors of the artile try to take a new look at the

system of organizing the ations of agent-innovators. It is important to take into

aount the impat (externalities) that in�uene agents by the environment, inlud-

ing other network entities. The artile (Cooke, 2001) shows the neessity of reation

of regional innovative systems based on lusters. From this follows the relevane of

the model desription of the proess of reating more extensive innovative lusters

based on existing ones.

In addition, there is a need to model the proess of hanging the Nash equilibrium

investment values, as well as the searh for new internal or angular ones.
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This artile ontinues the study of Nash equilibria and its hanges in the pro-

ess of uni�ation omplete graphs. However, this paper ontains a number of new

elements in omparison with previous studies.

To begin with, we study dynami behavior of agents, not only by generalizing the

simple two-period model of endogenous growth of Romer with the prodution and

externalities of knowledge (as in papers (Matveenko and Korolev, 2015; Matveenko

and Korolev, 2017)), but also by using di�erene equations, whih makes possible

to onsider the transitional dynamis by uni�ation of networks.

This simulation allows us to reate a base, whih has the potential for its om-

pliation and improvement in order to inrease the applied nature of the model, for

mathematial desription of the game behavior of agents.

We show that at di�erent levels of produtivity and sizes of the united networks,

the equilibrium investment values also hange.

Our artile onsiders both internal equilibria and orner ones, whih in studies,

for the most part, were ignored by researhers.

In this artile, we onsider the ase of uni�ation two omplete graphs with some

group onnetion agents, whih tend to another network for a number of di�erent

reasons: inreasing the reeiving externalities, the level of produtivity, et.

The ontent of the artile is as follows. Setion 2 desribes a two-period growth

model, haraterizes internal Nash equilibrium investments, and analyzes the be-

havior of network agents. Setion 3 de�nes adjusting dynamis in networks and

dynami stability of equilibria. Setion 4 desribes the following situation. There

are two omplete networks. The �rst network ontains nodes. All the agents of this

network have the same produtivity . The seond network ontains nodes, with

the same agents' produtivity . The both networks are initially in inner equilibria.

Then in some moment of time any agents of the �rst network onneted to the all

agents of the seond network. Then transient dynamis ours and the united net-

work omes in the orner equilibrium, in whih the agents are hyperative. Setion

5 summarizes, and lists possible diretions for future researhes.

2. Model desription

There is a network (undireted graph) with n nodes, i = 1, 2, . . . , n; eah node

represents an agent. In period 1 eah agent i possesses initial endowment of good,

e, and uses it partially for onsumption in �rst period of life, ci1, and partially for

investment into knowledge, ki:

ci1 + ki = e, i = 1, 2, . . . , n.

Investment immediately transforms one-to-one into knowledge whih is used in pro-

dution of good for onsumption in seond period, ci2.
Preferenes of agent i are desribed by quadrati utility funtion:

Ui

(

ci1, c
i
2

)

= ci1
(

e− aci1
)

+ bic
i
2,

where bi > 0; a is a satiation oe�ient, bi is a parameter, haraterized the value of

omfort and health in the seond period of life ompared to onsumption in the �rst

period. It is assumed that ci1 ∈ [0, e], the utility inreases in ci1, and is onave (the

marginal utility dereases) with respet to ci1. These assumptions are equivalent to

ondition 0 < a < 1/2.
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Prodution in node i is desribed by prodution funtion:

F (ki,Ki) = BikiKi, Bi > 0

whih depends on the state of knowledge in i-th node, ki, and on environment, Ki,

Bi is a tehnologial oe�ient. The environment is the sum of investments by the

agent himself and her neighbors:

Ki = ki + K̃i, K̃i =
∑

j∈N(i)

kj ,

where N (i) � is the set of neighboring nodes of node i.

We will denote the produt biBi by Ai and assume that a < Ai. Sine inrease

of any of parameters bi, Bi promotes inrease of the seond period onsumption, we

will all Ai �produtivity�. We will assume that Ai 6= 2a, i = 1, 2, ..., n. If Ai > 2a,
we will say that i-th agent is produtive, and if Ai < 2a, we will say that i-th agent

is unprodutive.

Three ways of behavior are possible: agent i is alled passive if she makes zero

investment, ki = 0 (i.e. onsumes the whole endowment in period 1); ative if

0 < ki < e; hyperative if she makes maximally possible investment e (i.e. onsumes

nothing in period 1).

Let us onsider the following game. Players are the agents i = 1, 2, . . . , n. Pos-
sible ations (strategies) of player i are values of investment ki from the segment

[0, e]. Nash equilibrium with externalities (for shortness, equilibrium) is a pro�le of

knowledge levels (investments) (k∗1 , k
∗
2 , . . . , k

∗
n), suh that eah k∗i is a solution of the

following problem P (Ki) of maximization of i-th player's utility given environment

Ki:

Ui

(

ci1, c
i
2

)

−→
ci
1
,ci

2
,ki

max







ci1 ≤ e − ki,
ci2 ≤ F (ki,Ki) ,

ci1 ≥ 0, ci2 ≥ 0, ki ≥ 0,

where the environment Ki is de�ned by the pro�le (k∗1 , k
∗
2 , . . . , k

∗
n):

Ki = k∗i +
∑

j∈N(i)

k∗j

The �rst two onstraints of problem P (Ki) in the optimum point are evidently

satis�ed as equalities. Substituting into the objetive funtion, we obtain a new

funtion (payo� funtion):

Vi (ki,Ki) = Ui

(

e − ki, Fi (ki,Ki)
)

= (e− ki)
(

e− a (e−Ki)
)

+AikiKi =

= e2 (1− a)− kie (1− 2a)− ak2i +AikiKi. (1)

If all players' solutions are internal, i.e. all players are ative, the equilibrium will

be referred as inner equilibrium else it be referred as orner equilibrium. Clearly,

the inner equilibrium (if it exists for given values of parameters) is de�ned by the

system

D1Vi (ki,Ki) = 0, i = 1, 2, . . . , n, (2)
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or

D1Vi (ki,Ki) = e (2a− 1)− 2aki +AiKi = 0, i = 1, 2, . . . , n. (3)

Let us introdue the following notations: Ã - diagonal matrix, whih has numbers

A1, A2, . . . , An on the main diagonal, I � unit n×n matrix, M � network adjaeny

matrix. In this matrix Mij = Mji = 1, if there is the edge of the matrix, onneting

vertexes i and j, and Mij = Mji = � otherwise. It is believed, that Mii = 0 for all

i = 1, 2, . . . , n. The system of equations (3) takes the form:

(

Ã− 2aI
)

k + ÃM k = ē, (4)

where k = (k1, k2, . . . , kn)
T
, ē =

(

e (1− 2a) , e (1− 2a) , . . . , e (1− 2a)
)T

.

Theorem 1. (Matveenko, Korolev and Zhdanova, 2017, Theorem 1.1). The system

of equations (4) for a omplete network with homogeneous agents has only deision.

We introdue the following notation. Regardless of agent type of behavior the

equation root

D1Vi (ki,Ki) = (Ai − 2a)ki +AiK̃i − e (1− 2a) = 0

will be denoted by k̃si . Thus,

k̃si =
e(2a− 1) +AiK̃i

2a−Ai

,

where K̃i � pure externality of agent i. It is obvious, that if agent i is ative, then

his investments will be equal to k̃si in equilibrium. To analyze equilibriums we need

the following statement.

Proposition 1. (Matveenko, Korolev and Zhdanova, 2017, Lemma 2.1 and Corol-

lary 2.1) A set of investment agent values (k1, k2, . . . , kn) an be an equilibrium only

if for eah i = 1, 2, . . . , n it is true that

1. if ki = 0, then K̃i ≤ e(1−2a)
Ai

;

2. if 0 < ki < e, then ki = k̃Si ;

3. if ki = e, then K̃i ≥ e(1−Ai)
Ai

.

Lemma 1. (Matveenko, Korolev and Zhdanova, 2017, Lemma 2.2) In equilibrium,

the agent i is passive if and only if

Ki ≤
e (1− 2a)

Ai

;

the agent i is ative if and only if

e (1− 2a)

Ai

< Ki <
e

Ai

;

the agent i is hyperative if and only if

Ki ≥
e

Ai

.

In omplete network there is the same environment for all agents, so we get the

following onsequene.
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Corollary 1. In equilibrium in a omplete network, agents with the same produ-

tivity make the same investments. If all agents in the full network have the same

produtivity, then there is homophilia, that is, all agents behave identially.

Remark 1. In a omplete network, there annot be situations when in equilibrium

an agent with a high prodution value is ative or passive, and an agent with a

lower produtivity is hyperative, or when an agent with a higher prodution value

is passive, and an agent with a lower produtivity is ative or hyperative.

Speaking of a omplete network, we will omit the index in the designation of the

agent environment, sine in a omplete network the environment for all agents is the

same. Thus, K is denoted the amount of investment of all agents of the omplete

network.

Corollary 2. (Matveenko, Korolev and Zhdanova, 2017, Corollary 2.3) The equi-

librium, in whih all agents are passive, is possible in a omplete network if and

only if

K ≤ e (1− 2a)

max
i

Ai

.

The equilibrium, in whih all agents are ative, is possible in a omplete network

if and only if

e (1− 2a)

min
i
Ai

< K <
e

max
i

Ai

.

The equilibrium, in whih all agents are hyperative, is possible in a omplete

network if and only if

K ≥ e

min
i
Ai

.

Corollary 3. Equilibrium, in whih all agents are hyperative, is possible in a om-

plete network, if and only if

min
i
Ai ≥

1

n
.

Equilibrium, in whih all agents are passive, is always possible.

3. Adjusting dynamis in networks and dynami stability of equilibria

We introdue adjustment dynamis whih may start after a small deviation from

equilibrium or after juntion of networks eah of whih was initially in equilibrium.

We model the adjustment dynamis in the following way.

De�nition 1. Eah agent maximizes her utility by hoosing a level of investment;

at the moment of deision-making she onsiders her environment as exogenously

given. Correspondingly, if kti = 0 and D1Vi(ki,Ki)|ki=0 ≤ 0, then kt+1
i = 0, and if

kti = e and D1 Vi (ki,Ki)|ki=e ≥ 0, then kt+1
i = e; in all other ases, kt+1

i solves the

di�erene equation:

−2akt+1
i +AiK

t
i − e (1− 2a) = 0, t = 0, 1, 2, . . . .

De�nition 2. The equilibrium is alled dynamially stable if, after a small devia-

tion of one of the agents from the equilibrium, dynamis starts whih returns the

equilibrium bak to the initial state. In the opposite ase the equilibrium is alled

dynamially unstable.
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Lemma 2. In any network, a orner equilibrium, in whih all the agents are pas-

sive, is stable.

Proof. As follows from (3), for any agent i the inequality D1Vi (ki,Ki) ≤ 0 holds

as strit: D1Vi (ki,Ki) = e (2a− 1) < 0. ⊔⊓

Lemma 3. In any network, an inner equilibrium is unstable.

Proof. Let the network onsist of n nodes, and all agents have the same produtiv-

ity A. Let M be the n × n-matrix of di�erene equations system , desribing the

dynamis in the network. Then the matrix M has the form M = A
2a (A + I), where

A � the adjaent matrix of the network, I � identity n × n-matrix. In this way,

the matrix M is symmetri and therefore has orthogonal basis of eigenvetors. Let

v1, v2, . . . , vn be an orthogonal basis, and x be arbitrary real n-dimensional vetor.

We expand it in terms of the basis:

x =

n
∑

i=1

civi
.

Then:

xTMx

xTx
=

∑n
i=1 civ

T
i M

∑n
j=1 cjvj

∑n

i=1 civ
T
i

∑n

j=1 cjvj
=

∑n
i,j=1 cicjλjv

T
i vj

∑n

i,j=1 cicjv
T
i vj

=

=

∑n

j=1 c
2
jλj

∑n
j=1 c

2
j

≤
∑n

j=1 c
2
jλ1

∑n
j=1 c

2
j

= λ1, (5)

where λ1 means the greatest eigenvalue. Choosing as a x vetor, all omponents of

whih are equal to 1, we get:

λ1 ≥ A

2a
· 2m+ n

n
, (6)

where m means the number of edges in network, and n means the number of nodes.

Let h be the number of node, having the greatest degree dmax. Consider the

vetor x, the omponents of whih are given in the following way:

xi =







√
dmax, if i = h,

1, if Aih = 1,
0, else.

Then

n
∑

j=1

Mijxj ≥
A

2a







√
dmax + dmax, if i = h,√
dmax + 1, if Mih = 1,
0, else







=
A

2a

(

√

dmax + 1
)

xi. (7)

Multiplying both sides of (7) by xi and summing over i, we obtain the inequality

xTMx ≥ A

2a

(

√

dmax + 1
)

xTx,
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and, applying (5), we get

λ1 ≥ xTMx

xTx
≥ A

2a

(

√

dmax + 1
)

. (8)

Similarly to (5), we get

xTMx

xTx
=

∑n
i=1 civ

T
i M

∑n
j=1 cjvj

∑n

i=1 civ
T
i

∑n

j=1 cjvj
=

∑n
i,j=1 cicjλjv

T
i vj

∑n

i,j=1 cicjv
T
i vj

=

=

∑n

j=1 c
2
jλj

∑n
j=1 c

2
j

≥
∑n

j=1 c
2
jλn

∑n
j=1 c

2
j

= λn, (9)

where λn means the least eigenvalue of matrix M. We now onsider the vetor x,

whih omponents are given as follows:

xi =







−
√
dmax, if i = h,

−1, if Aih = 1,
0, otherwise.

Then

n
∑

j=1

Mijxj ≤
A

2a







−
√
dmax − dmax, if i = h,

−
√
dmax − 1, if Mih = 1,

0, otherwise







=
A

2a

(

−
√

dmax − 1
)

xi. (10)

Multiplying both sides of (10) by xi and summing over i, we obtain the inequality

xTMx ≤ A

2a

(

−
√

dmax − 1
)

xTx,

and, applying (9), we get

λn ≤ xTMx

xTx
≤ − A

2a

(

√

dmax + 1
)

. (11)

So, in the ase when all agents have the same produtivity and there is at least

one edge in the network, the largest eigenvalue of the equation system, desribing

the dynamis, aording to (8), is always greater than unity. If the network does

not have any edges (all agents are isolated), then an internal equilibrium is possible

only if all agents are produtive

(A > 2a), but then aording to (8) the largest eigenvalue is greater then unit. ⊔⊓

4. Network dynamis model of net uni�ation

Let us onsider the following situation. There are two omplete networks with n1+
n3 nodes with produtivities A1 and with n2 nodes with produtivities A2. Let's

pretend that n3 agents of the �rst network deide to onnet with agents of the

seond network. So there are three types of agents in the united network. The

ators of the �rst type are all the agents of the �rst network, besides the agents of

the �rst network, whih onneted to the agents of the seond network. Ators of

the seond type are all agents of the seond network. The third type of ators is n3

agents of the �rst network that onneted to all ators of the seond network. Sine
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all agents of the same type will have the same environment, they will behave in the

same way, not only in equilibrium, but also in dynamis. Therefore, the investment

of eah agent of the type i will be denoted ki, and the environment of eah agent

of the type i will be denoted Ki.

Both the omplete networks are initially in inner equilibrium. It follows imme-

diately from (3) that the initial investment of agents is the following

k01 = k03 =
e(1− 2a)

(n1 + n3)A1 − 2a
, (12)

k02 = k03 =
e(1− 2a)

n2A2 − 2a
. (13)

The system (3) for inner equilibrium in joined network is











(n1A1 − 2a)k1 +A1n3k3 = e(1− 2a),

(n2A2 − 2a)k2 +A2n3k3 = e(1− 2a),

n1A1k1 + n2A1k2 + (n3A1 − 2a)k3 = e(1− 2a).

(14)

De�nition 1 implies that the dynamis in model under onsideration is desribed

by the system of di�erential equations:











kt+1
1 = n1A1

2a kt1 +
n3A1

2a kt3 +
e(2a−1)

2a ,

kt+1
2 = n2A2

2a kt2 +
n3A2

2a kt3 +
e(2a−1)

2a , where t = 0, 1, 2 . . .

kt+1
3 = n1A1

2a kt1 +
n2A1

2a kt2 +
n3A1

2a kt3 +
e(2a−1)

2a .

(15)

Charateristi equation for this system is

∣

∣

∣

∣

∣

∣

n1A1

2a − λ 0 n3A1

2a

0 n2A2

2a − λ n3A2

2a
n1A1

2a
n2A1

2a − λ n3A1

2a − λ

∣

∣

∣

∣

∣

∣

=

=

(

n1A1

2a
− λ

)[

λ2 − 2
n3A1 + n2A2

2a
λ− n2A2n3A1

4a2

]

= 0 (16)

To �nd an expliit solution of a system of di�erene equations (3.1) we need to

impose the restritions

n1 = n3, n1A1 = n2A2, (17)

i.e. all the three nets have the same total produtivity.

Then the system (15) takes the form











kt+1
1 = n1A1

2a kt1 +
n1A1

2a kt3 +
e(2a−1)

2a ,

kt+1
2 = n1A1

2a kt2 +
n1A2

2a kt3 +
e(2a−1)

2a ,

kt+1
3 = n1A1

2a kt1 +
n2A1

2a kt2 +
n1A1

2a kt3 +
e(2a−1)

2a .

(18)

and the equation (16) takes the form

(

n1A1

2a
− λ

)

(

λ2 − 2
n1A1

2a
λ−

(

n1A1

2a

)2
)

= 0,
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hene

λ1 =
n1A1

2a
,

λ2,3 =
n1A1

2a
±
√
2
n1A1

2a
.

Let us �nd the eigenvetors. For the eigenvalue λ1 = n1A1

2a , we obtain the system of

equations





0 0 n1A1

2a

0 0 n1A2

2a
n1A1

2a
n2A1

2a 0









x1

x2

x3



 =





0
0
0



 ,

thus as the �rst eigenvetor we an take

e1 =





n2

−n1

0



 .

For the seond eigenvalue λ2 = (1 +
√
2n1A1

2a ) we obtain the system





−
√
2n1A1

2a 0 n1A1

2a

0 −
√
2n1A1

2a
n1A2

2a
n1A1

2a
n2A1

2a −
√
2n1A1

2a









x1

x2

x3



 =





0
0
0



 ,

or in view of (17),











−
√
2n1A1

2a x1 +
n1A1

2a x3 = 0,

−
√
2n1A1

2a x2 +
n1A2

2a x3 = 0,
n1A1

2a x1 +
n2A1

2a x2 −
√
2n1A1

2a x3 = 0,

(19)

thus as the seond eigenvetor we an take

e2 =







A1√
2

A2√
2

A1






.

For the third eigenvalue λ3 = (1−
√
2)n1A1

2a we obtain the system





√
2n1A1

2a 0 n1A1

2a

0
√
2n1A1

2a
n1A2

2a
n1A1

2a
n2A1

2a

√
2n1A1

2a









x1

x2

x3



 =





0
0
0



 ,

or in view of (17),











√
2n1A1

2a x1 +
n1A1

2a x3 = 0,√
2n1A1

2a x2 +
n1A2

2a x3 = 0,
n1A1

2a x1 +
n2A1

2a x2 +
√
2n1A1

2a x3 = 0,

thus as the third eigenvetor we an take

e2 =







−A1√
2

−A2√
2

A1






.
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Thus, dynamis in joined network is desribed with following vetor equation





kt1
kt2
kt3



 = C1

(

n1A1

2a

)t





n2

−n1

0



+ C2

(

(

1 +
√
2
)n1A1

2a

)t







A1√
2

A2√
2

A1.






+

+ C3

(

(

1 +
√
2
)n1A1

2a

)t







−A1√
2

−A2√
2

A1.






+





k∗1
k∗2
k∗3



 , t = 0, 1, 2, . . . . (20)

The onstants C1, C2, C3 an be found from initial onditions. Before uni�ation

the both networks were in symmetri inner equilibria (12)-(13). Thus, the initial

onditions, taking into aount (17), are

k01 = k03 =
e(1− 2a)

2n1A1 − 2a
, k02 =

e(1− 2a)

n1A1 − 2a
=

e(1− 2a)

n2A2 − 2a
.

The system (14) in view of (17) takes the form











(n1A1 − 2a)k1 + n1A1k3 = e(1− 2a),

(n1A1 − 2a)k2 + n1A2k3 = e(1− 2a),

n1A1k1 + n2A1k2 + (n1A1 − 2a)k3 = e(1− 2a).

Solving this system by Kramer formulas, we obtain

k∗1 =
e(1− 2a)

[

4a2 − 2an1A1 + n1n2A1(A1 −A2)
]

(n1A1 − 2a)3
,

k∗2 =
e(1− 2a)

(

4a2 − 4an1A1 + 2an1A2)
)

(n1A1 − 2a)3
,

k∗2 =
−e(1− 2a)(n1A1 − 2a)(n2A1 + 2a))

(n1A1 − 2a)3
,

Hene by t = 0 we reeive the following equations











C1n2 + C2
A1√
2
− C3

A1√
2
+ k∗1 = k01 ,

−C1n1 + C2
A2√
2
− C3

A2√
2
+ k∗2 = k02 ,

C2A1 + C3A1 + k∗3 = k03 .

Multiplying the �rst equation of the system by n1 and the seond equation by n2

and adding two �rst equations, we obtain

{

C2(n1A1 + n2A2)− C3(n1A1 + n2A2) =
(

k01 − k∗1

)

n1

√
2 +

(

k02 − k∗2

)

n2

√
2

C2A1 + C3A1 = k03 − k∗3

Thus we have

C2

(

k01 − k∗1

)

n1

√
2 +

(

k02 − k∗2

)

n2

√
2

2(n1A1 + n2A2)
+

k03 − k∗3
2A1

,
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or in view of (17),

C2

(

k01 − k∗1

)

n1

√
2 +

(

k02 − k∗2

)

n2

√
2 + 2n1

(

k03 − k∗3

)

4n1A1
.

Thus at reasonable parameters the onstant at the largest positive eigenvalue is also

positive. Hene the transition proess will pass to orner equilibrium, where all the

agents are hyperative.

Let us hek that the orner solution, where k1 = k2 = k3 = e, is stable equilib-
rium:

D1V1(k1,K1)|k1=k2=k3=e = e(2a− 1)− 2ae+(n1 +n3)A1e = A1(n1 +n3)e− e ≥ 0,

i� A1 ≥ 1
n1+n3

,

D1V2(k2,K2)|k1=k2=k3=e = e(2a− 1)− 2ae+(n2 +n3)A2e = A2(n2 +n3)e− e ≥ 0,

i� A2 ≥ 1
n2+n3

,

D1V3(k3,K3)|k1=k2=k3=e = e(2a−1)−2ae+(n1+n2+n3)A1e = A1(n1+n2+n3)e−e ≥ 0,

i� A1 ≥ 1
n1+n2+n3

, orresponding to Corollary 2.4 in (Matveenko, Korolev and

Zhdanova, 2017).

Thus, if A1 ≥ 1
n1+n3

and A2 ≥ 1
n2+n3

, then the state k1 = k2 = k3 = e is

a orner equilibrium. Besides if A1 ≥ 1
n1+n3

and A2 ≥ 1
n2+n3

, then this equilib-

rium is dynamially stable aording to de�nition 2. The transient rate is diretly

proportional to total produtivity of nets, as seen from (20).

5. Conlusion

In this paper, we have desribed the proess of hange in game equilibrium during

graphs uni�ation using two-stage and dynamis models. We have highlighted the

signi�ane of the produtivity role that in�uene the agents' behavior. Moreover,

we determined the importane of graphs sizes, whih also e�et on agents' deisions

that they take during uni�ation proess.

We believe that this artile o�ers the base model of game equilibria hange that

an be improved with inreasing the amount of parameters and modi�ation graphs'

type to inomplete nets or non-oriented graphs.
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