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Abstract In this paper, we consider the following problem — what affects
the Nash equilibrium amount of investment in knowledge when some agents
of the complete graph enter another full one. The solution of this problem will
allow us to understand exactly how game agents will behave when deciding
whether to enter the other net, what conditions and externalities affect it
and how the level of future equilibrium amount of investments in knowledge
can be predicted.
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1. Introduction

The processes of globalization, post-industrial development and digitalization of the
economy make studying of the role of innovative firms in the world economic de-
velopment extremely significant. In papers (Alcacer and Chung, 2007; Chung and
Alcdcer, 2002) mathematical models of the international innovative economy are
constructed, on the basis of which the behavior of innovative firms is analyzed. In
particular, authors of this article consider an important topic: how do firms realize
their investment strategy in the development of knowledge, including outside their
own region or country. The behavior of agents is determined by various externali-
ties, which can have a completely different nature. Description of secondary effects
is one of the most important directions in network game theory that authors of
different articles try to analyze (for example, (Katz and Shapiro, 1985) and (Jaffe,
Trajtenberg and Henderson, 1993).

There is also another aspect of the question: how to structure and organize their
behavior in the best way in constantly changing economic and social conditions. In
(Breschi and Lissoni, 2001), the authors of the article try to take a new look at the
system of organizing the actions of agent-innovators. It is important to take into
account the impact (externalities) that influence agents by the environment, includ-
ing other network entities. The article (Cooke, 2001) shows the necessity of creation
of regional innovative systems based on clusters. From this follows the relevance of
the model description of the process of creating more extensive innovative clusters
based on existing ones.

In addition, there is a need to model the process of changing the Nash equilibrium
investment values, as well as the search for new internal or angular ones.

* The research is supported by the Russian Foundation for Basic Research (project 17-
06-00618).
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This article continues the study of Nash equilibria and its changes in the pro-
cess of unification complete graphs. However, this paper contains a number of new
elements in comparison with previous studies.

To begin with, we study dynamic behavior of agents, not only by generalizing the
simple two-period model of endogenous growth of Romer with the production and
externalities of knowledge (as in papers (Matveenko and Korolev, 2015; Matveenko
and Korolev, 2017)), but also by using difference equations, which makes possible
to consider the transitional dynamics by unification of networks.

This simulation allows us to create a base, which has the potential for its com-
plication and improvement in order to increase the applied nature of the model, for
mathematical description of the game behavior of agents.

We show that at different levels of productivity and sizes of the united networks,
the equilibrium investment values also change.

Our article considers both internal equilibria and corner ones, which in studies,
for the most part, were ignored by researchers.

In this article, we consider the case of unification two complete graphs with some
group connection agents, which tend to another network for a number of different
reasons: increasing the receiving externalities, the level of productivity, etc.

The content of the article is as follows. Section 2 describes a two-period growth
model, characterizes internal Nash equilibrium investments, and analyzes the be-
havior of network agents. Section 3 defines adjusting dynamics in networks and
dynamic stability of equilibria. Section 4 describes the following situation. There
are two complete networks. The first network contains nodes. All the agents of this
network have the same productivity . The second network contains nodes, with
the same agents’ productivity . The both networks are initially in inner equilibria.
Then in some moment of time any agents of the first network connected to the all
agents of the second network. Then transient dynamics occurs and the united net-
work comes in the corner equilibrium, in which the agents are hyperactive. Section
5 summarizes, and lists possible directions for future researches.

2. Model description

There is a network (undirected graph) with n nodes, i = 1,2,...,n; each node
represents an agent. In period 1 each agent 7 possesses initial endowment of good,
e, and uses it partially for consumption in first period of life, ¢%, and partially for
investment into knowledge, k;:

cﬁ—i—ki:e, i=1,2,...,n.

Investment immediately transforms one-to-one into knowledge which is used in pro-
duction of good for consumption in second period, c5.
Preferences of agent i are described by quadratic utility function:

Ui (ci,cy) =} (e — aci) + bich,

where b; > 0; a is a satiation coefficient, b; is a parameter, characterized the value of
comfort and health in the second period of life compared to consumption in the first
period. It is assumed that ¢! € [0, e, the utility increases in ¢, and is concave (the
marginal utility decreases) with respect to ¢{. These assumptions are equivalent to
condition 0 < a < 1/2.
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Production in node 4 is described by production function:
F(k“Kl) = B,k;K;, B; >0

which depends on the state of knowledge in i-th node, k;, and on environment, K;,
B; is a technological coefficient. The environment is the sum of investments by the
agent himself and her neighbors:

Ki=ki+K.,Ki= >k
FEN(D)

where N (i) — is the set of neighboring nodes of node .

We will denote the product b;B; by A; and assume that a < A;. Since increase
of any of parameters b;, B; promotes increase of the second period consumption, we
will call A; “productivity”. We will assume that A; # 2a,i = 1,2,...,n. If A; > 2a,
we will say that i-th agent is productive, and if A; < 2a, we will say that i-th agent
is unproductive.

Three ways of behavior are possible: agent ¢ is called passive if she makes zero
investment, k; = 0 (i.e. consumes the whole endowment in period 1); active if
0 < k; < e; hyperactive if she makes maximally possible investment e (i.e. consumes
nothing in period 1).

Let us consider the following game. Players are the agents i = 1,2,...,n. Pos-
sible actions (strategies) of player i are values of investment k; from the segment
[0, e]. Nash equilibrium with externalities (for shortness, equilibrium) is a profile of
knowledge levels (investments) (ki, k3, ..., k), such that each kfis a solution of the
following problem P (K;) of maximization of i-th player’s utility given environment
Kii

U; (ci,cé) — max

i

C1>Céwki
o <e—ki,
) C,LQ S F(kuKl)u
i >0,¢5>0, k >0,

where the environment K is defined by the profile (k7,k3,...,k}):

Ki=ki+ > k

JEN(i)

The first two constraints of problem P (K;) in the optimum point are evidently
satisfied as equalities. Substituting into the objective function, we obtain a new
function (payoff function):

Vi (k“ Kl) =U; (6 — ki, F; (k“ Kl)) = (6 — kl) (6 —a (6 - Kz)) + Ak K =

= 62 (1 — a) — kie (1 — 2@) — akf + Azszz (1)

If all players’ solutions are internal, i.e. all players are active, the equilibrium will
be referred as inner equilibrium else it be referred as corner equilibrium. Clearly,
the inner equilibrium (if it exists for given values of parameters) is defined by the
system

Dl‘/z(kl,Kl):O, 121,2,,71, (2)
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or

Dl‘/i (kuKz) :6(2CL— 1) —2CLI€Z—|—A1KZ = O, 1= 1,2,...,71. (3)

Let us introduce the following notations: A- diagonal matrix, which has numbers
Ayq, Ag, ..., A, on the main diagonal, I — unit n X n matrix, M — network adjacency
matrix. In this matrix M;; = Mj; = 1, if there is the edge of the matrix, connecting
vertexes ¢ and j, and M;; = M;; = — otherwise. It is believed, that M;; = 0 for all
1 =1,2,...,n. The system of equations (3) takes the form:

(A - 2aI) k+ AME=¢, (4)

Wherek:(kl,kg,...,kn)T,é:(e(l—2a),e(1—2a),...,e(1—2a))T

Theorem 1. (Matveenko, Korolev and Zhdanova, 2017, Theorem 1.1). The system
of equations (4) for a complete network with homogeneous agents has only decision.

We introduce the following notation. Regardless of agent type of behavior the
equation root

will be denoted by k?. Thus,

I; - 6(2(1 — 1) + AlKZ

S

i QG—Ai ’

where K; — pure externality of agent i. It is obvious, that if agent i is active, then
his investments will be equal to k] in equilibrium. To analyze equilibriums we need
the following statement.

Proposition 1. (Matveenko, Korolev and Zhdanova, 2017, Lemma 2.1 and Corol-
lary 2.1) A set of investment agent values (ki,ka, ..., kn) can be an equilibrium only
if for each i =1,2,...,n it is true that

Cifk; =0, then K; < 6(172‘1)'
.zf0<k <ethenk—z,
3. if k; =e, then K; > © (1 1)

Lemma 1. (Matveenko, Korolev and Zhdanova, 2017, Lemma 2.2) In equilibrium,
the agent i is passive if and only if

e(l—2a)
K, <—;
< Y
the agent i is active if and only if
e(l—2a) e
A; A,
the agent i is hyperactive if and only if

€
K; > —.
_Ai

In complete network there is the same environment for all agents, so we get the
following consequence.
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Corollary 1. In equilibrium in a complete network, agents with the same produc-
tivity make the same investments. If all agents in the full network have the same
productivity, then there is homophilia, that is, all agents behave identically.

Remark 1. In a complete network, there cannot be situations when in equilibrium
an agent with a high production value is active or passive, and an agent with a
lower productivity is hyperactive, or when an agent with a higher production value
is passive, and an agent with a lower productivity is active or hyperactive.

Speaking of a complete network, we will omit the index in the designation of the
agent environment, since in a complete network the environment for all agents is the
same. Thus, K is denoted the amount of investment of all agents of the complete
network.

Corollary 2. (Matveenko, Korolev and Zhdanova, 2017, Corollary 2.8) The equi-
librium, in which oll agents are passive, is possible in a complete network if and

only if

The equilibrium, in which all agents are active, is possible in a complete network
if and only if

— <K< .
minA; maxA;
K2

The equilibrium, in which oll agents are hyperactive, is possible in a complete

network if and only if
e

~ mind;’
K3
Corollary 3. Equilibrium, in which all agents are hyperactive, is possible in a com-
plete network, if and only if
. 1
mind; > —.
[ n

Equilibrium, in which all agents are passive, is always possible.

3. Adjusting dynamics in networks and dynamic stability of equilibria

We introduce adjustment dynamics which may start after a small deviation from
equilibrium or after junction of networks each of which was initially in equilibrium.
We model the adjustment dynamics in the following way.

Definition 1. Each agent maximizes her utility by choosing a level of investment;
at the moment of decision-making she considers her environment as exogenously
given. Correspondingly, if k! = 0 and D1 V;(k;, K;)|k,—0 < 0, then kf“ = 0, and if
k! = e and Dy V; (k;, Kl-)|,%:6 > 0, then kf“ = e; in all other cases, kf“ solves the
difference equation:

—2ak!™t 4+ A K —e(1—2a) =0, t=0,1,2,....

Definition 2. The equilibrium is called dynamically stable if, after a small devia-
tion of one of the agents from the equilibrium, dynamics starts which returns the
equilibrium back to the initial state. In the opposite case the equilibrium is called
dynamically unstable.
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Lemma 2. In any network, a corner equilibrium, in which all the agents are pas-
sive, is stable.

Proof. As follows from (3), for any agent i the inequality D, V; (k;, K;) < 0 holds
as strict: D1V; (k;, K;) =e(2a—1) < 0. O

Lemma 3. In any network, an inner equilibrium is unstable.

Proof. Let the network consist of n nodes, and all agents have the same productiv-
ity A. Let M be the n x n-matrix of difference equations system , describing the
dynamics in the network. Then the matrix M has the form M = % (A + 1), where
A — the adjacent matrix of the network, I — identity n X m-matrix. In this way,
the matrix M is symmetric and therefore has orthogonal basis of eigenvectors. Let
v1,V2,...,U, be an orthogonal basis, and z be arbitrary real n-dimensional vector.
We expand it in terms of the basis:

Tr = C; V..

n
i
=1

Then:

T Mz . Z?:l CiviTM 2?21 A ZZj:l CiCj)\jviTUj B
dle Y] Yoy Ximaovlv
_Xim G Xmah
PR D D Y - b

where \; means the greatest eigenvalue. Choosing as a x vector, all components of
which are equal to 1, we get:

/\12%' a— (6)

where m means the number of edges in network, and n means the number of nodes.
Let h be the number of node, having the greatest degree d,.x. Consider the
vector z, the components of which are given in the following way:

Vdmax, tf i=h,
Tq = 17 Zf Aih = 17
0, else.

Then
n A \% dmax + dmaxa lf 1= h7 A
ZMij,’Ej > % Vdmax + 1, ’Lf M, =1, = % (\/ dmax + 1) X;. (7)
j=1 0,

else

Multiplying both sides of (7) by z; and summing over i, we obtain the inequality

A
T Mz > % (\/dmax + 1) a:Taj,
a
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and, applying (5), we get

a4 ). ®

zTx — 2a

Similarly to (5), we get

"Mz i cvf MY\ cjup S0 cicihvl vy

ale Y ol Y ey Y cicivl v
- Z?:l i\ > Z?:l 5 An — A (9)
DY T D Y T

where )\, means the least eigenvalue of matrix M. We now consider the vector z,
which components are given as follows:

—Vdmax, tf i=h,

xT; = -1, Zf Aih =1,
0, otherwise.
Then
n A - dmax - dmaxa Zf = h7 A
ZMijxj < — — dmax — 1, ’Lf Mih = 17 = o (_ V dmax - 1) T (10)
. 2a ; 2a
j=1 0, otherwise

Multiplying both sides of (10) by z; and summing over ¢, we obtain the inequality
A
2T Mz < % (—\/dmax — 1) xT;v,
a

and, applying (9), we get

2T Mz A
)\ng T S_%(\/ dmax+1)' (11)

=T

So, in the case when all agents have the same productivity and there is at least
one edge in the network, the largest eigenvalue of the equation system, describing
the dynamics, according to (8), is always greater than unity. If the network does
not have any edges (all agents are isolated), then an internal equilibrium is possible
only if all agents are productive
(A > 2a), but then according to (8) the largest eigenvalue is greater then unit. O

4. Network dynamics model of net unification

Let us consider the following situation. There are two complete networks with n; +
nz nodes with productivities A; and with ny nodes with productivities As. Let’s
pretend that ng agents of the first network decide to connect with agents of the
second network. So there are three types of agents in the united network. The
actors of the first type are all the agents of the first network, besides the agents of
the first network, which connected to the agents of the second network. Actors of
the second type are all agents of the second network. The third type of actors is ng
agents of the first network that connected to all actors of the second network. Since
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all agents of the same type will have the same environment, they will behave in the
same way, not only in equilibrium, but also in dynamics. Therefore, the investment
of each agent of the type ¢ will be denoted k;, and the environment of each agent
of the type ¢ will be denoted K;.

Both the complete networks are initially in inner equilibrium. It follows imme-
diately from (3) that the initial investment of agents is the following

0_ .0 _ e(1—2a)
kl o k3 o (n1 + TL3)A1 — 20,7 (12)
e(l —2a
kg - kg - TLQ(AQ — 2)a' (13)

The system (3) for inner equilibrium in joined network is

(7’L1A1 — 2@)]€1 + Ainsks = 6(1 — 2@),
(n2A2 — 2G)I€2 + A2n3k3 = 6(1 — 2(1,), (14)
n1A1k1 + 7’L2A1k2 + (n3A1 - 20,)]{33 = 6(1 - 2&)

Definition 1 implies that the dynamics in model under consideration is described
by the system of differential equations:

t+1 _ niA A 2a—1
kl _7112(11]{:1{_’_"3(11]{3_’_@( ;a )’
kit = nadagt o madagl ol Coppere t =0,1,2. .. (15)
kiD= mAugt y omadi g | ngdypt y eQonl)
Characteristic equation for this system is
niAy A 0 nzAj
2a 2a,
0 npAs 3 nads | _

2a, 2a
niAy noAy A n3Ay A
2a 2a 2a

=0 (16)

- n1A1 _ 2 n3A1 + n2A2 _ n2A2n3A1
N < 2a /\) [A 2 2a A 4a?

To find an explicit solution of a system of difference equations (3.1) we need to
impose the restrictions

n1 =n3, n1A; = nads, (17)

i.e. all the three nets have the same total productivity.
Then the system (15) takes the form

t+1 _ niAi .t niAi 1.t e(2a—1)
kl ~  2a kl + 2a k3 + (2211 1)’
t+1 _ niAq .t ni1As 1.t e(2a—
ko'~ = Mgtky + MRk + =5, (18)
k§+1 — niA k?{ + naAq ké + ni1A; kg + e(2a—1)
2a 2a 2a 2a :

and the equation (16) takes the form

nA; s omdr (mAN?
(2a )\)<)\ 22a)\ (2a =0
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hence A
niA
A1 = ,
! 2a
niA nlA
Ao = ——t £ 22
’ 2a 2
Let us find the eigenvectors. For the eigenvalue Ay = "12—‘31, we obtain the system of
equations
0 0 —"1221 1 0
0 0 2 X9 0],
mlt a0 ) \ws 0
thus as the first eigenvector we can take
n2
€1 = | "
0
For the second eigenvalue A» = (1 + v/2241) we obtain the system
—V2md iy 1 0
0 —vamgr mEe || 0f,
A A A
e et V2R Ao 0
or in view of (17),
—V2mdigy 4 g, =,
—V2m gy M2 — 0,
n1A1

(19)

no A niA _
s+ 2l — VBt = 0,
thus as the second eigenvector we can take

SlESE

€y =
Ay
For the third eigenvalue A3 = (1 — v/2)44% we obtain the system

\/5711 A 0 ni A
2a

2%a X O
0 Voud mi To 0
2 b
ni1Ay n2z‘?{1 \/57;11141 0
2a 2a 2a x3

or in view of (17),

\/577,1231 SC1 + ’ﬂlA

2a1x3 = 07
niA niA
\/5 §a1w2+ 5112‘/[:3:0’

niA; naAy niA; _
3q L1 + 2a T2 + \/5 2qa T3 = O’
thus as the third eigenvector we can take

>

€y =

SRS

Ay
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Thus, dynamics in joined network is described with following vector equation

ki

Ay
A t na A t 75
K _01<n; 1> — +Cz<(1+\/§)n; 1) A |+
K “ 0 “ Ar.
n1A1 1\4{25 i o
+03((1+\/§) 2a> -S|+ ki . t=0,1,2,.... (20)
Al. kS

The constants C7, C3, C3 can be found from initial conditions. Before unification
the both networks were in symmetric inner equilibria (12)-(13). Thus, the initial
conditions, taking into account (17), are

e(1—2a) 10— e(l1-2a)  e(l—2a)

K =k = —"2 k)= :
! 3 2711141 — 2&7 2 7’L1A1 —2a 7’L2A2 —2a

The system (14) in view of (17) takes the form

(n1A1 — 2@)]€1 +n1A1ks = 6(1 — 2@),
(TI,lAl — 2&)I€2 + 7’L1A2k3 = 6(1 — 2&),
n1A1k1 + 7’L2A1k2 + (n1A1 — 20,)]{33 = 6(1 — 2&)

Solving this system by Kramer formulas, we obtain

k* B 6(1 — 2a) [40,2 — 2CLTL1A1 + ’anLQAl (A1 — AQH
L (n1A1 — 2a)3 ’

L e(1—2a) (4a2 —4dani Ay + 2cm1A2))
2 =

(n1A1 — 2a)3 ’
. —e(l —2a)(n141 — 2a)(n2 A1 + 2a))
2 (n1A1 — 2a)3 ’

Hence by t = 0 we receive the following equations

Cing + CaZL — G304 + ki = kY,
—Cin +Cz% — CgA—Z +/€§ = kg,
CoA + C3A1 + k§ = kg

Multiplying the first equation of the system by n; and the second equation by nq
and adding two first equations, we obtain

Cg(nlAl + ngAg) — C3(TL1A1 + TLQAQ) = (k(lJ — kf)nlx/ﬁ—i— (k’g — k;)ng\/i
CoA1 + C3A; = kg — k;

Thus we have

(8- ) (8 )ity

C :
2 2(711141 + TLQAQ) 2A1
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or in view of (17),

(k? . k;)n1ﬁ+ (k:g - k§>n2\/§ +2ny (kg - k;;)

02 4n1 Al

Thus at reasonable parameters the constant at the largest positive eigenvalue is also
positive. Hence the transition process will pass to corner equilibrium, where all the
agents are hyperactive.

Let us check that the corner solution, where k1 = ko = ks = e, is stable equilib-
rium:

Dy Vi(ky, K1)|ky=ko=ks=e = €(2a — 1) — 2ae + (n1 +ng)A1e = A1(n1 +nz)e —e > 0,

. 1

iff Ay 2> S

Dl‘/g(kg, K2)|k1:k2:k3:e = 6(2(1 — 1) — 2ae + (TLQ + ng)AQE = AQ(TLQ + ng)e — e Z 0,

. 1

iff A2 > S

Dl‘/g(kg, K3)|k1:k2:k3:e = e(2a—1)—2ae+(n1—|—n2—|—n3)Ale = A (n1—|—n2—|—n3)e—e >0,

iff Ay > m, corresponding to Corollary 2.4 in (Matveenko, Korolev and
Zhdanova, 2017).
Thus, if A1 > —— and Ay > —L— then the state k; = ko = k3 = e is

ni+nsg na+nsg’

a corner equilibrium. Besides if A; > m}rn and Ay > mim, then this equilib-

rium is dynamically stable according to definition 2. The transient rate is directly
proportional to total productivity of nets, as seen from (20).

5. Conclusion

In this paper, we have described the process of change in game equilibrium during
graphs unification using two-stage and dynamics models. We have highlighted the
significance of the productivity role that influence the agents’ behavior. Moreover,
we determined the importance of graphs sizes, which also effect on agents’ decisions
that they take during unification process.

We believe that this article offers the base model of game equilibria change that
can be improved with increasing the amount of parameters and modification graphs’
type to incomplete nets or non-oriented graphs.
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