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Abstrat This study sets out to investigate the impat of information on-

trol. We used our previous re�exive analysis of a game to �nd the sensitivity

of strategies and utility funtions to inreasing beliefs about thresholds. The

game itself is onstruted by using a normal form game and making sug-

gestions on the agents's believes and knowledge weaker. We found domains

of parameters where monotoniity of the impat holds too. Together, these

results provide important insights into the impat of re�exive analysis on

the properties of information ontrol.

1. Introdution

Let's say there are a set of agents N = {1, . . . , n}, a set real, non-negative strategies
X = {X1, . . . , Xn}, and a set of utility funtions F (A) = {f1(A), ..., fn(A)} with a

parameter A. One an onsider a game

G =< N,X, F (A) > .

We have investigated a ase when agents don't have onsensus on the value of

A. We used a formal grammar

ϕ = ⊥ | p | ¬ϕ | (ϕ→ ψ) | Kiϕ | Biϕ | CKϕ | CBϕ,

where ⊥ is False. Elementary propositions are elements of a set P ∈ {(A =
x)|x ∈ R}. {Kiϕ} is a set of knowledge operators of agents that desribes their

knowledge about a value ϕ. {Biϕ} is a set of belief operators of agents that de-

sribes their beliefs about a value φ. CKϕ means that ϕ is ommon knowledge

among agents in N . CBϕ means that ϕ is a ommon belief among agents in N .

We will write GI =< N,X, F (A), I > for a game G =< N,X, F (A) > with a

given logi assumptions or axioms of informational struture I. The ordinary ase

is G =< N,X, F (A), CK(A = A0) >, where A0 is an atual value of a parameter A.

It is just a game G =< N,X, F (A0) > in a normal form. Note that Nash equilibria

for GCK
=< N,X, F (A), CK(A = A0) > and GCB

=< N,X, F (A), CB(A = A0) >
oinides though resulting values of utility funtions ould di�er sine CK(A =
A0) → (A = A0) but there is no suh theorem for CB(A = A0). A belief ould be

false even if it is a ommon belief.

There is a well-known way to investigate this game using Nash equilibria. Eah

Nash equilibrium is a vetor y = (y1, ..., yn) suh that ∀xi ∈ Xi

fi(y1, ..., yi−1, yi, yi+1, ..., yn) ≥ fi(y1, ..., yi−1, xi, yi+1, ..., yn)

We denote Gφ =< N,X, F (A), ϕ > e.g. G∀iBi(A=Ai) =< N,X, F (A), ∀iBi(A =
Ai) >
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We knew the equilibria for some games (Fedyanin, 2019). There were funtional

dependenies strategies and utility on beliefs about the parameter A. So we found

the intervals of monotoniity using derivatives of the funtional dependenies. Some

expressions were very obvious or easy to �nd but others were very di�ult for

analysis. We expressed our results in several theorems.

2. An example of game

Wewill ontinue investigations of a game of olletive ations (Fedyanin and Chkhar-

tishvili, 2011). There are a set of agents N = {1, . . . , n}, a set of real not negative

strategies and a set of utility funtions

fi(x1, ..., xn, r1, ..., rn, A1, ...An) = xi





∑

j∈N

xj −A



−
x2i
ri
, ∀i ∈ N

where 0 < ri < 1.
The orresponding pratial interpretation lies in that the agents apply the

strategies and it appears suessful (provides a positive ontribution to the utility

funtions of the agents) when the total e�ort exeeds a spei� threshold; the latter

is set equal to 1. With the strategy being suessful, the agent's gain(the �rst term

in utility funtion) inreases with the inreasing e�ort of the agent. On the other

hand, the agent's e�ort itself results in a negative ontribution to the utility funtion

(see the seond term) whih depends on the type ri. The larger the type of variable,
the "easier" the agent applies the strategy (for instane, in a psyhologial sense,

it ould be explained by the agent's greater loyalty or liking for the joint ation)

(Fedyanin and Chkhartishvili, 2011).

The Cournot oligopoly model (Cournot, 1960) looks similar but it is not the

same beause of di�erent utility funtions

fi = xi



A−
∑

j∈N

xj



−
x2i
ri
.

The orresponding pratial interpretation of the Cournot oligopoly is the following:

strategies are the amounts of sold produts, utility funtions are the amounts of

produts multiplied by a prie that dereases when the total amount of sold produts

inreases minus osts.

There are some important di�erenes that make the game of olletive ations

look like a ombination of the Cournot oligopoly and the game theoretial modi�-

ation of Granovetter (Granovetter, 1978) and not just the Cournot oligopoly. The

Breer Threshold model (Breer et al., 2017) is the one where utility funtions are

fi = xi



A−
∑

j∈N

xj





and a set of strategies is restrited to binary values - strategy is equal either 0 or

1. Anyway we an apply all ideas below for the Cournot oligopoly as well but we

haven't applied them yet.

In this paper we propose to onsider A as an unertain parameter for agents and

they have to make some suggestion about it.
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3. Results

3.1. Players with ommon knowledge

We an model it by a game

GCK
=< N,X, F (A), CK(A = A0) >

There is a well-known way to �nd the Nash equilibrium. It is to ompose and solve a

system of equations where the strategy of eah player equals his or her best response

xi = BRi(x − i) =
2ri

1− ri





∑

j 6=i

xj −A



+ ǫi, ∀i ∈ N

where

ǫi =







0, 2ri
1−ri

(

∑

j 6=i xj −A
)

≥ 0

− 2ri
1−ri

(

∑

j 6=i xj −A
)

, 2ri
1−ri

(

∑

j 6=i xj −A
)

< 0

Zero Nash Equilibrium for GCK

Theorem 1. An existane of a zero Nash equilibrium doesn't depend on the value

of the threshold in the game GCK
.

Proof. There is always a solution in the game GCK
. Ations of agents.

xi = 0, ∀i ∈ N

Values of agents' utilities.

fi = 0, ∀i ∈ N

⊓⊔

Nonzero Nash Equilibrium for GCK
If

∑

j∈N

rj
2− rj

> 1

then there is one more solution.

Theorem 2. Let

∑

j∈N

rj
2− rj

> 1.

The larger threshold the larger strategy of an agent in the game GCK
.

Proof. Strategies of agents.

xi =
A

ri
2− ri

∑

j∈N

rj
2− rj

− 1
, ∀i ∈ N,

Derivative.

∂xi
∂A

=

ri
2− ri

∑

j∈N

rj
2− rj

− 1
> 0, ∀i ∈ N,

⊓⊔
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If

∑

j∈N

rj
2− rj

> 1

then there is one more solution

Theorem 3. Let

∑

j∈N

rj
2− rj

> 1.

The larger threshold the larger value of utility funtions of agent in the game GCK
.

Proof. Values of agents' utilities.

fi =
A2(1− ri)ri





∑

j∈N

rj
2− rj

− 1





2

(2− ri)
2

, ∀i ∈ N

Derivative.

∂fi
∂A

=
2A(1− ri)ri





∑

j∈N

rj
2− rj

− 1





2

(2 − ri)
2

≥ 0, ∀i ∈ N

⊓⊔

Thus if one wants to inrease the utility of agents, they should inrease the

plans that these agents should try to exeed. This onlusion looks very reasonable,

regardless of the model.

3.2. Players with ommuniation and onsensus

We an model this ase by a game

GCB
=< N,X, F (A), CB(A = A0) >

There ould be a ommuniation between agents and they an ommuniate

aording the de Groot model (DeGroot, 1974). There is no di�erene if an existene

of suh ommuniation to the ommon knowledge among all agents or it is not. Let

their in�uenes be wj then one should ompose and solve the system

xi = BRi(x−i) =
2ri

1− ri





∑

i6=j

xj −
∑

j

wjAi





for eah i.

Zero Nash Equilibrium for GCB
There is always a zero solution in the game.

Theorem 4. An existane of a zero Nash equilibrium doesn't depend on value of

the threshold in the game GCB
.

Proof. Strategies of agents.

xi = 0, ∀i ∈ N

Values of agents' utilities.

fi = 0, ∀i ∈ N

⊓⊔
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Nonzero Nash Equilibrium for GCB
If

∑

j∈N

rj
2− rj

> 1

then there is one more solution

Theorem 5. Let

∑

j∈N

rj
2− rj

> 1.

If an agent in the game GCB
has a nonzero in�uene on onsensus opinion, then

the larger his belief about the threshold, the larger the strategies of all agents. The

true value of the threshold doesn't a�et the strategies in the GCB
.

Proof. Strategies of agents.

xi =

∑

j∈N

wjAj

ri
2− ri

∑

j∈N

rj
1− rj

− 1
, ∀i ∈ N

Derivative.

∂xi
∂Aj

=
wj

ri
2− ri

∑

j∈N

rj
1− rj

− 1
≥ 0, ∀i ∈ N

∂xi
∂Ai

=
wi

ri
2− ri

∑

j∈N

rj
1− rj

− 1
≥ 0, ∀i ∈ N

∂xi
∂A

= 0, ∀i ∈ N

⊓⊔

If

∑

j∈N

rj
2− rj

> 1

then there is one more solution

Theorem 6. Let

∑

j∈N

rj
2− rj

> 1.

If an agent has a nonzero in�uene on onsensus opinion, then the larger his be-

lief about the threshold, the larger the utility for eah agent. The true value of the

threshold doesn't a�et the utilities for agents.
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Proof. Values of agents' utilities.

fi =





∑

j∈N

wjAj





2

(1− ri)ri





∑

j∈N

rj
2− rj

− 1





2

(2− ri)
2

, ∀i ∈ N

Derivative.

∂fi
∂Aj

=

wj

∑

j∈N

wjAj(1 − ri)ri





∑

j∈N

rj
2− rj

− 1





2

(2− ri)
2

≥ 0, ∀i ∈ N, j 6= i

∂fi
∂Ai

=

wi

∑

j∈N

wjAj(1− ri)ri





∑

j∈N

rj
2− rj

− 1





2

(2− ri)
2

≥ 0, ∀i ∈ N

∂fi
∂A

= 0, ∀i ∈ N

⊓⊔

3.3. Players without ommuniation

We an model this ase by games

G∀iBiCB(A=Ai) =< N,X, F (A), ∀iBiCB(A = Ai) >

G∀iBiCK(A=Ai) =< N,X, F (A), ∀iBiCK(A = Ai) >

We formulated axioms to make an informational system omplete.

G∀iBiCB(A=Ai)∧Bi(A=Ai) =< N,X, F (A), ∀i(BiCB(A = Ai) ∧Bi(A = Ai)) >

G∀iBiCK(A=Ai)∧Bi(A=Ai) =< N,X, F (A), ∀i(BiCK(A = Ai) ∧Bi(A = Ai)) >

Player i ould believe that all utility funtions are

fi = xi(
∑

j∈N

xj −Ai)− x2i /ri.

It oinides with the Nash equilibrium with a ertain value of parameter A, if there
is A = Ai for any i ommon knowledge that A = Ai.

The strategy of eah player whih equals to their best response that are

xi = BRi(x−i) =
2ri

1− ri
(
∑

j 6=i

xj −Ai).
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Agent i makes a best response for all other agents aording to their beliefs. Thus,

from the i-th player's point of view it looks like they should ompose and solve the

system for the following best responses

xj = BRi(x−i) =
2rj

1− rj
(
∑

k 6=j

xk −Ai)

for eah j.

Zero Nash Equilibrium for G∀iBiCB(A=Ai)∧Bi(A=Ai) There is always a solu-

tion.

Theorem 7. An existane of a zero Nash equilibrium doesn't depend on value of

the threshold in the game G∀iBiCK(A=Ai)∧Bi(A=Ai).

Proof. Strategies of agents.

xi = 0, ∀i ∈ N

Values of agents' utilities.

fi = 0, ∀i ∈ N

⊓⊔

Nonzero Nash Equilibrium for G∀iBiCB(A=Ai)∧Bi(A=Ai) If

∑

j∈N

rj
2− rj

> 1

then there is one more solution.

Theorem 8. Let

∑

j∈N

rj
2− rj

> 1.

One an hange a strategy of an agent in the game G∀iBiCK(A=Ai)∧Bi(A=Ai) =<
N,X, F (A), ∀i(BiCK(A = Ai) ∧ Bi(A = Ai)) if and only if she hange his belief

about the threshold. In this ase the larger belief about threshold will lead to the

larger strategy.

Proof. Strategies of agents.

xi =
Ai

ri
2− ri

∑

j∈N

rj
2− rj

− 1
, ∀i ∈ N

Derivative.

∂xi
∂Ai

=

ri
2− ri

∑

j∈N

rj
2− rj

− 1
> 0, ∀i ∈ N,

∂xi
∂Aj

= 0, ∀i ∈ N, j 6= i.

∂xi
∂A

= 0, ∀i ∈ N

⊓⊔
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Thus one annot hange a strategy of an agent if she doesn't hange his own

belief about A.

Theorem 9. Let

∑

j∈N

rj
2− rj

> 1.

The utility of an agent in the game G∀iBiCB(A=Ai)∧Bi(A=Ai) will inrease when his

belief Ai will inrease if and only if this statement holds

2Ai

1− ri
2− ri

<
∑

j 6=i

Aj

rj
2− rj

−A





∑

j∈N

rj
2− rj

− 1



 .

Proof. Values of agents' utilities.

fi =

ri
2− ri





∑

j∈N

ri
2− ri

− 1





2



Ai

∑

j∈N

Aj

rj
2− rj

−AiA





∑

j∈N

ri
2− ri

− 1



−A2
i

1

2− ri



 ,

∀i ∈ N

Derivative

∂fi
∂A

=
Ai

ri
2− ri





∑

j∈N

rj
2− rj

− 1





> 0, ∀i ∈ N j 6= i

∂fi
∂Ai

= AiAj

rirj
(2− ri) (2− rj)





∑

j∈N

rj
2− rj

− 1





−2

> 0, ∀i ∈ N j 6= i

∂fi
∂Ai

=

ri
2− ri





∑

j∈N

rj
2− rj

− 1





2×

×



Ai

ri
2− ri

+
∑

j∈N

Aj

rj
2− rj

−A





∑

j∈N

rj
2− rj

− 1



− 2Ai

1

2− ri



 =

=

ri
2− ri





∑

j∈N

rj
2− rj

− 1





2





∑

j∈N

Aj

rj
2− rj

−A





∑

j∈N

rj
2− rj

− 1



−Ai



 .

⊓⊔
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It means that sometimes we may need a ombined information ontrol - no

separately hosen beliefs about thresholds.

One an get some details from this theorem.

Theorem 10. Let

∑

j∈N

rj
2− rj

> 1.

If this statement

∑

j∈N

rj
2− rj

(Aj −A) > 0, ∀i ∈ N

doesn't hold then the utility of all agents in the game G∀iBiCB(A=Ai)∧Bi(A=Ai) won't

inrease at the same time when all their beliefs Ai inrease.

Proof. Let's list all inequalities

∑

j∈N

Aj

rj
2− rj

−A





∑

j∈N

rj
2− rj

− 1



−Ai > 0, ∀i ∈ N

ri
2− ri

∑

j∈N

Aj

rj
2− rj

−A
ri

2− ri





∑

j∈N

rj
2− rj

− 1



−Ai

ri
2− ri

> 0, ∀i ∈ N

∑

j∈N

rj
2− rj

∑

m∈N

Am

rm
2− rm

− A
∑

j∈N

rj
2− rj





∑

j∈N

rj
2− rj

− 1



−
∑

j∈N

Aj

rj
2− rj

> 0,

∀i ∈ N




∑

j∈N

rj
2− rj

− 1









∑

j∈N

Aj

rj
2− rj

−A
∑

j∈N

rj
2− rj



 > 0, ∀i ∈ N





∑

j∈N

rj
2− rj

− 1





∑

j∈N

rj
2− rj

(Aj −A) > 0, ∀i ∈ N

∑

j∈N

rj
2− rj

(Aj −A) > 0, ∀i ∈ N

⊓⊔

3.4. Stubborn players with ommuniation without onsensus

We an model this ase by games

GBiCB(A=Ai) =< N,X, F (A), ∀iBiCB(A = Ai) >

GBiCK(A=Ai) =< N,X, F (A), ∀iBiCK(A = Ai) >

We formulated axioms to make an informational system omplete.

GBiCB(A=Ai)∧Bi(A=Ai)) =< N,X, F (A), ∀i(BiCB(A = Ai) ∧Bi(A = Ai)) >

GBiCK(A=Ai)∧Bi(A=Ai) =< N,X, F (A), ∀i(BiCK(A = Ai) ∧Bi(A = Ai)) >
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If there is a ommuniation with no trust at all then all agents 'beome stubborn�

and other opinions donâ��t hange their opinions. There is no di�erene if an

existene of suh ommuniation is a ommon knowledge among all agents or it

is not. The important information is that Ai is a ommon knowledge and that all

agents are stubborn in our sense. Thus, from the i player's point of view, they should

ompose and solve the system for the following best responses

xj = BRi(x−i) =
2ri

1− ri





∑

j 6=i

xj −Ai





for eah i.

Zero Nash Equilibrium for G∀i(BiCK(A=Ai)∧Bi(A=Ai)) There is always a so-

lution for GBiCK(A=Ai)∧Bi(A=Ai) and GBiCB(A=Ai)∧Bi(A=Ai)).

Theorem 11. An existane of a zero Nash equilibrium doesn't depend on value of

the threshold in the games GBiCK(A=Ai)∧Bi(A=Ai) and GBiCB(A=Ai)∧Bi(A=Ai)).

Proof. Strategies of agents.

xi = 0, ∀i ∈ N

Values of agents' utilities.

fi = 0, ∀i ∈ N

⊓⊔

Nonzero Nash Equilibrium for G∀i(BiCK(A=Ai)∧Bi(A=Ai)) If

∑

j∈N

rj
2− rj

> 1

then there is one more solution.

Theorem 12. Let

∑

j∈N

rj
2− rj

> 1.

Then there is

∂xi
∂Aj

> 0; ∀i ∈ Nj 6= i,

∂xi
∂Ai

> 0

in the game G∀i(BiCK(A=Ai)∧Bi(A=Ai)) if and only if

Ai < 1, ∀i ∈ N.

Proof. Strategies of agents.

xi =

ri
2− ri

∑

j∈N

rj
2− rj

− 1



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)



 , ∀i ∈ N
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Derivatives.

∂xi
∂Aj

=

ri
2− ri

∑

j 6=i

rj
2− rj

∑

j∈N

rj
2− rj

− 1
> 0, ∀i ∈ N, ∀j 6= i

∂xi
∂Ai

=

ri
2− ri

∑

j∈N

rj
2− rj

− 1



1−Ai

∑

j∈N

rj
2− rj



 , ∀i ∈ N

1

Ai

>
∑

j∈N

rj
2− rj

> 1,

∂xi
∂A

= 0, ∀i ∈ N

⊓⊔

Theorem 13. Let

∑

j∈N

rj
2− rj

> 1.

The larger the threshold A the smaller the value of the utility funtion of eah agent

in the game G∀i(BiCK(A=Ai)∧Bi(A=Ai))

Proof. Let's �nd an universal expression for derivatives of utility funtions.

If

∂A

∂y
= 1

then

∂fi
∂A

= −xi −
∂xi
∂A

A.

Thus

∂fi
∂A

= −xi = −

ri
2− ri

∑

j∈N

rj
2− rj

− 1



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)



 ≤ 0, ∀i ∈ N

⊓⊔

Values of agents' utilities

fi(x1, ..., xn, r1, ..., rn, A1, ...An) =

=

ri
2− ri





∑

j∈N

rj
2− rj

− 1





2



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)



×
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∑

j∈N

Ajrj
2− rj

(

∑

m∈N

rm
2− rm

− 1

)

+ n
∑

j∈N

Ajrj
2− rj

−A



×

×

r2i

(2− ri)
2





∑

j∈N

rj
2− rj

− 1





2

ri



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)





2

=

=

ri
2− ri





∑

j∈N

rj
2− rj

− 1





2



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)



×

(

∑

j∈N

Ajrj
2− rj





∑

j∈N

rj
2− rj

+ n− 1



−A





∑

j∈N

rj
2− rj

− 1





2

−

−
1

2− ri



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)





2
)

, ∀i ∈ N

Theorem 14. Let

∑

j∈N

rj
2− rj

> 1.

If there are

∂xi
∂y

> 0

and

xi < ri
2−A

2

in the game G∀i(BiCK(A=Ai)∧Bi(A=Ai)) then

∂fi
∂y

> 0.

Proof. Sine xi ≥ 0 then

∂fi
∂A

≤ 0.

If

∂A

∂y
= 0

then

∂fi
∂y

=
∂xi
∂y

+
∑

j∈N

∂xj
∂y

−A
∂xi
∂y

− 2
∂xi
∂y

∗
xi
ri
,
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∂fi
∂y

= 2
∂xi
∂y

(

1−
A

2
−
xi
ri

)

+
∑

j 6=i

∂xj
∂y

,

⊓⊔

Theorem 15. Let

∑

j∈N

rj
2− rj

> 1.

Then

∂fi
∂Aj

=

2

ri
2− ri

∑

j 6=i

rj
2− rj

∑

j∈N

rj
2− rj

− 1











1−
A

2
−

1

ri

ri
2− ri

∑

j∈N

rj
2− rj

− 1



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)















+

+
∑

k 6=i,j

rk
2− rk

∑

m 6=k

rm
2− rm

∑

m∈N

rm
2− rm

− 1
+

rj
2− rj

∑

m∈N

rm
2− rm

− 1

(

1−Ak

∑

m∈N

rm
2− rm

)

,

in the game G∀i(BiCK(A=Ai)∧Bi(A=Ai)).

Theorem 16. Let

∑

j∈N

rj
2− rj

> 1.

Then there is

∂fi
∂Ai

= 2

ri
2− ri

∑

j∈N

rj
2− rj

− 1



1−Ai

∑

j∈N

rj
2− rj



×

×











1−
A

2
−

1

ri

ri
2− ri

∑

j∈N

rj
2− rj

− 1



Ai +
∑

j∈N

rj
2− rj

(Aj −Ai)















+

+
∑

j 6=i

rj
2− rj

∑

m 6=j

rm
2− rm

∑

m∈N

rm
2− rm

− 1
, ∀i ∈ N, ∀j 6= i

in the game G∀i(BiCK(A=Ai)∧Bi(A=Ai)).
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4. Conlusion

In this paper we onsidered a game with a parameter A and suggested that this is

an unertain parameter for agents and they have to make some suggestion about

it. We made a table where listed behavior of derivative of strategies and utilities of

agents. Having this table one an predit the reation of a system and thus hoose

appropriate informational ontrol.

Table 1. Please write your table aption here

ControlGame Strategy

xi

Utility

fi

∂/∂A Players with ommon knowledge GCK
≥ 0 ≥ 0

Players with ommuniation and onsensus GCB
= 0 = 0

Players without ommuniation G∀iBiCB(A=Ai)∧Bi(A=Ai) = 0 ≥ 0

Stubborn players with ommuniation

G∀i(BiCK(A=Ai)∧Bi(A=Ai))

= 0 ≤ 0

∂/∂Aj Players with ommon knowledge GCK
NA NA

Players with ommuniation and onsensus GCB
≥ 0 ≥ 0

Players without ommuniation G∀iBiCB(A=Ai)∧Bi(A=Ai) ≥ 0 ?

Stubborn players with ommuniation

G∀i(BiCK(A=Ai)∧Bi(A=Ai))

? ??

∂/∂Ai Players with ommon knowledge GCK
NA NA

Players with ommuniation and onsensus GCB
≥ 0 ≥ 0

Players without ommuniation G∀iBiCB(A=Ai)∧Bi(A=Ai) ≥ 0 ≥ 0

Stubborn players with ommuniation

G∀i(BiCK(A=Ai)∧Bi(A=Ai))

≥ 0 ??
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