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Abstract We introduce so-called four-players triple game and define Nash
equilibrium. The problem of numerical finding of a Nash equilibrium in
a four-players triple game has been examined. Such a game can be com-
pletely described by twelve matrices, and it turns out to be equivalent to
the solving a nonconvex optimization problem. Special methods of local
and global search for the optimization problem are proposed. The pro-
posed algorithm was implemented on test problems by "GAMUT" (http:
gamut.stanford.edu).
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1. Introduction

Game theory plays an important role in applied mathematics, mathematical model-
ing, economics and decision theory. There are many works devoted to game theory
(Neumann and Morgenstern, 1944; Vorobyev, 1984; Howson, 1972; Strekalovsky and
Orlov, 2007) and (Owen, 1971; Gibbons, 1992; Mangasarian and Stone, 1964). Most
of them deals with zero sum two person games or nonzero sum two person games.
Also, two person non zero sum game was studied in (Strekalovsky and Orlov, 2007;
Strekalovsky and Enkhbat, 2014; Orlov et al., 2014) by reducing it to D.C program-
ming.

The problem of numerical finding of a Nash equilibrium in a 3-player polymatrix
game was studied in (Strekalovsky and Enkhbat, 2014; Orlov et al., 2014). In this
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paper it has found that a game can be completely described by six matrices, and it
turns out to be equivalent to the solving a nonconvex optimization problem with a
bilinear structure in the objective function.

We consider the four-person matrix game where each of them plays with other
three players. We call such game four-players triple game. In this game we intro-
duce a definition of Nash equilibrium similarly to (Strekalovsky and Enkhbat, 2014).
The game reduces to a nonconvex optimization problem. For solving the optmiza-
tion problem, we propose a global optimization method that combines the ideas of
the classical multistart and local search methods.

2. Problem formulation and optimality conditions
The four-players triple game is given by I'y = {4, j, k,t,a,b,¢,d}, where i = 1,....m
j=1,..,n, k=1,...,s, £=1,.. p are the sets of pure strategies of the respec-
tive players 1, 2, 3 and 4.
Payoffs of players defined on a strategy (4,7, k,t) € I x J x K x T are given by:
a(i,j, k,l) = azljk + a?je +adg,  b(i, 4k, 0) = b}jk + b?jz + b?kev
i ok, 0) = cijp + Chp + gy (i, 5,k 0) = dijp + oy + s
i=1,....m, j=1,....n, k=1,....8, £=1,....p

Thus, twelve matrices are given for players A, B, C, D, where A = (A, Az, A3),
B = (Bl,BQ,Bg), O: (01,02703) andD: (Dl,DQ,Dg).

The payoff functions of the first and second players are defined as:

F I 'Y 2 t Z T Z Z a’lgkyjzk + Z Z az]fyjte + Z Z azkfzkte ’

=1k=1 j=1¢=1 k=1¢=1
Fy(z,y,z,t) Zy] (ZZb”kxlzk —I—ZZblﬂxztg —l—ZZblektg)
i=1 k=1 i=1 £=1 k=1¢=1

where (z,y, z,t) vector of mixed strategies of four players. Similarly, we can define
the payoff functions F3 and Fj of other players.

Denote by S, the set Sy ={u e R >?_ u;=1,u; >0, 7=1,...,q}, q=
m7n,s,p'

Definition 1. A strategy (z*,y*,2*,t*) € Sy, x Sp x S5 X S, is called a Nash equi-
librium of the four-person matrix game if the following conditions are satisfied:



102 Enkhbat R., Batbileg S., Anikin A., Tungalag N., Gornov A.

Fi(z*, y*, 2%, t%) > Fi(z,y*, 2%, t*), Va € Sy,
Fy(x*, y*, 2%, t*) > Fo(x*,y, 2%, t*), Vy € Sp, (1)
Fs(a*,y*, z*,t*) > Fs(a*,y*, 2,t*), Vz €S,
Fy(x*,y*, 2%, t") > Fy(z*,y*, 2%, t), VteS,.

Now we formulate next theorem:

Theorem 1. The stratergy (z*,y*, z*,t*) € Sy, X Sy x Sp % Sy is a Nash equilibrium

in the game I'y =1(A, B,C, D) if and only if there exist numbers ., By, Vx, 0« Such
that:

n S S

n P p
1 * %k 2 * g%k 3 % gk
E ;Y5 2, + E E ajieY;te + E E AjeZpty < xem
L

j=1k=1 j=1¢=1 k=1 (=1

bheriti + D> Weziti < Been (2)

m P p
Z Z Ty + Z Z Ceits + ‘ Z eyits < vees

and satisfy

Proof. Necessity: Assume that (z*,y*, 2*,¢*) is a Nash equilibrium. Then by defi-
nition 1, we have

Fl(x*uy*az*ut*) + F2(x*7y*72*7t*) + F3(:E*7y*72*7t*) + F4(:E*7y*72*7t*)

), V€S, (4)
Fy(z*,y*, 2", t%) > Fa(a™,y, 2%, t"), Vy € Sp, (5)
Fs(z™,y*, 2", t%) > F5(z*,y", 2,t"), VzeSs, (6)
Fy(z™,y*, 2", t") > Fy(z*,y", 2%, t), Vtes,. (7)

In the first inequality (4), successively choose x = (0,0,...,1,...,0) with 1 in
each of the m spots, in (5) choose y = (0,0,...,1,...,0) with 1 in each of the n
spots, in (6) choose z = (0,0,...,1,...,0) with 1 in each of the s spots and in (7)
choose t = (0,0,...,1,...,0) with 1 in each of the p spots. We can easily see that

n S

n p S p
(™ y, 25 t7) > Z Z aijky}‘ZZ + Z Za?jey}‘t? + Z Za?kezw )

j=1k=1 j=14=1 k=1 /=1

i=1,...,m,

Choose scalar o* = Fy(z*,y*, z*,t*) and summing these inequalities, we have
inequality (4). For other players doing the same procedure we obtain (2).
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Sufficiency: Suppose that for a vector

(x*,y*, 2%, t*) € Sp X Sy x S¢ x Sp and numbers o, Bx, V«, 0« conditions (2) and
(3) are satisfied.

We choose z € Sy, y € Sp, z € Sg and t € S, and multiply (4)-(7) by z,y,z and ¢
respectively. In summing we obtain

<sz> Fl(x*;y*aZ*at*) Z
i=1

8
N
S
S
e
<
Sox
N
R
+
[
(-
S
~
&
~
%
_|_
Q
.
??‘
~
N
ks
~
%

S m n
S ZZ%W y; +chzkﬂ t +chakeyyte :
k=1 =1 j=1

i=1 (=1 j=14=1

ii it ya""zzdlkﬂ Zk+zzdjklyjzk ;

i=1 k=1 j=1k=1

Taking into account that >3;" @, = 370 y; = Ypy 2k = Doy te = 1, we
have
Fy(z*,y*, 2%, t%) > Fi(z,y", 2", t%), V& € Sy,
FQ(‘T*ay*uz*at*) 2 FZ(x*uyvz*ut*)v Vy S Snu
F3($*7y*72*7t*) 2 F3($*7y*7zut*)7 VZ S SS7
Fy(z*,y*, 2", t") > Fy(z*, y", 2%, t), Vt € S).

which shows that (z*,y*, 2*,t*) is a Nash equilibrium. The proof is complete. O
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We consider the following optimization problem:

F(u) = Fl(xuy7th)+F2(x7yuZut)+F3(x7yuzut)+F4(:E7yazvt)_a_ﬁ_/y_éTmuaX

(8)
u=(2,y,2,t,a, 8,7,8) € Sy X Sy x S5 x S, x R, 9)
(yuzutaa) € X7 ($727t7ﬁ) S K ($7y727’7) € Z7 (‘Tﬂwa?&) € T7 (]‘0)
where the sets X,Y, Z and T obey the conditions:
X =< (y,2,t,a) € RMHFPH Z Z a;kYi2k + Z Z alﬂy]tg—f—
j=1k= j=1¢=1
s p
Y aht < aem} ,
k=1 (=1
m s m P
Y = {(337 z,t, ) € R™APHL Z bzljkzizk + Z Z bgjéxite—F
i=1 k=1 i=1 ¢=1
s p
+ bfkgzkté < Ben} )
k=1 =1
m n m P
Z =< (z,y,t,7v) € RmTtptl Z Z CiiRTiYj + Z Zcfkﬂcit@—f—
i=1 j=1 i=1 (=1
n o p
+ZZ keyjtf <ves o, (11)
j=1/¢=1

m n m S
T =< (x,y,2,6) € Rttt Z Zd}ﬂxiyj + Z dewxizk—l—

i=1 j=1 i=1 k=1

n S
+ Z Z d?,dyjzk < dep

j=1k=1
and e, = (1,1,..., )T, g=m,n,s,p.
Theorem 2. The strategy (x*,y*,z*,t*) is the Nash equilibrium in the game

I'(A,B,C,D) if and only if there exist numbers (a, By, Vs, 0x) such that uv* =
(%, y*, 2%, 1", s, Ba, Vo, 0x) € RTIFSTPH g g global solution to problem (8)-(11).
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Proof. Necessity: Suppose that (z*,y*, z*,¢*) is a Nash equilibrium. Choose scalars
*,ﬂ* ,Y* §* as: af = Fl( *,y*,z*,t*), ﬂ* — FQ({E*,y*,Z*,t*), ,Y* — Fg(I*,y*,Z*,
t*) and §* = Fy(x*,y*, z*,t%).

We show that the vector (z*,y*, z*, t*, a*, 8*,7*, %) is a solution of the problem

(8)-(11). First, we show that (x*,y*, z* t*, a*, 0*,~*,0%) is a feasible point for the

problem (8).

By the definition of a Nash equilibrium, we have

Fl(x*uy*az*ut* ZFl(xuy*uz*at*)u V.’L'Esm,

)
Fy I*vy*aZ*vt*)ZFQ('r*ava*at* ) VZJGSm
) ( 7y*525t*

( )
Fs(x*,y*, 2%, t*) > F5(z* ), VzeS,
Fy(x*,y*, 2", t") > Fy(z*,y", 2%, 1), VteS,.

The rest of the constraints is satisfied since x € S,,, ¥y € S, and z € S,,t €
Sp. It means that (x*,y*, 2%, t*, a*, 8*,4*,0%) is a feasible point. Choose any z €
D, y € Dy, z € Dy, t € D,, and multiply inequalities in (11) by z;, y;, zr and
t¢ respectively. Summing up these inequalities, we obtain

Fi(x,y,2,t) < Fy(z*, y*, 25 t%) = o,
Fo(z,y,2,1) < Fo(a®, g, 2, %) = B,
Fy(z,y, 2,1) < Fy(a®,y", 2, 1%) = 7,
Fu(z,y, 2,) < Fa(*, y*, 2, %) = 6%,

Hence, we get

F('I?y’z’t) S F(x*’y*7z*’t*) = Fl(x*7y*7z*7t*) + Fz(x*’y*7z*’t*)+
+F3(x*7y*72*7t*) +F4($*7y*72*7t*) —a’ = B* - ’7* — 0" <0.

forall z € Dy,, y € Dy, 2 € Dy and t € D,,.

But with o* = Fl( LyE 2E ), B = Fy(a*, y*, 2%, t%), and v* = F3(a*, y*, 2%, t*),
6% = Fy(x*,y*, 2%, t*) we have F(a*, y*, z*,t*, « ,ﬁ*,w ,0") =0 Hence, the point
(x*,y*, 2%, t", « ,[3*,7*,5*) is a solution of the problem (8)-(11).

Sufficiency: Now we have to show reverse, namely, that any solution of the
problem (8)-(11) must be a Nash equilibrium. Let (7,7, ,t, &, 3,7, 9) be any solu-
tion of the problem (8)-(11).

We show that (Z, 7, Z, ) must be a Nash equilibrium of the game. Since (z, 7, z,t, &
B,7,0) is a feasible point, we have

n s n p S P
ZZa”ky]zk—l—ZZa?j[]fg—i—ZZazwzku <a, i=1,...,m, (12)
j=1k=1 j=1¢=1 k=1 (=1
m p
Z kalzk + Z Z blﬂxltg + Z ijkezktg <B,j=1 S My (13)
i=1 k= i=1 £=1 1e=1

i=1 £=1 j=1¢=1
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Z Zdzﬂxzy] + Z deﬂzzk + Z Zdjkgy]zk <6, 0=1,...,p. (15)

i=1 k=1 Jj=1k=1

Now we multiply inequality (12) by x;, (13) by y;, (14) by 2z, and (15) by t; respec-
tively. Then we sum up these inequalities and obtain:

Fi(z,7,2,t) < a,

FQ(i.ugugut_) S 37

Adding these inequalities, we obtain
F(‘f g Eut_adaﬁiuﬁ/ 5) :Fl(x y,Z t_>+F2(:E y,Z E)+F3 JI yaz t_>+

+F4(.’i',g,2,a—d—3 ’7 S (16)

t,a, B3,7,6) = 0. Since (z,7, 2,1, &, 3,

We know that at a Nash equlhbrlu F(z,79, z,
be equal to zero:

(T, Y,
7,6) is also a solution, F(Z,7, 2,1, &, 3,7, 0
F(fc,gj,é,f,o’z,@,’? 5) (leyuzf)_a) (FQ({E,Q,E,{)—B)-F(Fg(.’f,g,f,f)—’?)‘i‘

+ (Fu(z,9,2,t) — 6) = 0.

Consequently,
Fi(2,9,2,t) = a
F(z,9,21) =B
F3(£.7g727t_> = j/
F4(£.7g727t_> =0

Since a point (z,7, 2,1, &, 3,7, ) feasible, we can write the constraints (12)-(15) as
follows:

Fl( Y, 2 1?)<F1( T,Y,%2 1?) VIESm,
Fy(#,3,2,0) < Fy(#,9,%,0), ¥y € Sh,
F3(j7g727{><F3( ﬂZl_f) VZESS,
F4(j7g727£>§F4( th) VtESp.

Now taking into account the above results, by definition 1, we conclude that the
point (Z,%, z,t) is a Nash equilibrium which completes the proof. [J

Thus, finding Nash equilibrium reduces to solving problem (8)-(11). In order to
solve problem (8)-(11), we apply a global search method proposed in (Gornov and
Zarodnyuk, 2014).
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3. The Curvilinear Multistart Algorithm (Enkhbat et al., 2016; Gornov
and Zarodnyuk, 2014)

To solve problems (8)-(11), we use curvilinear multistart algorithm. The algorithm
was originally developed for solving box-constrained optimization problems. To solve
the original constrained problem (8)-(11), we transform it to a more simple box-
contrained problem with penalties for original constraints. Denote:

n S
Gi(y, 2, t, a) ZZaUkyjzk—|—ZZalﬂthg+ZZaluzktg—a <0,

j=1+4=1 k=1/¢=1
t=1,...,m, (17)
m s s p
GJ .I,Z,t,ﬂ ZZbZJk$ZZk+ZZbZJEI1tE+ Zb kfzktf ﬂgoa
=1 k=1 =1 4=1 =1/4=1

n

m m P n p
G (x,y,t,7) = Z Zc ik TilYj T+ ZZ cfuxitg + ZZ C?kgyjtz —~ <0,

i=1 j=1 i=1 ¢=1 j=1¢=1

k=1,...,s, (19)

n

Ghle,y,2,0) =Y dijwiy; + szmﬂzzk + szﬂcé%zk -4 <0,
=1 j=1 1=1 k=1 Jj=1 k=1
(=1,...,p, (20)
and .
:in—le,xiZO,i: s, M,
Hy(y) = y;—1=0,9;>0,j=1,....n, (21)
Hg(z):sz—le, 2k >0, k=1,...,s,
k=1

p
=> ty—1=0,1t>0(=1,...,p

N = (m+n+s+p+4) andu = (2,9, 2,t,a,3,7,6) € RV then our original problem
can be solved as a series of box-contrained problems:

min £ (u) = ~F(u) + 53(w) + psh(u), (22

where

m ) n ) S ) P )
=Y gi+D g+ g+ gh
i=1 j=1 k=1 =1
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g] = max(0, G} ()%,

and the feasible set D C RY is a simple box:

0<z; <1l,i=1m; 0L a<lq;
0<y; <l,j=Ln; 0<B<pB
0<z<1l,k=1s; 0<~<7;

0<t; <1,l=1,p; 0<4d<h.

The g(u) and fz(u) are the penalty functions; p; and pe are the penalty co-
efficients. In each iteration of the optimization method, we increase the penalty
coefficients, solve the problem and use the solution as the initial guess for the next
iteration. Details are given in the Algorithm Local.

In order to desribe our global search algorithm, we also need to introduce the
following definition:

Definition 2. A point «° € D is said to be a convex point with respect to a direc-
tion p € R, if the following condition holds:

PI)
ou?
where (,) denote the scalar product of two vectors in RY. Construct a line u(t) =
u® + hp, h € Ry It is clear that if the point u° is convex then there exist a positive
h*such that:

p,p) >0 (23)

f@® + hp) > f(u®), Vh € (0,n%).

We can note that an approximate value of (23) can be computed for a sufficiently
small h as follows:

0%f (u)

(LU )~ o (P00 + 209) = 20+ h) + %) (20

h2

To to solve problem (22), we propose a method of a global optimization which
combines the ideas of the classical multistart and an estimation of the convexity
degree of the starting point (Gornov and Zarodnyuk, 2014). The multistart idea re-
mains to be one of the most popular among global optimization approaches. Despite
the vociferous criticism of experts, it is sufficient to arrange two-level computational
process for the successful solution of a simple nonconvex extremal problems. On the
upper level we generate a random starting approximation, and on the lower level
we perform the descent to a different extremum with the use of local algorithms.

We rely on the hypothesis that the algorithm starts from a local descent al-
gorithm from a point in which the function is nonconvex is less computationally
efficient, and it is preferable to use it as a starting point in which the function is
convex. Since for multidimensional functions one can not determine whether the
function is convex or not for sure, we resort to heuristic evaluation, which we call
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the convexity degree. The methodology for such numerical investigation of a con-
vexity property was proposed in (Gornov and Zarodnyuk, 2014). The idea of the
algorithm for testing the convexity of a point is to repeatedly generate random di-
rections passing through this point and check the convexity with respect to chosen
directions.

Estimation of a convexity degree of the function is calculated as the ratio of the
number of “points of convexity” to the total number of investigated sample points.

Algorithm Global

Step 1. Set initial values for @, §, 7, 0, k := 0, k™2 > 0,

Step 2. Set k:=k + 1.

Step 3. Generate a random point u* € D.

Step 4. Check the point u* for the convexity by Algorithm Convex and if it
is not convex, then go to Step 3.

Step 5. Start Algorithm Local from the point «* to find a local solution @*.
Step 6. If f(@*) < f(u*), then u* := @*.

Step 7. If £ < £™# then go to Step 2, otherwise v* is an approximate global
solution.

Algorithm Local

Step 1 Set penalty coefficients p; := 1 and po := 10.

Step 2 Solve problem (22) from the starting point «* with some local optimiza-
tion method and place solution into @*.

Step 3 Compare the «, (8, 7, and 0 values with their upper boundaries and
increase them if necessary. For example, if « = @, then @ := K - @, where K > 1
and go to Step 2.

Step 4 Compute the penalty value: P := §(a*)+h(@¥). If P > ep, then increase
penalty coefficents pq := 10u1, p2 := 10u2 and go to Step 2.

Step 5 Point @* is an approximate local solution.

Algorithm Convex

Step 1 Set j := 0, /™ >0, h >0, fO = f(u¥).

Step 2 Set j := j + 1 and generate a random direction p’ € R,

Step 3 Normalize the direction: p/ := p?/||p’||2.

Step 4 Compute the values to check the point of convexity (see (24)): f! =
Sk hpd), 2 = fuk +2hp7),C = (f°+ f2 — f1)/h2,

Step 5 If C' < 0, then ©* is not convex, exit.

Step 6 If j < j™®* then go to Step 2.

Step 7 The point u* is convex, exit.

4. Numerical Experiment

The proposed algorithm was tested on several four-players triple games. In all cases,
Nash equilibrium points were found successfully. The following test problems were
considered and solved by our algorithm on the computer with Intel Core i5-2400
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CPU (3.1 GHz), 4 GB RAM.

The problems 2-4 were created by the well-known (GAMUT) generator. The gen-
erated game files and our solutions can be found in (DATA). For example, Problems

1 has a matrix payoffs a dimensions 2 x 2 x 2.

Problem 1 (2 x 2 x 2 x 2) Some points of the Nash equilibrium are:

0 [[(0, D[, 0)[(0, D[(1, 0) 1 2 3 1
0 |/(0, 1)|(1, 0)|(0, 1)[(0.95, 0.05)|0.8|1.7(1.7|1
0 |/(0, 1)|(1, 0)|(0, 1)[(0.9, 0.1) |0.6|1.4[2.8|1
0 |/(0, 1)|(1, 0)|(0, 1)[(0.85, 0.15)|0.4|1.1(2.7|1
0 |/(0, 1|(1, 0)|(0, 1)[(0.8, 0.2) |0.2]0.8[2.6|1
0 |/(0, 1|(1, 0)|(0, 1)|(0.75, 0.25)|0 |0.5[2.5|1
Problem 2. GAMUT Random Game 3 x4 x5 X 6:
F* x*,y*72*7t* a*,/@*77*75*
=(9.94,0,0.06) a* = 48.57
143 10-2|[y" = (0-34,0.21,0,0.45) B* = 40.14
' 2* = (0,0.26,0.44,0.3,0) * =42.30
=(0,0,0.18,0.23,0,0.59) §* = 52.99
z* = (0.06,0.26, 0.68) o = 44.74
L 75 . 10-2|[" = (0.18,0.5,0.18,0.14) B* = 50.26
' z* = (0,0.15,0,0.66,0.19) ~* = 55.83
t* = (0.31,0.09,0.05,0,0.29, 0.26)|6* = 53.32
z* = (0.43,0.57,0) a* =50
Les. 10-2|[" = (0.07,0,0.23,0.7) B* = 55.44
' 2* = (0.4,0.04,0,0.20,0.36) A = 44.04
t* = (0.53,0.47,0,0,0,0) §* =50.26
Problem 3. GAMUT Random Game 6 x 4 X 3 X 6:
F* x*,y ,Z t* a*7ﬁ*,,}/*,6*
z* = (0.35,0,0.47,0,0,0.18) |a* = 56
_slly* = (0.08,0.37,0,0.55) B* = 50.23
8.69- 1077 = (0.25,0.26,0.49) ~* = 53.66
=(0,0,0,0,0.25,0.75) §* = 49.08
x* =(0,0.22,0.1,0.37,0.31,0)[a* = 54.52
olly* = (0.34,0.25,0.41,0) B* = 45.94
1.74-10 = (0.47,0.53,0) * =49.07
=(0,1,0,0,0,0) §* = 59.75
z* = (0,0.52,0,0,0.09,0.39) |a* = 52.65
olly* = (0,0.91,0.09,0) B* = 56.1
19910757 (0.2,0.5,0.3) y* =52.11
t* = (0.5,0.5,0,0,0,0) &* = 57.37
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Problem 4. GAMUT Random Game 6 x 8 x 4 x 5:

F* x*,y*,z*,t* a*7ﬂ*77*,5*
2" = (0,0.11,0.12,0.02,0.25,0.5) _ |a* = 53.39

y* = (0,0.18,0,0.13,0.46,0.1,0.13,0)|3* = 53.20
2=

—6.97-1072

0,0,0.55,0.45) 4% = 51.81

#* = (0.5,0.02,0.22,0.26,0) §* = 56.87

2" = (0,0.16, 0.35,0.45,0.02,0.02) |o* = 45.22

L09. 10-2/[v" = (0,0,0.16,0.22,0,0.49,0.13,0) |8* = 57.64
' 2* = (0.53,0.26,0,0.21) N =478
* = (0.2,0.23,0.19,0.06, 0.32) 5 =54.14

z* = (0,0.31,0.23,0.46, 0, 0) o = 48.68
L5 104||¥" = (0-18,0,0,0,0,0.08,0.18,0.56) |5* = 55.32

' 2* = (0,0.2,0.8,0) A* = 45.87
#* = (0.17,0,0,0.61,0.22) 5% = 47.96

5. Conclusion

We examined the nonzero sum four person triple game from a viewpoint of the
global optimization. Finding a Nash equilibrium of the game was reduced to a
global optimization problem. To find the equilibrium points, we propose a method
that combines the ideas of classical multistart and an estimation of a convexity of
points. This method was examined numerically on some test problems generated by
(GAMUT) and found solutions in all cases.
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