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Abstract We consider a dynamic Stackelberg game on a finite time inter-
val. The game is reduced to a problem of infinite-dimensional optimization
with two additional constraints. Two finite-dimensional approximations of
the problem are defined. They are solved by two numerical algorithms which
do not require calculation of the gradient of the payoff function. The first
algorithm is an algorithm of simulated annealing with a uniform partition
of the interval. The second algorithm uses a piecewise-constant approxima-
tion of the solution with a choice of the interval partition. Two illustrative
examples connected with a resource allocation problem are considered. The
numerical results are given and compared.

1. Introduction

Dynamic Stackelberg games (Basar and Olsder, 1999) are actively analyzed and dis-
cussed as adequate models of the hierarchically controlled dynamic systems. Thus,
one of the interesting problem domains is resource allocation in organizational and
economic systems (Christodoulou et al., 2015; Novikov, 2013).

Analytical methods of solution of the dynamic Stackelberg games are quite com-
plicated due to the complex nature of those models. A comprehensive approach was
proposed by Germeier for static Stackelberg games (Germeier, 1986) and developed
by Kononenko and Gorelov for the dynamic case (Gorelov and Kononenko, 2015;
Kononenko, 1977; Kononenko, 1980). The idea consists in the implementation of a
cooperative trajectory and punishment in the case of defection.

However, the numerical algorithms are more convenient in this context. Evolu-
tionary algorithms are especially useful, such as genetic and simulated annealing
algorithms (Jones, 2008). An important place belongs to the methods which do not
require the calculation of the gradient of the payoff function (Hazan, 2015).

The authors’ approach is presented in (Belyavsky et al., 2016; Belyavsky et al.,
2018a; Belyavsky et al., 2018b). In the paper Belyavsky et al., 2016 an applica-
tion of the evolutionary modeling for the solution of the problems of sustainable
management in active systems is considered. The different information structures
of hierarchical differential games are described. The result which gives the oppor-
tunity of using of genetic algorithms for the solution of these problems is obtained
and illustrated by a model example. In (Belyavsky et al., 2018a) a dynamic game
theoretic model of resource allocation in the organizational system is proposed. The
algorithms of evolutionary modeling are developed in this context and illustrated
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by model examples. The paper (Belyavsky et al., 2018b) considers resource allo-
cation among producers (agents) in the case where the Principal knows nothing
about their cost functions while the agents have Markovian awareness about their
strategies. We use a dynamic setup of the stochastic inverse Stackelberg game as
the model and suggest an algorithm for solving this game based on @Q-learning. The
associated Bellman equations contain functions of one variable for the Principal and
the agents.

This paper develops the described approach. In Section 2. the model formula-
tion is given. Section 3. presents the Stackelberg game in infinite-dimensional and
finite-dimensional spaces. In Sections 4. and 5. the simulated annealing and binary
partition algorithms are exposed respectively. Section 6. is dedicated to the numeri-
cal results and their comparative analysis based on the first numerical example. The
section 7. treats an application of the simulated annealing algorithm in a static game
with incomplete information. The numerical results concerned with an additional
illustrative example are given in Section 8.. Section 9. concludes.

2. A model formulation

A dynamic Stackelberg game with one leader and multiple followers (agents) is con-
sidered. The game theoretic model contains the following main elements: state of the

T
game (1o, x(t)) € R?, strategies (u(t),v(t)) € R™*!, leader’s payoff/ go(z0, u,v) dt,
0

T
agents’ payoffs / gi(x, u,v) dt; u — the leader’s control; v; — a reaction of the agent
0

indexed by .
Define the leader’s problem as calculation of

T
max/ go(xo,u,v)dt, with constraint dzo(t) = fo(zo,u)dt, x0(0) =x]. (1)
“ Jo

A homeostasis condition z(t) € X can be also added, for example, in the
form (zf — x(t))?> < a. The homeostasis condition can be expressed by a penalty:
T

k / (x5 — (t))* dt. We can include the penalty into the leader’s payoff functional
0

T
and then consider a new payoff functional: / (900, u,v) — k(z§ — z(t))?] dt.

0
The agents’ problems are set up in the form:

2
Ui

T
max/ gi(z,u,v)dt, with constraints dx;(t) = fi(ws,v;)dt, z;(0) =2z, (2)
0
It is supposed that the game (1), (2) can be transformed into a static Stackelberg
game in the infinite-dimensional linear spaces:
Jo(u,v) = max; J;(u,v) 5> max, i=1,2,...,r (3)
u Vi
In other words, for any feasible strategies (u,v) there is an algorithm of calcu-
lation of the state of the system (zg, ;) and the players’ payoffs. Let us assume

that the functions u and v; belong to a Banach space B0, 1] of the bounded func-
tions with a uniform norm: ||f|| = sup f(¢). The normalization in time is made
te(0,1]

additionally. Thus, the game (3) is considered.
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3. The Stackelberg game in infinite-dimensional and finite-dimensional
spaces

The leader chooses her strategy v and reports it to the agents. In turn, the agents
choose their strategies as a best response to the leader’s strategy from the set of
Nash equilibria in their game in normal form: v(u) € N(u). Therefore the leader’s
problem takes the form
max min Jo(u,v), 4
u  veEN(u) 0( ) ( )

if the agents do not cooperate with her, and the form

Jo(u, ), 5
max max o(u, v) (5)

if they cooperate.
Let @(u) be the solution of the internal problem in (4) or (5). Then the leader’s
problem has the form
max Jo(u), (6)

where Jo(u) = Jo(u, ®(u)).

Consider a finite-dimensional approximation of the problem (6). A sufficient
condition of the possibility of the finite-dimensional approximation is a continuity
of the functional Jo(u) on the set of feasible solutions. The continuity is ensured by
the Lipshitz condition:

|Jo(u) — Jo(w)| < L||u — w| which follows from the two inequalities:

|Jo(uz,v) = Jo(u1,w)| < Lylluz — uz| + Lo[lv — w|;, )

[@(uz) — D(wr)lr < Lolluz — .-

The last inequality in (7) is the most difficult for checking.

Consider the first class of feasible controls as a subset of the space of bounded
functions in the form

LY([0,1]) = {uEB[O,l]: Ja, supM < a,
[t — s| 8)
0<t<1,0<s<1, t;ﬁs}

It is assumed that the leader is in a sense restricted in her actions and therefore
chooses her controls from this class. In other words, the leader is unable to make
‘sharp motions’.

The next result forms a base for the proposed method of finite-dimensional
approximation.

Theorem 1 (Belyavsky et al., 2016). If u € L'([0,1]) then a sequence exists
u"(t) =uo+a Yy (W lysry, 0F(u) € {-1,0,1}, 7 =i/n, i=0,1,...,n, (9)
i=1

that converges to u by the norm of the space B[0,1].
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This result means that the subset

LY0,1] = {u € L[0,1]): I (ug,,n, ), u=wuo+ aZéiI{bﬂ.},
i=1

0; € {-1,0,1}, 7, = i/n, Z'——O,l,...,n}

is dense in L]0, 1].

Assume that the initial problem (6) with an additional constraint u € L;[0, 1]
has a solution. Then the finite-dimensional approximation of the problem (6) with
the additional constraint is the optimization problem

uelgla[%(,l] Jo(u) = uog}gzﬁA Jo(ug, o, A), A= (6;)1;. (10)

Notice that the problem (10) has a solution if for any fixed A the problem

Imax Jo(ug, a, A) has a solution. Suppose that the condition holds. The reason of
upER, o

the finite-dimensional approximation is given by the following result.
Theorem 2 (Belyavsky et al., 2016). Let p* = Iri?gcu Jo(u) = Jo(u*), ¢* =
ue s
m?x | Jo(u) = Jo(@*). Then for any € > 0 we have p* — ¢* < e.

weL[0,1

In fact, the continuity of the functional Jo(u) and the density of the set L!([0, 1])
in the set L'([0,1]) imply the following inequalities: p* — ¢* = Jo(u*) — Jo(u*) <
Jo(U*) — Jo(u1) < e. To satisfy the last inequality it is required to choose %, €
L1([0,1]) close enough to u*.

The second class of feasible controls is a set of bounded functions having on
the segment [0, 1] a finite number of the points of discontinuity. Denote this set by
L?([0,1]). Define the set

L2([0,1]) = {u € B[0,1]: I(n, (c)y, (1i)1y), O=T0 <11 < -+- < T =1,
Ft) = e1o(t) + Z cilir, ) ) (t)}.

It is evident that the set L? is dense in the set L?. Given the continuity of the
functional Jo(u) on the set L2([0,1]) the problem

max Jo(u) (11)
ueL2[0,1]

is a finite-dimensional approximation of the problem (6) with the additional con-
straint u € L?[0, 1] if both problems have solutions.

4. A simulated annealing algorithm

The simulation annealing algorithm is used for the solution of the problem (10). Let
us analyze the variables in the problem (10). The first two variables o and wg are
real numbers, the third variable A takes its values from the finite set of sequences
S = {(8;): 6; € {—1,0,1}}. If the functional Jy(u) satisfies a global Lipshitz con-
dition with the Lipshitz constant L, and K = sup« in the definition (8) then for
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a given € the number of elements in the sequence is equal to n = [%} + 1 (see

details in Belyavsky et al., 2016). Thus, the considered problem is connected with

calculation of the maximum of the function F'(A) = max Jy(ug, o, A) on the finite
ug,x

set S. Problems of that kind can be solved efficiently by the algorithms of evolu-
tionary modeling, such as genetic algorithms and simulated annealing algorithms.
The genetic algorithm was used in (Belyavsky et al., 2016; Belyavsky et al., 2018a),
that’s why here we consider the simulated annealing algorithm (Jones, 2008).

The algorithm starts from an initial A and an initial temperature T' = Ty. The
iterations have the following form.

1. The new A is calculated in the neighborhood of the current A.

2. If F(A) > F(A) then A := A else A := A with probability

D= exp (F(A_);F(A))_

3. Set the temperature T := ¢1" where 0 < ¢ < 1.
4. The iterations are repeated until (T' > Ty) A (|JAF| > £).

5. A binary partition algorithm

Now suppose that the functional Jy(u) is additive, or for an arbitrary partition of
the segment [0,1]: 0 =7y < 71 < --+ < 7, = 1 the inequality holds:

Jo(w) = Jo (D oy 1) = 3 Fo(u Iy @) (12)
=1

i=1

The algorithm has the following form.

1. Initialization. Let the initial partition of the segment is given: [0,1/2)U[1/2, 1].
Consider the approximation u'(t) = ¢1,0j0,1/2)(t) + ¢1,11(1/2,1) (). From all approx-
imations in this form choose the best one using the property of additivity of the
functional Jo(ul) = jO(C]_7OI[OJ1/2]) +Jo (e1,11(1/2,1)). For this purpose let’s solve two
independent problems: max Jo(clio,1/2))s max Jo(clio,1/2))-

2. Iterations. An iteration with the index n consists in the following. Let the

(n) (n) (n)

current partition be 0 = 757 <77 < --- < 7’ = 1, and the respective current
n

approximation be u(™)(t) = enalo(t) + >0 Cn,iI(T(n) T(u)](t). Define the sequence
=1 i—1Ts

bnj = m Jo (C"*jl(f;")l,rjm] ) and the respective probabilities of choice of the
% r

. bns ) . .
interval: p,; = ==, j = 1,2,...,n. The interval is chosen randomly accord-
n,k

k=1
ing to the distribution of probabilities p,_ ;. The chosen interval with the index j,

namely [\, 7™ i titioned on two intervals of 1 length |7(™) ™
y |70, 7, |, is partitioned on two intervals of equal length | 7;", 2=5-—1,

(n) 4 ()
T L +T . .
[%, T;n):| and the new approximation

n+1

un+l(t) = Cn—i—l,lIO + Z cn+1’il<‘r»(f;rl),‘r»("+l)] (t)
=1
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is calculated, where ¢,,11,; =cpifi=1,...,5 - 1;

(n
7]7

)

Cnt1,j = argmax Jy | cl (), (m) ,
c [ ) i1 :|
1 2

Cna1,j+1 = argmax Jo | ¢l o) () ;
c |: j—1 j 7_(n):|
R I

Cnt1i = Cni—1ifi=j+2,...,n+ 1. The new partition Ti("ﬂ) = i(f)l is calculated

(™) (™) n n) e
ifi=0,....5—1, 7" =100 and 7MY =7 it =4+ 1,0+ L

The iterations are repeated until the changes become small enough.

This algorithm is a monotonous one. Therefore the sequence Jy(u,,) converges if
the leader’s payoff functional is bounded from above. An objective of minimization
of the number of points of the partition of the interval is aimed additionally.

6. The first example

We will consider a dynamic Stackelberg game which is already reduced to the form
(6). The game describes a resource allocation between producers. Notice the mono-
graph (Novikov, 2013) in this connection. An amount of the resource allocated in

the moment ¢ is denoted by wu(t). Each player receives his part of the resource
T

u;(t); it is evident that u(¢) = 3 u;(t). Given the resource each player produces
i=1

a good v;(t) so that to maximize his instant payoff. The leader tends to maxi-

mize the total production and uses the proportional distribution mechanism, or
T

w;i(t) = v (t)vi(t). Then 3 v;(¢)vi(¢t) = u(t). An instant payoff of the i-th follower
i=1

is calculated as the difference between his part of the resource and production cost,

or Pi(t) = vi(t)vi(t) — vi(vi(t)). The cost p;(x) is a convex non-decreasing function

defined on R™, and ¢;(0) = 0. Thus, an auxiliary Stackelberg game arises in the

following form:

r
max v; with constraint Z ViV = U, (13)
= =1 i=1

{E%[%Ui — i (v)].

For simplicity from now on the time ¢ is omitted. It is important to note that
in this formulation the game between followers is decomposed by the independent
T

optimization problems. If we assume that v; = 7 then the equality > vv; = u
i=1
U
implies the equality v = —7—, and the solution of the followers’ game consists
i=1Yi
in the calculation of the Nash equilibrium in the game with individual followers’
uv;

22:1 Uj

problems: max l - gpi(vi)] (see details in Christodoulou et al., 2015).
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Consider the game with cost functions ¢;(z) = p;z%. In this case the solution of
(11) takes the form
Yi 2u
vi=o—, Y= =T (14)
244 Zj:l i

Notice that all v; do not depend on 1.
The instant payoff of the leader is determined as R(Zi v;(t), u(t)) . The function

R(z,y) increases in the first argument and decreases in the second argument. The

total payoff is an integral of the instant payoff: / Z’UZ, ) dt. Based on (14)

T
- 1
we receive the total payoff as Jo(u) = / R <2 Z E ) dt. Denote
0 Jj=1 HJ

T
52 ) Then Jo(u) = / R(AV/u,u)dt. Assume that F(x,y) =
-1 M 0

T
x — 1y, then Jo(u) = / [AV/u — u) dt. It is evident that the function u*(t) = Az(t)
0

is a maximizer for Jy(u). This function satisfies the first and second additional
constraints if p;(t) > 0.

Counsider the algorithm of simulated annealing in the game with two followers
and u1(t) = t2 + 1, ua(t) = 2t2 + 1. In this algorithm a partition of the interval
is fixed. Calculate F'(A) = maX[Z(ai uo + ag; (A) — (up + agi(A))At)}. From

Uo,x Ly —1
the concavity by ug and « follows that the optimal values are the solutions of the
algebraic system of two equations:

Z C Y = —2gi(8)At | =0
Vv Uo + agz i=1 U + agz(A)
In these formulas a; = / A(t)dt, g;(A) = 1 Z(Sj, At = 7, — ;1. For calcu-
n
Ti—1 j=1

lation A in the neighborhood of A each d; is replaced by &; € {—1,0,1}\ &; with
probability ¢/n and equal probabilities on the set {—1,0,1} \ é;. The parameter
g € {1,2,...,n — 1} determines a mean number of the changing elements A. The
results of calculations are presented in Fig. 6..

Now consider an application of the binary partition algorithm to the same prob-
lem. For this purpose, the following problem is solved each time: for an interval

[1,8] it is required to find min [\/E/ A(t)dt —c(s — t)} The optimal value is

1 S
¢t = (ﬁ/ A(t) dt). The results of calculations are presented in Fig.6..
5—1T)J,

7. A static game with incomplete information: The simulated annealing
algorithm

Consider the following problem setup (Belyavsky et al., 2018b). The leader uses a
resource allocation as an incentive for the agent and tries to max|[¢)(v) —p(u,v)]. The
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Fig. 1. The results of simulated annealing algorithm for Ti,ax = 100, Tmin = 10, ¢ = 5,
n = 64. The dotted line is the exact solution
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Fig. 2. The results of the binary partition algorithm. The dotted line is the exact solution
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agent maximizes his profit: max[o(u,v) — f(v)]. Assume that a Nash equilibrium

(u*,v*) exists in this game. The feature of the game is that the leader does not know
the cost function f of the agent and cannot calculate the equilibrium respectively.
So, the leader uses a sequence of controls u(t) for the determination of u*. The
sequence v(t), t = 0,1,... represents the agent’s best responses on u(t). In each
moment of time ¢ the leader knows an interval v(0), ..., v(t—1) of the best response
sequence of the agent. Based on this information, the leader chooses the control
u(t) = u(t — 1)(1 + ad(t)), according to which the agent receive the amount of
resource @(v(t—1),u(t)). Similarly to Section 3., §(¢) € {—1,0,1},0 < o < 1. Thus,
in each iteration of the game the leader can save her control or increase/decrease
it by a fixed value according to a ‘Lipschitz’ concept of the paper. The initial value
u(0) and the sequence §(¢) completely determine the sequence u(t). Assume that
the initial value «(0) = z is known.

Consider the agent’s problem. The agent supposes that 6(¢) is a Markov se-
quence with the set of states {—1,0,1} and a transition probabilities matrix @ with
dimension (3 x 3). The initial probability distribution y on the set {—1,0,1} is given.

The agent’s problem is to calculate

max By B [p(u(t = 1),u(t) = f(o(1))]. (15)

t=1

If the function —f(z) 4+ By(z,w) is strictly concave for any value of the argument
w then the optimal control of the agent is

v*(z,y) = argmax [—f(2)+ Be(z,y(1 + a(gz,3 — 4o,1)))] (16)

(see details in Belyavsky et al., 2018b). Thus, the current reaction of the agent is
calculated as

o(t) = argmax [~ () + B (5, u()(1 + aldhn s — dhpn)] - (D)

The matrix Q! is calculated as a maximally likely estimation of the transition matrix
for the interval §(1),...,4d(t).

Now consider the leader’s problem. The leader treats v(t) as the best response to
d(t), and chooses the next value 6(¢t 4 1) so as the consequent agent’s best response
v(t + 1) is a random value. Thus, the leader solves the problem

5I(rt1jar>1<) E[¢(v((t+1))) — o(v(t), ue(l +6(t+1)))] . (18)

This problem is solved by the reinforcing learning algorithm. According to this
algorithm, in each iteration the leader calculate the new value of Q-function:

Qe+1(6(t)) = Qe(6(1)) + he(R(5(¢)) — Q¢(5(2)))- (19)
In (19) R(6(t)) = v(v(t)) — p(v(t - 1), ut), theooinitial value Qo(-) = 0, and the

sequence h satisfies the condition: th = 00, Z hf < 00. Then the distribution
t=1 t=1
of probabilities on the set {—1,0,1} is calculated as follows,

pe41(d) = exp(Qi+1(4)/Tr41) / > ep(@Qu(k)/Ti), j=-1,0,1;  (20)

k=—1
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and respectively 6(¢ + 1) is chosen. In (20) T is a temperature that controls the
degree of randomness in the choice of the next ¢ see Section 3.. The convergence of
the algorithm is studied in (Sutton and Barto, 1998).

8. The second example

Consider another illustrative example where ¥(z) = /z, p(z,y) = zy u fi(z) =
px?. Tt is borrowed from (Belyavsky et al., 2018b) and slightly modified. The equal-

ity (17) takes the form v(t) = arg max {—,uz2 + Bzu(t) (1 + g 53— qg(t)yl))] A

Bzu(t) (1 + a5y 3 — qg(t).,l))

simple calculation gives v(t) = . The equilibrium so-

2p
pu* p\?
lution in the game (15), (18) is v* = TR ut = <@) . The equilibrium solution
7
. . . « ut o, N\ 1/3
in the initial game is: v* = 2 u* = (g) .For p =1, 8 =0.9, a = 0.05 the
1

following numerical results are received:

Iteration|The leader’s control| The leader’s payoff

1 04 0

2 0.412 0.352264
3 0.39964 0.354196
4 0.411629 0.352203
5 0.423978 0.35414
6 0.436697 0.355904
7 0.436697 0.357482
8 0.449798 0.357482
9 0.463292 0.358856
10 0.449394 0.36001
11 0.462875 0.358817
12 0.476762 0.359978
13 0.491064 0.360902
14 0.491064 0.361569
15 0.491064 0.361569
16 0.476333 0.361569
17 0.490622 0.360877
18 0.505341 0.361553
19 0.520501 0.361952
20 0.504886 0.362054
21 0.520033 0.361944
22 0.504432 0.362055
23 0.504432 0.361936
24 0.504432 0.361936
25 0.504432 0.361936
26 0.504432 0.361936

Table 1. The numerical results for the Example 2

Note that the equilibrium solution of the leader for the given input data is equal
to 0.519, and the respective payoff is 0.362.
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9. Conclusion

The considered example with the known exact solution demonstrates a numerical
applicability of both algorithms. As the algorithms require only the calculation of
payoff functionals then they are efficient in situations when other methods do not
generate implementable numerical schemes. It should be noticed that optimization
methods which not require the calculation of gradient are actively discussed in the
modern literature (see, for example, Hazan, 2015).

For a comparable precision of the approximate calculations given by the algo-
rithms in the second example, these algorithms essentially differ. Their comparison
by some important criteria is given in Table 2.

A simulated annealing A binary partition
algorithm algorithm
Additional conditions on|absent present (additivity)

the leader’s functional
Additional conditions on|present (Lipschitz codi-|practically absent
the leader’s solution tion)
Pre-partition interval require do not require

Table 2. Comparison of algorithms

Note that in the static game with incomplete information (Section 7.) a binary
partition algorithm is not applicable.

The comparison of the simulated annealing and the genetic algorithm results
in the following conclusions. Both of them are random search algorithms in the
optimization problems. An essential difference is that the simulated annealing is an
algorithm of the depth search where only one potential solution is studied in each
iteration, while the genetic algorithm is a width search algorithm which tests several
potential solutions at each step. By the genetic algorithm a faster convergence may
be expected, while the genetic algorithm has simpler iterations in a numerical sense.
Therefore, the choice between them is determined by a specific problem. For exam-
ple, if the calculation of the value of a finite-dimensional leader’s objective function
is a complicated problem, and the objective function is close to the concave one
then the simulated annealing algorithm looks more attractive.

The considered methods are close to the method of scenarios used in simulation
modeling.
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