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Abstrat We onsider a dynami Stakelberg game on a �nite time inter-

val. The game is redued to a problem of in�nite-dimensional optimization

with two additional onstraints. Two �nite-dimensional approximations of

the problem are de�ned. They are solved by two numerial algorithms whih

do not require alulation of the gradient of the payo� funtion. The �rst

algorithm is an algorithm of simulated annealing with a uniform partition

of the interval. The seond algorithm uses a pieewise-onstant approxima-

tion of the solution with a hoie of the interval partition. Two illustrative

examples onneted with a resoure alloation problem are onsidered. The

numerial results are given and ompared.

1. Introdution

Dynami Stakelberg games (Basar and Olsder, 1999) are atively analyzed and dis-

ussed as adequate models of the hierarhially ontrolled dynami systems. Thus,

one of the interesting problem domains is resoure alloation in organizational and

eonomi systems (Christodoulou et al., 2015; Novikov, 2013).

Analytial methods of solution of the dynami Stakelberg games are quite om-

pliated due to the omplex nature of those models. A omprehensive approah was

proposed by Germeier for stati Stakelberg games (Germeier, 1986) and developed

by Kononenko and Gorelov for the dynami ase (Gorelov and Kononenko, 2015;

Kononenko, 1977; Kononenko, 1980). The idea onsists in the implementation of a

ooperative trajetory and punishment in the ase of defetion.

However, the numerial algorithms are more onvenient in this ontext. Evolu-

tionary algorithms are espeially useful, suh as geneti and simulated annealing

algorithms (Jones, 2008). An important plae belongs to the methods whih do not

require the alulation of the gradient of the payo� funtion (Hazan, 2015).

The authors' approah is presented in (Belyavsky et al., 2016; Belyavsky et al.,

2018a; Belyavsky et al., 2018b). In the paper Belyavsky et al., 2016 an applia-

tion of the evolutionary modeling for the solution of the problems of sustainable

management in ative systems is onsidered. The di�erent information strutures

of hierarhial di�erential games are desribed. The result whih gives the oppor-

tunity of using of geneti algorithms for the solution of these problems is obtained

and illustrated by a model example. In (Belyavsky et al., 2018a) a dynami game

theoreti model of resoure alloation in the organizational system is proposed. The

algorithms of evolutionary modeling are developed in this ontext and illustrated
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by model examples. The paper (Belyavsky et al., 2018b) onsiders resoure allo-

ation among produers (agents) in the ase where the Prinipal knows nothing

about their ost funtions while the agents have Markovian awareness about their

strategies. We use a dynami setup of the stohasti inverse Stakelberg game as

the model and suggest an algorithm for solving this game based on Q-learning. The
assoiated Bellman equations ontain funtions of one variable for the Prinipal and

the agents.

This paper develops the desribed approah. In Setion 2. the model formula-

tion is given. Setion 3. presents the Stakelberg game in in�nite-dimensional and

�nite-dimensional spaes. In Setions 4. and 5. the simulated annealing and binary

partition algorithms are exposed respetively. Setion 6. is dediated to the numeri-

al results and their omparative analysis based on the �rst numerial example. The

setion 7. treats an appliation of the simulated annealing algorithm in a stati game

with inomplete information. The numerial results onerned with an additional

illustrative example are given in Setion 8.. Setion 9. onludes.

2. A model formulation

A dynami Stakelberg game with one leader and multiple followers (agents) is on-

sidered. The game theoreti model ontains the following main elements: state of the

game (x0, x(t)) ∈ R2
, strategies (u(t), v(t)) ∈ Rr+1

, leader's payo�

∫ T

0

g0(x0, u, v) dt,

agents' payo�s

∫ T

0

gi(x, u, v) dt; u� the leader's ontrol; vi � a reation of the agent

indexed by i.
De�ne the leader's problem as alulation of

max
u

∫ T

0

g0(x0, u, v) dt, with onstraint dx0(t) = f0(x0, u) dt, x0(0) = x00. (1)

A homeostasis ondition x(t) ∈ X an be also added, for example, in the

form (x∗0 − x(t))2 ≤ a. The homeostasis ondition an be expressed by a penalty:

k

∫ T

0

(x∗0 − x(t))2 dt. We an inlude the penalty into the leader's payo� funtional

and then onsider a new payo� funtional:

∫ T

0

[

g0(0, u, v)− k(x∗0 − x(t))2
]

dt.

The agents' problems are set up in the form:

max
vi

∫ T

0

gi(x, u, v) dt, with onstraints dxi(t) = fi(xi, vi) dt, xi(0) = x0i . (2)

It is supposed that the game (1), (2) an be transformed into a stati Stakelberg

game in the in�nite-dimensional linear spaes:

J0(u, v) → max
u

; Ji(u, v) → max
vi
, i = 1, 2, . . . , r. (3)

In other words, for any feasible strategies (u, v) there is an algorithm of alu-

lation of the state of the system (x0, xi) and the players' payo�s. Let us assume

that the funtions u and vi belong to a Banah spae B[0, 1] of the bounded fun-

tions with a uniform norm: ‖f‖ = sup
t∈[0,1]

f(t). The normalization in time is made

additionally. Thus, the game (3) is onsidered.
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3. The Stakelberg game in in�nite-dimensional and �nite-dimensional

spaes

The leader hooses her strategy u and reports it to the agents. In turn, the agents

hoose their strategies as a best response to the leader's strategy from the set of

Nash equilibria in their game in normal form: v(u) ∈ N(u). Therefore the leader's

problem takes the form

max
u

min
v∈N(u)

J0(u, v), (4)

if the agents do not ooperate with her, and the form

max
u

max
v∈N(u)

J0(u, v), (5)

if they ooperate.

Let Φ(u) be the solution of the internal problem in (4) or (5). Then the leader's

problem has the form

max
u

J̄0(u), (6)

where J̄0(u) = J0(u, Φ(u)).
Consider a �nite-dimensional approximation of the problem (6). A su�ient

ondition of the possibility of the �nite-dimensional approximation is a ontinuity

of the funtional J0(u) on the set of feasible solutions. The ontinuity is ensured by

the Lipshitz ondition:

|J̄0(u)− J̄0(w)| ≤ L‖u− w‖ whih follows from the two inequalities:

|J0(u2, v)− J0(u1, w)| ≤ Lu‖u2 − u2‖+ Lv‖v − w‖r,
‖Φ(u2)− Φ(u1)‖r ≤ LΦ‖u2 − u1‖.

(7)

The last inequality in (7) is the most di�ult for heking.

Consider the �rst lass of feasible ontrols as a subset of the spae of bounded

funtions in the form

L1([0, 1]) =

{

u ∈ B[0, 1] : ∃α, sup |u(t)− u(s)|
|t− s| ≤ α,

0 ≤ t ≤ 1, 0 ≤ s ≤ 1, t 6= s

}

.
(8)

It is assumed that the leader is in a sense restrited in her ations and therefore

hooses her ontrols from this lass. In other words, the leader is unable to make

`sharp motions'.

The next result forms a base for the proposed method of �nite-dimensional

approximation.

Theorem 1 (Belyavsky et al., 2016). If u ∈ L1([0, 1]) then a sequene exists

un(t) = u0+α
n
∑

i=1

δni (u)I{t>τi}, δni (u) ∈ {−1, 0, 1}, τi = i/n, i = 0, 1, . . . , n, (9)

that onverges to u by the norm of the spae B[0, 1].
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This result means that the subset

L̄1[0, 1] =

{

u ∈ L[0, 1] : ∃ (u0, α, n, δ), u = u0 + α
n
∑

i=1

δiI{t>τi},

δi ∈ {−1, 0, 1}, τi = i/n, i = −0, 1, . . . , n

}

is dense in L1[0, 1].
Assume that the initial problem (6) with an additional onstraint u ∈ L1[0, 1]

has a solution. Then the �nite-dimensional approximation of the problem (6) with

the additional onstraint is the optimization problem

max
u∈L̄1[0,1]

J̄0(u) = max
u0∈R,α,∆

J̄0(u0, α,∆), ∆ = (δi)
n
i=1. (10)

Notie that the problem (10) has a solution if for any �xed ∆̄ the problem

max
u0∈R,α

J̄0(u0, α, ∆̄) has a solution. Suppose that the ondition holds. The reason of

the �nite-dimensional approximation is given by the following result.

Theorem 2 (Belyavsky et al., 2016). Let p∗ = max
u∈L[0,1]

J̄0(u) = J̄0(u
∗), q∗ =

max
u∈L̄[0,1]

J̄0(u) = J̄0(ū
∗). Then for any ǫ > 0 we have p∗ − q∗ ≤ ǫ.

In fat, the ontinuity of the funtional J0(u) and the density of the set L̄1([0, 1])
in the set L1([0, 1]) imply the following inequalities: p∗ − q∗ = J0(u

∗) − J0(ū
∗) ≤

J0(U
∗) − J0(ū1) ≤ ǫ. To satisfy the last inequality it is required to hoose ū1 ∈

L̄1([0, 1]) lose enough to u∗.
The seond lass of feasible ontrols is a set of bounded funtions having on

the segment [0, 1] a �nite number of the points of disontinuity. Denote this set by

L2([0, 1]). De�ne the set

L̄2([0, 1]) =

{

u ∈ B[0, 1] : ∃ (n, (ci)ni=1, (τi)
n
i=1), 0 = τ0 < τ1 < · · · < τn = 1,

f(t) = c1I0(t) +

n
∑

i=1

ciI(τi−1,τi](t)

}

.

It is evident that the set L̄2
is dense in the set L2

. Given the ontinuity of the

funtional J̄0(u) on the set L2([0, 1]) the problem

max
u∈L̄2[0,1]

J̄0(u) (11)

is a �nite-dimensional approximation of the problem (6) with the additional on-

straint u ∈ L2[0, 1] if both problems have solutions.

4. A simulated annealing algorithm

The simulation annealing algorithm is used for the solution of the problem (10). Let

us analyze the variables in the problem (10). The �rst two variables α and u0 are

real numbers, the third variable ∆ takes its values from the �nite set of sequenes

S = {(δi)ni : δi ∈ {−1, 0, 1}}. If the funtional J̄0(u) satis�es a global Lipshitz on-

dition with the Lipshitz onstant L, and K = supα in the de�nition (8) then for
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a given ǫ the number of elements in the sequene is equal to n =
[

KL
ǫ

]

+ 1 (see

details in Belyavsky et al., 2016). Thus, the onsidered problem is onneted with

alulation of the maximum of the funtion F (∆) = max
u0,α

J̄0(u0, α,∆) on the �nite

set S. Problems of that kind an be solved e�iently by the algorithms of evolu-

tionary modeling, suh as geneti algorithms and simulated annealing algorithms.

The geneti algorithm was used in (Belyavsky et al., 2016; Belyavsky et al., 2018a),

that's why here we onsider the simulated annealing algorithm (Jones, 2008).

The algorithm starts from an initial ∆ and an initial temperature T = Ts. The
iterations have the following form.

1. The new ∆̄ is alulated in the neighborhood of the urrent ∆.

2. If F (∆̄) ≥ F (∆) then ∆ := ∆̄ else ∆ := ∆̄ with probability

p = exp

(

F (∆̄)− F (∆)

T

)

.

3. Set the temperature T := qT where 0 < q < 1.
4. The iterations are repeated until (T ≥ Tf) ∧ (|∆F | > ε̄).

5. A binary partition algorithm

Now suppose that the funtional J̄0(u) is additive, or for an arbitrary partition of

the segment [0, 1]: 0 = τ0 < τ1 < · · · < τn = 1 the inequality holds:

J̄0(u) = J̄0

(

n
∑

i=1

u(t)I{[τi−1,τi)}(t)
)

=
n
∑

i=1

J̄0

(

u(t)I{[τi−1,τi)}(t)
)

. (12)

The algorithm has the following form.

1. Initialization. Let the initial partition of the segment is given: [0, 1/2)∪[1/2, 1].
Consider the approximation u1(t) = c1,0I[0,1/2](t) + c1,1I(1/2,1](t). From all approx-

imations in this form hoose the best one using the property of additivity of the

funtional J̄0(u
1) = J̄0(c1,0I[0,1/2])+ J̄0(c1,1I(1/2,1]). For this purpose let's solve two

independent problems: max
c
J̄0(cI[0,1/2]), max

c
J̄0(cI[0,1/2]).

2. Iterations. An iteration with the index n onsists in the following. Let the

urrent partition be 0 = τ
(n)
0 < τ

(n)
1 < · · · < τ

(n)
n = 1, and the respetive urrent

approximation be u(n)(t) = cn,1I0(t) +
n
∑

i=1

cn,iI(τ (n)
i−1,τ

(n)
i

]
(t). De�ne the sequene

bn,j =
1

τ
(n)
j

−τ
(n)
j−1

J̄0

(

cn,jI(
τ
(n)
j−1,τ

(n)
j

]

)

and the respetive probabilities of hoie of the

interval: pn,j =
bn,j

n
∑

k=1

bn,k

, j = 1, 2, . . . , n. The interval is hosen randomly aord-

ing to the distribution of probabilities pn,j. The hosen interval with the index j,

namely

[

τ
(n)
j−1, τ

(n)
j

]

, is partitioned on two intervals of equal length

[

τ
(n)
j−1,

τ
(n)
j−1+τ

(n)
j

2

]

,

[

τ
(n)
j−1+τ

(n)
j

2 , τ
(n)
j

]

and the new approximation

un+1(t) = cn+1,1I0 +

n+1
∑

i=1

cn+1,iI(τ (n+1)
i−1 ,τ

(n+1)
i

](t)
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is alulated, where cn+1,i = cn,i if i = 1, . . . , j − 1;

cn+1,j = argmax
c
J̄0



cI[
τ
(n)
j−1,

τ
(n)
j−1

+τ
(n)
j

2

]



 ,

cn+1,j+1 = argmax
c
J̄0



cI[
τ
(n)
j−1

+τ
(n)
j

2 ,τ
(n)
j

,

]



 ;

cn+1,i = cn,i−1 if i = j +2, . . . , n+1. The new partition τ
(n+1)
i = τ

(n)
i−1 is alulated

if i = 0, . . . , j − 1, τ
(n+1)
j =

τ
(n)
j−1+τ

(n)
j

2 , and τ
(n+1)
i = τ

(n)
i−1 if i = j + 1, . . . , n+ 1.

The iterations are repeated until the hanges beome small enough.

This algorithm is a monotonous one. Therefore the sequene J̄0(un) onverges if
the leader's payo� funtional is bounded from above. An objetive of minimization

of the number of points of the partition of the interval is aimed additionally.

6. The �rst example

We will onsider a dynami Stakelberg game whih is already redued to the form

(6). The game desribes a resoure alloation between produers. Notie the mono-

graph (Novikov, 2013) in this onnetion. An amount of the resoure alloated in

the moment t is denoted by u(t). Eah player reeives his part of the resoure

ui(t); it is evident that u(t) =
r
∑

i=1

ui(t). Given the resoure eah player produes

a good vi(t) so that to maximize his instant payo�. The leader tends to maxi-

mize the total prodution and uses the proportional distribution mehanism, or

ui(t) = γi(t)vi(t). Then
r
∑

i=1

γi(t)vi(t) = u(t). An instant payo� of the i-th follower

is alulated as the di�erene between his part of the resoure and prodution ost,

or Pi(t) = γi(t)vi(t)−ϕi(vi(t)). The ost ϕi(x) is a onvex non-dereasing funtion

de�ned on R+
, and ϕi(0) = 0. Thus, an auxiliary Stakelberg game arises in the

following form:

max
γ≥0

r
∑

i=1

vi with onstraint

r
∑

i=1

γivi = u, (13)

max
vi≥0

[γivi − ϕi(vi)].

For simpliity from now on the time t is omitted. It is important to note that

in this formulation the game between followers is deomposed by the independent

optimization problems. If we assume that γi = γ then the equality

r
∑

i=1

γivi = u

implies the equality γ =
u

∑r
i=1 vi

, and the solution of the followers' game onsists

in the alulation of the Nash equilibrium in the game with individual followers'

problems: max

[

uvi
∑r

j=1 vj
− ϕi(vi)

]

(see details in Christodoulou et al., 2015).
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Consider the game with ost funtions ϕi(x) = µix
2
. In this ase the solution of

(11) takes the form

vi =
γi
2µi

, γi =

√

2u
∑r

j=1
1
µj

. (14)

Notie that all γi do not depend on i.

The instant payo� of the leader is determined as R
(

∑

i vi(t), u(t)
)

. The funtion

R(x, y) inreases in the �rst argument and dereases in the seond argument. The

total payo� is an integral of the instant payo�:

∫ T

0

R
(

r
∑

i=1

vi, u
)

dt. Based on (14)

we reeive the total payo� as J̄0(u) =

∫ T

0

R

(

1

2

√

2u
∑r

j=1
1
µj

∑ 1

µi
, u

)

dt. Denote

A(t) =

√

√

√

√

1

2

r
∑

i=1

1

µi(t)
. Then J̄0(u) =

∫ T

0

R(A
√
u, u) dt. Assume that F (x, y) =

x − y, then J̄0(u) =

∫ T

0

[A
√
u − u] dt. It is evident that the funtion u∗(t) = A2(t)

4

is a maximizer for J̄0(u). This funtion satis�es the �rst and seond additional

onstraints if µi(t) > 0.
Consider the algorithm of simulated annealing in the game with two followers

and µ1(t) = t2 + 1, µ2(t) = 2t2 + 1. In this algorithm a partition of the interval

is �xed. Calulate F (∆) = max
u0,α

[ n
∑

i=1

(ai
√

u0 + αgi(∆) − (u0 + αgi(∆))∆t)
]

. From

the onavity by u0 and α follows that the optimal values are the solutions of the

algebrai system of two equations:

n
∑

i=1

ai
√

u0 + αgi(∆)
= 2,

n
∑

i=1

(

ai
√

u0 + αgi(∆)
− 2gi(∆)∆t

)

= 0.

In these formulas ai =

∫ τi

τi−1

A(t) dt, gi(∆) =
1

n

i−1
∑

j=1

δj , ∆t = τi − τi−1. For alu-

lation ∆̃ in the neighborhood of ∆ eah δi is replaed by δ̃i ∈ {−1, 0, 1} \ δi with
probability q/n and equal probabilities on the set {−1, 0, 1} \ δi. The parameter

q ∈ {1, 2, . . . , n − 1} determines a mean number of the hanging elements ∆. The

results of alulations are presented in Fig. 6..

Now onsider an appliation of the binary partition algorithm to the same prob-

lem. For this purpose, the following problem is solved eah time: for an interval

[τ, s] it is required to �nd min
c

[√
c

∫ s

τ

A(t) dt − c(s− t)

]

. The optimal value is

c∗ =

(

1

2(s− τ)

∫ s

τ

A(t) dt

)

. The results of alulations are presented in Fig. 6..

7. A stati game with inomplete information: The simulated annealing

algorithm

Consider the following problem setup (Belyavsky et al., 2018b). The leader uses a

resoure alloation as an inentive for the agent and tries to max

u
[ψ(v)−ϕ(u, v)]. The
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Fig. 1. The results of simulated annealing algorithm for Tmax = 100, Tmin = 10, q = 5,

n = 64. The dotted line is the exat solution

Fig. 2. The results of the binary partition algorithm. The dotted line is the exat solution
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agent maximizes his pro�t: max

v
[ϕ(u, v) − f(v)]. Assume that a Nash equilibrium

(u∗, v∗) exists in this game. The feature of the game is that the leader does not know

the ost funtion f of the agent and annot alulate the equilibrium respetively.

So, the leader uses a sequene of ontrols u(t) for the determination of u∗. The
sequene v(t), t = 0, 1, . . . represents the agent's best responses on u(t). In eah

moment of time t the leader knows an interval v(0), . . . , v(t−1) of the best response
sequene of the agent. Based on this information, the leader hooses the ontrol

u(t) = u(t − 1)(1 + αδ(t)), aording to whih the agent reeive the amount of

resoure ϕ(v(t−1), u(t)). Similarly to Setion 3., δ(t) ∈ {−1, 0, 1}, 0 < α < 1. Thus,
in eah iteration of the game the leader an save her ontrol or inrease/derease

it by a �xed value aording to a `Lipshitz' onept of the paper. The initial value

u(0) and the sequene δ(t) ompletely determine the sequene u(t). Assume that

the initial value u(0) = x is known.

Consider the agent's problem. The agent supposes that δ(t) is a Markov se-

quene with the set of states {−1, 0, 1} and a transition probabilities matrix Q with

dimension (3×3). The initial probability distribution y on the set {−1, 0, 1} is given.
The agent's problem is to alulate

maxEx,y

∞
∑

t=1

βt
[

ϕ(v(t − 1), u(t))− f(v(t))
]

. (15)

If the funtion −f(z) + βϕ(z, w) is stritly onave for any value of the argument

w then the optimal ontrol of the agent is

v∗(x, y) = argmax

z

[

−f(z) + βϕ
(

z, y(1 + α(qx,3 − qx,1))
)]

(16)

(see details in Belyavsky et al., 2018b). Thus, the urrent reation of the agent is

alulated as

v(t) = argmax

z

[

−f(z) + βϕ
(

z, u(t)(1 + α(qtδ(t),3 − qtδ(t),1))
)

]

. (17)

The matrixQt
is alulated as a maximally likely estimation of the transition matrix

for the interval δ(1), . . . , δ(t).
Now onsider the leader's problem. The leader treats v(t) as the best response to

δ(t), and hooses the next value δ(t+1) so as the onsequent agent's best response

v(t+ 1) is a random value. Thus, the leader solves the problem

max

δ(t+1)
E
[

ψ
(

v(δ(t+ 1))
)

− ϕ
(

v(t), ut(1 + δ(t+ 1))
)]

. (18)

This problem is solved by the reinforing learning algorithm. Aording to this

algorithm, in eah iteration the leader alulate the new value of Q-funtion:

Qt+1(δ(t)) = Qt(δ(t)) + ht(R(δ(t))−Qt(δ(t))). (19)

In (19) R(δ(t)) = ψ(v(t)) − ϕ(v(t − 1), ut), the initial value Q0(·) ≡ 0, and the

sequene h satis�es the ondition:

∞
∑

t=1

ht = ∞,

∞
∑

t=1

h2t < ∞. Then the distribution

of probabilities on the set {−1, 0, 1} is alulated as follows,

pt+1(j) = exp(Qt+1(j)/Tt+1)
/

1
∑

k=−1

exp(Qt+1(k)/Tt+1), j = −1, 0, 1; (20)
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and respetively δ(t + 1) is hosen. In (20) T is a temperature that ontrols the

degree of randomness in the hoie of the next δ see Setion 3.. The onvergene of

the algorithm is studied in (Sutton and Barto, 1998).

8. The seond example

Consider another illustrative example where ψ(x) =
√
x, ϕ(x, y) = xy è fi(x) =

µx2. It is borrowed from (Belyavsky et al., 2018b) and slightly modi�ed. The equal-

ity (17) takes the form v(t) = argmax

z

[

−µz2 + βzu(t)
(

1 + α(qtδ(t),3 − qtδ(t),1)
)]

. A

simple alulation gives v(t) =
βzu(t)

(

1 + α(qtδ(t),3 − qtδ(t),1)
)

2µ
. The equilibrium so-

lution in the game (15), (18) is v∗ =
βu∗

2µ
, u∗ =

(

µ

8β

)1/3

. The equilibrium solution

in the initial game is: v∗ =
u∗

2µ
, u∗ =

(µ

8

)1/3

. For µ = 1, β = 0.9, α = 0.05 the

following numerial results are reeived:

Iteration The leader's ontrol The leader's payo�

1 0.4 0

2 0.412 0.352264

3 0.39964 0.354196

4 0.411629 0.352203

5 0.423978 0.35414

6 0.436697 0.355904

7 0.436697 0.357482

8 0.449798 0.357482

9 0.463292 0.358856

10 0.449394 0.36001

11 0.462875 0.358817

12 0.476762 0.359978

13 0.491064 0.360902

14 0.491064 0.361569

15 0.491064 0.361569

16 0.476333 0.361569

17 0.490622 0.360877

18 0.505341 0.361553

19 0.520501 0.361952

20 0.504886 0.362054

21 0.520033 0.361944

22 0.504432 0.362055

23 0.504432 0.361936

24 0.504432 0.361936

25 0.504432 0.361936

26 0.504432 0.361936

Table 1. The numerial results for the Example 2

Note that the equilibrium solution of the leader for the given input data is equal

to 0.519, and the respetive payo� is 0.362.
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9. Conlusion

The onsidered example with the known exat solution demonstrates a numerial

appliability of both algorithms. As the algorithms require only the alulation of

payo� funtionals then they are e�ient in situations when other methods do not

generate implementable numerial shemes. It should be notied that optimization

methods whih not require the alulation of gradient are atively disussed in the

modern literature (see, for example, Hazan, 2015).

For a omparable preision of the approximate alulations given by the algo-

rithms in the seond example, these algorithms essentially di�er. Their omparison

by some important riteria is given in Table 2.

A simulated annealing A binary partition

algorithm algorithm

Additional onditions on

the leader's funtional

absent present (additivity)

Additional onditions on

the leader's solution

present (Lipshitz odi-

tion)

pratially absent

Pre-partition interval require do not require

Table 2. Comparison of algorithms

Note that in the stati game with inomplete information (Setion 7.) a binary

partition algorithm is not appliable.

The omparison of the simulated annealing and the geneti algorithm results

in the following onlusions. Both of them are random searh algorithms in the

optimization problems. An essential di�erene is that the simulated annealing is an

algorithm of the depth searh where only one potential solution is studied in eah

iteration, while the geneti algorithm is a width searh algorithm whih tests several

potential solutions at eah step. By the geneti algorithm a faster onvergene may

be expeted, while the geneti algorithm has simpler iterations in a numerial sense.

Therefore, the hoie between them is determined by a spei� problem. For exam-

ple, if the alulation of the value of a �nite-dimensional leader's objetive funtion

is a ompliated problem, and the objetive funtion is lose to the onave one

then the simulated annealing algorithm looks more attrative.

The onsidered methods are lose to the method of senarios used in simulation

modeling.
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