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Abstra
t We 
onsider a dynami
 Sta
kelberg game on a �nite time inter-

val. The game is redu
ed to a problem of in�nite-dimensional optimization

with two additional 
onstraints. Two �nite-dimensional approximations of

the problem are de�ned. They are solved by two numeri
al algorithms whi
h

do not require 
al
ulation of the gradient of the payo� fun
tion. The �rst

algorithm is an algorithm of simulated annealing with a uniform partition

of the interval. The se
ond algorithm uses a pie
ewise-
onstant approxima-

tion of the solution with a 
hoi
e of the interval partition. Two illustrative

examples 
onne
ted with a resour
e allo
ation problem are 
onsidered. The

numeri
al results are given and 
ompared.

1. Introdu
tion

Dynami
 Sta
kelberg games (Basar and Olsder, 1999) are a
tively analyzed and dis-


ussed as adequate models of the hierar
hi
ally 
ontrolled dynami
 systems. Thus,

one of the interesting problem domains is resour
e allo
ation in organizational and

e
onomi
 systems (Christodoulou et al., 2015; Novikov, 2013).

Analyti
al methods of solution of the dynami
 Sta
kelberg games are quite 
om-

pli
ated due to the 
omplex nature of those models. A 
omprehensive approa
h was

proposed by Germeier for stati
 Sta
kelberg games (Germeier, 1986) and developed

by Kononenko and Gorelov for the dynami
 
ase (Gorelov and Kononenko, 2015;

Kononenko, 1977; Kononenko, 1980). The idea 
onsists in the implementation of a


ooperative traje
tory and punishment in the 
ase of defe
tion.

However, the numeri
al algorithms are more 
onvenient in this 
ontext. Evolu-

tionary algorithms are espe
ially useful, su
h as geneti
 and simulated annealing

algorithms (Jones, 2008). An important pla
e belongs to the methods whi
h do not

require the 
al
ulation of the gradient of the payo� fun
tion (Hazan, 2015).

The authors' approa
h is presented in (Belyavsky et al., 2016; Belyavsky et al.,

2018a; Belyavsky et al., 2018b). In the paper Belyavsky et al., 2016 an appli
a-

tion of the evolutionary modeling for the solution of the problems of sustainable

management in a
tive systems is 
onsidered. The di�erent information stru
tures

of hierar
hi
al di�erential games are des
ribed. The result whi
h gives the oppor-

tunity of using of geneti
 algorithms for the solution of these problems is obtained

and illustrated by a model example. In (Belyavsky et al., 2018a) a dynami
 game

theoreti
 model of resour
e allo
ation in the organizational system is proposed. The

algorithms of evolutionary modeling are developed in this 
ontext and illustrated
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by model examples. The paper (Belyavsky et al., 2018b) 
onsiders resour
e allo-


ation among produ
ers (agents) in the 
ase where the Prin
ipal knows nothing

about their 
ost fun
tions while the agents have Markovian awareness about their

strategies. We use a dynami
 setup of the sto
hasti
 inverse Sta
kelberg game as

the model and suggest an algorithm for solving this game based on Q-learning. The
asso
iated Bellman equations 
ontain fun
tions of one variable for the Prin
ipal and

the agents.

This paper develops the des
ribed approa
h. In Se
tion 2. the model formula-

tion is given. Se
tion 3. presents the Sta
kelberg game in in�nite-dimensional and

�nite-dimensional spa
es. In Se
tions 4. and 5. the simulated annealing and binary

partition algorithms are exposed respe
tively. Se
tion 6. is dedi
ated to the numeri-


al results and their 
omparative analysis based on the �rst numeri
al example. The

se
tion 7. treats an appli
ation of the simulated annealing algorithm in a stati
 game

with in
omplete information. The numeri
al results 
on
erned with an additional

illustrative example are given in Se
tion 8.. Se
tion 9. 
on
ludes.

2. A model formulation

A dynami
 Sta
kelberg game with one leader and multiple followers (agents) is 
on-

sidered. The game theoreti
 model 
ontains the following main elements: state of the

game (x0, x(t)) ∈ R2
, strategies (u(t), v(t)) ∈ Rr+1

, leader's payo�

∫ T

0

g0(x0, u, v) dt,

agents' payo�s

∫ T

0

gi(x, u, v) dt; u� the leader's 
ontrol; vi � a rea
tion of the agent

indexed by i.
De�ne the leader's problem as 
al
ulation of

max
u

∫ T

0

g0(x0, u, v) dt, with 
onstraint dx0(t) = f0(x0, u) dt, x0(0) = x00. (1)

A homeostasis 
ondition x(t) ∈ X 
an be also added, for example, in the

form (x∗0 − x(t))2 ≤ a. The homeostasis 
ondition 
an be expressed by a penalty:

k

∫ T

0

(x∗0 − x(t))2 dt. We 
an in
lude the penalty into the leader's payo� fun
tional

and then 
onsider a new payo� fun
tional:

∫ T

0

[

g0(0, u, v)− k(x∗0 − x(t))2
]

dt.

The agents' problems are set up in the form:

max
vi

∫ T

0

gi(x, u, v) dt, with 
onstraints dxi(t) = fi(xi, vi) dt, xi(0) = x0i . (2)

It is supposed that the game (1), (2) 
an be transformed into a stati
 Sta
kelberg

game in the in�nite-dimensional linear spa
es:

J0(u, v) → max
u

; Ji(u, v) → max
vi
, i = 1, 2, . . . , r. (3)

In other words, for any feasible strategies (u, v) there is an algorithm of 
al
u-

lation of the state of the system (x0, xi) and the players' payo�s. Let us assume

that the fun
tions u and vi belong to a Bana
h spa
e B[0, 1] of the bounded fun
-

tions with a uniform norm: ‖f‖ = sup
t∈[0,1]

f(t). The normalization in time is made

additionally. Thus, the game (3) is 
onsidered.
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3. The Sta
kelberg game in in�nite-dimensional and �nite-dimensional

spa
es

The leader 
hooses her strategy u and reports it to the agents. In turn, the agents


hoose their strategies as a best response to the leader's strategy from the set of

Nash equilibria in their game in normal form: v(u) ∈ N(u). Therefore the leader's

problem takes the form

max
u

min
v∈N(u)

J0(u, v), (4)

if the agents do not 
ooperate with her, and the form

max
u

max
v∈N(u)

J0(u, v), (5)

if they 
ooperate.

Let Φ(u) be the solution of the internal problem in (4) or (5). Then the leader's

problem has the form

max
u

J̄0(u), (6)

where J̄0(u) = J0(u, Φ(u)).
Consider a �nite-dimensional approximation of the problem (6). A su�
ient


ondition of the possibility of the �nite-dimensional approximation is a 
ontinuity

of the fun
tional J0(u) on the set of feasible solutions. The 
ontinuity is ensured by

the Lipshitz 
ondition:

|J̄0(u)− J̄0(w)| ≤ L‖u− w‖ whi
h follows from the two inequalities:

|J0(u2, v)− J0(u1, w)| ≤ Lu‖u2 − u2‖+ Lv‖v − w‖r,
‖Φ(u2)− Φ(u1)‖r ≤ LΦ‖u2 − u1‖.

(7)

The last inequality in (7) is the most di�
ult for 
he
king.

Consider the �rst 
lass of feasible 
ontrols as a subset of the spa
e of bounded

fun
tions in the form

L1([0, 1]) =

{

u ∈ B[0, 1] : ∃α, sup |u(t)− u(s)|
|t− s| ≤ α,

0 ≤ t ≤ 1, 0 ≤ s ≤ 1, t 6= s

}

.
(8)

It is assumed that the leader is in a sense restri
ted in her a
tions and therefore


hooses her 
ontrols from this 
lass. In other words, the leader is unable to make

`sharp motions'.

The next result forms a base for the proposed method of �nite-dimensional

approximation.

Theorem 1 (Belyavsky et al., 2016). If u ∈ L1([0, 1]) then a sequen
e exists

un(t) = u0+α
n
∑

i=1

δni (u)I{t>τi}, δni (u) ∈ {−1, 0, 1}, τi = i/n, i = 0, 1, . . . , n, (9)

that 
onverges to u by the norm of the spa
e B[0, 1].
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This result means that the subset

L̄1[0, 1] =

{

u ∈ L[0, 1] : ∃ (u0, α, n, δ), u = u0 + α
n
∑

i=1

δiI{t>τi},

δi ∈ {−1, 0, 1}, τi = i/n, i = −0, 1, . . . , n

}

is dense in L1[0, 1].
Assume that the initial problem (6) with an additional 
onstraint u ∈ L1[0, 1]

has a solution. Then the �nite-dimensional approximation of the problem (6) with

the additional 
onstraint is the optimization problem

max
u∈L̄1[0,1]

J̄0(u) = max
u0∈R,α,∆

J̄0(u0, α,∆), ∆ = (δi)
n
i=1. (10)

Noti
e that the problem (10) has a solution if for any �xed ∆̄ the problem

max
u0∈R,α

J̄0(u0, α, ∆̄) has a solution. Suppose that the 
ondition holds. The reason of

the �nite-dimensional approximation is given by the following result.

Theorem 2 (Belyavsky et al., 2016). Let p∗ = max
u∈L[0,1]

J̄0(u) = J̄0(u
∗), q∗ =

max
u∈L̄[0,1]

J̄0(u) = J̄0(ū
∗). Then for any ǫ > 0 we have p∗ − q∗ ≤ ǫ.

In fa
t, the 
ontinuity of the fun
tional J0(u) and the density of the set L̄1([0, 1])
in the set L1([0, 1]) imply the following inequalities: p∗ − q∗ = J0(u

∗) − J0(ū
∗) ≤

J0(U
∗) − J0(ū1) ≤ ǫ. To satisfy the last inequality it is required to 
hoose ū1 ∈

L̄1([0, 1]) 
lose enough to u∗.
The se
ond 
lass of feasible 
ontrols is a set of bounded fun
tions having on

the segment [0, 1] a �nite number of the points of dis
ontinuity. Denote this set by

L2([0, 1]). De�ne the set

L̄2([0, 1]) =

{

u ∈ B[0, 1] : ∃ (n, (ci)ni=1, (τi)
n
i=1), 0 = τ0 < τ1 < · · · < τn = 1,

f(t) = c1I0(t) +

n
∑

i=1

ciI(τi−1,τi](t)

}

.

It is evident that the set L̄2
is dense in the set L2

. Given the 
ontinuity of the

fun
tional J̄0(u) on the set L2([0, 1]) the problem

max
u∈L̄2[0,1]

J̄0(u) (11)

is a �nite-dimensional approximation of the problem (6) with the additional 
on-

straint u ∈ L2[0, 1] if both problems have solutions.

4. A simulated annealing algorithm

The simulation annealing algorithm is used for the solution of the problem (10). Let

us analyze the variables in the problem (10). The �rst two variables α and u0 are

real numbers, the third variable ∆ takes its values from the �nite set of sequen
es

S = {(δi)ni : δi ∈ {−1, 0, 1}}. If the fun
tional J̄0(u) satis�es a global Lipshitz 
on-

dition with the Lipshitz 
onstant L, and K = supα in the de�nition (8) then for
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a given ǫ the number of elements in the sequen
e is equal to n =
[

KL
ǫ

]

+ 1 (see

details in Belyavsky et al., 2016). Thus, the 
onsidered problem is 
onne
ted with


al
ulation of the maximum of the fun
tion F (∆) = max
u0,α

J̄0(u0, α,∆) on the �nite

set S. Problems of that kind 
an be solved e�
iently by the algorithms of evolu-

tionary modeling, su
h as geneti
 algorithms and simulated annealing algorithms.

The geneti
 algorithm was used in (Belyavsky et al., 2016; Belyavsky et al., 2018a),

that's why here we 
onsider the simulated annealing algorithm (Jones, 2008).

The algorithm starts from an initial ∆ and an initial temperature T = Ts. The
iterations have the following form.

1. The new ∆̄ is 
al
ulated in the neighborhood of the 
urrent ∆.

2. If F (∆̄) ≥ F (∆) then ∆ := ∆̄ else ∆ := ∆̄ with probability

p = exp

(

F (∆̄)− F (∆)

T

)

.

3. Set the temperature T := qT where 0 < q < 1.
4. The iterations are repeated until (T ≥ Tf) ∧ (|∆F | > ε̄).

5. A binary partition algorithm

Now suppose that the fun
tional J̄0(u) is additive, or for an arbitrary partition of

the segment [0, 1]: 0 = τ0 < τ1 < · · · < τn = 1 the inequality holds:

J̄0(u) = J̄0

(

n
∑

i=1

u(t)I{[τi−1,τi)}(t)
)

=
n
∑

i=1

J̄0

(

u(t)I{[τi−1,τi)}(t)
)

. (12)

The algorithm has the following form.

1. Initialization. Let the initial partition of the segment is given: [0, 1/2)∪[1/2, 1].
Consider the approximation u1(t) = c1,0I[0,1/2](t) + c1,1I(1/2,1](t). From all approx-

imations in this form 
hoose the best one using the property of additivity of the

fun
tional J̄0(u
1) = J̄0(c1,0I[0,1/2])+ J̄0(c1,1I(1/2,1]). For this purpose let's solve two

independent problems: max
c
J̄0(cI[0,1/2]), max

c
J̄0(cI[0,1/2]).

2. Iterations. An iteration with the index n 
onsists in the following. Let the


urrent partition be 0 = τ
(n)
0 < τ

(n)
1 < · · · < τ

(n)
n = 1, and the respe
tive 
urrent

approximation be u(n)(t) = cn,1I0(t) +
n
∑

i=1

cn,iI(τ (n)
i−1,τ

(n)
i

]
(t). De�ne the sequen
e

bn,j =
1

τ
(n)
j

−τ
(n)
j−1

J̄0

(

cn,jI(
τ
(n)
j−1,τ

(n)
j

]

)

and the respe
tive probabilities of 
hoi
e of the

interval: pn,j =
bn,j

n
∑

k=1

bn,k

, j = 1, 2, . . . , n. The interval is 
hosen randomly a

ord-

ing to the distribution of probabilities pn,j. The 
hosen interval with the index j,

namely

[

τ
(n)
j−1, τ

(n)
j

]

, is partitioned on two intervals of equal length

[

τ
(n)
j−1,

τ
(n)
j−1+τ

(n)
j

2

]

,

[

τ
(n)
j−1+τ

(n)
j

2 , τ
(n)
j

]

and the new approximation

un+1(t) = cn+1,1I0 +

n+1
∑

i=1

cn+1,iI(τ (n+1)
i−1 ,τ

(n+1)
i

](t)
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is 
al
ulated, where cn+1,i = cn,i if i = 1, . . . , j − 1;

cn+1,j = argmax
c
J̄0



cI[
τ
(n)
j−1,

τ
(n)
j−1

+τ
(n)
j

2

]



 ,

cn+1,j+1 = argmax
c
J̄0



cI[
τ
(n)
j−1

+τ
(n)
j

2 ,τ
(n)
j

,

]



 ;

cn+1,i = cn,i−1 if i = j +2, . . . , n+1. The new partition τ
(n+1)
i = τ

(n)
i−1 is 
al
ulated

if i = 0, . . . , j − 1, τ
(n+1)
j =

τ
(n)
j−1+τ

(n)
j

2 , and τ
(n+1)
i = τ

(n)
i−1 if i = j + 1, . . . , n+ 1.

The iterations are repeated until the 
hanges be
ome small enough.

This algorithm is a monotonous one. Therefore the sequen
e J̄0(un) 
onverges if
the leader's payo� fun
tional is bounded from above. An obje
tive of minimization

of the number of points of the partition of the interval is aimed additionally.

6. The �rst example

We will 
onsider a dynami
 Sta
kelberg game whi
h is already redu
ed to the form

(6). The game des
ribes a resour
e allo
ation between produ
ers. Noti
e the mono-

graph (Novikov, 2013) in this 
onne
tion. An amount of the resour
e allo
ated in

the moment t is denoted by u(t). Ea
h player re
eives his part of the resour
e

ui(t); it is evident that u(t) =
r
∑

i=1

ui(t). Given the resour
e ea
h player produ
es

a good vi(t) so that to maximize his instant payo�. The leader tends to maxi-

mize the total produ
tion and uses the proportional distribution me
hanism, or

ui(t) = γi(t)vi(t). Then
r
∑

i=1

γi(t)vi(t) = u(t). An instant payo� of the i-th follower

is 
al
ulated as the di�eren
e between his part of the resour
e and produ
tion 
ost,

or Pi(t) = γi(t)vi(t)−ϕi(vi(t)). The 
ost ϕi(x) is a 
onvex non-de
reasing fun
tion

de�ned on R+
, and ϕi(0) = 0. Thus, an auxiliary Sta
kelberg game arises in the

following form:

max
γ≥0

r
∑

i=1

vi with 
onstraint

r
∑

i=1

γivi = u, (13)

max
vi≥0

[γivi − ϕi(vi)].

For simpli
ity from now on the time t is omitted. It is important to note that

in this formulation the game between followers is de
omposed by the independent

optimization problems. If we assume that γi = γ then the equality

r
∑

i=1

γivi = u

implies the equality γ =
u

∑r
i=1 vi

, and the solution of the followers' game 
onsists

in the 
al
ulation of the Nash equilibrium in the game with individual followers'

problems: max

[

uvi
∑r

j=1 vj
− ϕi(vi)

]

(see details in Christodoulou et al., 2015).
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Consider the game with 
ost fun
tions ϕi(x) = µix
2
. In this 
ase the solution of

(11) takes the form

vi =
γi
2µi

, γi =

√

2u
∑r

j=1
1
µj

. (14)

Noti
e that all γi do not depend on i.

The instant payo� of the leader is determined as R
(

∑

i vi(t), u(t)
)

. The fun
tion

R(x, y) in
reases in the �rst argument and de
reases in the se
ond argument. The

total payo� is an integral of the instant payo�:

∫ T

0

R
(

r
∑

i=1

vi, u
)

dt. Based on (14)

we re
eive the total payo� as J̄0(u) =

∫ T

0

R

(

1

2

√

2u
∑r

j=1
1
µj

∑ 1

µi
, u

)

dt. Denote

A(t) =

√

√

√

√

1

2

r
∑

i=1

1

µi(t)
. Then J̄0(u) =

∫ T

0

R(A
√
u, u) dt. Assume that F (x, y) =

x − y, then J̄0(u) =

∫ T

0

[A
√
u − u] dt. It is evident that the fun
tion u∗(t) = A2(t)

4

is a maximizer for J̄0(u). This fun
tion satis�es the �rst and se
ond additional


onstraints if µi(t) > 0.
Consider the algorithm of simulated annealing in the game with two followers

and µ1(t) = t2 + 1, µ2(t) = 2t2 + 1. In this algorithm a partition of the interval

is �xed. Cal
ulate F (∆) = max
u0,α

[ n
∑

i=1

(ai
√

u0 + αgi(∆) − (u0 + αgi(∆))∆t)
]

. From

the 
on
avity by u0 and α follows that the optimal values are the solutions of the

algebrai
 system of two equations:

n
∑

i=1

ai
√

u0 + αgi(∆)
= 2,

n
∑

i=1

(

ai
√

u0 + αgi(∆)
− 2gi(∆)∆t

)

= 0.

In these formulas ai =

∫ τi

τi−1

A(t) dt, gi(∆) =
1

n

i−1
∑

j=1

δj , ∆t = τi − τi−1. For 
al
u-

lation ∆̃ in the neighborhood of ∆ ea
h δi is repla
ed by δ̃i ∈ {−1, 0, 1} \ δi with
probability q/n and equal probabilities on the set {−1, 0, 1} \ δi. The parameter

q ∈ {1, 2, . . . , n − 1} determines a mean number of the 
hanging elements ∆. The

results of 
al
ulations are presented in Fig. 6..

Now 
onsider an appli
ation of the binary partition algorithm to the same prob-

lem. For this purpose, the following problem is solved ea
h time: for an interval

[τ, s] it is required to �nd min
c

[√
c

∫ s

τ

A(t) dt − c(s− t)

]

. The optimal value is

c∗ =

(

1

2(s− τ)

∫ s

τ

A(t) dt

)

. The results of 
al
ulations are presented in Fig. 6..

7. A stati
 game with in
omplete information: The simulated annealing

algorithm

Consider the following problem setup (Belyavsky et al., 2018b). The leader uses a

resour
e allo
ation as an in
entive for the agent and tries to max

u
[ψ(v)−ϕ(u, v)]. The
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Fig. 1. The results of simulated annealing algorithm for Tmax = 100, Tmin = 10, q = 5,

n = 64. The dotted line is the exa
t solution

Fig. 2. The results of the binary partition algorithm. The dotted line is the exa
t solution
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agent maximizes his pro�t: max

v
[ϕ(u, v) − f(v)]. Assume that a Nash equilibrium

(u∗, v∗) exists in this game. The feature of the game is that the leader does not know

the 
ost fun
tion f of the agent and 
annot 
al
ulate the equilibrium respe
tively.

So, the leader uses a sequen
e of 
ontrols u(t) for the determination of u∗. The
sequen
e v(t), t = 0, 1, . . . represents the agent's best responses on u(t). In ea
h

moment of time t the leader knows an interval v(0), . . . , v(t−1) of the best response
sequen
e of the agent. Based on this information, the leader 
hooses the 
ontrol

u(t) = u(t − 1)(1 + αδ(t)), a

ording to whi
h the agent re
eive the amount of

resour
e ϕ(v(t−1), u(t)). Similarly to Se
tion 3., δ(t) ∈ {−1, 0, 1}, 0 < α < 1. Thus,
in ea
h iteration of the game the leader 
an save her 
ontrol or in
rease/de
rease

it by a �xed value a

ording to a `Lips
hitz' 
on
ept of the paper. The initial value

u(0) and the sequen
e δ(t) 
ompletely determine the sequen
e u(t). Assume that

the initial value u(0) = x is known.

Consider the agent's problem. The agent supposes that δ(t) is a Markov se-

quen
e with the set of states {−1, 0, 1} and a transition probabilities matrix Q with

dimension (3×3). The initial probability distribution y on the set {−1, 0, 1} is given.
The agent's problem is to 
al
ulate

maxEx,y

∞
∑

t=1

βt
[

ϕ(v(t − 1), u(t))− f(v(t))
]

. (15)

If the fun
tion −f(z) + βϕ(z, w) is stri
tly 
on
ave for any value of the argument

w then the optimal 
ontrol of the agent is

v∗(x, y) = argmax

z

[

−f(z) + βϕ
(

z, y(1 + α(qx,3 − qx,1))
)]

(16)

(see details in Belyavsky et al., 2018b). Thus, the 
urrent rea
tion of the agent is


al
ulated as

v(t) = argmax

z

[

−f(z) + βϕ
(

z, u(t)(1 + α(qtδ(t),3 − qtδ(t),1))
)

]

. (17)

The matrixQt
is 
al
ulated as a maximally likely estimation of the transition matrix

for the interval δ(1), . . . , δ(t).
Now 
onsider the leader's problem. The leader treats v(t) as the best response to

δ(t), and 
hooses the next value δ(t+1) so as the 
onsequent agent's best response

v(t+ 1) is a random value. Thus, the leader solves the problem

max

δ(t+1)
E
[

ψ
(

v(δ(t+ 1))
)

− ϕ
(

v(t), ut(1 + δ(t+ 1))
)]

. (18)

This problem is solved by the reinfor
ing learning algorithm. A

ording to this

algorithm, in ea
h iteration the leader 
al
ulate the new value of Q-fun
tion:

Qt+1(δ(t)) = Qt(δ(t)) + ht(R(δ(t))−Qt(δ(t))). (19)

In (19) R(δ(t)) = ψ(v(t)) − ϕ(v(t − 1), ut), the initial value Q0(·) ≡ 0, and the

sequen
e h satis�es the 
ondition:

∞
∑

t=1

ht = ∞,

∞
∑

t=1

h2t < ∞. Then the distribution

of probabilities on the set {−1, 0, 1} is 
al
ulated as follows,

pt+1(j) = exp(Qt+1(j)/Tt+1)
/

1
∑

k=−1

exp(Qt+1(k)/Tt+1), j = −1, 0, 1; (20)
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and respe
tively δ(t + 1) is 
hosen. In (20) T is a temperature that 
ontrols the

degree of randomness in the 
hoi
e of the next δ see Se
tion 3.. The 
onvergen
e of

the algorithm is studied in (Sutton and Barto, 1998).

8. The se
ond example

Consider another illustrative example where ψ(x) =
√
x, ϕ(x, y) = xy è fi(x) =

µx2. It is borrowed from (Belyavsky et al., 2018b) and slightly modi�ed. The equal-

ity (17) takes the form v(t) = argmax

z

[

−µz2 + βzu(t)
(

1 + α(qtδ(t),3 − qtδ(t),1)
)]

. A

simple 
al
ulation gives v(t) =
βzu(t)

(

1 + α(qtδ(t),3 − qtδ(t),1)
)

2µ
. The equilibrium so-

lution in the game (15), (18) is v∗ =
βu∗

2µ
, u∗ =

(

µ

8β

)1/3

. The equilibrium solution

in the initial game is: v∗ =
u∗

2µ
, u∗ =

(µ

8

)1/3

. For µ = 1, β = 0.9, α = 0.05 the

following numeri
al results are re
eived:

Iteration The leader's 
ontrol The leader's payo�

1 0.4 0

2 0.412 0.352264

3 0.39964 0.354196

4 0.411629 0.352203

5 0.423978 0.35414

6 0.436697 0.355904

7 0.436697 0.357482

8 0.449798 0.357482

9 0.463292 0.358856

10 0.449394 0.36001

11 0.462875 0.358817

12 0.476762 0.359978

13 0.491064 0.360902

14 0.491064 0.361569

15 0.491064 0.361569

16 0.476333 0.361569

17 0.490622 0.360877

18 0.505341 0.361553

19 0.520501 0.361952

20 0.504886 0.362054

21 0.520033 0.361944

22 0.504432 0.362055

23 0.504432 0.361936

24 0.504432 0.361936

25 0.504432 0.361936

26 0.504432 0.361936

Table 1. The numeri
al results for the Example 2

Note that the equilibrium solution of the leader for the given input data is equal

to 0.519, and the respe
tive payo� is 0.362.
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9. Con
lusion

The 
onsidered example with the known exa
t solution demonstrates a numeri
al

appli
ability of both algorithms. As the algorithms require only the 
al
ulation of

payo� fun
tionals then they are e�
ient in situations when other methods do not

generate implementable numeri
al s
hemes. It should be noti
ed that optimization

methods whi
h not require the 
al
ulation of gradient are a
tively dis
ussed in the

modern literature (see, for example, Hazan, 2015).

For a 
omparable pre
ision of the approximate 
al
ulations given by the algo-

rithms in the se
ond example, these algorithms essentially di�er. Their 
omparison

by some important 
riteria is given in Table 2.

A simulated annealing A binary partition

algorithm algorithm

Additional 
onditions on

the leader's fun
tional

absent present (additivity)

Additional 
onditions on

the leader's solution

present (Lips
hitz 
odi-

tion)

pra
ti
ally absent

Pre-partition interval require do not require

Table 2. Comparison of algorithms

Note that in the stati
 game with in
omplete information (Se
tion 7.) a binary

partition algorithm is not appli
able.

The 
omparison of the simulated annealing and the geneti
 algorithm results

in the following 
on
lusions. Both of them are random sear
h algorithms in the

optimization problems. An essential di�eren
e is that the simulated annealing is an

algorithm of the depth sear
h where only one potential solution is studied in ea
h

iteration, while the geneti
 algorithm is a width sear
h algorithm whi
h tests several

potential solutions at ea
h step. By the geneti
 algorithm a faster 
onvergen
e may

be expe
ted, while the geneti
 algorithm has simpler iterations in a numeri
al sense.

Therefore, the 
hoi
e between them is determined by a spe
i�
 problem. For exam-

ple, if the 
al
ulation of the value of a �nite-dimensional leader's obje
tive fun
tion

is a 
ompli
ated problem, and the obje
tive fun
tion is 
lose to the 
on
ave one

then the simulated annealing algorithm looks more attra
tive.

The 
onsidered methods are 
lose to the method of s
enarios used in simulation

modeling.
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