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1. Introdu
tion

Dynami
 
ontrolled pro
esses are widely found in surrounding life: in engi-

neering, business, e
onomi
s, medi
ine, so
ial 
hanges, tra�
, edu
ation, et
. See,

for example, (Bellman, 1957; 8; Leitmann, 1962; Krasovskii, 1968; Mi
hel, 1977;

Petrosjan and Zen kevi
h, 1996). Importan
e of management for these pro
esses

lead to the need to study and solve not only dire
t 
ontrol problems aimed at


onstru
ting 
ontrols that optimize quality 
riteria. For predi
ting, planning and

de
ision making in the future, it is important also to analyse and solve inverse

problems dire
ted on 
ontrol re
onstru
tion and based on ina

urate measurements

of realized motions. See, (Sabatier, 2000; Osipov et al., 2011; D'Autilia et al., 2017;

Liu et al., 2018), where many methods were suggested to solve di�erent inverse

problems. The methods applied ideas and results of algebra, geometry, fun
tional

analysis, the theory of approximations, the theory of perturbations and so on. But

re
onstru
tion problems are still a
tual and many new applied inverse problems

require new e�e
tive methods.

It should be underlined the approa
h suggested by Yu.S. Osipov and A.V. Krya-

zhimskii (Kryazhimskii and Osipov, 1984, Osipov and Kryazhimskii, 1995). It sour-


es in the theory of optimal feedba
ks (Krasovskii and Subbotin, 1988) developed

by N.N. Krasovskii's s
hool. The approa
h is more 
lose to the presented below one.

It uses the method of extreme aiming to motions of a guide model, whose dynami
s


opy dynami
s of the original 
ontrolled system. So, this approa
h to solution of

inverse problems appeals a 
oupled dynami
 system: the original dynami
 system

and a similar guide system.

The presenting method was suggested in (Subbotina and Tokmantsev, 2013;

Subbotina et al., 2015). There was used a new variational approa
h based on solu-

tions of auxiliary problems of 
al
ulus of variation with integral regularized dis
rep-

an
y fun
tionals. A

ording to ne
essary optimality 
onditions in these variational

problems, a 
oupled system is also introdu
ed: the original system and an addi-

tional system of 
onjugate variables. The key new feature of the approa
h is that
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the dis
repan
y is 
on
ave-
onvex. This 
hara
ter of dis
repan
y provides os
illa-

tions motions of the re
onstru
ted system around ina

urate measurements of the

real states of 
ontrolled system.

At �rst papers this approa
h was developed for solving inverse problems at the

end of the 
ontrolled pro
ess by the use a posteriori information about history

of measurements of states (Subbotina and Krupennikov, 2017; Krupennikov, 2018;

Subbotina and Krupennikov, 2018). Now the same ideas are developed to solve dy-

nami
 re
onstru
tion problems in real time.

Note, that both mentioned above approa
hes 
an be also 
onsidered as develop-

ments of Tikhonov regularization method (Tikhonov, 1963).

The paper is organized as follows. The se
tion Statement 
ontains des
ription of

a 
ontrol re
onstru
tion problem (CRP): 
ontrolled dynami
s, in
orre
t measure-

ments and main hypotheses on input data, and also a de�nition of solution of CRP.

The next se
tion Auxiliary Constru
tions 
ontains statement of auxiliary problems

of 
al
ulus of variations (CVP) and ne
essary optimality 
onditions in CVP. An al-

gorithm of 
ontrol re
onstru
tion by the use CVP is des
ribed and dis
ussed in the

se
tion Solutions CRP. Illustrative examples of numeri
al solutions of 
ontrol re
on-

stru
tion problems in ma
roe
onomi
s and navigation are exposed at the se
tion

Examples.

2. Statement

We 
onsider 
ontrol systems with dynami
s of the form

ẋ(t) = G(x(t), t)u(t), t ∈ [0, T ]. (1)

where x(t) ∈ Rn
are state variables. The admissible 
ontrols u(·) : [0, T ] → Rm

,m ≤
n, are pie
ewise 
ontinuous fun
tions with �nite number of points of dis
ontinuity,

and they satisfy the following geometri
 restri
tions.

u(t) ∈ U, t ∈ [0, T ], (2)

where U = {ai ≤ ui ≤ bi, i = 1, . . . ,m} ⊂ Rm
.

It is assumed that a traje
tory x∗(·) : [0, T ] → Rn
of system (1) is realizing in

real time. Dis
rete measurements x(tk, δ) of this basi
 traje
tory x
∗(·) be
ome to

be known in real time at instants tk.
Measurements x(tk, δ) = x̂δ(tk) of the base traje
tory x

∗(·) satisfy the relations

‖x̂δ(tk)− x∗(tk)‖ ≤ δ, (3)

t0 = 0; tk = k∆t; k = 1, 2, . . . , N ; tN = T.
We put

δ ∈ (0, δ∗], ∆t ∈ (0, ∆∗]. (4)

We 
hoose a 
onstant K1 > 0 and 
onstru
t step-by-step, for instants tk, k =
1, . . . , N , 
ontinuous interpolations yδ(t) : [0, T ] → Rn

of measurements ŷδ(tk),
k = 1, . . . , N , whi
h are twi
e di�erentiable fun
tions on ea
h subinterval [tk−1, tk],
and satisfy the estimations:

‖yδ(t)‖ ≤ K1, ‖dy
δ(t)

dt
‖ ≤ K1 ∀t ∈ [0, T ]; (5)
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‖d
2yδ(t)

dt2
‖ ≤ K1, ∀t ∈ [0, T ] \Θδ, (6)

where the sets Θδ
have measures βδ = β(Θδ), and βδ → 0, as δ → 0. and the

following relations are true:

‖yδ(t)− x∗(t)‖ ≤ 2δ, t ∈ [0, T ].

Note, that we 
an do it as apply splines with nodes de�ned by yδ(tk).
The problem is: to re
onstru
t in real time a 
ontrol generated the basi
 traje
-

tory x∗(·) by the use of interpolations yδ(·) of in
orre
t measurements x̂δ(tk).

2.1. Hypothesis

We 
onsider the 
ontrol re
onstru
tion problem (1)-(3) under the following as-

sumptions.

H1. Coordinates gij(t, x), i ∈ 1, n, j ∈ 1,m, of the matrix-fun
tion G(t, x) are
de�ned in the strip ΠT = [0, T ]× Rn

, and there are no os
illating 
omponents of

gij(t, x); the fun
tions gij(t, x), i ∈ 1, n, j ∈ 1,m, are 
ontinuously di�erentiable

in the domain (0, T )×Rn
, and their partial derivatives

∂gij(t,x)
∂t ,

∂gij(t,x)
∂xk

, k ∈ 1, n

are extendable on any 
ompa
t set D ⊂ ΠT = [0, T ]×Rn
.

H2. There exist: a positive number d0, and su
h a 
ompa
t set D0 ⊂ ΠT


ontaining the graph of the basi
 traje
tory x∗(·) that

{[0, T ]× {x ∈ Rn : ‖x‖ ≤ d0}}
⋂
D0 = ∅, (7)

and the rank of the m × m�matrix {gi,j(t, x), i, j ∈ 1,m} is equal to m for all

(t, x) ∈ D0.

H3 For any ∆t ∈ (0, ∆], there exist su
h numbers δ0 ∈ (0, δ∗], and α∗ > 0
satis�ed the relations

2δ0 ≤ K1(∆t)
2, 4δ0 + α∗ < d0, (8)

where K1 > 0 is de�ned by the set D0 and assumptions H.1�H.2., that

Ωδ = {(t, x) : ‖x− yδ(t)‖ ≤ 4δ + α∗, t ∈ [t0, T ]} ⊂ D0, ∀δ ∈ (0, δ0]. (9)

2.2. Statement of Control Re
onstru
tion Problem

Fix parameters ∆t ∈ (0, ∆∗], δ ∈ (0, δ0] and the an interpolation yδ(·) of 
urrent
dis
rete in
orre
t measurements,

We 
onsider the following Control Re
onstru
tion Problem (CRP).

Problem 1. Find an admissible 
ontrol uδ(·) generating the traje
tory xδ(·) of

system (1) step-by-step on the intervals [tk−2, tk], k = 2, . . . , N , to satisfy, at the

end, the 
onditions:

• C1.
(t, xδ(t)) ∈ D0, ∀t ∈ [0, T ], (10)

• C2.
lim

δ→0,∆t→0
‖xδ(·)− x∗(·)‖C = 0, (11)

• C3.
lim

δ→0,∆t→0
‖uδ(·)− u∗(·)‖L2 = 0. (12)
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Here the symbols ‖x(·)‖C and ‖u(·)‖L2 means the norms in the spa
es C([0, T ], Rn)
and L2([0, T ], R

m). The "normal" 
ontrol u∗(·) has the minimal norm in L2 among

all admissible 
ontrols generating x∗(·). Note, that the 
ontrol re
onstru
tion prob-

lem (1-(3) has the unique "normal" 
ontrol under assumptions H1−−H3.

3. Auxiliary Constru
tions

We suggest to use for solutions of CRP the following auxiliary variational prob-

lems.

3.1. Cal
ulus of Variations Problems

We introdu
e a modi�ed dynami
al system of the form

dx(τ)

dτ
= Ĝ(τ, x(τ))v(τ), τ ∈ [tk−2, tk], (13)

where 
ontrols v = (u1, . . . , um, vm+1, . . . , vn) ∈ Rn
and n × n - matrix Ĝ(t, x) is


onstru
ted as

ĝi,j(τ, x) =





gi,j(τ, x), i ∈ 1, n, j ∈ 1,m,

0, i ∈ 1,m, j ∈ m+ 1, n,

0, i ∈ m+ 1, n, j ∈ m+ 1, n, i 6= j

ε, i ∈ m+ 1, n, j ∈ m+ 1, n, i = j.

(14)

where ε is a small positive parameter of approximation.

Fix parameters ∆t ∈ (0, ∆], δ ∈ (0, δ0], α > 0, ε > 0. For any 
urrent instant

tk, k ≥ 2, let us de�ne an interpolation yδ(t), t ∈ [tk−2, tk] of measurements and

introdu
e the following 
ost dis
repan
y fun
tional

Iδ,α(x(·), u(·)) =
tk∫

tk−2

[‖x(t)− yδ(t)‖2
2

− α2‖v(t)‖2
2

]
dt, (15)

on the set F of pairs of 
ontinuously di�erentiable fun
tions {x(·) : [tk−2, tk] →
Rn, u(·) : [tk−2, tk] → Rn}. Here α > 0 is a small regularising parameter.

We 
onsider pairs of 
ontinuously di�erentiable fun
tions (x(·) : [tk−2, tk] → Rn
,

v(·) : [tk−2, tk] → Rn) ∋ F that satisfy di�erential equations (13) and the following

terminal 
onditions

x(tk−2) = yδ(tk−2), ẋ(tk−2) = ẏδ(tk−2). (16)

We 
onsider the following auxiliary Cal
ulus of Variations Problem (CVP).

Problem 2. Find a pair of fun
tions {xδ,α(·), vδ,α(·)} ∈ F satis�ed (13), (16) and

provided a lo
al minimum for the 
ost dis
repan
y fun
tional (16).
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3.2. CVP Ne
essary Optimality Conditions

Ne
essary optimality 
onditions in CVP (13),(15),(16) provide the following

Hamiltonian system:

ẋ(t) = −(1/α2)Ĝ(x(t), t)ĜT (x(t), t)s(t),

ṡi(t) = xi(t)− yδi (t)+

+(1/α2)sT (t) ∂Ĝ
∂xi

(x(t), t)ĜT (x(t), t)s(t), i ∈ 1, n,

(17)

where the ve
tor s(t) is the adjoint variables ve
tor, the symbol T
denotes transpo-

sition, and the boundary 
onditions are satis�ed

x(tk−2) = yδ(tk−2), ẋ(tk−2) = ẏδ(tk−2). (18)

4. CRP Solutions

In this se
tion we des
ribe an algorithm of 
onstru
tion of CRP solution. It is a

modi�
ation of an algorithm des
ribed and justi�ed in (Subbotina, 2019).

4.1. Guiding Dynami
s

Let us 
onsider on the interval [tk−2, tk] the following linearized system obtained

from (17)

˙̄z(t) = −(1/α2)Qks̄(tk−2)− ẏδ(tk−2),

˙̄s(t) = z̄(t),
(19)

where z̄(t) = x̄(t)− yδi (t),

Qk = Ĝ(x̄(tk−2), tk−2)Ĝ
T (x̄(tk−2), tk−2)

and the following boundary 
onditions followed from (18)

z̄(tk−2) = 0, s̄(tk−2) = s̄k(tk−2) = s̄k−1(tk−2) (20)

where the upper index k means that the 
orresponding variable is obtained for the

CVP on interval [tk−2, tk], k = 2, . . . , N , and

s̄(t0) = −α2Q−1
0 ẏδ(t0) (21)

where Q−1
0 is the inverse matrix for the non degenerate matrix

Q0 = Ĝ(yδ(t0), t0)Ĝ
T (yδ(t0), t0).

.

4.2. Guiding Control

In problems (19)�(21), for �xed α, δ, we have obtained the guiding 
ontrol

vδ,α(t) = −(1/α2)ĜT (x̄δ,α(tk−2), tk−2)s̄
δ,α(t), (22)

where z̄δ,α(t), s̄δ,α(t), are solutions of system (19)�(21), t ∈ [tk−2, tk−1), x̄
δ,α(tk−2) =

z̄δ,α(tk−2) + yδ(tk−2), k = 2, . . . , N,.
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Let us introdu
e the 
ut-o� fun
tion

ûδ,α(t) =





[v]δ,αm (t), as [v]δ,αm (t) ∈ U ;

û ∈ argmin
u∈U

‖[v]δ,αm (t)− u‖, as [v]δ,αm (t) /∈ U,
(23)

where [v]m = {v1, . . . , vm} for v ∈ Rn, n ≥ m.

We 
hoose the fun
tions ûδ,αi (t), i ∈ 1,m, t ∈ [tk−2, tk−1], k = 2, ..., N to 
onsider

them as solutions of inverse Prob.1.

4.3. On Justi�
ations

This algorithm of solving Prob.1 is a modi�
ation and a simpli�
ation of an

algorithm of solving CRP suggested and justi�ed in (Subbotina, 2019). Namely,

the new algorithm uses boundary 
onditions (18) for auxiliary dynami
s (17). So,

we need not 
onstru
t inverse matri
es Q−1
k for ea
h subinterval [tk−2, tk]. Thiese

pro
edure is made only one times (21) at the initial instant t0 . The novelity provides
also better 
onvergen
e of the method. Taking it in to a

ount, one 
an modify

s
hemes of proofs from (Subbotina, 2019) to get the following assertions.

Proposition 1. There exist su
h parameters δ0 ∈ (0, δ∗], ε ∈ (0, ε0], α
0 = α(δ0, ∆0)

that for all ∆t ≤ ∆0, δ ≤ δ0, ε ≤ ε0, α ≤ α0
, solutions of system (1 xδ,α(·), started

at the state xδ,α(t0) = yδ(t0) and generated by the 
ontrol ûδ,α(t) (22), (22), are

extendable on [0, T ] and xδ,α(t) ∈ D0 .

Proposition 2. There exists the 
on
ordan
e of parameters ∆t, δ, α, ε , su
h that

the 
ut-o� fun
tion ûδ,α(·) of the form (22), satis�es 
onditions C1 − −C3, when
∆t→ 0, δ → 0, α→ 0, ε→ 0.

Note, that the last 
oordinates vδ,αi (t), i ∈ m+ 1, N , t ∈ [tk−2, tk−1], k =
2, . . . , N in (22) satisfy the relations

‖vδ,αi (·)‖C → 0, i ∈ m+ 1, N

as ∆t→ 0, δ → 0, α→ 0, ε→ 0.

5. Examples

The following two examples illustrate simulation of solution of inverse problems

in ma
roe
onomi
s and navigation by the use of the new algorithm.

5.1. Example 1. Control Re
onstru
tions in Ma
roe
onomi
s

We 
onsider a model of ma
roe
onomi
 pro
esses with dynami
s

dx1(t)

dt
=
∂G(x1(t), x2(t))

∂x1
u1(t),

dx2(t)

dt
=
∂G(x1(t), x2(t))

∂x2
u2(t),

(24)

t ∈ [0, T ], T = 15, x1(·) is the produ
tion, x2(·) is the produ
tion 
ost, u1, u2 are


ontrols, and G(x1, x2) is the pro�t,

G(x1, x2) = x1x2(a0 + a1x1 + a2x2). (25)
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Controlling parameters u1, u2 are restri
ted

u21 + u22 ≤ U, (26)

where U is a positive 
onstant. The rate of taxation, the refunding rate and the


urren
y ex
hange 
ourse are in
luded in 
ontrolling parameters be
ause they de-

termine e
onomi
al 
onditions for produ
tion a
tivity in Russia. This model was

suggested by E.H. Albre
ht

1

We use real statisti
 data on the work of industry of the Ural Region for the

period 1970-1984 (10000 Rubles = 1).

Table 1. The Ural region's industry during 1970-1985.

Year Gross Regional Produ
t x1,i Costs x2,i

1970 37.88 21.69

1971 40.63 23.70

1972 43.25 25.45

1973 46.00 27.30

1974 49.33 29.44

1975 53.04 32.16

1976 57.03 35.01

1977 59.85 36.92

1978 62.72 38.69

1979 63.45 38.76

1980 65.74 39.96

1981 65.90 39.75

1982 69.22 41.31

1983 64.52 37.86

1984 71.03 42.04

1985 74.69 45.05

We 
onsider 
ontinuous pie
e-wise linear interpolation of the data as the ba-

si
 traje
tory x∗1(·), x∗2(·), whose dis
rete measurements on interval [0, 15] be
ome

known in real time at instants tk with a �xed time step ∆t < 1. A spline interpo-

lations yδ1(·), yδ2(·) of the measurements is 
onstru
ted.

The 
onsidering inverse problem is:

Problem 3. Re
onstru
t the 
ontrols u∗1(·), u∗2(·), generating the basi
 traje
tory

(x∗1(·), x∗2(·)), by known 
urrent measurements yδ1(·), yδ2(·).
We apply the des
ribed above algorithm and get the following results.

We denote by the line (a) the interpolation yδ1(·), the line (b) means the re
on-

stru
ted traje
tory xα,δ1 (·), the line (c) denotes the basi
 traje
tory x∗1(·) in pi
tures

below. The similar results we get for variables x2 and u2. Here T = 15.

5.2. Example 2. A Flight at the Pres
ribed Altitude

We 
onsider the following model of a �ight at the pres
ribed altitude from the

book (Letov, 1969).

1

Al'brekht, E.G. Methods of 
onstru
tion and identi�
ation of mathemati
al mod-

els for ma
roe
onomi
 pro
esses.// Ele
troni
 Journal "Investigated in Russia",

http://zhurnal.ape.relarn.ru/arti
les/2002/005.pdf (in Russian)
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Fig. 1. re
onstru
ted traje
tory xα,δ
1

(·), δ = 0.1, α = 0.1, △t = T/50.

Fig. 2. re
onstru
ted traje
tory xα,δ
1

(·), δ = 0.1, α = 0.1, △t = T/100.

Fig. 3. re
onstru
ted 
ontrol ûδ,α
1

(·), δ = 0.1, α = 0.1, ∆t = T/50.
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Fig. 4. re
onstru
ted 
ontrol ûδ,α
1

(·), δ = 0.01, α = 0.01, ∆t = T/100.

The dynami
s of �ight is:

dx1
dt

= x2;

dx2
dt

=
cu−Q(x2)

m(t)
;

(27)

Here x1 is the great-
ir
le ar
 starting from a 
ertain point, x2 is the ship

velo
ity along its traje
tory, m(t) is fuel mass, m(t) ≥ m0 > 0, 
ontrol u is the

fuel 
onsumption. The following restri
tions are satis�ed:

u ∈ U = {0 ≤ u ≤ β}, (28)

The symbol Q denotes the aerodynami
 drag de�ning via the formula (Letov, 1969)

Q = cxpS
(x2)

2

2
, (29)

the symbol S denotes the wing area, p is the the air density, known as a fun
tion

of altitude H at a 
onstant temperature, the symbol cx means the drag 
oe�
ient,

whi
h is given by the known fun
tion of

M =
x2
a
,

where a is equal to the sound speed.

We take into 
onsideration the basi
 traje
tory (x∗1(t), x
∗
2(t)) simulated by the

use of the following 
ontrol

u∗(t) =

{
10, 0 ≤ t < 2.5,
10 + 10 sin(t), 2.5 ≤ t ≤ 10.

(30)

Wat
hing the �ight (x∗1(t), x
∗
2(t)), we get in real time ina

urate dis
rete state

measurements (x1(tj), x2(tj)) :

‖xi(tj)− x∗i (tj)‖ ≤ δ, i = 1, 2,
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t0 = 0 < t1 < t2, . . . , < tN = T, δ > 0.
Continuous interpolations (yδ1(t), y

δ
2(t)) of the measurements are 
onstru
ted as

splines.

The above presented method is applied to obtain the re
onstru
tion uα,δ(t) of
the 
ontrol u∗(t) with a small delay in time ∆t in real time.

We put S = 10, p = 0.526(kg/m3), H = 8(km), M = 0.4, cx = 0.85.
Results of simulations of solution of the 
ontrol re
onstru
tion problem are ex-

posed at the pi
tures below.

Fig. 5. interpolation of measurements yδ
1(·)

Fig. 6. di�eren
e between interpolation yδ
1(·) and re
onstru
ted traje
tory xα,δ

1
(·)
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Fig. 7. interpolation of measurements yδ
2(·)

Fig. 8. di�eren
e between interpolation yδ
2(·) and re
onstru
ted traje
tory xα,δ

2
(·)

Fig. 9. unknown 
ontrol u∗(·) ((a) line) and re
onstru
ted 
ontrol uαδ(·) ((b) line)
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6. Con
lusion

In the paper, the new method is presented to solve dynami
 re
onstru
tion prob-

lems in real time using information about ina

urate 
urrent state measurements.

This method relies on ne
essary optimality 
onditions in auxiliary variational prob-

lems with 
on
ave-
onvex integral dis
repan
y fun
tional. A new algorithm of nu-

meri
al solution of inverse problems is suggested. Results of simulation of solution

of inverse problems in ma
roe
onomi
s and navigation are exposed.

Let us underline, that realization of the algorithm requires standard mathemat-

i
al tools and software. The new feature of it is that the inverse matrix Q−1
0 is


al
ulated only at the beginning of the re
onstru
tion pro
ess. One needn't 
al
u-

late matrixes Q−1
k on ea
h step of the re
onstru
tion pro
ess. This method has also

dis
overed properties of stability relative to perturbations to input data. All of it

makes the suggested pro
edure great e�e
tive.
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