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Abstract We present and discuss a new approach to solutions of control
reconstruction problems in real time. The suggested solution based on neces-
sary optimality conditions for auxiliary calculus of variation problems with
concave-convex discrepancy functional.
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1. Introduction

Dynamic controlled processes are widely found in surrounding life: in engi-
neering, business, economics, medicine, social changes, traffic, education, etc. See,
for example, (Bellman, 1957; 8; Leitmann, 1962; Krasovskii, 1968; Michel, 1977,
Petrosjan and Zen kevich, 1996). Importance of management for these processes
lead to the need to study and solve not only direct control problems aimed at
constructing controls that optimize quality criteria. For predicting, planning and
decision making in the future, it is important also to analyse and solve inverse
problems directed on control reconstruction and based on inaccurate measurements
of realized motions. See, (Sabatier, 2000; Osipov et al., 2011; D’Autilia et al., 2017;
Liu et al., 2018), where many methods were suggested to solve different inverse
problems. The methods applied ideas and results of algebra, geometry, functional
analysis, the theory of approximations, the theory of perturbations and so on. But
reconstruction problems are still actual and many new applied inverse problems
require new effective methods.

It should be underlined the approach suggested by Yu.S. Osipov and A.V. Krya-
zhimskii (Kryazhimskii and Osipov, 1984, Osipov and Kryazhimskii, 1995). It sour-
ces in the theory of optimal feedbacks (Krasovskii and Subbotin, 1988) developed
by N.N. Krasovskii’s school. The approach is more close to the presented below one.
It uses the method of extreme aiming to motions of a guide model, whose dynamics
copy dynamics of the original controlled system. So, this approach to solution of
inverse problems appeals a coupled dynamic system: the original dynamic system
and a similar guide system.

The presenting method was suggested in (Subbotina and Tokmantsev, 2013;
Subbotina et al., 2015). There was used a new variational approach based on solu-
tions of auxiliary problems of calculus of variation with integral regularized discrep-
ancy functionals. According to necessary optimality conditions in these variational
problems, a coupled system is also introduced: the original system and an addi-
tional system of conjugate variables. The key new feature of the approach is that
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the discrepancy is concave-convex. This character of discrepancy provides oscilla-
tions motions of the reconstructed system around inaccurate measurements of the
real states of controlled system.

At first papers this approach was developed for solving inverse problems at the
end of the controlled process by the use a posteriori information about history
of measurements of states (Subbotina and Krupennikov, 2017; Krupennikov, 2018;
Subbotina and Krupennikov, 2018). Now the same ideas are developed to solve dy-
namic reconstruction problems in real time.

Note, that both mentioned above approaches can be also considered as develop-
ments of Tikhonov regularization method (Tikhonov, 1963).

The paper is organized as follows. The section Statement contains description of
a control reconstruction problem (CRP): controlled dynamics, incorrect measure-
ments and main hypotheses on input data, and also a definition of solution of CRP.
The next section Auxiliary Constructions contains statement of auxiliary problems
of calculus of variations (CVP) and necessary optimality conditions in CVP. An al-
gorithm of control reconstruction by the use CVP is described and discussed in the
section Solutions CRP. Illustrative examples of numerical solutions of control recon-
struction problems in macroeconomics and navigation are exposed at the section
Examples.

2. Statement

We consider control systems with dynamics of the form
z(t) = G(x(t),t)u(t), te][0,T). (1)

where x(t) € R™ are state variables. The admissible controls u(-) : [0,T] — R™, m <
n, are piecewise continuous functions with finite number of points of discontinuity,
and they satisfy the following geometric restrictions.

u(t) e U, telo,T], 2)

where U = {a; <wu; <b;, i=1,...,m} C R™.

It is assumed that a trajectory *(-) : [0,7] — R™ of system (1) is realizing in
real time. Discrete measurements x(tx,d) of this basic trajectory x*(-) become to
be known in real time at instants ¢.

Measurements z(ty, ) = 2°(t) of the base trajectory z*(-) satisfy the relations

12 (t) — 2" (t0)| < 6, (3)
to=0; tx, =kAt; k=1,2,...,N; ty=T.
We put
d€(0,0%], Ate(0,A7. (4)
We choose a constant K7 > 0 and construct step-by-step, for instants tx, k =
1,...,N, continuous interpolations y°(¢) : [0,T] — R™ of measurements 7°(t),
k=1,...,N, which are twice differentiable functions on each subinterval [tx_1, t],

and satisfy the estimations:

dy°(t)

&
| < K
IOl < K, 2

| <K, Ytelo,T); (5)
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| d*y°(t)

dt?
where the sets ©° have measures 3° = 3(6°), and f° — 0, as § — 0. and the
following relations are true:

H SKla vt € [OvT]\967 (6)

ly°(t) — 2" ()] < 26, te[0,T].

Note, that we can do it as apply splines with nodes defined by v°(t).
The problem is: to reconstruct in real time a control generated the basic trajec-
tory 2*(-) by the use of interpolations y°(-) of incorrect measurements @°(ty).

2.1. Hypothesis

We consider the control reconstruction problem (1)-(3) under the following as-
sumptions.

H1. Coordinates g;;(t,z), i € 1,n, j € 1,m, of the matrix-function G(t, z) are
defined in the strip I = [0,T] x R™, and there are no oscillating components of
gi;(t,x); the functions g;;(t,z), i € 1,n, j € 1,m, are continuously differentiable

dgii(t, dgii(t, T
gij (t,x) 9ij I)7 kel’n

in the domain (0,7") x R", and their partial derivatives =5~ ==
k

are extendable on any compact set D C IIt = [0,T] x R™.
H2. There exist: a positive number dp, and such a compact set Dy C Ilp
containing the graph of the basic trajectory z*(-) that

{(0,7) % {z € R": |l < do}} () Do = 0, (7)

and the rank of the m x m-matrix {g; ;(t,x), i,7 € 1,m} is equal to m for all
(t, .%') € Dyg.

H3 For any At € (0, 4], there exist such numbers dy € (0,6%], and a* > 0
satisfied the relations

200 < K1(At)?, 460 + o < do, (8)
where K7 > 0 is defined by the set Dy and assumptions H.1-H.2., that
Qs ={(t,x): |z —y°(t)| <46 +a*, t € [to,T]} C Do, V5 € (0,6].  (9)

2.2. Statement of Control Reconstruction Problem

Fix parameters At € (0, A*], § € (0, o] and the an interpolation y°(-) of current
discrete incorrect measurements,
We consider the following Control Reconstruction Problem (CRP).

Problem 1. Find an admissible control u’(-) generating the trajectory x?(-) of
system (1) step-by-step on the intervals [tg_o, k], &k = 2,..., N, to satisfy, at the
end, the conditions:

o (1.
(t,2°(t)) € Dy, ¥t €[0,T), (10)

o (2.
6_}&?%90 12°(:) = 2*()le =0, (11)

e (3.
lim [u’(-) = ()|, = 0. (12)

§—0,At—0
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Here the symbols ||z(-)||c and ||u(-)| L, means the norms in the spaces C([0,T], R™)
and L2([0,T], R™). The "normal" control «*(-) has the minimal norm in Ly among
all admissible controls generating x*(-). Note, that the control reconstruction prob-
lem (1-(3) has the unique "normal” control under assumptions H1 — —H3.

3. Auxiliary Constructions

We suggest to use for solutions of CRP the following auxiliary variational prob-
lems.

3.1. Calculus of Variations Problems

We introduce a modified dynamical system of the form

dx(T)

o = G(ra(M)u(r), 7€ [tz til, (13)

where controls v = (u1, ..., %Um, Vm+1,---,Un) € R™ and n X n - matrix G(¢,x) is
constructed as

gij(r,z), ieln, jelm,

0, t€l,m, jeEm+1,n,
9ij(T,2) = (14)
0, iem+1,n, jeEM+1l,n, i#j

e, 1€m+1Ln, jeEm+1,n, =7

where ¢ is a small positive parameter of approximation.

Fix parameters At € (0, 4], § € (0,00], @ >0, & > 0. For any current instant
tr,k > 2, let us define an interpolation y°(t), t € [tr_2,tx] of measurements and
introduce the following cost discrepancy functional

b 20 — DI a2llold)]2
o) = [ [EOLOE_LOr), )

tp—2

on the set F' of pairs of continuously differentiable functions {z(-) : [tx—2,tx] —
R™ w(-) : [tk—2,tx] = R™}. Here a > 0 is a small regularising parameter.

We consider pairs of continuously differentiable functions (x(-) : [tx—2,tx] — R™,
v() : [tk—2,tk] — R™) > F that satisfy differential equations (13) and the following
terminal conditions

(th—z) =y’ (tr-2),  @(tr—2) = §° (te—2)- (16)
We consider the following auxiliary Calculus of Variations Problem (CVP).

Problem 2. Find a pair of functions {z>%(-), v>®(-)} € F satisfied (13), (16) and
provided a local minimum for the cost discrepancy functional (16).
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3.2. CVP Necessary Optimality Conditions

Necessary optimality conditions in CVP (13),(15),(16) provide the following
Hamiltonian system:

i(t) = —(1/a®)G(a(t), )G7 (2(t), D)s(t),

8i(t) = @i(t) — v (1) + (17)

—|—(1/a2)sT(t)g—G(a:(t),t)GT(x(t),t)s(t), iel,n,

Tq

where the vector s(t) is the adjoint variables vector, the symbol 7 denotes transpo-
sition, and the boundary conditions are satisfied

w(teoa) = Y (th—2), (th—z) = §°(tr—2). (18)

4. CRP Solutions

In this section we describe an algorithm of construction of CRP solution. It is a
modification of an algorithm described and justified in (Subbotina, 2019).

4.1. Guiding Dynamics

Let us consider on the interval [tx—2, tx] the following linearized system obtained
from (17)

2(t) = —(1/a®)Qrd(tr—2) — §° (tr—2),

| (19)
s(t) = z(1),
where (t) = 7(t) — 4! (¢),
Qk = G(Z(te—2), tr—2)G" (2(th-2), tr—2)
and the following boundary conditions followed from (18)
Z(tp_a) =0, &(tp_2) = 8" (tp_2) = 8" 1 (tx_2) (20)

where the upper index k means that the corresponding variable is obtained for the
CVP on interval [tp_2,tx], K =2,..., N, and

5(to) = —a®Qg 9" (to) (21)
where Q! is the inverse matrix for the non degenerate matrix

Qo = Gy’ (to), to) G (y° (t0), to)-

4.2. Guiding Control
In problems (19)—(21), for fixed «, §, we have obtained the guiding control

v (t) = =(1/a®)GT (@ (ti-a), ti—2)587° (1), (22)

where 20%(t), 5%%(t), are solutions of system (19)—(21), t € [tx_o,tx_1), T¥(ty_2) =
(o) + 4 (th—2), k=2,...,N,.
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Let us introduce the cut-off function

%), as [l (t) € U

s (t) = (23)
i € argmin [[[V]5(8) —ull, as [l (1) ¢ U,
ue
where [v],, = {v1,..., v} for v € R™, n > m.

We choose the functions 4% (t), i € T,m, t € [ty_2,tr_1], k = 2, ..., N to consider
them as solutions of inverse Prob.1.

4.3. On Justifications

This algorithm of solving Prob.1 is a modification and a simplification of an
algorithm of solving CRP suggested and justified in (Subbotina, 2019). Namely,
the new algorithm uses boundary conditions (18) for auxiliary dynamics (17). So,
we need not construct inverse matrices Q,:l for each subinterval [t;_2,t;]. Thiese
procedure is made only one times (21) at the initial instant ¢y . The novelity provides
also better convergence of the method. Taking it in to account, one can modify
schemes of proofs from (Subbotina, 2019) to get the following assertions.

Proposition 1. There ezist such parameters 6° € (0,6.], € € (0,20, a® = (8%, Ao)
that for all At < Ay, 6 <6°, ¢ <& a < aP, solutions of system (1 x>°(-), started
at the state x5%(ty) = y°(to) and generated by the control 0% (t) (22), (22), are
extendable on [0,T] and z%(t) € Dy .

Proposition 2. There exists the concordance of parameters At,0,«,e , such that
the cut-off function 1%°(-) of the form (22), satisfies conditions C1 — —C3, when
At —0,0—=0, a—0, e —>0.

Note, that the last coordinates vf"o‘(t), 1t €m+1,N,t € [tgp_o,tr-1], k =
2,..., N in (22) satisfy the relations

[07*(Ye =0, iem+1,N

as At -0, d >0, a—0, e = 0.

5. Examples

The following two examples illustrate simulation of solution of inverse problems
in macroeconomics and navigation by the use of the new algorithm.

5.1. Example 1. Control Reconstructions in Macroeconomics

We consider a model of macroeconomic processes with dynamics

da(t) _ aG(acl(lt),acz(t))u1

(1),
doat)  0G(a (B aa(t) (24)
dt - 6:02 2 (t)7

t €[0,T], T =15, x1(-) is the production, x2(-) is the production cost, ui,us are
controls, and G(z1, z2) is the profit,

G(Il, IQ) = leg(ao + a1z + CLQSCQ). (25)
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Controlling parameters uq, us are restricted
uf +uj < U, (26)

where U is a positive constant. The rate of taxation, the refunding rate and the
currency exchange course are included in controlling parameters because they de-
termine economical conditions for production activity in Russia. This model was
suggested by E.H. Albrecht !

We use real statistic data on the work of industry of the Ural Region for the
period 1970-1984 (10000 Rubles = 1).

Table 1. The Ural region’s industry during 1970-1985.

Year Gross Regional Product z1,;  Costs x2;

1970  37.88 21.69
1971 40.63 23.70
1972 43.25 25.45
1973  46.00 27.30
1974  49.33 29.44
1975 53.04 32.16
1976  57.03 35.01
1977 59.85 36.92
1978  62.72 38.69
1979  63.45 38.76
1980  65.74 39.96
1981  65.90 39.75
1982  69.22 41.31
1983  64.52 37.86
1984  71.03 42.04
1985  74.69 45.05

We consider continuous piece-wise linear interpolation of the data as the ba-
sic trajectory 27 (-), z5(-), whose discrete measurements on interval [0, 15] become
known in real time at instants ¢, with a fixed time step At < 1. A spline interpo-
lations y{(-), y3(-) of the measurements is constructed.

The considering inverse problem is:

Problem 3. Reconstruct the controls uf(-), u3(-), generating the basic trajectory
(z3(-),23(+)), by known current measurements y{(-), y3(-).

We apply the described above algorithm and get the following results.
We denote by the line (a) the interpolation y{(-), the line () means the recon-
structed trajectory x‘f"s(-), the line (c¢) denotes the basic trajectory x3(+) in pictures

below. The similar results we get for variables x2 and us. Here T' = 15.
5.2. Example 2. A Flight at the Prescribed Altitude

We consider the following model of a flight at the prescribed altitude from the
book (Letov, 1969).

L Al'brekht, E.G. Methods of construction and identification of mathematical mod-
els for macroeconomic processes.// Electronic Journal "Investigated in Russia',
http://zhurnal.ape.relarn.ru/articles/2002/005.pdf (in Russian)
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Fig. 1. reconstructed trajectory z°°(-), § = 0.1, a = 0.1, At = T/50.
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Fig. 2. reconstructed trajectory $°°(-), § = 0.1, a = 0.1, At = T/100.
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Fig. 3. reconstructed control a2*(-), § = 0.1, = 0.1, At = T'/50.
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uy(t)
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Fig. 4. reconstructed control a5 (-), § = 0.01, a = 0.01, At = T'/100.

The dynamics of flight is:

dIl

— = T2;

dt

dry  cu—Q(x2) (27)
d — m()

Here z; is the great-circle arc starting from a certain point, x2 is the ship
velocity along its trajectory, m(t) is fuel mass, m(t) > mgy > 0, control u is the
fuel consumption. The following restrictions are satisfied:

welU={0<u<}p}, (28)
The symbol @ denotes the aerodynamic drag defining via the formula (Letov, 1969)

2
Q= s 2L (20)
the symbol S denotes the wing area, p is the the air density, known as a function
of altitude H at a constant temperature, the symbol ¢, means the drag coefficient,
which is given by the known function of
M=
a
where a is equal to the sound speed.
We take into consideration the basic trajectory (z73(t),x3(¢)) simulated by the
use of the following control
wn 10,0 <t < 2.5,
ut(t) = {10 + 10sin(f),2.5 < t < 10. (30)

Watching the flight (27 (¢),25(¢)), we get in real time inaccurate discrete state
measurements (x1(¢;), z2(t;)) :

i(t;) — zi ()|l <6, i=1,2,
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to=0<ty1 <to,...,<ty=1T, § >0.

Continuous interpolations (y(t),y3(t)) of the measurements are constructed as
splines.

The above presented method is applied to obtain the reconstruction u®°(t) of
the control w*(¢) with a small delay in time At in real time.

We put S =10, p = 0.526(kg/m?), H = 8(km), M = 0.4, ¢, = 0.85.

Results of simulations of solution of the control reconstruction problem are ex-
posed at the pictures below.
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Fig. 5. interpolation of measurements 32 (-)
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Fig. 6. difference between interpolation y¢(-) and reconstructed trajectory z5°(-)
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Fig. 7. interpolation of measurements y3(-)
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Fig. 8. difference between interpolation y3(-) and reconstructed trajectory z5°(-)
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Fig. 9. unknown control «*(-) ((a) line) and reconstructed control u®°(-) ((b) line)
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6. Conclusion

In the paper, the new method is presented to solve dynamic reconstruction prob-
lems in real time using information about inaccurate current state measurements.
This method relies on necessary optimality conditions in auxiliary variational prob-
lems with concave-convex integral discrepancy functional. A new algorithm of nu-
merical solution of inverse problems is suggested. Results of simulation of solution
of inverse problems in macroeconomics and navigation are exposed.

Let us underline, that realization of the algorithm requires standard mathemat-
ical tools and software. The new feature of it is that the inverse matrix Q;*' is
calculated only at the beginning of the reconstruction process. One needn’t calcu-
late matrixes Q,;l on each step of the reconstruction process. This method has also
discovered properties of stability relative to perturbations to input data. All of it
makes the suggested procedure great effective.

Acknowlegments. The author express her gratitude to Eugenii A. Krupennikov
and Timofey B. Tokmantsev for simulation and graphic presentation of results for
the illustrative examples above.
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