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Abstract This essay presents a novel look at Murthy and Asgharizadeh’s
study (Murthy & Asgharizadeh, 1998). The authors developed a decision
problem applied to maintenance outsourcing involving two decision-makers
(players). If a consumer buys a product, then outsources the maintenance
actions to a maintenance agent (agent) who offers two maintenance op-
tions; a maintenance contract that holds a penalty clause which is activated
if the agent’s time to repair is higher than a specified time, and services
on-demand. The model yields equilibrium strategies based on the subgame-
perfect Nash equilibrium. The agent defines the optimal pricing structure
for the maintenance options considering the equipment’s useful life while
the consumer maximizes their expected payoff by choosing one maintenance
option. Our contribution to this research branches in three ways. First, once
the model deals with random variables, it represents a stochastic optimiza-
tion problem. We propose a different approach to estimate this penalty time
by using the Monte Carlo method. The second contribution is to present a
formal definition of this decision problem as a game, emphasizing the game
theory’s components. Finally, we reinterpret the players’ equilibrium strate-
gies.

Keywords: Game theory. Maintenance outsourcing. Simulation. Equilib-
rium strategies. Expected payoffs

1. Introduction

After-sales services play an essential role in the consumer’s purchase decision,
since nowadays the devices, particularly gadgets and appliances, are more complex
and sophisticated. It turns out to be difficult for the consumer, the owner of the
product, to carry out maintenance in-house due to lack of expertise. As a result,
maintenance outsourcing has become a trend adopted by many consumers to repair
their products.

Conceptually, maintenance outsourcing involves some or all maintenance actions
carried out by a maintenance agent (agent) under a maintenance service contract.
This document specifies the maintenance terms, incentives (or penalties) related to
the product’s performance for an agreed period of time. The agent in turns charges
a price for such service (Murthy & Jack, 2014).

Under a management, decision, companies outsource maintenance aiming the fol-
lowing advantages: (i) access to high-level specialists and latest maintenance tech-
nology, (ii) better maintenance due to expertise of the maintenance agent, (iii) risk
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control, as fixed cost, the maintenance service contract removes the risk of high costs,
(iv) less capital investment for the owner of the equipment, and (v) focus on core ac-
tivities, managers can devote more time to other facets of the business since mainte-
nance management demands less of their time and effort (Jackson & Pascual, 2008).

It is relevant to consider this environment is built up by considering two decision-
makers (players) that have different perspectives concerning this service. First, the
provision of maintenance implies costs, which are referred to as warranty servicing
costs (Shafiee & Chukova, 2013). They are the sum of the costs associated with
the servicing of a failed item under the coverage period (Murthy & Blischke, 2006).
According to Murthy (Murthy, 2007), such costs vary from 2-10% of the sale price
of the product. Second, the agent must define the maintenance pricing complies
with the repair costs and their profit. Finally, the consumer, based on the agent’s
maintenance price, evaluates if the maintenance price is reasonable to buy it.

The interaction between these two main parties - the agent and the consumer
- can form a game theory model (Murthy et al., 2015). Each player has different
goals, and decisions made for a party affect the outcomes for all the other parties.
Under this context, game theory, a branch of modern applied mathematics that aims
to analyze problems that involve a conflict of interests between different decision-
makers (Petrosyan & Zenkevich, 2016).

Within the maintenance study, it is also essential to emphasize the role of un-
certainty that affects decision-making among the parties involved. All products are
unreliable in the sense that they may fail. A failure may be associated with man-
ufacturing defects or due to the degradation process that is dependent on age and
usage (Murthy & Jack, 2003). Thus, understanding future costs (which are random
variables) by considering both perspectives is crucial to balance the agent’s profit
and the consumer’s maintenance cost (Rahman & Chattopadhyay, 2015).

A seminal paper that involves all the features mentioned above was proposed by
Murthy and Asgharizadeh (Murthy & Asgharizadeh, 1998). The authors developed
a quantitative model applied to maintenance outsourcing, considering the agent and
the consumer’s points of view.

Generally speaking, the consumer’s decision regarding buying a product, a re-
pairable good, is influenced by the post-sale service of maintenance since the con-
sumer outsources the maintenance actions to an agent who offers two maintenance
options. The model yields equilibrium strategies for all parties through the subgame-
perfect Nash equilibrium (Osborne, 2004). The agent defines a pricing structure
considering the equipment’s useful life. Alternatively, the consumer replies for each
pricing structure defined by the agent.

Based on that, our contribution has three aims:

1 Apply computational statistics techniques to estimate the maintenance expected
cost incurred by the agent and the consumer’s expected payoff. In particular,
we apply the Monte Carlo method (Taha, 2017) to perform random sampling
with reliability-related performance measures to estimate their stochastic pa-
rameters.

2 Formalize this quantitative model as a sequential two-person game with perfect
information. We carefully analyze the game theory elements inserted in this
research.

3 Reinterpret the players’ equilibrium strategies.
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The outline of the paper is as follows. In Section 2, the model is presented as
a game considering all game theory components. Section 3 explains the model so-
lution, highlighting the players’ equilibrium strategies. In Section 4, a numerical
example is presented. Further, this section also compares the results from our sim-
ulation with the results of the authors, underlining the computational perspective.
Finally, Section 5 presents concluding remarks and provides further extensions.

2. Model Formulation

The model to be explained follows the steps of the systems approach proposed
by Murthy and Blischake (Murthy & Blischke, 1992). The essential elements are (i)
the set of players, (ii) the set of strategies, (iii) the product’s characteristics, (iv)
the product’s performance, (v) maintenance costs, (vi) players interaction (power
configuration level), (vii) the players’ equilibrium strategies, and (viii) the players’
payoffs.

We follow the same structure and assumptions of the Murthy and Asgharizadeh’s
study (Murthy & Asgharizadeh, 1998).

2.1. Set of Players
The model holds two players, a maintenance agent, and a consumer.

2.2. Problem Description

If the consumer purchases a product, a repairable system whose price is Pg,
then it generates financial revenue R per time unit when the device is working and
zero if it is at the failed state during its useful life L. Once the consumer has no
expertise to repair the product, the agent offers two maintenance options:

01 - Maintenance Contract. This option can be deemed as a free replacement
warranty policy (Thomas & Rao, 1999). The agent repairs the product during
its useful lifetime L. Furthermore, there is a penalty clause that states that if
the equipment is not repaired within a time 7 subsequent to the failure, then
the agent should be charged a fine. The penalty structure is a(Y; —7) if Y; > 7,
where « is the penalty cost per time unit and Y; is the agent’s time to repair the
ith failure. This penalty is seen as a refund policy to be benefit the consumer.
The consumer pays Py;¢ for this option.

Oy - Service on Demand. Under this option the agent charges a price Psp for
each repair intervention. In total, the consumer pays PspN (L), where N (L) is
the number of product failures over L.

2.3. Equipment Failures and Repairs

The mathematical model used to describe the flow of failures over time fol-
lows the characteristics of the homogeneous Poisson process (Ross, 2014). This is
a stochastic point process that counts the number of events (failures) along with a
time interval (Gnedenko & Ushakov, 1995).

Let A(> 0) be the failure rate of the product, then the expected value of the
number of product failures during time interval ¢ follows the Poisson distribution
whose mean is Af. Furthermore, the average time between two consecutive failures
follows a random variable exponentially distributed with mean A~'.

It is worth mentioning that as the failure rate is constant and the agent only
carries out corrective maintenance (Ben-Daya et al., 2016). Thus, after a failure, the
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agent repairs the item. Under the homogeneous Poisson process, the device is not
susceptible to suffer from the degradation process since the failure pattern shows
no trend with time (Pulcini, 2003).

Finally, the agent’s repair times are independent and identically distributed
random variables that follow an exponential distribution with rate p(> 0).

2.4. Agent’s Decision Problem

Once the coverage period is the equipment’s useful life, the agent’s decision
problem is to define a pricing vector to the maintenance options. Let P4 the agent’s
set of strategies and p4 a strategy from this set, where

pa = (Puc, Psp)
pa € Pa
2.5. Consumer’s Decision Problem

The consumer’s choice among two maintenance options is influenced by p4 se-
lected by the agent, as well as by (3, the coefficient of risk aversion that captures
the consumer’s uncertainty due to the presence of random variables related to relia-
bility. As a result, z(pa), the consumer’s strategy can assume three possible values
which are detailed in Table 1.

Table 1. The possible values of the consumer’s strategy.

x(pa) Description
0 The consumer does not purchase the product.
1
2

The consumer purchases the product and chooses maintenance option O;.
The consumer purchases the product and chooses maintenance option Os.

2.6. Assumptions

The model hols three assumptions:

A1l All elements of the structure of the game are known to all players (complete
information);

A2 Once the failure-repair-failure cycle represents an homogeneous Poisson process,
then we have ! << A™1, so that revenue generated by the equipment over its
useful life can be approximated by RL;

A3 The agent’s maintenance cost per failure does not change over time, correspond-
ing to C4.

Assumption A1 implies that the consumer knows the product’s failure rate ()
and the agent’s repair rate (u) while the agent knows the consumer’s coefficient of
risk aversion ().

Assumption A2 states that the sum of repair times are negligible when they
are compared to the product’s useful life. Thus, even though the agent may incur
in penalty time, this time does not affect the player’s payoff. Furthermore, this as-
sumption fits with the fact that the number of product failures is Poisson distributed
with intensity A (Chun & Tang, 1995).

Assumption A3 may be supported when the labor costs of handling and diagnosis
dominate the warranty servicing costs (Glickman & Berger, 1976).
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2.7. Order of Moves

At first, the agent defines the pricing vector for the maintenance options. Then,
the consumer incorporates this information in their set of admissible control and
chooses a value for z(p4). This sequential structure with finite sequence of steps
can be seen as a extensive-form game.

2.8. Payoff Functions

For each combination of strategies selected by the players, we obtain the players’
payoff functions.

Consumer’s expected utility. We define the consumer’s payoff function as an
exponential utility function that holds the coefficient of risk aversion Eq.(1)

—_ e B
Vo) = ——5— 1)

where U¢ is the consumer’s utility associated with monetary gain v(> 0) due to
the consumer’s decision.

The advantage of this utility function is that the initial wealth is of no im-
portance. Moreover, this function captures the attitude to risk. The risk aversion
increases with 8 (Rinsaka & Sandoh, 2006). A study about the properties of this
utility function can be seen in (Wood & Khosravanian, 2015).

The consumer’s monetary gain for x(p4) = 1 is given by

N(L)

Z max(0,Y; — 7)

i=0

v(1)=RL+ « — Pyce — Pg. (2)

The consumer’s monetary gain for x(p4) = 2 is given by

7(2) = RL — PspN(L) — Pg. (3)

Finally, if (pa) = 0, the consumer’s monetary gain is given by

7(0) = 0. (4)
From Egs. (1) and (2), the consumer’s expected utility when z(pa) =1 is:

Uc(1;p4) = 1(1 *5{RL+0¢[ZN,(OL)maX(0 Yiff)}PMCpr})
’ B
1
Uc(1;pa) = E(l B(RL—Prc—Pp) *5“[va((f)max(oy r)}) (5)
E[Uc(:l’ﬁA)] = % (1 RL Pro— PE)E |:6750‘[Z£V:(0L) maX(O-,Yvi*T)} :| ) )
From Egs. (1) and (3), the consumer’s expected utility when z(pa) = 2 is:
D 1 —B(RL—Psp—Pg)
UC(ZPA)Z@(I—@ sD E)
Uc(2;p4) = %(1 — e*ﬁ(RL*PE)eBPSDN(L)) ©)
ElUc(2;p4)] = %(1 — ¢ A(RL-Pr)R [eﬁpsDN(L)}).
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Since N (L) follows the Poisson distribution with mean AL, then E [eBPSDN(L)}

can be seen as the moment generating function of the Poisson distribution, being

rewritten as e*(¢”"*” =1 Consequently, Eq. (6) may be manipulated to find:

E[Uc(2ipa)] = (1 -~ e—ﬂ<RL—PE>+AL<e‘*PSD—1>).
7 B
From Egs. (1) and (4), the consumer’s expected utility when z(p4) = 0 is:

E[Uc(0;pa)] = 0. (8)

Agent’s expected profit. The agent’s payoff function is a profit function (I14).
For each value of xz(p4), we have the following possibilities for the expected profit.

The agent’s expected profit, if the consumer purchases the product and chooses
maintenance option O1 is

N(L)

Z max(0,Y; — 7)

=0

E[Il4(pa;1] = Puc — oE — CaAL. (9)

The agent’s expected profit, if the consumer purchases the product and chooses
maintenance option Oy is

E[I14(pa;2) = (Psp — Ca)AL. (10)

The agent’s expected profit, if the consumer does not purchase the product is
E[I14(pa; 0] = 0. (11)

3. Model Solution

This section discusses the equilibrium strategies for all players, considering a
dynamic game.

At first glance, it can be seen that the decision problem presented is a nonzero-
sum two-person finite game with perfect information defined in two steps. Each
player acts only once.

We compute the subgame perfect Nash equilibrium through backward induction
(Fujiwara-Greve, 2015) to find the players’ equilibrium strategies. Hence, we solve
the model starting from the consumer’s decision problem, and then we solve the
agent’s decision problem.

3.1. Consumer’s Equilibrium Strategy

The consumer deals with a two-dimensional space whose axes are the mainte-
nance option prices. For a given p4, the consumer compares their expected utility
- Egs. (5), (7), and (8) - and chooses the strategy which maximizes their expected
payoff, the expected utility maximization principle (Von Neumann & Morgenstern,
1947).

It is essential to mention that the consumer’s purchase decision to each mainte-
nance option is set up in a pricing interval whose upper limit is the consumer’s reser-
vation price (Varian, 1992), that is, the highest price that the consumer is willing to
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pay for a maintenance option. Above such price, the consumer does not choose the
maintenance option. If the agent defines p4 below the consumer’s reservation prices,
then the consumer obtains consumer’s surplus (Osborne & Rubinstein, 2020).

To sum up, the consumer’s equilibrium strategy, ©(p4), is the best reply for each
P4 offered by the agent!. Table 2 summarizes the consumer’s equilibrium strategy,

and its implications.

Table 2. Consumer’s equilibrium strategy.

z(pa) Payoff analysis Consumer’s expected payoff
0 E[Uc(1;p4)] <0 and E[Uc(2;p4)] <0 0
1 E[Uc(1;pa)] > E[Uc(2;pa)] >0 E[Uc(1;pa))
2 E[Uc(2;pa)] > E[Uc(1;pa)] >0 E[Uc(2;p4a)]

The next part of this subsection explains how to compute the consumer’s reser-
vation prices for each maintenance option.

Consumer’s reservation price for maintenance option O;.

| |
o

E[Uc(1;pa)
%(1 _ o~ B(RL—Pruc—Pr)R [efﬁa[zf’:( max(0,Y; —7) }D

Il
o

o~ B(RL—Pryc—Pr) {e Bo [ SN E max(0,Vi—7 ]}

—B(RL — Pyje — Pg) +InE |e 50‘[27 = maxon#)” =Inl

~B(RL~ Pyc — Pg) = —InE [e 9| DX maxt0i-n]]

InE |: BQ[ZN(L)max(O Yf‘r)]:|
RL — Pyj¢ — Pg = ﬁ

InE [ —pa| ZX max OK—T)H
B

)

Pyc =RL — Pg —

where Py is the consumer’s reservation price for maintenance option Oj.

L If the consumer’s best reply is unique, we have the case of the Stackelberg equilibrium
solution (Tamer & Olsder, 1992).
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Consumer’s reservation price for maintenance option O-.

E[Uc(2;p4)] =0
(1 _ e—ﬂ(RL—PE)+AL(eﬂPSD—1)) 0

|~

e~ B(RL—Pp)+AL(FSD 1) _ 4

—B(RL — Pg) + AL(e’"5? — 1) =In1
AL(ePPsp — 1) = B(RL — Pg)

e'BPSD 1= ﬁ(RL - PE)

AL (13)
¢PPsp _ LLA; Pe) 4
BPsp zln{%;l%)—i—l}
Pop - %m{%fﬂﬂ}

where Psp is the consumer’s reservation price for maintenance option Os.

3.2. Agent’s Equilibrium Strategy

The agent anticipates what the consumer will choose in the second stage and
incorporates the consumer’s equilibrium strategy to define their equilibrium strategy
(pa). The maintenance provider develops a pricing structure able to enforce the
consumer the select the maintenance option that maximizes their expected profit.

Under this context, the consumer’s reservation price plays an essential role in
the agent’s payoff. Like the consumer, the agent has a pricing range to set up the
maintenance option prices. The bottom limit is the agent’s cost of servicing failures
under the coverage period for each maintenance option since, below these prices,
the agent’s payoff is negative.

Alternatively, the consumer’s reservation price represents the upper for each
maintenance option since, above such prices, the consumer does not purchase any
maintenance option, and the agent’s payoff is zero.

If the agent considers the consumer’s reservation prices to determine their equi-
librium strategy, we have a case of first-degree price discrimination (Varian, 1989).
Consequently, the consumer’s surplus is zero, and the maintenance provider cap-
tures all the benefit that the consumer receives due to the purchase of the product
and the maintenance option chosen.

The agent compares which of the consumer’s reservations prices (PMC, pSD)
provide the maximum expected profit and enforces the consumer chooses the main-
tenance option required following this structure:

* If maintenance option O; provides the maximum expected profit to the agent,
we have: pa = (Pyc = Pve, Psp > Psp), and the agent’s payoff is given by
Eq. (9);
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* If maintenance option Oz provides the maximum expected profit to the agent,
we have: pa = (Pye > Pue, Psp = Psp), and the agent’s payoff is given by
Eq. (10).

Finally, whether both maintenance options provide a negative payoff for the
agent, the agent’s equilibrium strategy is: pa = (Puc > Pue, Psp > Psp)-

3.3. Simulation

The main contribution of this research relies on applying computational statistics
techniques to estimate the players’ payoff under maintenance option O;. These
payoff functions possess stochastic parameters that may be estimated by the Monte
Carlo method. As a result, we provide a new approach to calculate the agent’s
expected maintenance cost, Eq. (9), and the consumer’s reservation price for the
maintenance contract, Eq. (12).

In broad terms, the focus on the Monte Carlo method is based on performing
random sampling in the penalty time, once it is affected by randomness since the
number of product failures, as well as the agent’s time to repair, are random vari-
ables. We can repeat this scenario several times to develop an empirical estimator
to the mean.

Under a probability perspective, we can see the penalty time as a particular sort
of the linear transformation of independent exponential random variables. When the
difference between Y; and 7 is positive, then we have such linear transformation,
otherwise assume 0 (the penalty time is a non-negative continuous data).

Simulation of the agent’s penalty time. The random component that affects
the agent’s cost under maintenance option O; is the penalty time. Thus, this simula-
tion aims to estimate the mean of the penalty time incurred by the agent. Algorithm
1 shows the steps to calculate it.

Algorithm 1: Compute the penalty time
Input :Y;, N(L), 7
Output: Expected value of the penalty time
To define the sample size to compute the expected value — Step 0
Initialization;
Step 1 : To compute E[N(L)] ; /* It must be an integer number */
Step 2 : To generate Y;/; equal to E[N(L)]
Step 3 : To compare the difference for each Y; with 7
if Y; — 7 > 0 then store
| otherwise assign 0
end
Step 4 : To create a vector with these differences
Step 5 : To sum the vector of Step 4
Step 6 : To create a new vector to store the result generated in Step 5
while repetition < sample size do
| Step 1 -5, and store in Step 6
end
Step 7 : To compute the mean of the vector build up in Step 6

Simulation of the moment generating function of the penalty time. Based
on Eq. (12), the random component present in the consumer’s reservation price for
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the maintenance contract is the moment generating function of the penalty time,
N(L) _ . . L .
E {eiﬁa [ max(0,vi-)] } . As aresult, the main target of simulation is to estimate
this moment generating function.
Figure 3.3. describes the algorithm that computes the moment generating func-

tion of the penalty time.

Fig. 1. Algorithm to compute the moment generating function of the penalty time.

4. Numerical Example

In this section, we use the same data from Murthy and Asgharizadeh’s study
(Murthy & Asgharizadeh, 1998) to compare the results from our simulation with
the original results found by the authors. The following nominal values for the
model parameters are: A = 0.0008 (per hour), u = 0.02 (per hour), a = 0.06 (103$
per hour), 8 = 0.1, 7 = 70 (hours), Pg = 300(103$), L = 40,000 (hours), C4 =5
(10%$), and R = 0.015 (103$ per hour).

Before showing the players’ equilibrium strategy, we present the results of our
simulation.

4.1. Analysis of Simulation Results

Penalty time. Table 3 resumes the expected value of the penalty time considering
the number of repetitions (N) and the standard deviation (Sd).

After 10,000 repetitions, the expected value of the penalty time relies on an
interval between 394 and 397 hours. We can assume that the real mean belongs to
this time interval. Finally, the standard deviation, along with the simulations, did
not present a high variability as the number of repetitions had increased.
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Table 3. Monte Carlo evaluation for the penalty time.

N Expected value Sd
100 392.12 183.42
1000 394.54 192.57
5000 397.20 191.64

10000 396.71 189.91
20000 396.53 188.89
30000 395.90 187.54
40000 394.67 187.07
50000 394.51 187.01

Therefore, we admit that the expected time of the penalty time is 394.51 hours,
the result of our last simulation.

Moment generating function of the penalty time. Table 4 resumes the value
of the moment generating function of the penalty time considering the number of
repetitions (N) and the standard deviation (Sd).

Table 4. Monte Carlo evaluation for the moment generating function of the penalty time.

N Moment generating function Sd

100 0.1652 0.1858
1000 0.1553 0.1474
5000 0.1538 0.1478
10000 0.1537 0.1478
20000 0.1532 0.1468
30000 0.1531 0.1462
40000 0.1539 0.1463
50000 0.1541 0.1465

The results provided by Table 4 shows that the value of the moment generating
function of the penalty time is almost constant, regardless of the number of simu-
lations performed. Thus, we state the real value of the moment generating function
is between 0.15 and 0.16, a low level of variability.

To compute the consumer’s reservation price for the maintenance option O1, we
assume that the value of the moment generating function is 0.1541, due to 50,000
simulations performed.

4.2. Equilibrium Strategies

Reliability-related performance measures:

= E[N(L)] = 32
= E|[penalty time] = 394.31 hours

Consumer’s reservation prices:

= Pyc — 318.6973(10%$) - the consumer’s reservation price for the maintenance
contract (Option O1). Above this price, the consumer does not buy this main-
tenance option.
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= Psp = 6.6140(10$) the consumer’s reservation price for the service on demand
(Option O9). Thus, this price is the consumer’s willingness to pay for each repair
intervention. Above this price, the consumer does not buy this maintenance
option.

Agent’s expected maintenance costs:

= Maintenance Option O; = 183.66(103$)
= Maintenance Option Oy = 160(10°$)

Agent’s expected profit:
If the agent defines their equilibrium strategy considering the consumer’s reser-
vation prices, we have these two possibilities of expected profit:

= E[IT4(pa; 1] = 135.0387(10%%)
= E[a(pa;2] = 51.6475(10%$)

Once maintenance option O; provides the higher profit than maintenance option
Os, then the agent enforces the consumer to purchase the maintenance contract.
Therefore, the equilibrium path is:

pa = (Pvuc = Puc, Psp > Psp)

z(pa) =1

Finally, it is essential to consider the accuracy of the results provided by our
simulation with the results found by the authors. The simulations performed were
associated with the players’ payoff of maintenance option O;.

We found Pyrc — 318.6973(10%$) and E[IT4(pa; 1] = 135.0387(10%$), whereas
the authors found Ppc = 318.210(10%$) and E[IT4(pa; 1] = 134.537(10%$). We
conclude our results are close to the results found analytically. Thus, our different
approach to compute the players’ payoff by the Monte Carlo method shows its
efficiency.

5. Conclusion

After-sales services, such as maintenance outsourcing have become a trend in
recent times due to the lack of expertise to repair complex pieces of equipment
in house and to the possibility of letting managers to focus on the companies core
business, among other factors. Thus, it is essential to analyze the negotiation process
of maintenance service contracts and provide relevant insights to support decision
makers.

In this paper a two-person game considering a consumer and an agent was pro-
posed to analyze the negotiation process of a maintenance service contract of a per-
fectly repairable product. While the consumer decides whether to buy the equipment
or not and to sign a maintenance service contract or pay for repair interventions
on demand in order to maximize their expected utility, the agent determines what
prices to charge for the contract and for each maintenance intervention in order to
maximize their expected profit. Under the model’s assumptions, the prices set by
the agent will determine the consumer’s strategy, as the first hold all the bargain
power involved in the negotiation process.

We can extend this research by adding a new player (the manufacturer) or a
different framework on how the decision-makers set up their strategies.
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