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Abstra
t In the paper authors present a new approa
h to determination

and 
omputation of a solution for di�erential games with pres
ribed dura-

tion in the 
ase when players la
k 
ertain information about the dynami
al

system and payo� fun
tion on the whole time interval on whi
h the game

is played. At ea
h time instant players re
eive information about dynami-


al system and payo� fun
tions, however the duration of the period of this

information is unknown and 
an be represented as a random variable with

known parameters. At 
ertain periods of time the information is updated.

A novel solution is des
ribed as a 
ombination of imputation sets in the

trun
ated subgames that are analyzed using Looking Forward Approa
h

with random horizon. A resour
e extra
tion game serves as an illustration

in order to 
ompare a 
ooperative traje
tory, imputations, and imputation

distribution pro
edure in the game with Looking Forward Approa
h and

in the original game with pres
ribed duration. Looking Forward Approa
h

is used for 
onstru
ting game theoreti
al models and de�ning solutions for


on�i
t-
ontrolled pro
esses where information about the pro
ess updates

dynami
ally.

Keywords: di�erential games; time-
onsisten
y; predi
tive 
ontrol.

1. Introdu
tion

The 
ooperative di�erential game theory o�ers so
ially 
onvenient and group

e�
ient solutions to di�erent de
ision problems involving strategi
 a
tions. One of

the fundamental elements in this theory is the formulation of optimal behavior for

players or e
onomi
 agents. A design of 
ooperative strategy and the 
orresponding

payo�, the manner to distribute the payo� between players, and the time 
onsisten
y

of the 
orresponding solution 
an be 
onsidered as main problems of this theory.

Haurie analyzed the problem of dynami
 instability of Nash bargaining solutions

in di�erential games (Haurie, 1976). The notion of time 
onsisten
y of di�erential

game solutions was formalized mathemati
ally by Petrosyan (Petrosyan, 1977). In

the present resear
h we examine a spe
ial 
ase of 
ooperative di�erential games

in whi
h the game stru
ture 
an 
hange or update with time (time-dependent for-

mulation) and assume that the players do not have information about the 
hange

of the game stru
ture on the full time interval, but they have 
ertain information
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about the game stru
ture on the trun
ated time interval. However, the duration

of this interval is unknown and it is supposed to be a random variable, so that

the players only know the distribution parameters. Under the information about

the game stru
ture we understand information about the dynami
al system and

payo� fun
tions. The interpretation 
an be given as follows: players have 
ertain

information about the game stru
ture, but the duration of the period when this

information is 
orre
t is unknown in advan
e. Evidently, this trun
ated informa-

tion is valid only for 
ertain time and has to be updated. In order to de�ne the

best possible behavior for players in this type of 
ooperative di�erential game, it is

needed to develop a spe
ial approa
h, whi
h we 
all the Looking Forward Approa
h

with random horizon. The approa
h brings up the following points: how to de�ne a


ooperative traje
tory, how to de�ne a 
ooperative solution and allo
ate the 
oop-

erative payo�, and what properties the obtained solution will have. The obje
t of

this paper is to answer the stated questions. O�ered solution is based on the IDP-


ore introdu
ed in (Petrosian et al., 2016), it is built up using the parti
ular 
lass

of imputation distribution pro
edures (IDP) (Petrosyan and Danilov, 1979). It is

demonstrated that newly built solution is not only time-
onsistent (whi
h is a very

rare event in the 
ooperative di�erential games), but also strong time-
onsistent.

The 
on
ept of the Looking Forward Approa
h is new in game theory espe
ially

in 
ooperative di�erential games and gives the foundation for further study of dif-

ferential games with dynami
 updating. At the moment there are pra
ti
ally no

results in 
onstru
ting approa
hes for modeling 
on�i
t-
ontrolled pro
esses where

information about the pro
ess updates in time. In the present work we examine the

Looking Forward Approa
h with random horizon whi
h is one of the variations of

Looking Forward Approa
h introdu
ed in (Petrosian, 2016a). There we supposed

that the duration of trun
ated information is a �xed value. To get more informa-

tion about the approa
h one may read the following papers: (Petrosian et al., 2017;

Yeung and Petrosian 2017; Gromova and Petrosian, 2016; Petrosian, 2016a; Petro-

sian, 2016b; Petrosian and Barabanov, 2017; Petrosian et al., 2019; Petrosian and

Ku
hkarov, 2019). In paper (Petrosian, 2016a) the Looking Forward Approa
h was

applied to the 
ooperative di�erential game with �nite horizon. The notion of trun-


ated subgame, pro
edure for de�ning optimal strategies, 
onditionally 
ooperative

traje
tory and solution 
on
ept, and solution property of ∆t-time 
onsisten
y for a

�xed information horizon were determined. The paper (Petrosian and Barabanov,

2017) was fo
used on studying of Looking Forward Approa
h with sto
hasti
 fore-


ast and dynami
 adaptation in 
ase when information about the 
on�i
ting pro-


ess 
an 
hange during the game. In the papers (Gromova and Petrosian, 2016)

the Looking Forward Approa
h was applied to a 
ooperative di�erential game of

pollution 
ontrol. The aim of the paper was to study dependen
y of the resulting

solution upon the value of information horizon, 
orresponding optimization problem

was formulated and solved. The paper (Petrosian et al., 2017) is devoted to apply

the Looking Forward Approa
h to the game model of oil market. Further papers

on this subje
t are to be published in near future. In the paper (Petrosian, 2016b)

the Looking Forward Approa
h was applied to the 
ooperative di�erential game

with in�nite horizon. The paper (Yeung and Petrosian 2017) is devoted to study

the Looking Forward Approa
h for dynami
 non-
ooperative games. Spe
ial type

of Hamilton-Ja
obi-Bellman equations are derived for a di�erent information stru
-

tures available to the players during the game. Another interesting 
lass of games
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is 
onne
ted to the 
lass of di�erential games with 
ontinuous updating was 
onsid-

ered in the papers (Petrosian and Tur, 2019; Ku
hkarov and Petrosian, 2019), here

it is supposed that the updating pro
ess evolves 
ontinuously in time. In the paper

(Petrosian and Tur, 2019), the system of Hamilton-Ja
obi-Bellman equations are

derived for the Nash equilibrium in a game with 
ontinuous updating. In the pa-

per (Ku
hkarov and Petrosian, 2019) the 
lass of linear-quadrati
 di�erential games

with 
ontinuous updating is 
onsidered and the expli
it form of the Nash equilibrium

is derived.

In the arti
le we use spe
ial form of Hamilton-Ja
obi-Bellman equation for dif-

ferential games with random horizon presented in (Shevkoplyas, 2011; Shevkoplyas,

2014; Petrosjan and Shevkoplyas, 2003). A 
hara
teristi
 fun
tion of a 
oalition is

an essential 
on
ept in the theory of di�erential games. This fun
tion is de�ned as

indi
ated in (Chander and Tulkens, 1995) as total payo� of players from 
oalition S
in Nash equilibrium in the game with following set of players: 
oalition S (a
ting as

one player) and players from the set N \S. A 
omputation of Nash equilibrium fully

des
ribed in (Basar and Olsder, 1995) is ne
essary for this approa
h. A set of impu-

tations or a solution of the game is determined by the 
hara
teristi
 fun
tion at the

beginning of ea
h subinterval. For any set of imputations the imputation distribution

pro
edure (IDP) �rst introdu
ed by L. Petrosyan in (Petrosyan and Danilov, 1979)

is analysed. See re
ent publi
ations on this topi
 in (Petrosyan and Yeung, 2006;

Jorgensen and Yeung, 1999; Jorgensen et al., 2003). In order to determine a solu-

tion for the whole game it is required to 
ombine partial solutions and their IDP

on subintervals. The 
hara
teristi
s of time 
onsisten
y and strong time 
onsisten
y

introdu
ed by L. Petrosyan in (Petrosjan, 1993) and (Petrosyan, 1977) are also ex-

amined for the o�ered solution.

Looking Forward Approa
h has similarities with the Model Predi
tive Con-

trol theory worked out within the framework of numeri
al optimal 
ontrol. We

analyze (Goodwin et al., 2005; Rawlings and Mayne, 2009; Wang, 2005; Kwon and

Han, 2005) to get re
ent results in this area. Model predi
tive 
ontrol is a method

of 
ontrol when the 
urrent 
ontrol a
tion is a
hieved by solving at ea
h sampling

instant a �nite horizon open-loop optimal 
ontrol problem using the 
urrent state

of an obje
t as the initial state. This type of 
ontrol is able to 
ope with hard

limitations on 
ontrols and states, whi
h is de�nitely its strong point over the rest

of the methods. It has got, therefore, a wide appli
ation in petro-
hemi
al and re-

lated industries where key operating points are lo
ated 
lose to the set of admissible

states and 
ontrols. The main problem that is solved in Model Predi
tive Control

is the provision of movement along the target traje
tory under the 
onditions of

random perturbations and unknown dynami
al system. At ea
h time step the op-

timal 
ontrol problem is solved for de�ning 
ontrols whi
h will lead system to the

target traje
tory. Looking Forward Approa
h on the other hand solves the problem

of modeling players behavior when information about the pro
ess updates dynami-


ally. It means that Looking Forward Approa
h does not use target traje
tory, but

answers the question of 
omposing traje
tory whi
h will be used by players, as well

as the question of allo
ating 
ooperative payo� along the 
omposed traje
tory.

To demonstrate the Looking Forward Approa
h we present the example of 
o-

operative resour
e extra
tion game with �nite horizon. The original example was

introdu
ed by David Yeung and Ste�en Jorgensen in (Jorgensen and Yeung, 1999),

the problem of time 
onsisten
y in this game was examined by David Yeung in
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(Yeung and Petrosyan, 2012). In the arti
le, we analyze three player resour
e ex-

tra
tion game with IDP-
ore des
ribed in (Petrosian et al., 2016) used as a 
oop-

erative solution. We present both analyti
al and numeri
al solutions for spe
i�


parameters. The 
omparison between the original approa
h and the Looking For-

ward Approa
h with random horizon is presented. In the �nal part of the example

model we demonstrate the strong time 
onsisten
y property of the 
onstru
ted solu-

tion. The stru
ture of the arti
le is as follows. The basi
 game models are presented

in Se
tion 2. A sequen
e of the auxiliary random trun
ated subgames is determined

in Se
tion 3. Solutions to these subgames are o�ered in Se
tion 4. It involves a 
oop-

erative behavior of players for the whole game and an allo
ation of the 
ooperative

payo� between the players at ea
h stage of the game. In Se
tion 5 we present a new


on
ept of the game solution for the 
ase of updating information. The time 
onsis-

ten
y and strong time-
onsisten
y properties of the solution are stated and proved.

In Se
tion 6 the Looking Forward Approa
h is applied to the game of Cooperative

Resour
e Extra
tion with �nite horizon.

2. The Original Game

The n-person di�erential game Γ (x0, T − t0) with �nite horizon T − t0, with
the initial state x0 ∈ Rm

and initial time instant t0 is given (t0 and T are a �xed

values). The stru
ture of the game is de�ned by the following dynami
al system:

ẋ = g(t, x, u), x(t0) = x0, (1)

where x takes values in Rm
, u = (u1, . . . , un). Denote the set of players by N =

{1, . . . , n}. A player i 
hooses a 
ontrol ui for i = 1, . . . , n. For ea
h time instant

t, ui(t) ∈ Ui ⊂ CompRk
. When the open-loop strategies are used, we require

pie
ewise 
ontinuity with �nite number of breaks. For feedba
k strategies we follow

(Basar and Olsder, 1995). We require that for any n-tuple of strategies u(t, x) =
(u1(t, x), . . . , un(t, x)) the solution of Cau
hy problem exists and is unique on the

time interval [t0, T ]. For more sophisti
ated de�nition of feedba
k strategies in zero-

sum di�erential game see (Krasovskii and Kotel'nikova, 2010).

The payo� fun
tion of the player i is des
ribed as

Ki(x0, T − t0;u) =

T∫

t0

hi(x(τ), u(τ))dτ, (2)

where x(τ) is the traje
tory (the solution) of the system (11) with the 
ontrol input

u = (u1, . . . , un).

3. Random Trun
ated Subgame

Suppose information for players is updated at �xed time instants t = t0 + j∆t,
j = 0, . . . , l, where t0 < ∆t < T , l = T−t0

∆t − 1. During the time interval [t0 +
j∆t, t0 + (j + 1)∆t], players have full information about the dynami
s of the game

des
ribed by g(t, x, u) and payo� fun
tion des
ribed by hi(x(t), u(t)). The problem
is that the players are not sure about the period of time when this information is

valid, all they know is that it is de�ned on the time interval [t0 + j∆t, T j ], where
duration T j is a random variable with known 
hara
teristi
s. Realization of random

variable T j we denote as tj , j = 0, . . . , l.
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As was mentioned before during the time interval [t0 + j∆t, t0 + (j + 1)∆t]
players have full information about the dynami
s of the game and payo� fun
tion

on the time interval [t0+j∆t, T j ], where T j is a random variable whi
h takes values

from the time interval [max(t0 +(j+1)∆t, tj−1), T ], tj−1 is a realization of random

variable T j−1 (T j−1 is realized at the time instant t = t0+j∆t). At the time instant

t = t0 + (j + 1)∆t the information about the game is being updated and random

variable T j is realized, i.e. tj be
omes known to players. On the next time interval

(t0+(j+1)∆t, t0+(j+2)∆t] players have full information about the game stru
ture

on the time interval (t0 + (j + 1)∆t, T j+1], where T j+1 is a random variable whi
h

takes values from the time interval [max(t0+(j+2)∆t, tj), T ]. For j = 0 we suppose
that tj−1 = 0.

It may remain un
lear why the random variable T j is realized at time instants

t = t0 +(j+1)∆t, but its value tj ex
eeds t = t0 +(j +1)∆t. Interpretation 
an be

the following. Suppose that at time instants t = t0 + j∆t players re
eive informa-

tion about the game, but in order to a

urately estimate the duration of information

horizon whi
h is random variable T j they need time ∆t (to make 
al
ulations et
.).

At the time instant t = t0 + (j +1)∆t 
al
ulations are performed and 
ertain value

of information horizon T j be
omes known to players, i.e. tj . Another interpretation
is that during 
urrent ∆t-time interval [t0+j∆t, t0+(j+1)∆t] players re
eive addi-
tional information whi
h helps them to estimate the time on whi
h the information

about the pro
ess is 
ertain, i.e. de�ne the value of information horizon tj . At the
time instant t = t0+(j+1)∆t after the estimation is performed players re
eive new

information about the game stru
ture with random information horizon T j+1 and

the same pro
edure 
ontinues.

To model this kind of situation we introdu
e the following de�nition (Fig. 1).

Denote ve
tor xj,0 = x(t0 + j∆t).

Fig. 1. Ea
h oval represents random trun
ated information, whi
h is known to players

during the time interval [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l.

De�nition 1. Let j = 0, . . . , l. A random trun
ated subgame Γ̄j(xj,0, t0+j∆t) is
de�ned on the time interval [t0+j∆t, T j ], where T j is a random variable whi
h takes

values from the time interval [max(t0 + (j + 1)∆t, tj−1), T ], tj−1 is a realization of

random horizon T j−1 in the previous trun
ated subgame Γ̄j−1(xj−1,0, t0+(j−1)∆t).
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Realization of T j−1 o

urs at time instant t = t0 + j∆t. The dynami
al system and

the payo� fun
tion on the time interval [t0 + j∆t, T j ] 
oin
ide with that of the

game Γ (x0, T − t0) on the same time interval. The dynami
al system and the initial


ondition of the trun
ated subgame Γ̄j(xj,0, t0 + j∆t) have the following form:

ẋ = g(t, x, u), x(t0 + j∆t) = xj,0. (3)

The payo� fun
tion of player i in random trun
ated subgame j is equal to

Kj
i (xj,0, t0 + j∆t;u) =

T∫

t0+j∆t

t∫

t0+j∆t

hi (x(τ), u(τ))dτdFj (t), (4)

where Fj(t) is a distribution fun
tion of T j :

T∫

t0+j∆t

dFj(t) =

T∫

max(t0+(j+1)∆t,tj−1)

dFj(t) = 1, (5)

due to the de�nition, Fj(t) is a 
onditional distribution fun
tion, i.e. Fj(t) =
Fj(t | T j−1 = tj−1). Further by notation Fj(t) we will refer to Fj(t | T j−1 = tj−1).

Suppose that the realization of random horizon T j−1 in the game Γ̄j−1(xj−1,0,
t0 + (j − 1)∆t) ex
eeds time t = t0 + (j + 1)∆t:

tj−1 > t0 + (j + 1)∆t, (6)

then the random horizon T j must ex
eed the realization of T j−1, be
ause the in-

formation about the game stru
ture is already known on the time interval [t0 +
j∆t, tj−1]. That is why in the formula (5) the probability of T j taking values from

time interval [t0 + j∆t, tj−1] equals zero:

max(t0+(j+1)∆t,tj−1)∫

t0+j∆t

dFj(t) = 0. (7)

In the papers on the topi
 of 
ooperative di�erential games with random hori-

zon (Shevkoplyas, 2009; Shevkoplyas, 2010; Shevkoplyas, 2011; Shevkoplyas, 2014;

Petrosjan and Shevkoplyas, 2003) the distribution fun
tion of T j is de�ned on the

in�nite time interval. In this paper T j takes values from the �nite time interval

be
ause the original game is de�ned on the �nite time interval [t0, T ].
In (Kostyunin and Shevkoplyas, 2011) the order of integration in the double

integral (4) was 
hanged a

ording to Tonelli's theorem:

Kj
i (xj,0, t0 + j∆t;u) =

T∫

t0+j∆t

(1− Fj(τ))hi(x(τ), u(τ))dτ. (8)

3.1. Solution of Random Trun
ated Cooperative Subgame

Consider a trun
ated 
ooperative subgame Γ̄ c
j (xj,0, t0 + j∆t) de�ned on the

time interval [t0 + j∆t, T j ] with the initial 
ondition x(t0 + j∆t) = xj,0, where T j
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Fig. 2. Behavior of players in the game with random trun
ated information 
an be modeled

using the random trun
ated subgames Γ̄j(xj,0, t0 + j∆t), j = 0, . . . , l.

is a random variable with distribution fun
tion (5). Classi
ally on the �rst step of


ooperative di�erential games we de�ne 
ooperative strategies and 
orresponding


ooperative traje
tory. On the se
ond step we de�ne the rule for allo
ating 
oopera-

tive payo� between the players along the 
ooperative traje
tory. To do this we de�ne


hara
teristi
 fun
tion and 
orresponding 
ooperative solution. The total payo� of

players to be maximized in this game is

∑

i∈N

Kj
i (xj,0, t0 + j∆t;u) =

∑

i∈N

T∫

t0+j∆t

t∫

t0+j∆t

hi(x(τ), u(τ))dτdFj (t) (9)

subje
t to

ẋ = g(t, x, u), x(t0 + j∆t) = xj,0. (10)

This is an optimal 
ontrol problem. Su�
ient 
onditions for the solution and the

optimal feedba
k are given by the Theorem 1 �rstly presented in (Shevkoplyas, 2014).

Denote the maximum value of joint payo� of the players (9) by the fun
tion

W (j∆t)(t, x):

W (j∆t)(t, x) = max
u∈U

{
∑

i∈N

Kj
i (x, t;u)

}
, (11)

where x, t are the initial state and time of subgame of random trun
ated game


orrespondingly and U = U1 × . . .× Un.

Theorem 1. Assume there exists a 
ontinuously di�erential fun
tionW (j∆t)(t, x) :
[t0 + j∆t, T j ]×Rm → R satisfying the partial di�erential equation

fj(t)

1− Fj(t)
W (j∆t)(t, x) =

W
(j∆t)
t (t, x) + max

u∈U

{
n∑

i=1

hi(t, x, u) +W (j∆t)
x (t, x)g(t, x, u)

}
, (12)
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where lim
t→T−

W (j∆t)(t, x) = 0, fj(t) is a probability density fun
tion for random

variable T j (5). Assume that maximum in (12) is a
hieved under 
ontrols u∗j (t, x).
Then u∗j (t, x) is optimal in the 
ontrol problem de�ned by (9), (10).

Theorem 1 (presented in (Shevkoplyas, 2014)) requires that the fun
tionW (j∆t)

be C1
. However, it is possible to assume only 
ontinuity 
onsidering vis
osity-

solutions using Subbotin approa
h (Subbotin, 1984; Subbotin, 1995). But due to

the shortage of spa
e, it is not possible to properly introdu
e and de�ne this solu-

tion in the paper. In the example model we de�ne and get solution W (j∆t)
from

C1
.

3.2. Conditionally Cooperative Traje
tory

During the game Γ (x0, T − t0) players posses only trun
ated information about

its stru
ture. Obviously, it is not enough to 
onstru
t optimal 
ontrol and 
orre-

sponding traje
tory for the game Γ (x0, T − t0). As a 
ooperative traje
tory in the

game Γ (x0, T − t0) we propose to use a 
onditionally 
ooperative traje
tory de�ned
in the following way:

De�nition 2. Conditionally 
ooperative traje
tory {x̂∗(t)}Tt=t0 is de�ned as a


omposition of 
ooperative traje
tories x∗j (t) in the trun
ated 
ooperative subgames

Γ̄ c
j (x

∗
j−1(t0 + j∆t), t0 + j∆t) de�ned on the su

essive time intervals [t0 + j∆t, t0 +

(j + 1)∆t] (Fig.3):

{x̂∗(t)}Tt0 =





x∗0(t), t ∈ [t0, t0 +∆t),

. . . ,
x∗j (t), t ∈ [t0 + j∆t, t0 + (j + 1)∆t),
. . . ,
x∗l (t), t ∈ [t0 + l∆t, t0 + (l + 1)∆t],

(13)

On the time interval [t0 + j∆t, t0 + (j + 1)∆t] 
onditionally 
ooperative traje
-

tory 
oin
ides with the 
ooperative traje
tory x∗j (t) in the trun
ated 
ooperative

subgame Γ̄ c
j (x

∗
j−1(t0 + j∆t), t0 + j∆t). At the time instant t = t0 + (j + 1)∆t in-

formation about the game stru
ture updates in the position x∗j (t0 + (j +1)∆t). On
the time interval (t0 + (j + 1)∆t, t0 + (j + 2)∆t] traje
tory x̂∗(t) 
oin
ides with


ooperative traje
tory x∗j+1(t) in the trun
ated 
ooperative subgame Γ̄ c
j+1(x

∗
j (t0 +

(j+1)∆t), t0 +(j+1)∆t) whi
h starts at the time instant t = t0 +(j+1)∆t in the

position x∗j (t0 + (j + 1)∆t). For j = 0: x∗j−1(t0 + j∆t) = x0.

3.3. Chara
teristi
 Fun
tion

For ea
h 
oalition S ⊂ N and j = 0, . . . , l de�ne the values of 
hara
teristi


fun
tion as it was done in (Chander and Tulkens, 1995):

Vj(S;x
∗
j,0, t0 + j∆t) =





∑
i∈N

Kj
i (x

∗
j,0, t0 + j∆t;u∗j ), S = N,

Ṽj(S, x
∗
j,0, t0 + j∆t), S ⊂ N,

0, S = ∅,
(14)

where Ṽj(S, x
∗
j,0, t0 + j∆t) is de�ned as total payo� of players from 
oalition S

in Nash equilibrium uNE
j = (uNE,j

1 , . . . , uNE,j
n ) in the game with following set of

players: 
oalition S (a
ting as one player) and players from the set N \S, i.e. in the

game with |N \ S|+ 1 players.
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Fig. 3. Solid line represents the 
onditionally 
ooperative traje
tory {x̂∗(t)}Tt=t0
. Dashed

lines represent parts of 
ooperative traje
tories that are not used in the 
omposition, i.e.,

ea
h dashed traje
tory is no longer optimal in the 
urrent random trun
ated subgame.

An imputation ξj(x
∗
j,0, t0+j∆t) for ea
h random trun
ated 
ooperative subgame

Γ̄ c
j (x

∗
j,0, t0 + j∆t) is de�ned as an arbitrary ve
tor whi
h satis�es the 
onditions

ξji (x
∗
j,0, t0 + j∆t) ≥ Vj({i}, x∗j,0, t0 + j∆t), i ∈ N,

∑

i∈N

ξji (x
∗
j,0, t0 + j∆t) = Vj(N, x

∗
j,0, t0 + j∆t). (15)

Denote the set of all possible imputations for random trun
ated subgame by

Ej(x
∗
j,0, t0 + j∆t). As an optimality prin
iple or solution

Wj(x
∗
j,0, t0 + j∆t) ⊂ Ej(x

∗
j,0, t0 + j∆t) (16)

in ea
h random trun
ated 
ooperative subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t) we use IDP-
ore

introdu
ed in (Petrosian et al., 2016). Constru
tion of this solution is based upon

the spe
ial 
lass of IDP (Petrosyan and Danilov, 1979).

De�nition 3. Fun
tion βj(t, x
∗
j ), t ∈ [t0 + j∆t, T j ] is 
alled Imputation Distri-

bution Pro
edure for imputation ξj(x
∗
j,0, t0 + j∆t) ∈ Ej(x

∗
j,0, t0 + j∆t), if

ξj(x
∗
j,0, t0 + j∆t) =

∫ T

t0+j∆t

(1− Fj(τ))βj(t, x
∗
j (t))dτ. (17)

Using IDP βj(t, x
∗
j ) it is possible to de�ne the rule for allo
ating imputation ξj(x

∗
j,0,

t0 + j∆t) on the time interval [t0 + j∆t, T j ], where T j is a random variable. It is

obvious that the number of fun
tions βj(t, x
∗
j (t)) that satisfy the equation (17) is

in�nite, i.e. the ways of allo
ation of 
ooperative payo� between players is in�nite,

but a

ording to the formula for a 
lass of games with random horizons presented

in (Shevkoplyas, 2009; Shevkoplyas, 2010)

βj(t, x
∗
j (t)) =

fj(t)

1− Fj(t)
ξj(x

∗
j (t), t)−

d

dτ
ξj(x

∗
j (t), t) (18)
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to de�ne the unique βj(t, x
∗
j (t)) that ensures the time 
onsisten
y property (Pet-

rosyan and Danilov, 1979) of the imputation ξj(x
∗
j,0, t0+j∆t) or 
ooperative solution

Wj(x
∗
j,0, t0 + j∆t) (in 
ase of multiple prin
iple of optimality):

De�nition 4. Solution Wj(x
∗
j,0, t0 + j∆t) (ξj(x

∗
j,0, t0 + j∆t)) is 
alled time-


onsistent if for any imputation ξj(x
∗
j,0, t0 + j∆t) ∈ Wj(x

∗
j,0, t0 + j∆t) exists IDP

βj(t, x
∗
j ) whi
h ∀t ∈ [t0 + j∆t, T ] satis�es:

{∫ T

t

(1− Fj(t))β
j
i (τ, x

∗
j )dτ

}
∈

W (x∗j (t), t)

({∫ T

t

(1− Fj(t))β
j
i (τ, x

∗
j )dτ

}
= ξj(x

∗
j,0, t0 + j∆t)

)
.

3.4. IDP-
ore

In the paper we used the approa
h proposed in (Petrosian et al., 2016) in whi
h

we 
onstru
ted fun
tions that 
an be used as IDPs for some imputations and then


omposed 
orresponding solutions. Suppose that 
hara
teristi
 fun
tion Vj(S;x
∗
j (t), t),

S ⊂ N is 
ontinuously di�erentiable by t, t ∈ [t0 + j∆t, T ] along the 
ooperative

traje
tory x∗j (t). Introdu
e the following notation:

Uj(S;x
∗
j (t), t) = − d

dt
Vj(S;x

∗
j (t), t), (19)

where t ∈ [t0 + j∆t, T ] and S ⊆ N .

De�ne Bj(t, x
∗
j ) as a set of integrable ve
tor fun
tions βj(t, x

∗
j ) satisfying the

following inequalities:

Bj(t, x
∗
j ) =

{
βj(t, x

∗
j ) = (βj

1(t, x
∗
j ), . . . , β

j
n(t, x

∗
j )) :

∑

i∈S

(1− Fj(t))β
j
i (t, x

∗
j ) ≥ Uj(S, x

∗
j (t), t),

∑

i∈N

βj
i (t, x

∗
j ) = Uj(N, x

∗
j (t), t), ∀S ⊂ N

}
. (20)

Suppose that Bj(t, x
∗
j ) 6= ∅, ∀t ∈ [t0 + j∆t, T ], j = 0, . . . , l. Then using the set

Bj(t, x
∗
j ) it is possible to de�ne the following set of ve
tors:

De�nition 5. Set of all possible ve
tors ξj(x
∗
j (t), t) for some integrable sele
tors

βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ) we shall 
all IDP-
ore and denote as Cj(x

∗
j (t), t), where

Cj(x
∗
j (t), t) =

{
ξj(x

∗
j (t), t), t ∈ [t0 + j∆t, T ]

}
(21)

and for t ∈ [t0 + j∆t, T ]

ξj(x
∗
j (t), t) =

T∫

t

(1 − Fj(τ))βj(τ, x
∗
j )dτ. (22)

In (Petrosian et al., 2016) it was proved that IDP-
ore is a subset of Core:

Theorem 2. The set Cj(x
∗(t), t) is a subset of Core Cj(x

∗(t), t) in random 
oop-

erative trun
ated subgame Γ̄ c
j (x

∗
j (t), t), t ∈ [t0 + j∆t, T ].
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Core is a 
lassi
al solution in the theory of games (Shapley, 1952). In our 
ase

Core Cj(x
∗(t), t) for ea
h random trun
ated subgame is de�ned as a set of im-

putations ξj(x
∗
j,0, t0 + j∆t) = (ξj1(x

∗
j,0, t0 + j∆t), . . . , ξjn(x

∗
j,0, t0 + j∆t)) satisfying

∀t ∈ [t0 + j∆t, T ]:

1. e�
ien
y:

∑
i∈N

ξji (x
∗
j (t), t) = Vj(N ;x∗j (t), t)

2. 
oalitional rationality:

∑
i∈S

ξji (x
∗
j (t), t) ≥ Vj(S;x

∗
j (t), t), ∀S ⊂ N .

The main result of paper (Petrosian et al., 2016) is the proof that IDP-
ore is

strong time 
onsistent in di�erential games with pres
ribed duration. The same

result 
an be obtained for random trun
ated subgame.

De�nition 6. Set Wj(x
∗
j,0, t0 + j∆t) is 
alled strong time-
onsistent if for any

solution in the game Γ̄ c
j (x

∗
j (t), t)

1. Wj(x
∗
j (t), t) 6= ∅, ∀t ∈ [t0 + j∆t, T ]

2. for ea
h imputation ξj(x
∗
j (t), t) ∈ Wj(x

∗
j (t), t) exists IDP βj(τ, x

∗
j ) =

(βj
1(τ, x

∗
j ), . . . , β

j
n(τ, x

∗
j )), τ ∈ [t0 + j∆t, T ], su
h that

ξj(x
∗
j (t), t) =

∫ T

t

(1− Fj(τ))βj(τ, x
∗
j )dτ, (23)

and

∫ t

t0+j∆t

(1− Fj(τ))βj(τ, x
∗
j )dτ ⊕Wj(x

∗
j (t), t) ⊂Wj(x

∗
j,0, t0 + j∆t) (24)

for ea
h t ∈ [t0 + j∆t, T ],
⊕: a⊕B = {a+ b : b ∈ B}, a ∈ Rn

, B ⊂ Rn
.

Strong time 
onsisten
y of solution means that the solution obtained by "op-

timal" re
onsidering initial solution at any time instant during the game will be-

long to the initial solution. Parti
ularly for IDP-
ore in random trun
ated sub-

game it means that for ea
h ξj(x
∗
j,0, t0 + j∆t) from Cj(x

∗
j,0, t0 + j∆t) deviation

from this imputation along the 
ooperative traje
tory x∗j (t) in any moment t ∈
[t0 + j∆t, T j ] to any other imputation in 
urrent IDP-
ore ξj(x

∗
j (t), t) ∈ Cj(x

∗
j , t)

leads to the imputation whi
h belongs to the initial IDP-
ore Cj(x
∗
j,0, t0 + j∆t). In

paper (Petrosian et al., 2016) is the proof that IDP-
ore is strong time 
onsistent:

Theorem 3. Suppose Cj(x
∗
j (t), t) 6= ∅, ∀t ∈ [t0+ j∆t, T ]. Then IDP-
ore Cj(x

∗
j,0,

t0 + j∆t) is strong time 
onsistent in the game Γ̄ c
j (x

∗
j,0, t0 + j∆t).

In the paper (Petrosian et al., 2016) the properties of the IDP-
ore as a 
ooper-

ative solution are dis
ussed and the te
hni
 for its 
onstru
tion is demonstrated on

the linear quadrati
 game model of pollution 
ontrol.

It is easy to suggest that distribution of the total payo� of players in the game

Γ (x0, T − t0) along the 
onditionally 
ooperative traje
tory {x̂∗(t)}Tt=t0 
an be or-

ganized as a 
omposition of IDPs for ea
h time interval [t0 + j∆t, t0 + (j + 1)∆t],
j = 0, . . . , l, in a

ordan
e with the stru
ture of the game Γ (x0, T − t0). This will
be formalized in this se
tion as a new solution 
on
ept.
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The family of setsWj(x
∗
j,0, t0+j∆t) = Cj(x

∗
j,0, t0+j∆t) do not 
ompose dire
tly

a solution for the game Γ (x0, T − t0). For any j = 0, . . . , l the optimal solution for

the trun
ated subgame Γ̄ c
j (x

∗
j,0, t0+j∆t) is de�ned on the time interval [t0+j∆t, t0+

j∆t+T j ]. This parti
ular solution makes sense on the interval [t0+j∆t, t0+(j+1)∆t]
only, be
ause the information about the game stru
ture updates after every∆t time

interval and it is irrelevant to use a solution whi
h is based upon the outdated

information. The ne
essary information 
an be extra
ted by using the IDP for ea
h

trun
ated subgame. Therefore in order to 
onstru
t optimal solution for the whole

game Γ (x0, T − t0) we use the set of IDPs Bj(t) instead of set of imputations

Cj(x
∗
j,0, t0 + j∆t).

4. Con
ept of Solution

In order to introdu
e a solution 
on
ept for the di�erential game Γ (x0, T − t0)
with Looking Forward Approa
h we use a family of sets Bj(t, x

∗
j ), j = 0, . . . , l. First

we 
onstru
t the set of IDPs for the whole game Γ (x0, T − t0) in the following

way: for ea
h �xed 
omposition of IDPs βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ), j = 0, . . . , l we de�ne

resulting IDP β̂(t, x̂∗).

De�nition 7. Resulting IDP β̂(t, x̂∗) is a fun
tion de�ned as a 
ombination of

imputation distribution pro
edures βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ) in all trun
ated 
ooperative

subgames Γ̄ c
j (x

∗
j,0, t0 + j∆t), j = 0, . . . , l:

β̂(t, x̂∗) =





(1− F0(t))β0(t, x
∗
0), t ∈ [t0, t0 +∆t],

· · ·
(1− Fj(t))βj(t, x

∗
j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t],

· · ·
(1− Fl(t))βl(t, x

∗
l ), t ∈ [t0 + l∆t, t0 + (l + 1)∆t].

(25)

The set of all possible resulting IDPs β̂(t, x̂∗) (25) for di�erent 
ompositions

βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ), j = 0, . . . , l we denote by B̂(t, x̂∗).

Using resulting IDP β̂(t, x̂∗) ∈ B̂(t) it is possible to determine a resulting impu-

tation whi
h 
an be used as an imputation in the game Γ (x0, T − t0) with Looking

Forward Approa
h. But the question stands, will the resulting imputation a
tu-

ally allo
ate joint 
ooperative payo� along the 
onditionally 
ooperative traje
tory

x̂∗(t), this fa
t is proved in Theorem 4.

De�nition 8. Resulting imputation ξ̂(x0, T − t0) is a ve
tor de�ned in the

following way:

ξ̂(x0, T − t0) =

T∫

t0

β̂(τ, x̂∗(τ))dτ =

l∑

j=0

[ (j+1)∆t∫

j∆t

(1− Fj(τ))βj(τ, x
∗
j (τ))dτ

]
. (26)

Denote by resulting solution Ŵ (x0, T − t0) the set of all resulting imputations

ξ̂(x0, T − t0) 
omposed by (25), (26). In game models with Looking Forward Ap-

proa
h we propose to use the set Ŵ as a solution.

Theorem 4. With any ξ̂(x0, T − t0) ∈ Ŵ (x0, T − t0) it is possible to allo
ate joint

payo� of players (9) along the 
onditionally 
ooperative traje
tory x̂∗(t) during the
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Fig. 4. Combination of IDPs βj(t, x
∗

j ) ∈ Bj(t, x
∗

j ) de�ned for ea
h ξj(x
∗

j,0, t0 + j∆t) ∈

Wj(x
∗

j,0, t0 + j∆t), j = 0, . . . , l determines the random trun
ated distribution β̂(t, x̂∗) ∈

B̂(t, x̂∗).

game Γ (x0, T − t0) and for ∀t ∈ [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l:

n∑

i=1

t∫

t0

β̂i(τ, x̂
∗(τ))dτ =

n∑

i=1

[
j−1∑

k=0

[ (k+1)∆t∫

k∆t

(1− Fk(τ))hi(x̂
∗(τ), û∗(τ))dτ

]
+

t∫

t0+j∆t

(1− Fj(τ))hi(x̂
∗(τ), û∗(τ))dτ

]
. (27)

Proof. To prove this theorem we start from the last random trun
ated subgame

Γ̄l(x
∗
l,0, t0 + l∆t), i. e. prove that for ∀t ∈ [t0 + l∆t, T ]

n∑

i=1

t∫

t0+l∆t

β̂i(τ, x̂
∗(τ))dτ =

n∑

i=1

t∫

t0+l∆t

(1− Fl(τ))hi(x̂
∗(τ), û∗(τ))dτ. (28)

Indeed, maximum joint payo� in this game is de�ned by fun
tion W (l∆t)(t0 +
l∆t, x∗l,0) (11). A

ording to the de�nition of this fun
tion for ∀t ∈ [t0 + l∆t, T ]:

W (l∆t)(t, x̂∗(t)) =

max
u∈U

{
∑

i∈N

K l
i(x̂

∗(t), t;u)

}
=

n∑

i=1

T∫

t

(1− Fl(τ))hi(x̂
∗(τ), û∗(τ))dτ =

n∑

i=1

T∫

t

ξli(x̂
∗(τ), τ)dτ =

n∑

i=1

T∫

t

βl
i(τ, x̂

∗(τ))dτ =

n∑

i=1

T∫

t

β̂i(τ, x̂
∗(τ))dτ. (29)
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However,

W (l∆t)(t0 + l∆t, x∗l,0)−W (l∆t)(t, x̂∗(t)) =

n∑

i=1

t∫

t0+l∆t

(1− Fl(τ))hi(x̂
∗(τ), û∗(τ))dτ, (30)

where ∀t ∈ [t0 + l∆t, T ]. From (29) and (30) it follows that for ∀t ∈ [t0 + l∆t, T ]
(28) holds. Using this result prove that it also holds for random trun
ated subgame

Γ̄l−1(x
∗
l−1,0, t0 + (l − 1)∆t), i. e. prove that

n∑

i=1

t∫

t0+(l−1)∆t

β̂i(τ, x̂
∗(τ))dτ =

n∑

i=1

t∫

t0+(l−1)∆t

(1− Fl−1(τ))hi(x̂
∗(τ), û∗(τ))dτ, (31)

where ∀t ∈ [t0 + (l − 1)∆t, t0 + l∆t]. Similarly as in the game Γ̄l(x
∗
l,0, t0 + l∆t) for

∀t ∈ [t0 + (l − 1)∆t, t0 + l∆t]

W ((l−1)∆t)(t0 + (l − 1)∆t, x∗l−1,0)−W ((l−1)∆t)(t, x̂∗(t)) =

n∑

i=1

t∫

t0+(l−1)∆t

(1− Fl−1(τ))hi(x̂
∗(τ), û∗(τ))dτ. (32)

Then it follows that (31) is satis�ed. We need to pro
eed until the �rst random

trun
ated subgame Γ̄0(x0, t0). This will enables us to 
ombine results (28), (31) and
show that for ∀t ∈ [t0, T ] (27) holds. This 
ompletes the proof.

4.1. Time-
onsisten
y of the Solution Con
ept

It is easy to see that the resulting solution Ŵ (x0, T − t0) is time-
onsistent, but

there is another surprising property of Ŵ (x0, T − t0).

Theorem 5. The resulting solution Ŵ (x0, T − t0) is strong time-
onsistent in the

game Γ (x0, T − t0).

Proof. Suppose that in the game Γ (x0, T − t0) players agreed to 
hoose an im-

putation ξ̂(x0, T − t0) ∈ Ŵ (x0, T − t0). It means that during the game, in ea
h ran-

dom trun
ated subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t) they agreed on 
hoosing the imputation

ξj(x
∗
j,0, t0 + j∆t) ∈ Cj(x

∗
j,0, t0 + j∆t) with 
orresponding IDP βj(t, x

∗
j ) ∈ Bj(t, x

∗
j ),

t ∈ [t0 + j∆t, T ]. In fa
t, during the game players use IDP β̂(t, x̂∗) = βj(t, x
∗
j ) and

allo
ate 
ooperative payo� in the following way:

T∫

t0

β̂(τ, x̂∗(τ))dτ =

l∑

j=0

∫ t0+(j+1)∆t

t0+j∆t

(1 − Fj(t))βj(t, x
∗
j )dt.
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Suppose that in a given time instant t = tbr, where tbr ∈ [t0 + k∆t, T ] in random

trun
ated subgame Γ̄ c
k (x

∗
k,0, t0 + k∆t) players de
ide to 
hoose another imputa-

tion ξ′k(x
∗
k(tbr), tbr) from the IDP-
ore Ck(x

∗
k(tbr), tbr). Therefore, there exists IDP

β′
k(t, x

∗
k) ∈ Bk(t, x

∗
k), t ∈ [tbr, T ] whi
h 
orresponds to the imputation:

ξ′k(x
∗
k(tbr), tbr) =

T∫

tbr

(1− Fj(t))β
′
k(t, x

∗
k)dt. (33)

In this 
ase, during the game players will allo
ate 
ooperative payo� a

ording to

ξ̂′(xt0 , T − t0) using the following resulting IDP:

β̂′(t) =





(1− Fk(t))βk(t, x
∗
k), t ∈ [t0 + k∆t, tbr),

(1− Fk(t))β
′
k(t, x

∗
k), t ∈ [tbr, t0 + (k + 1)∆t],

(1− Fj(t))βj(t, x
∗
j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t],

where j 6= k, j = 0, . . . , l. Corresponding resulting imputation will have the following

form:

ξ̂′(x0, T − t0) =

T∫

t0

β̂′(t, x̂∗)dt =

l∑

j=0
j 6=k

∫ t0+(j+1)∆t

t0+j∆t

(1− Fj(t))βj(t, x
∗
j )dt+

∫ tbr

t0+k∆t

(1− Fk(t))βk(t, x
∗
k)dt+

∫ t0+(k+1)∆t

tbr

(1− Fk(t))β
′
k(t, x

∗
k)dt. (34)

Sin
e β′
k(t, x

∗
k) ∈ Bk(t, x

∗
k), t ∈ [tbr, T ] then the resulting IDP β̂′(t, x̂∗) belongs

to B̂(t, x̂∗). A

ording to the de�nition of Ŵ (x0, T − t0), all ve
tors ξ̂(x0, T − t0)

obtained by the formula (26) using β̂(t, x̂∗) from the set B̂(t, x̂∗) are 
alled the

resulting solution Ŵ (x0, T − t0) of the game Γ (x0, T − t0). In (34) we 
onstru
ted

the imputation ξ̂′(x0, T − t0) with the IDP β̂′(t, x̂∗) from the set B̂(t, x̂∗) and we

saw that the resulting imputation ξ̂′(xt0 , T − t0) belongs to the initial solution

Ŵ (x0, T − t0). That 
ompletes the proof.

5. Looking Forward Approa
h with Random Horizon in Cooperative

Extra
tion Game

The following example of the resour
e extra
tion game with two players was


onsidered by Jorgensen and Yeung (1999). The problem of time 
onsisten
y in the


onsidered example was studied by David Yeung et. al. (2012). In the previous paper

on Looking Forward Approa
h (Petrosian and Barabanov, 2017) the same example

for two players was 
onsidered, but with the new fore
ast fa
tor. Three 
ompeti-

tive models were implemented: with the sto
hasti
 fore
ast, with the deterministi


fore
ast, and without a fore
ast. In this paper we 
onsider resour
e extra
tion game

with three players with a spe
ial form of 
ooperative solution des
ribed in Se
tion

3.3 and in (Petrosian et al., 2016). An analyti
al form of 
hara
teristi
 fun
tion for

ea
h 
oalition is derived a

ording to (Chander and Tulkens, 1995) and presented

below. Furthermore, we apply the Looking Forward Approa
h with random hori-

zon to the example. In the �nal part of the example the strong time 
onsisten
y

property of the 
onstru
ted solution 
on
ept is demonstrated.
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In the following model we derive the analyti
al solution to the problem, but

general analyti
al solution 
annot be found. In order to apply the Looking Forward

Approa
h to the general 
lass of 
ooperative di�erential games we need to solve

two main problems. First problem is to solve (9) subje
t to (10) for ea
h trun
ated

subgame. Mathemati
ally this is a 
lassi
al 
ontrol problem, there are numerous

methods for solving it. Solving this problem we obtain approximate 
ooperative

strategies, 
ooperative traje
tories x∗j (t) and 
orresponding joint payo� (9). Se
ond

problem is the problem of de�ning of how to allo
ate 
ooperative payo� between

the players. We need to 
al
ulate 
hara
teristi
 fun
tion (14) for ea
h trun
ated

subgame along the 
ooperative traje
tory, to do this we 
an use 
oevolutionary

algorithms (Eiben and Smith, 2003) suitable for game theoreti
al problems. After


al
ulating 
hara
teristi
 fun
tions we 
an determine solution for ea
h trun
ated

subgame (for example IDP-
ore), then 
al
ulate 
orresponding resulting solution

(26).

5.1. The Original Game

Consider an e
onomy endowed with a single renewable resour
e, with n ≥ 2
resour
e extra
tors (�rms). Let ui(t) denote the quantity of the resour
e extra
ted

by �rm i at time t, for i ∈ N , where ea
h �rm 
ontrols its rate of extra
tion. Let

x(t) ∈ X ⊂ R be the size of the resour
e sto
k at time t. The growth dynami
s of

the renewable resour
e sto
k be
omes

ẋ = a
√
x(t)− bx(t)−

3∑

i=1

ui, x(t0) = x0, (35)

where a
√
x(t)− bx(t) is the natural rate of evolution of the resour
e and ui ∈ [0, d],

d > 0, i = 1, 3.
The extra
tion 
ost for �rm i ∈ N depends on the quantity of the resour
e

extra
ted ui(t), the resour
e sto
k size x(t), and parameter ci, i = 1, 3

Ki(x0, t0;u) =

T∫

t0

√
ui(τ) −

ci√
x(τ)

ui(τ)dτ, (36)

where ci is 
onstant and ci 6= ck, ∀i 6= k = 1, 3. We 
onsider set of parameters x0, T ,
a, b, d, ci, i = 1, 3 su
h that it is always non-negative in the 
orresponding 
ontrol

problem.

5.2. Random Trun
ated Subgame

The original game Γ (x0, T − t0) is de�ned on the time interval [t0, T ]. Suppose
for any t ∈ [t0+ j∆t, t0+(j+1)∆t], j = 0, . . . , l players have trun
ated information

about the stru
ture of the game. It in
ludes information about dynami
al system

and payo� fun
tion on the time interval [t0+j∆t, T j ], where T j is a trun
ated expo-

nentially distributed random variable with distribution fun
tion Fj(t) and density

fun
tion fj(t):

Fj(t) =
1− exp(−λ(t−max(t0 + (j + 1)∆t, tj−1)))

1− exp(−λ(T −max(t0 + (j + 1)∆t, tj−1)))
, (37)

fj(t) =
λ exp(−λ(t−max(t0 + (j + 1)∆t, tj−1)))

1− exp(−λ(T −max(t0 + (j + 1)∆t, tj−1)))
. (38)
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Exponential distribution is widely used for des
ribing the time between events in a

Poisson pro
ess. Under the events we 
an understand the 
hange in game stru
ture.

Also, let us denote Λj(t):

Λj(t) =

{
fj(t)

1−Fj(t)
, t ∈ [max(t0 + (j + 1)∆t, tj−1), T ],

0, t ∈ [t0 + j∆t,max(t0 + (j + 1)∆t, tj−1)].

The trun
ated information is formalized in the random trun
ated subgame

Γ̄j(xj,0, t0 + j∆t). The dynami
al system and the initial 
onditions for this sub-

game have the following form:

ẋ = a
√
x(t)− bx(t) −

3∑

i=1

ui, x(t0 + j∆t) = xj,0. (39)

A

ording to (8) the payo� fun
tion of the extra
tor i is equal to

Kj
i (xj,0, t0 + j∆t;u) =

T∫

t0+j∆t

(1 − Fj(τ))hi(x(τ), u(τ))dτ. (40)

Consider the 
ase when the resour
e extra
tors agree to a
t 
ooperatively in the

random trun
ated subgame Γ̄ c
j (xj,0, t0 + j∆t). They follow the optimality prin
iple

under whi
h they would maximize their joint payo�s and share the ex
ess of the

total expe
ted 
ooperative payo� over the sum of individual non-
ooperative payo�s

proportional to the agents non-
ooperative payo�s.

5.3. Cooperative Traje
tory

Next, 
onsider the random trun
ated subgame Γ̄j(xj,0, t0+j∆t). The maximized

joint payo� in the game Γ̄ c
j (xj,0, t0 + j∆t) has the following form (Jorgensen and

Yeung, 1999):

W j∆t(t, x) = Aj(t)
√
x+ Cj(t), (41)

where fun
tions Aj(t), Cj(t) satisfy the equations

Ȧj(t) =

[
Λj(t) +

b

2

]
Aj(t)−

3∑

i=1


 1

4
[
ci +

Aj(t)
2

]


 ,

Ċj(t) = Λj(t)C
j(t)− a

2
Aj(t) (42)

with boundary 
onditions lim
t→T−

Aj(t) = lim
t→T−

Cj(t) = 0.

The optimal 
ooperative traje
tory x∗j (t) of the random trun
ated subgame

Γ̄ c
j (xj,0, t0+ j∆t) 
an be represented expli
itly (Jorgensen and Yeung, 1999) on the

full interval [t0 + j∆t, T ]. The traje
tory with the initial 
ondition x = x∗j,0 is

x∗j (t) = ̟2
j (t0 + j∆t, t)

[√
x∗j,0 +

1

2
a ·

t∫

t0+j∆t

̟j(t0 + j∆t, τ)−1dτ
]2
, (43)
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where t ∈ (t0 + j∆t, t0 + (j + 1)∆t],

̟j(t0 + j∆t, t) = exp

t∫

t0+j∆t

−



1

2
b+

3∑

i=1




1

4
[
ci +

Aj(τ)
2

]2





 dτ. (44)

The initial 
ondition are de�ned re
ursively by the optimal traje
tory of the previous

game: x∗0,0 = x0 and x
∗
j,0 = x∗j−1(t0 + j∆t) for j = 0, . . . , l. The 
onditionally 
oop-

erative traje
tory x̂∗(t) is de�ned in a

ordan
e with Looking Forward Approa
h

as

x̂∗j (t) = x∗j (t), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], (45)

for j = 0, . . . , l.

5.4. Chara
teristi
 Fun
tion

In order to allo
ate 
ooperative payo� in ea
h random trun
ated subgame it is

ne
essary to de�ne values of 
hara
teristi
 fun
tion Vj(S;xj,0, t0+j∆t) (Vj(S;x
∗
j (t), t))

for ea
h 
oalition S ⊂ N . A

ording to the formula (14) maximized joint payo�

Wj(t0 + j∆t, xj,0) (41) 
orresponds to the value of 
hara
teristi
 fun
tion of grand


oalition Vj(N ;xj,0, t0 + j∆t) in the random trun
ated subgame Γ̄ c
j (xj,0, t0 + j∆t):

Vj(N ;x∗j (t), t) =W j∆t(t, x∗j (t)), (46)

where t ∈ [t0 + j∆t, T ], j = 0, . . . , l. Next, we need to de�ne values of 
hara
teristi


fun
tion for the following 
oalitions:

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. (47)

A

ording to (14), for a single player 
oalitions {i}, i = 1, 3 we need to determine

Nash equilibrium point and as a result Vj({i};x∗j(t), t).
5.5. Single Player Coalitions

Random trun
ated subgame Γ̄j(xj,0, t0 + j∆t) has a Nash equilibrium point

de�ned by the feedba
k

uji (t, x) =
x

4[ci +Aj
i (t)/2]

2
, i = 1, 3, (48)

where fun
tions Aj
i (t) are de�ned by the equations

Ȧj
i (t) = Aj

i (t)


Λj(t) +

b

2
+
∑

k 6=i

1

8(ck +Aj
k(t)/2)

2


− 1

4(ci +Aj
i (t)/2)

,

Ċj
i (t) = Λj(t)C

j
i (t)−

a

2
Aj

i (t)

for i = 1, 3, with boundary 
onditions lim
t→T−

Aj
i (T ) = 0 and lim

t→T−
Cj

i (T ) = 0.

The value fun
tion of the extra
tor i = 1, 3 in the Nash equilibrium point is

equal to

V j
i (t, x) = Aj

i (t)
√
x+ Cj

i (t), i = 1, 3. (49)

Therefore, value of 
hara
teristi
 fun
tion for single 
oalitions S = {i}, i ∈ N 
an

be 
al
ulated in the following way:

Vj({i};x∗j(t), t) = V j
i (t, x

∗
j (t)), (50)

where t ∈ [t0 + j∆t, T ], j = 0, . . . , l.
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5.6. Two Player Coalitions

A

ording to the formula (14) 
hara
teristi
 fun
tion Vj(S;xj,0, t0+j∆t) (Vj(S;
x∗j (t), t)) for two player 
oalitions S = {1, 2}, {1, 3}, {2, 3} is de�ned as total payo�

of players from 
oalition S in Nash equilibrium uNE
j = (uNE,j

1 , uNE,j
2 , uNE,j

3 ) in the

game with following set of players: 
oalition S (a
ting as one player) and players

from the set N \ S, i.e. in the game with |N \ S| + 1 = 2 players. It means that

players from 
oalition S behave as one player and other players from the set N \ S
are a
ting separately. Using this approa
h we de�ne Nash equilibrium between two

players: 
ombined player (
oalition S), and the se
ond player (
oalition N/S).
Consider 
al
ulations of Vj(S;xj,0, t0+j∆t) in 
ase when S = {1, 2}, 
al
ulations

for other 
oalitions have the same algorithm. Payo� of players in this 
ase has the

following form:

V j
{1,2}(t, x) = Aj

{1,2}(t)
√
x+ Cj

{1,2}(t),

V j
3 (t, x) = Aj

3(t)
√
x+ Cj

3(t),

where the fun
tions Aj
{1,2}(t), A

j
3(t), C

j
{1,2}(t), C

j
3(t) satisfy the equations

Ȧj
{1,2}(t) = Aj

{1,2}(t)

[
Λj(t) +

b

2
+

1

8(c3 +Aj
3(t)/2)

2

]
−
∑

k∈S

1

4(ck +Aj
{1,2}(t)/2)

,

Ȧj
3(t) = Aj

3(t)

[
Λj(t) +

b

2
+
∑

k∈S

1

8(ck +Aj
{1,2}(t)/2)

2

]
− 1

4(c3 +Aj
3(t)/2)

,

Ċj
{1,2}(t) = Λj(t)C

j
{1,2}(t)−

a

2
Aj

{1,2}(t),

Ċj
3(t) = Λj(t)C

j
3(t)−

a

2
Aj

3(t)

with initial 
onditions lim
t→T−

Aj
{1,2}(t) = lim

t→T−
Aj

3(t) = 0, lim
t→T−

Cj
{1,2}(t) =

lim
t→T−

Cj
3(t) = 0.

Therefore, the value of 
hara
teristi
 fun
tion for 
oalition S = {1, 2} 
an be


al
ulated in the following way:

Vj({1, 2};x∗j(t), t) = V j
{1,2}(t, x

∗
j (t)), (51)

where t ∈ [t0 + j∆t, T ], j = 0, . . . , l.

5.7. IDP-
ore

Using the values of 
hara
teristi
 fun
tion Vj(S;xj,0, t0 + j∆t), ∀S ⊂ N (46),

(50), (51) and formula (20) we 
onstru
t set Bj(t, x
∗
j ) as a set of integrable ve
tor
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fun
tions βj(t, x
∗
j ) satisfying:

3∑

i=1

(1 − Fj(t))β
j
i (t, x

∗
j ) = − d

dt
Vj({1, 2, 3};x∗j(t), t),

(1− Fj(t))(β
j
1(t, x

∗
j ) + βj

2(t, x
∗
j )) ≥ − d

dt
Vj({1, 2};x∗j(t), t),

(1− Fj(t))(β
j
1(t, x

∗
j ) + βj

3(t, x
∗
j )) ≥ − d

dt
Vj({1, 3};x∗j(t), t),

(1− Fj(t))(β
j
2(t, x

∗
j ) + βj

3(t, x
∗
j )) ≥ − d

dt
Vj({2, 3};x∗j(t), t),

(1− Fj(t))β
j
1(t, x

∗
j ) ≥ − d

dt
Vj({1};x∗j (t), t),

(1− Fj(t))β
j
2(t, x

∗
j ) ≥ − d

dt
Vj({2};x∗j (t), t),

(1− Fj(t))β
j
3(t, x

∗
j ) ≥ − d

dt
Vj({3};x∗j (t), t). (52)

Then, 
ombining sets Bj(t, x
∗
j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l for all

random trun
ated subgames we 
onstru
t set B̂(t, x̂∗). Further we 
al
ulate the set

of all possible imputations ξ̂(x0, T − t0) ∈ Ŵ (x0, T − t0) (26).
The step by step 
onstru
tion of the IDP-
ore for a linear quadrati
 game model

of pollution 
ontrol is presented in the paper (Petrosian et al., 2016).

5.8. Numeri
al Example

Consider a numeri
al example, where information about the stru
ture of the

game during the time intervals [t0 + j∆t, t0 + (j +1)∆t] is known for next the time

interval with length T j , where T j is a random variable distributed by (37) with

λ = 0.5. The total game length T = 4. Information about the game updates every

∆t = 1. Parameters of the dynami
al system are following: a = 10, b = 0.5. Assume

c1 = 0.15, c2 = 0.65, and c3 = 0.45 in the payo� fun
tion and the initial 
onditions

t0 = 0, x0 = 200. During the realization of the game information horizon take the

following values:

t0 = 2.423, t1 = 3.538, t2 = 3.871, t3 = 4.

Generated values of information horizon in�uen
e the distribution of the time untill

the available trun
ated information being 
orre
t. In Fig. 5 it is easy to see how

the information horizon T j was generated and how the probability density fun
tion

fj(t) (38) 
hanges between random trun
ated subgames.

In Fig. 6-8 we 
an see 
ooperative strategies for ea
h player de�ned with Looking

Forward Approa
h with random horizon (non smooth solid line) and 
ooperative

strategies in the original game in (Jorgensen and Yeung, 1999) (smooth dotted line).

Conditionally 
ooperative traje
tory x̂∗(t) is 
omposed from solutions of the

random trun
ated subgames Γ̄ c
j (x

∗
j,0, t0 + j∆t) with the dynami
al system (39).

In Fig. 9 the following 
omparison is presented: 
onditionally 
ooperative traje
-

tory x̂∗(t) (thi
k solid line) de�ned using Looking Forward Approa
h with random

horizon, 
onditionally 
ooperative traje
tory x̄∗(t) (thin solid line) de�ned with 
las-
si
al Looking Forward Approa
h (Petrosian, 2016a) (where T j = 2 is a determined

value), and 
ooperative traje
tory x∗(t) (dotted line) in the original game Γ (x0, T−
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Fig. 5. Probability density fun
tion fj(t), j = 0, 1, 2, 3 (38) for ea
h random trun
ated

subgame.

Fig. 6. Cooperative strategies for player 1 de�ned with Looking Forward Approa
h

with random horizon (non-smooth), and 
ooperative strategies in the original game in

(Jorgensen and Yeung, 1999) (smooth)

Fig. 7. Cooperative strategies for player 2 de�ned with Looking Forward Approa
h

with random horizon (non-smooth), and 
ooperative strategies in the original game in

(Jorgensen and Yeung, 1999) (smooth)
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Fig. 8. Cooperative strategies for player 3 de�ned with Looking Forward Approa
h

with random horizon (non-smooth), and 
ooperative strategies in the original game in

(Jorgensen and Yeung, 1999) (smooth)

t0). Cooperative traje
tory x
∗(t) is de�ned in (Jorgensen and Yeung, 1999). In the

other two �gures you 
an see 
onditionally 
ooperative traje
tory x̂∗(t) or x̄∗(t) and

orresponding 
ooperative traje
tories for ea
h trun
ated subgame.

Fig. 9. The traje
tory of the resour
e sto
k x̂∗(t) (thi
k solid line) with Looking Forward

Approa
h with random horizon, traje
tory x̄∗(t) (thi
k dotted line) de�ned with 
lassi
al

Looking Forward Approa
h, and 
ooperative traje
tory x∗(t) (thin dotted line) in the

original game Γ (x0, T − t0).

Next, in order to allo
ate 
ooperative payo� between players it is ne
essary to

de�ne a set of IDPs βj(t, x
∗
j ) for ea
h random trun
ated subgame Γ̄ c

j (x
∗
j,0, t0+j∆t),

j = 0, . . . , l. For that using �xed parameters of the model we numeri
ally 
al
ulate

values of 
hara
teristi
 fun
tion Vj(S;x
∗
j (t), t), S ⊂ N for ea
h random trun
ated

subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t).

Using values of 
hara
teristi
 fun
tion Vj(S;x
∗
j (t), t), S ⊂ N we 
onstru
t the

set Bj(t, x
∗
j ), j = 0, . . . , l (20). By 
ombination of sets Bj(t, x

∗
j ) we 
an 
onstru
t set

of IDPs for the whole game B̂(t, x̂∗). On the basis of B̂(t, x̂∗) we 
onstru
t solution

on
ept Ŵ (x0, T − t0) using formula (26).

Let us demonstrate the property of strong time-
onsisten
y of solution 
on
ept

Ŵ . Suppose that at the beginning of the game Γ (x0, T − t0) players agreed to

use proportional solution. For ea
h random trun
ated subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t)
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Fig. 10. The traje
tory of the resour
e sto
k x̂∗(t) (thi
k solid line) with Looking Forward

Approa
h with random horizon, and 
orresponding 
ooperative traje
tories (dotted lines).

Fig. 11. The traje
tory of the resour
e sto
k x̄∗(t) (thi
k solid line) de�ned with 
lassi
al

Looking Forward Approa
h, and 
orresponding 
ooperative traje
tories (dotted line).

proportional solution for players i ∈ N is de�ned using the IDP in the following

way:

(1 − Fj(t))β
Prop
i,j (t, x∗j ) =

Uj({i};x∗j,0, t0 + j∆t)
∑
i∈N

Uj({i};x∗j,0, t0 + j∆t)
Uj(N ;x∗j,0, t0 + j∆t), (53)

where Uj(S;x
∗
j,0, t0 + j∆t), ∀S ⊂ N is de�ned in (19). A

ording to the Looking

Forward Approa
h proportional solution should allo
ate 
ooperative payo� during

the whole game Γ (x0, T − t0) using the following IDP:

β̂Prop(t, x̂
∗) = (1− Fj(t))β

Prop
j (t, x∗j ), t ∈ [j∆t, (j + 1)∆t], j = 0, . . . , l. (54)

Via integration of β̂Prop(t, x̂
∗) by t it is possible to de�ne the proportional imputa-

tion ξ̂Prop(x̂
∗(t), T−t) (26). In the Fig. 13,14 it 
an be seen that β̂Prop(t, x̂

∗) 
onsists

in the set B̂(t, x̂∗), whi
h means that proportional solution is strong time-
onsistent

with given parameters.

Suppose that at the moment of time tbr ∈ [t0, T ] players de
ide that proportional
solution is no longer fair for them and they 
hoose another imputation from the

solution 
on
ept Ŵ (x̂∗(tbr), T − tbr), for example solution, whi
h is based upon the

Shapley value for ea
h random trun
ated subgames. For ea
h random trun
ated
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subgame Shapley Value is 
al
ulated a

ording to the formula:

Shji (x̂
∗(tbr), tbr) =

∑

S⊂N
i∈S

(|N | − |S|)!(|S| − 1)!

|N |! ·
(
Vj(S; tbr, x̂

∗(tbr))− Vj(S\{i}; tbr, x̂∗(tbr))
)
. (55)

Using Shapley value it it possible to de�ne IDP for ea
h random trun
ated subgame

(17). A

ording to the Looking Forward Approa
h proportional solution should

allo
ate 
ooperative payo� during the whole game using the following IDP:

β̂Sh(t, x̂
∗) = (1− Fj(t))β

Sh
j (t, x∗j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l,

where βSh
j (t, x∗j ) is de�ned using the formula (18). It is worth mentioning that the

IDP for Shapley value βSh
j (t, x∗j ) and the IDP for proportional solution βProp

j (t, x∗j )
are 
al
ulated in the way to ensure the time-
onsisten
y property, i.e. using the

formula (18). The extended des
ription of the step by step solution of IDP for a

Shapley value is presented in (Shevkoplyas, 2009).

Let us set the moment tbr = 1.2 when players de
ide to re
onsider the propor-

tional solution. Then, a

ording to (25), the formula for the IDP for the whole game

has the following form:

β̂(t, x̂∗) =

{
β̂Prop(t, x̂

∗), t ∈ [t0, tbr],

β̂Sh(t, x̂
∗), t ∈ (tbr, T ].

(56)

In Fig. 12 IDP β̂Prop(t, x̂
∗) for the proportional solution (54) (thi
k solid line) and

IDP β̂(t, x̂∗) for the 
ombined solution (56) (dotted line) are presented.

Fig. 12. IDP β̂Prop(t, x̂
∗) for the proportional solution (53) (thi
k solid line), IDP β̂(t, x̂∗)

for the 
ombined solution (56) (dotted line).

Via the dire
t integration of β̂(t, x̂∗) (56) by t it is possible to de�ne formula (26)

for resulting allo
ation ξ̂(x̂∗(t), T − t). A

ording to ξ̂(x̂∗(t), T − t), players allo
ate

ooperative payo� in the game Γ (x0, T − t0) in the following way:

ξ̂(x̂∗(t), T − t) = (12.3, 30.2, 16.8). (57)

In Fig. 13,14 it 
an be seen that β̂(t, x̂∗) (56) is within the set B̂(t, x̂∗) (20), whi
h

means that 
orresponding imputation ξ̂(x̂∗(t), T−t) ∈ Ŵ (x̂∗(t), T−t) with given pa-
rameters. This fa
t demonstrates the property of strong time-
onsisten
y of solution
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on
ept

Ŵ (x0, T − t0). Also, in Fig. 13,14 it 
an be seen that the proportional solution

β̂Prop(t, x̂
∗) (54) is within the set B̂(t, x̂∗).

Fig. 13. Axis: β1, β2, t. β3 
an be 
al
ulated using (20).

Fig. 14. Axis: β2, β3, t. β1 
an be 
al
ulated using (20).

In Fig. 15 the di�eren
e between the ξ̂(x̂∗(t), T − t) and ξ̂Prop(x̂
∗(t), T − t) is

presented.

6. Con
lusion

A novel approa
h to de�nition of a solution for a di�erential game is presented.

The game is de�ned on a time interval divided into subintervals. The players do

not have full information about the stru
ture of the game on the full time interval.

Instead, they know parameters of the dynami
al system and of the payo� fun
tion,

but the duration of this information is unknown in advan
e. A 
ombined traje
tory

is 
omposed re
ursively by the lo
al traje
tories. As a solution IDP-
ore is used.

Solution for the whole game is des
ribed as a new solution 
on
ept. It is proved that

the new solution is not only time-
onsistent but also strong time-
onsistent whi
h

is a rare property of 
ooperative di�erential games.

The approa
h is illustrated by an example of the resour
e extra
tion game.

The 
omparison between the original approa
h and the Looking Forward Approa
h

with random horizon is presented. Combined traje
tories for both approa
hes are

presented. Solution 
on
ept based on the IDP-
ore is 
onstru
ted. In the �nal part
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Fig. 15. Imputation ξ̂Prop(x̂
∗(t), T − t) for the proportional solution (thi
k solid line),

imputation ξ̂(x̂∗(t), T − t) for the 
ombined solution (dotted line).

of the example the strong time 
onsisten
y property of the 
onstru
ted solution is

demonstrated. It is supposed that players agreed on using a proportional solution

from the solution set, but at some point they de
ide to swit
h to a Shapley value.

As it turns out the resulting solution belongs to the solution set.
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