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Abstract In the paper authors present a new approach to determination
and computation of a solution for differential games with prescribed dura-
tion in the case when players lack certain information about the dynamical
system and payoff function on the whole time interval on which the game
is played. At each time instant players receive information about dynami-
cal system and payoff functions, however the duration of the period of this
information is unknown and can be represented as a random variable with
known parameters. At certain periods of time the information is updated.
A novel solution is described as a combination of imputation sets in the
truncated subgames that are analyzed using Looking Forward Approach
with random horizon. A resource extraction game serves as an illustration
in order to compare a cooperative trajectory, imputations, and imputation
distribution procedure in the game with Looking Forward Approach and
in the original game with prescribed duration. Looking Forward Approach
is used for constructing game theoretical models and defining solutions for
conflict-controlled processes where information about the process updates
dynamically.

Keywords: differential games; time-consistency; predictive control.

1. Introduction

The cooperative differential game theory offers socially convenient and group
efficient solutions to different decision problems involving strategic actions. One of
the fundamental elements in this theory is the formulation of optimal behavior for
players or economic agents. A design of cooperative strategy and the corresponding
payoff, the manner to distribute the payoff between players, and the time consistency
of the corresponding solution can be considered as main problems of this theory.
Haurie analyzed the problem of dynamic instability of Nash bargaining solutions
in differential games (Haurie, 1976). The notion of time consistency of differential
game solutions was formalized mathematically by Petrosyan (Petrosyan, 1977). In
the present research we examine a special case of cooperative differential games
in which the game structure can change or update with time (time-dependent for-
mulation) and assume that the players do not have information about the change
of the game structure on the full time interval, but they have certain information
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about the game structure on the truncated time interval. However, the duration
of this interval is unknown and it is supposed to be a random variable, so that
the players only know the distribution parameters. Under the information about
the game structure we understand information about the dynamical system and
payoff functions. The interpretation can be given as follows: players have certain
information about the game structure, but the duration of the period when this
information is correct is unknown in advance. Evidently, this truncated informa-
tion is valid only for certain time and has to be updated. In order to define the
best possible behavior for players in this type of cooperative differential game, it is
needed to develop a special approach, which we call the Looking Forward Approach
with random horizon. The approach brings up the following points: how to define a
cooperative trajectory, how to define a cooperative solution and allocate the coop-
erative payoff, and what properties the obtained solution will have. The object of
this paper is to answer the stated questions. Offered solution is based on the IDP-
core introduced in (Petrosian et al., 2016), it is built up using the particular class
of imputation distribution procedures (IDP) (Petrosyan and Danilov, 1979). It is
demonstrated that newly built solution is not only time-consistent (which is a very
rare event in the cooperative differential games), but also strong time-consistent.
The concept of the Looking Forward Approach is new in game theory especially
in cooperative differential games and gives the foundation for further study of dif-
ferential games with dynamic updating. At the moment there are practically no
results in constructing approaches for modeling conflict-controlled processes where
information about the process updates in time. In the present work we examine the
Looking Forward Approach with random horizon which is one of the variations of
Looking Forward Approach introduced in (Petrosian, 2016a). There we supposed
that the duration of truncated information is a fixed value. To get more informa-
tion about the approach one may read the following papers: (Petrosian et al., 2017;
Yeung and Petrosian 2017; Gromova and Petrosian, 2016; Petrosian, 2016a; Petro-
sian, 2016b; Petrosian and Barabanov, 2017; Petrosian et al., 2019; Petrosian and
Kuchkarov, 2019). In paper (Petrosian, 2016a) the Looking Forward Approach was
applied to the cooperative differential game with finite horizon. The notion of trun-
cated subgame, procedure for defining optimal strategies, conditionally cooperative
trajectory and solution concept, and solution property of At-time consistency for a
fixed information horizon were determined. The paper (Petrosian and Barabanov,
2017) was focused on studying of Looking Forward Approach with stochastic fore-
cast and dynamic adaptation in case when information about the conflicting pro-
cess can change during the game. In the papers (Gromova and Petrosian, 2016)
the Looking Forward Approach was applied to a cooperative differential game of
pollution control. The aim of the paper was to study dependency of the resulting
solution upon the value of information horizon, corresponding optimization problem
was formulated and solved. The paper (Petrosian et al., 2017) is devoted to apply
the Looking Forward Approach to the game model of oil market. Further papers
on this subject are to be published in near future. In the paper (Petrosian, 2016b)
the Looking Forward Approach was applied to the cooperative differential game
with infinite horizon. The paper (Yeung and Petrosian 2017) is devoted to study
the Looking Forward Approach for dynamic non-cooperative games. Special type
of Hamilton-Jacobi-Bellman equations are derived for a different information struc-
tures available to the players during the game. Another interesting class of games
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is connected to the class of differential games with continuous updating was consid-
ered in the papers (Petrosian and Tur, 2019; Kuchkarov and Petrosian, 2019), here
it is supposed that the updating process evolves continuously in time. In the paper
(Petrosian and Tur, 2019), the system of Hamilton-Jacobi-Bellman equations are
derived for the Nash equilibrium in a game with continuous updating. In the pa-
per (Kuchkarov and Petrosian, 2019) the class of linear-quadratic differential games
with continuous updating is considered and the explicit form of the Nash equilibrium
is derived.

In the article we use special form of Hamilton-Jacobi-Bellman equation for dif-
ferential games with random horizon presented in (Shevkoplyas, 2011; Shevkoplyas,
2014; Petrosjan and Shevkoplyas, 2003). A characteristic function of a coalition is
an essential concept in the theory of differential games. This function is defined as
indicated in (Chander and Tulkens, 1995) as total payoff of players from coalition S
in Nash equilibrium in the game with following set of players: coalition S (acting as
one player) and players from the set N\ \S. A computation of Nash equilibrium fully
described in (Basar and Olsder, 1995) is necessary for this approach. A set of impu-
tations or a solution of the game is determined by the characteristic function at the
beginning of each subinterval. For any set of imputations the imputation distribution
procedure (IDP) first introduced by L. Petrosyan in (Petrosyan and Danilov, 1979)
is analysed. See recent publications on this topic in (Petrosyan and Yeung, 2006;
Jorgensen and Yeung, 1999; Jorgensen et al., 2003). In order to determine a solu-
tion for the whole game it is required to combine partial solutions and their IDP
on subintervals. The characteristics of time consistency and strong time consistency
introduced by L. Petrosyan in (Petrosjan, 1993) and (Petrosyan, 1977) are also ex-
amined for the offered solution.

Looking Forward Approach has similarities with the Model Predictive Con-
trol theory worked out within the framework of numerical optimal control. We
analyze (Goodwin et al., 2005; Rawlings and Mayne, 2009; Wang, 2005; Kwon and
Han, 2005) to get recent results in this area. Model predictive control is a method
of control when the current control action is achieved by solving at each sampling
instant a finite horizon open-loop optimal control problem using the current state
of an object as the initial state. This type of control is able to cope with hard
limitations on controls and states, which is definitely its strong point over the rest
of the methods. It has got, therefore, a wide application in petro-chemical and re-
lated industries where key operating points are located close to the set of admissible
states and controls. The main problem that is solved in Model Predictive Control
is the provision of movement along the target trajectory under the conditions of
random perturbations and unknown dynamical system. At each time step the op-
timal control problem is solved for defining controls which will lead system to the
target trajectory. Looking Forward Approach on the other hand solves the problem
of modeling players behavior when information about the process updates dynami-
cally. It means that Looking Forward Approach does not use target trajectory, but
answers the question of composing trajectory which will be used by players, as well
as the question of allocating cooperative payoff along the composed trajectory.

To demonstrate the Looking Forward Approach we present the example of co-
operative resource extraction game with finite horizon. The original example was
introduced by David Yeung and Steffen Jorgensen in (Jorgensen and Yeung, 1999),
the problem of time consistency in this game was examined by David Yeung in
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(Yeung and Petrosyan, 2012). In the article, we analyze three player resource ex-
traction game with IDP-core described in (Petrosian et al., 2016) used as a coop-
erative solution. We present both analytical and numerical solutions for specific
parameters. The comparison between the original approach and the Looking For-
ward Approach with random horizon is presented. In the final part of the example
model we demonstrate the strong time consistency property of the constructed solu-
tion. The structure of the article is as follows. The basic game models are presented
in Section 2. A sequence of the auxiliary random truncated subgames is determined
in Section 3. Solutions to these subgames are offered in Section 4. It involves a coop-
erative behavior of players for the whole game and an allocation of the cooperative
payoff between the players at each stage of the game. In Section 5 we present a new
concept of the game solution for the case of updating information. The time consis-
tency and strong time-consistency properties of the solution are stated and proved.
In Section 6 the Looking Forward Approach is applied to the game of Cooperative
Resource Extraction with finite horizon.

2. The Original Game

The n-person differential game I'(xo,T — to) with finite horizon T — ty, with
the initial state zop € R™ and initial time instant ¢y is given (to and T are a fixed
values). The structure of the game is defined by the following dynamical system:

= g(t,x,u), z(tg) = xo, (1)
where z takes values in R™, u = (u1,...,uy). Denote the set of players by N =
{1,...,n}. A player i chooses a control u; for i = 1,...,n. For each time instant

t, ui(t) € U; C CompRF. When the open-loop strategies are used, we require
piecewise continuity with finite number of breaks. For feedback strategies we follow
(Basar and Olsder, 1995). We require that for any n-tuple of strategies u(t,z) =
(ui(t,x),...,un(t,x)) the solution of Cauchy problem exists and is unique on the
time interval [to, T|. For more sophisticated definition of feedback strategies in zero-
sum differential game see (Krasovskii and Kotel’nikova, 2010).

The payoff function of the player ¢ is described as

T
Ki(l'o,T—to;u) :/hi(l'(T),’u,(T))dT, (2)

to

where x(7) is the trajectory (the solution) of the system (11) with the control input
w= (U, .., Up).

3. Random Truncated Subgame

Suppose information for players is updated at fixed time instants ¢t = to + jAt,
j=0,...,1, where to < At < T,1 = Tgf“ — 1. During the time interval [tg +
JAt to + (§ + 1) At], players have full information about the dynamics of the game
described by g(t, z,u) and payoff function described by h;(z(t), u(t)). The problem
is that the players are not sure about the period of time when this information is
valid, all they know is that it is defined on the time interval [ty + jA¢, T;], where
duration T'; is a random variable with known characteristics. Realization of random
variable T'; we denote as %, j =0,...,1.
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As was mentioned before during the time interval [to + jAt, to + (5 + 1) At]
players have full information about the dynamics of the game and payoff function
on the time interval [to+ jAt, T;], where T, is a random variable which takes values
from the time interval [max(to+ (j + 1) A¢, t;_1),T], t;_1 is a realization of random
variable T;_; (T,_1 is realized at the time instant ¢ = o+ jAt). At the time instant
t =ty + (j + 1) At the information about the game is being updated and random
variable T'; is realized, i.e. f; becomes known to players. On the next time interval
(to+ (7 +1)At, to+ (j+2) At] players have full information about the game structure
on the time interval (to + (j + 1)At,T+1], where T is a random variable which
takes values from the time interval [max(to+ (j +2)At, t;), T]. For j = 0 we suppose
that Ej_l =0.

It may remain unclear why the random variable Tj is realized at time instants
t =to+ (j+1)At, but its value t; exceeds ¢ = to + (j + 1) At. Interpretation can be
the following. Suppose that at time instants ¢t = to + jAt players receive informa-
tion about the game, but in order to accurately estimate the duration of information
horizon which is random variable T'; they need time At (to make calculations etc.).
At the time instant ¢ = o + (j + 1) At calculations are performed and certain value
of information horizon Tj becomes known to players, i.e. t;. Another interpretation
is that during current A¢-time interval [t + j At, to + (§ + 1) At] players receive addi-
tional information which helps them to estimate the time on which the information
about the process is certain, i.e. define the value of information horizon ¢;. At the
time instant ¢t = to+ (j + 1) At after the estimation is performed players receive new
information about the game structure with random information horizon TjH and
the same procedure continues.

To model this kind of situation we introduce the following definition (Fig. 1).
Denote vector z 0 = z(to + jAL).

+ t
ty At At At At At At T

@
[
@ s
L
<

Fig. 1. Each oval represents random truncated information, which is known to players
during the time interval [to + jAL to + (j + 1)At], 5 =0,...,L

Definition 1. Let j = 0,...,l. A random truncated subgame I; (0, to+7At) is
defined on the time interval [ty +jAt, T;], where T is a random variable which takes
values from the time interval [max(to + (j + 1)At, t;_1),T], t;_1 is a realization of
random horizon T;_1 in the previous truncated subgame I';_; (21,0, to+(j—1) At).
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Realization of Tj_l occurs at time instant ¢t = tg + jAt. The dynamical system and
the payoff function on the time interval [ty + jAt,T;] coincide with that of the
game I'(xzo, T —to) on the same time interval. The dynamical system and the initial
condition of the truncated subgame I'j(z;0,to + jAt) have the following form:

=gt z,u), z(to + jAt) =z, 0. (3)

The payoff function of player ¢ in random truncated subgame j is equal to

T t
K (@ 0,t0 + j At 1) = / / hy (2(7), u(r))drdF; (¢), @
to+jAt to+j At

where F}(t) is a distribution function of T';:

T T
[ aro- / dF;(t) = 1, (5)
to+jAt max(to+(j+1)At,t;_1)

due to the definition, F};(t) is a conditional distribution function, i.e. Fj(t) =
Fj(t | Tj—1 =1t;_1). Further by notation Fj(t) we will refer to F;(t | Tj_1 = £;_1).

Suppose that the realization of random horizon Ti—l in the game fj_l(xj_l,o,
to + (j — 1) At) exceeds time t = to + (5 + 1) At:

tjo1>to+ (5 +1)At, (6)

then the random horizon T; must exceed the realization of 7;_1, because the in-
formation about the game structure is already known on the time interval [to +
jAt,T;_1]. That is why in the formula (5) the probability of T'; taking values from
time interval [to + jAt, ¢;_1] equals zero:

max(to+(j+1)At,t;_1)
dF; () = 0. (7)
to+jAt

In the papers on the topic of cooperative differential games with random hori-
zon (Shevkoplyas, 2009; Shevkoplyas, 2010; Shevkoplyas, 2011; Shevkoplyas, 2014;
Petrosjan and Shevkoplyas, 2003) the distribution function of T'; is defined on the
infinite time interval. In this paper Tj takes values from the finite time interval
because the original game is defined on the finite time interval [to, T

In (Kostyunin and Shevkoplyas, 2011) the order of integration in the double
integral (4) was changed according to Tonelli’s theorem:

T
Kij(xjyo, to + jAtu) = / (1 — F;(1)hi(z(1), u())dr. (8)
to+jAt
3.1. Solution of Random Truncated Cooperative Subgame

Consider a truncated cooperative subgame ff(xlj70,t0 + jAt) defined on the
time interval [to + jAt,T,] with the initial condition z(tg + jAt) = z; 0, where T;
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o

t, At At At At At At T

Fig. 2. Behavior of players in the game with random truncated information can be modeled
using the random truncated subgames I';(z;.0,t0 + jAt), =0,...,1.

is a random variable with distribution function (5). Classically on the first step of
cooperative differential games we define cooperative strategies and corresponding
cooperative trajectory. On the second step we define the rule for allocating coopera-
tive payoff between the players along the cooperative trajectory. To do this we define
characteristic function and corresponding cooperative solution. The total payoff of
players to be maximized in this game is

T t
> Kottt =Y [ [ h@aodso o
ieN €N G AL to+5 At
subject to
& =g(t,x,u), x(to +jAt) = zjp. (10)

This is an optimal control problem. Sufficient conditions for the solution and the
optimal feedback are given by the Theorem 1 firstly presented in (Shevkoplyas, 2014).
Denote the maximum value of joint payoff of the players (9) by the function
WUAD (¢t 1)

WUAY (¢, z) = max {Z Kf(x,t;u)} , (11)

ueU
iEN

where x,¢ are the initial state and time of subgame of random truncated game
correspondingly and U = U; x ... x U,.

Theorem 1. Assume there exists a continuously differential function WAt (t,z)
[to + jAt, T;] x R™ — R satisfying the partial differential equation

fj(t) At _
rm” s

(j ) . (b
W, WH%%§meww<mwm%,m
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where lim WU (t,2) = 0, f;(t) is a probability density function for random

t—=T~
variable T; (5). Assume that mazimum in (12) is achieved under controls ui(t, x).
Then uj(t,x) is optimal in the control problem defined by (9), (10).

Theorem 1 (presented in (Shevkoplyas, 2014)) requires that the function W (4%

be C'. However, it is possible to assume only continuity considering viscosity-
solutions using Subbotin approach (Subbotin, 1984; Subbotin, 1995). But due to
the shortage of space, it is not possible to properly introduce and define this solu-
tion in the paper. In the example model we define and get solution W4 from
Cl.

3.2. Conditionally Cooperative Trajectory

During the game I'(zo, T — to) players posses only truncated information about
its structure. Obviously, it is not enough to construct optimal control and corre-
sponding trajectory for the game I'(z9,T — to). As a cooperative trajectory in the
game I'(xo, T —to) we propose to use a conditionally cooperative trajectory defined
in the following way:

Definition 2. Conditionally cooperative trajectory {@*(t)}/_,, is defined as a
composition of cooperative trajectories x7 (t) in the truncated cooperative subgames
Ie(xs_ (to+ jAt), to + jAt) defined on the successive time intervals [to + j AL, to +
(7 + 1) At] (Fig.3):

x§(t), t € [to, to + At),

ey

{# ()}, = }cf;.(t), t € [to + jAt to + (j + 1) At), (13)

zi(t), t € [to + LAt to + (1 + 1) At],

On the time interval [tg + jAt, to + (j + 1) At] conditionally cooperative trajec-
tory coincides with the cooperative trajectory 9c;*(t) in the truncated cooperative
subgame I'f(x%_, (to + jAt), to + jAL). At the time instant t = to + (j + 1)At in-
formation about the game structure updates in the position z7(to + (j + 1) At). On
the time interval (to + (j + 1)A¢, to + (§ + 2) At trajectory Z*(¢) coincides with
cooperative trajectory 7, (t) in the truncated cooperative subgame I'f, | (7 (to +
(+1)At),to + (j + 1) At) which starts at the time instant ¢ = to + (j + 1) At in the
position z7 (o + (j + 1) At). For j = 0: }_; (to + jAt) = wo.

3.3. Characteristic Function

For each coalition S € N and j = 0,...,[ define the values of characteristic
function as it was done in (Chander and Tulkens, 1995):

g;v K] (% g, to + jA u3), S =

S
. . i€

ViS5 a50,t0 + 540 = V(5,2 .t + jA), Sc

0, §=

N

N (14)
0

where f/j(S, x}g,to + jAL) is defined as total payoff of players from coalition S
in Nash equilibrium uéVE = (uiVE’j, .., ulYEJ) in the game with following set of
players: coalition S (acting as one player) and players from the set N\ S, i.e. in the
game with |N \ S| + 1 players.
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t, At At At At At At T

Fig. 3. Solid line represents the conditionally cooperative trajectory {#*(t)}{—,. Dashed
lines represent parts of cooperative trajectories that are not used in the composition, i.e.,
each dashed trajectory is no longer optimal in the current random truncated subgame.

An imputation &; (:c;*-yo, to+jAt) for each random truncated cooperative subgame
r (25 g, to + jAL) is defined as an arbitrary vector which satisfies the conditions

(a0, to + JAL) > V;({i}, 27 o, to + jAL), i € N,

> (@ g to + JAL) = Vi(N, 250, t0 + jAL). (15)
iEN

Denote the set of all possible imputations for random truncated subgame by
Ej(:v;)o, to + jAt). As an optimality principle or solution

W; (CC;O, to + ]At) CE; (ac;f)o, to + jAt) (16)

in each random truncated cooperative subgame Fc( 7 o, to + jAt) we use IDP-core
introduced in (Petrosian et al., 2016). Constructlon of this solution is based upon
the special class of IDP (Petrosyan and Danilov, 1979).

Definition 3. Function ;(t,z7), t € [to + jAt,T;] is called Imputation Distri-
bution Procedure for imputation 57( T} o, to + JAL) € Ej(x] o, to + jAL), if

T

&(2 0, to + jAL) = / (1= Fj (7)) B, (t, 2% (£))dr. (17)

to+jAL

Using IDP g;(t, :1:;‘) it is possible to define the rule for allocating imputation &; (x;*-yo,
to + jAt) on the time interval [to + jAt,T], where T; is a random variable. It is
obvious that the number of functions 3;(¢, 2} (t)) that satisfy the equation (17) is
infinite, i.e. the ways of allocation of cooperative payoff between players is infinite,
but according to the formula for a class of games with random horizons presented
in (Shevkoplyas, 2009; Shevkoplyas, 2010)

fg()

Bilt a3 0) = 2

d *
)fg( HORI R CHOR)) (18)
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to define the unique 3;(¢, 2} (t)) that ensures the time consistency property (Pet-
rosyan and Danilov, 1979) of the imputation {; (z7} o, to+jAt) or cooperative solution
Wi (x5, to + jAt) (in case of multiple principle of optimality):

Definition 4. Solution W;(x 7O,to + JAt) (§(x] 0, t0 + jAL)) is called time-
consistent if for any imputation {;(z7 o, to + jAt) € Wj(z5 o, to + jAt) exists IDP
B;(t, ;) which Vt € [to + jAt, T satisfies:

T .
{/t (1= F5()8 (7, x}‘)df} €

T .
W (a7 (t),1) <{/t (1= F;(1))B] (1, 273) T} —5j(x;70,to+jAt)>.

3.4. IDP-core

In the paper we used the approach proposed in (Petrosian et al., 2016) in which
we constructed functions that can be used as IDPs for some imputations and then
composed corresponding solutions. Suppose that characteristic function V;(S; T (1), 1),
S C N is continuously differentiable by ¢, t € [to + jAt, T| along the cooperatlve
trajectory x(t). Introduce the following notation:

d

Ui (S5 (1), 1) =~

where t € [to + jAt,T] and S C N.
Define Bj;(t,x}) as a set of integrable vector functions 3;(t,}) satisfying the
following inequalities:

B;(t,2}) = { Bt 2}) = (Bl(t.2)), ... Byt 2})
> (= F(0)8 (t,a}) = Uy (8.5 (1), 1),

€S

S Bilt,25) = Uy(¥,5 (0,009 © N ). .

i€EN

Vi(S;23(t), 1), (19)

Suppose that B;(t,z}) # 0, Vt € [to + jAt,T], j = 0,...,1. Then using the set
Bj(t,x}) it is possible to define the following set of vectors:
Definition 5. Set of all possible vectors &; (2 (), t) for some integrable selectors

Bj(t,x}) € Bj(t,z}) we shall call IDP-core and denote as C,; (z7(t),t), where
Cj(@5(t),t) = {&(x](t), 1), t € [to + jAL T]} (21)
and for ¢ € [to + jAt, T

&5 (). ) = / (1= Fy(r))B; (r, %) dr. (22)

In (Petrosian et al., 2016) it was proved that IDP-core is a subset of Core:

Theorem 2. The set C;(x*(t),

t) is a subset of Core C;(x*(t),t) in random coop-
erative truncated subgame e (t

), t), t€to+ jAL, T]
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Core is a classical solution in the theory of games (Shapley, 1952). In our case
Core Cj(z*(t),t) for each random truncated subgame is defined as a set of im-
putations &;(x7 o, t0 + jAL) = (& (x5 0,t0 + JAL), ... 75%($;70,t0 + jAt)) satisfying
Vt € [to +jAt,T]:

1. efficiency: Y §g(x;f(t),t) = Vj(N;:C;f(t),t)
ieEN
2. coalitional rationality: 3 & (z}(t),t) > V;(S;2}(t),t), VS C N.
€S |

The main result of paper (Petrosian et al., 2016) is the proof that IDP-core is
strong time consistent in differential games with prescribed duration. The same
result can be obtained for random truncated subgame.

Definition 6. Set W;(z7 o,t0 + jAt) is called strong time-consistent if for any
solution in the game I'f(x(t),1)

L Wj(@j(t),t) # 0, Vt € [to + j AL, T]
2. for each imputation &;(x7(t),t) € Wj(x}(t),t) exists IDP f;(r,z}) =
(B{(r,23),.... Bi(7,2%)), T € [to + jAL, T], such that

T
&5 (). 1) = / (1= Fy(r))B; (r.a?)dr, (23)
and

t
[ Q= BB o Wya 0).0) < Wylajgoto +540) (20
to+j At

for each t € [to + j AL, T,
@ a®B={atb:be B}, acR", BCR"

Strong time consistency of solution means that the solution obtained by "op-
timal" reconsidering initial solution at any time instant during the game will be-
long to the initial solution. Particularly for IDP-core in random truncated sub-
game it means that for each & (z},to + jAt) from Cj(z g, to + jAt) deviation
from this imputation along the cooperative trajectory (t) in any moment t €
[to + jAt, T] to any other imputation in current IDP-core &;(x%(t),t) € C;(x},1)
leads to the imputation which belongs to the initial IDP-core 6j($;,0, to+ jAt). In
paper (Petrosian et al., 2016) is the proof that IDP-core is strong time consistent:

Theorem 3. Suppose 6j(a:;f (t),t) # 0, Vt € [to+jAt, T]. Then IDP-core C; (5 0s
to + jAt) is strong time consistent in the game f’f(x;,o, to + jAL).

In the paper (Petrosian et al., 2016) the properties of the IDP-core as a cooper-
ative solution are discussed and the technic for its construction is demonstrated on
the linear quadratic game model of pollution control.

It is easy to suggest that distribution of the total payoff of players in the game
I'(z9,T — to) along the conditionally cooperative trajectory {#*(t)}{_,, can be or-
ganized as a composition of IDPs for each time interval [to + jAt, to + (j + 1) At],
j=0,...,1, in accordance with the structure of the game I'(xo,T — to). This will
be formalized in this section as a new solution concept.
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The family of sets W (27 o, to+7At) = C,; (27 0, to+jAt) do not compose directly
a solution for the game I'(xg, T — to). For any 7 = 0,...,[ the optimal solution for
the truncated subgame ff(a:}ﬂw to+jAt) is defined on the time interval [to+jAt, to+
jAt+T;]. This particular solution makes sense on the interval [to+jAt, to+(j+1) At]
only, because the information about the game structure updates after every At time
interval and it is irrelevant to use a solution which is based upon the outdated
information. The necessary information can be extracted by using the IDP for each
truncated subgame. Therefore in order to construct optimal solution for the whole
game I'(xo,T — to) we use the set of IDPs B;(t) instead of set of imputations
Cj(SC;-:O, t() + _]At)

4. Concept of Solution

In order to introduce a solution concept for the differential game I'(xg, T — to)
with Looking Forward Approach we use a family of sets B;(t,z}), j =0,...,[. First
we construct the set of IDPs for the whole game I'(xo,T — to) in the following
way: for each fixed composition of IDPs 3;(t,x}) € B;(t,z7), j =0,...,l we define
resulting IDP j3(t, 2*).

Definition 7. Resulting IDP B(t, Z*) is a function defined as a combination of
imputation distribution procedures 3;(t, z}) € B;(t,z}) in all truncated cooperative
subgames I'f (2% o, to + jAL), j =0,...,1:

(1= Fo(t)Bo(t, 5),t € [to, to + At],
Bt,27) = § (1= F;(1))5;(t,25), t € [to + j AL, to + (7 + 1) At], (25)
(1= Fi(t)Bi(t,x)), t € [to+ LAt to + (I + 1) At].

The set of all possible resulting IDPs 3(t,2*) (25) for different compositions
Bi(t,x}) € Bj(t,x}), j=0,...,1 we denote by B(t,i*).

Using resulting IDP j(t,4*) € B(t) it is possible to determine a resulting impu-
tation which can be used as an imputation in the game I'(zo,T — to) with Looking
Forward Approach. But the question stands, will the resulting imputation actu-
ally allocate joint cooperative payoff along the conditionally cooperative trajectory
Z*(t), this fact is proved in Theorem 4.

Definition 8. Resulting imputation é(wo,T — to) is a vector defined in the
following way:

T . (5+1)At
(w0, T — to) = / B(r,&*(r))dr = [ (1= Fj(7))B; (1, 2 (1))dr | . (26)

=0 L A

Denote by resulting solution W(xo,T — tp) the set of all resulting imputations

(o, T — to) composed by (25), (26). In game models with Looking Forward Ap-
proach we propose to use the set W as a solution.

Theorem 4. With any &(xo, T — to) € W (o, T —to) it is possible to allocate joint
payoff of players (9) along the conditionally cooperative trajectory *(t) during the
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t, At At At At At At T

Fig. 4. Combination of IDPs §;(t,z}) € B;(t,x}) defined for each &;(x],t0 + jAL) €
W;(z50,t0 + jAt), j = 0,...,1 determines the random truncated distribution B(t, &%) €

B(t, 7).

game I'(xo, T —to) and for Vt € [to + jAL o+ (j + 1AL, j=0,...,1:
n t n [j-1 (k+1)At
Z/Bi(r,jz*(f))df => l l / (1 = Fi(7))hi(&* (1), 4" (7))dr| +
1=1 to =1 L k=0 EAL
| a-r <T>>m<az*<T>,a*<T>>dT] . @

to+jAt

~ Proof. To prove this theorem we start from the last random truncated subgame
I(x] o, to + 1A?), i. e. prove that for Vt € [to + (A, T

3 / Bi(r, @ (r)dr = 3 / (1= Fi(r)hi(@*(7), @ (r)dr.  (28)
=y, 1A =l

Indeed, maximum joint payoff in this game is defined by function W49 (5 +
At, x} ) (11). According to the definition of this function for V¢ € [t + [ At, T7:
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However,

WA (4 + 1At @7 o) — WA (2,37 (¢)) =

where Vt € [to + [A¢t,T]. From (29) and (30) it follows that for V¢ € [to + [A¢t, T
(28) holds. Using this result prove that it also holds for random truncated subgame
L—1(xf_4 g, to + (I = 1)At), i. e. prove that

n t
Z / T))dr =
i:1to+ —

3 / (1= Fia (i@ (r), 0 (r)dr, (31)

== A

where Vt € [to + (I — 1)At, to + L At]. Similarly as in the game I3(x} o, to + [ At) for
vVt € [to + (l — I)At, to + lAt]

Ww=1At) (to+ (1 — 1) At, 2}, ) — W((l—l)At)( i (1) =

/ (1= By (7)) ha (@ (r), @ (7)dr. (32)

to+(l 1)At

N
HM:
I

Then it follows that (31) is satisfied. We need to proceed until the first random
truncated subgame (o, to). This will enables us to combine results (28), (31) and
show that for Vt € [to, T] (27) holds. This completes the proof.

4.1. Time-consistency of the Solution Concept

It is easy to see that the resulting solution W(wo, T —to) is time-consistent, but
there is another surprising property of W (zg, T — to).

Theorem 5. The resulting solution W(:vo, T — to) is strong time-consistent in the
game I'(xo, T — to).

Proof. Suppose that in the game I'(z¢,T — to) players agreed to choose an im-
putation &(zo, T — to) € VA[_/(I(), T —tp). It means that during the game, in each ran-
dom truncated subgame I'f (7 o, to + jAt) they agreed on choosing the imputation
§i (@5 0 t0 +JAL) € C(x ¥ o, to + jAt) with corresponding IDP [3] (t,x}) € B;(t, x3),
t € [to + jAt, T]. In fact, during the game players use IDP (t,2*) = B;(t, x r}) and
allocate cooperative payoff in the following way:

T l

to+(j+1)At
/ \dr = Z / (1= F5(6)B; (¢, a5)dt

otjAt
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Suppose that in a given time instant ¢ = tp,, where tp,. € [tg + kAt, T in random
truncated subgame I (zj ,to + kAt) players decide to choose another imputa-

tion &}, (2} (tpr), tyr) from the IDP-core C (% (tor), tor). Therefore, there exists IDP
By (t,x}) € Bi(t,z}), t € [tyr, T| which corresponds to the imputation:

T

€42 (), ) = / (1= Fy(t))Bl(t, 27 dt. (33)

tor

In this case, during the game players will allocate cooperative payoff according to

& (zy,, T — to) using the following resulting IDP:

A (1 - Fp(t)Br(t,x}), t € [to + kAL, tyy),
B(t) = (1= Fe(@®))B(t, ), t € [tor,to + (k + 1) At],
(1 - Fj(t))ﬂj (tvx;)a t e [tO + ]Ata tO + (.] + 1)At]7

where j # k,j = 0,...,l. Corresponding resulting imputation will have the following
form:

l

T
€ (o, T — to) = /B’(t,:@*)dt =>
to s

to+(]+l)At
/ (1= F(0)6; (0,2t +
to+jAt

tor to+(k+1) At
/t (1 — Fi(t))Be(t, ) dt + / (- F()By(tap)dr. (34)

o+kAt tor

Since B (t,zy) € Bi(t,z}), t € [tor,T] then the resulting IDP B'(t, &%) belongs
to B(t,#*). According to the definition of W (z, T — to), all vectors &(zo, T — to)
obtained by the formula (26) using B(t,#*) from the set B(t,2*) are called the
resulting solution W (zo,T — to) of the game I'(zo, T — to). In (34) we constructed
the imputation é’(xo,T —to) with the IDP B’(t, &*) from the set B(t,i*) and we
saw that the resulting imputation é’(wtO,T — to) belongs to the initial solution
W (xo, T — to). That completes the proof.

5. Looking Forward Approach with Random Horizon in Cooperative
Extraction Game

The following example of the resource extraction game with two players was
considered by Jorgensen and Yeung (1999). The problem of time consistency in the
considered example was studied by David Yeung et. al. (2012). In the previous paper
on Looking Forward Approach (Petrosian and Barabanov, 2017) the same example
for two players was considered, but with the new forecast factor. Three competi-
tive models were implemented: with the stochastic forecast, with the deterministic
forecast, and without a forecast. In this paper we consider resource extraction game
with three players with a special form of cooperative solution described in Section
3.3 and in (Petrosian et al., 2016). An analytical form of characteristic function for
each coalition is derived according to (Chander and Tulkens, 1995) and presented
below. Furthermore, we apply the Looking Forward Approach with random hori-
zon to the example. In the final part of the example the strong time consistency
property of the constructed solution concept is demonstrated.
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In the following model we derive the analytical solution to the problem, but
general analytical solution cannot be found. In order to apply the Looking Forward
Approach to the general class of cooperative differential games we need to solve
two main problems. First problem is to solve (9) subject to (10) for each truncated
subgame. Mathematically this is a classical control problem, there are numerous
methods for solving it. Solving this problem we obtain approximate cooperative
strategies, cooperative trajectories x(t) and corresponding joint payoff (9). Second
problem is the problem of defining of how to allocate cooperative payoff between
the players. We need to calculate characteristic function (14) for each truncated
subgame along the cooperative trajectory, to do this we can use coevolutionary
algorithms (Eiben and Smith, 2003) suitable for game theoretical problems. After
calculating characteristic functions we can determine solution for each truncated
subgame (for example IDP-core), then calculate corresponding resulting solution
(26).

5.1. The Original Game

Consider an economy endowed with a single renewable resource, with n > 2
resource extractors (firms). Let u;(t) denote the quantity of the resource extracted
by firm ¢ at time ¢, for ¢ € N, where each firm controls its rate of extraction. Let
x(t) € X C R be the size of the resource stock at time ¢. The growth dynamics of
the renewable resource stock becomes

\/— b(E Zuu = X0, (35>

where a+/x(t) — bxz(t) is the natural rate of evolution of the resource and u; € [0, d],
d>0,i=1,3.

The extraction cost for firm ¢ € N depends on the quantity of the resource
extracted wu;(t), the resource stock size x(t), and parameter ¢;, i = 1,3

(r)dr, (36)

Ki(xo,to;u /\/— \/_)

where ¢; is constant and ¢; # ¢, Vi # k = 1,3. We consider set of parameters xo, T,
a, b, d, c;, © = 1,3 such that it is always non-negative in the corresponding control
problem.

5.2. Random Truncated Subgame

The original game I'(xg,T — to) is defined on the time interval [to, T]. Suppose
for any t € [to+jAt, to+ (j+1)At], j = 0,...,1 players have truncated information
about the structure of the game. It includes information about dynamical system
and payoff function on the time interval [to+j At, T j], where T is a truncated expo-
nentially distributed random variable with distribution functlon F;(t) and density
function f;(¢):

_ 1 —exp(=A(t — max(to + (j + 1)At, t;-1)))
1 —exp(—\(T — max(to + (j + 1) At, ;_1)))’

__Aexp(=A(t — max(to + (J + 1)At, t;-1)))
1 —exp(—A(T —max(to + (j + 1)At, t,-1)))
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Exponential distribution is widely used for describing the time between events in a
Poisson process. Under the events we can understand the change in game structure.
Also, let us denote A;(t):

Aj(t) = iy t € max(to + (G + D ALT). T),
' 0, t € [to + jAt, max(to + (j + 1)At,t;_1)].

_ The truncated information is formalized in the random truncated subgame
I'j(xj0,t0 + jAt). The dynamical system and the initial conditions for this sub-
game have the following form:

3
& = ar/z(t) — ba(t) — Zui, x(to + JAL) = zj0. (39)
i=1

According to (8) the payoff function of the extractor ¢ is equal to

T
K} (2j0,t0 + jAt;u) = / (1 = Fy(r)hi(2(1), u(r))dr. (40)
to+j AL

Consider the case when the resource extractors agree to act cooperatively in the
random truncated subgame I 4 (x,0,t0 + jAt). They follow the optimality principle
under which they would maximize their joint payoffs and share the excess of the
total expected cooperative payoff over the sum of individual non-cooperative payoffs
proportional to the agents non-cooperative payofts.

5.3. Cooperative Trajectory

Next, consider the random truncated subgame I'j (w0, to+5At). The maximized
joint payoff in the game f’jc(:vj,o,to + jAt) has the following form (Jorgensen and
Yeung, 1999):

WAt (4, ) = A (t)x + C7 (t), (41)

where functions A7(t), C7(t) satisfy the equations

Al(t)

[s0+3] 403 |y
i=1 Ci 2

0

A,(OC (1) = SA (1) (42)

with boundary conditions lim A7(¢t) = lim C%(t) = 0.
t—T— t—=T~
The optimal cooperative trajectory z7(t) of the random truncated subgame

I'$(zj0,t0+ jAt) can be represented explicitly (Jorgensen and Yeung, 1999) on the
full interval [to + jAt, T]. The trajectory with the initial condition = = 27, is

t

. . 1 . _ 2
oy (t) = w?(to + jAt, t){ zio+ 5@ . / w;(to + jAL, T) Lar| (43)
to+jAt
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where ¢ € (to + jAt, to + (j + 1) At],
t

3
. 1 1
= it

The initial condition are defined recursively by the optimal trajectory of the previous
game: xj g = xo and 7 g = x5_; (to + jAt) for j = 0,...,l. The conditionally coop-
erative trajectory 2*(¢) is defined in accordance with Looking Forward Approach

as

to+jAt

Ti(t) = xi(t), t € [to+ jAL to + (j + 1) At], (45)
for5=0,...,1.
5.4. Characteristic Function

In order to allocate cooperative payoff in each random truncated subgame it is
necessary to define values of characteristic function V;(S; .0, to+jAt) (V;(S; 27 (1), 1))
for each coalition S C N. According to the formula (14) maximized joint payoff
W;(to + jAt, ;) (41) corresponds to the value of characteristic function of grand
coalition V;(N;x;,0,t0 + jAt) in the random truncated subgame I’ (z;,0, to + j At):

Vi(N; a5 (1), 1) = W4 (¢, 25 (1)), (46)

where ¢ € [to+ jAt, T], j =0,...,1. Next, we need to define values of characteristic
function for the following coalitions:

{1} {2}, {3}, {1, 2},{1,3},{2,3}. (47)
According to (14), for a single player coalitions {i}, i = 1,3 we need to determine
Nash equilibrium point and as a result V;({i}; :C;f(t), t).
5.5. Single Player Coalitions

Random truncated subgame Ij(zj0,to + jAt) has a Nash equilibrium point
defined by the feedback
x

ul(t,r) = ——-—— i=13, 48
) Alei + 47 (1) /2] 1)
where functions A?(t) are defined by the equations
b 1 1

e AR R Sy ryryed Rabrsrrmyoss

G0 = 4;(0)C (1) - SA(1)

for i = 1,3, with boundary conditions lim A?(T) =0 and liI%l C(T) =0.
t—T—

t—T—
The value function of the extractor ¢ = 1,3 in the Nash equilibrium point is

equal to

VI (t,x) = Al(t)x + C(t), i =T1,3. (49)
Therefore, value of characteristic function for single coalitions S = {i}, i € N can
be calculated in the following way:

Vi({i}; 25 (t), 1) = V7 (8, 25(1)), (50)
where t € [to + jAL,T], 7=0,...,1.
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5.6. Two Player Coalitions

According to the formula (14) characteristic function V;(S; z; 0, t0+jAt) (V;(S;
z7(t),t)) for two player coalitions S = {1,2}, {1, 3}, {2, 3} is defined as total payoff
of players from coalition S in Nash equilibrium u}'* = (u P ug P9 ul 7Y in the
game with following set of players: coalition S (acting as one player) and players
from the set N\ S, i.e. in the game with [N \ S| + 1 = 2 players. It means that
players from coalition S behave as one player and other players from the set N\ S
are acting separately. Using this approach we define Nash equilibrium between two
players: combined player (coalition S), and the second player (coalition N/S).

Counsider calculations of V;(S; 0, to+j At) in case when S = {1, 2}, calculations
for other coalitions have the same algorithm. Payoff of players in this case has the

following form:

V{JLQ} (ta T) = A%g}(ﬂﬂ + Cfl,g}(t)a

Vi (t,2) = A4 (VT + C3(0),

where the functions AJ{'LQ} (), A(t), C’fu} (t), C4(t) satisty the equations

AJ{1,2} (t) = AJ{1,2} (t)

b ! .
Aﬂ”+§+§EIZ%W54_§:M%+Aj ®)/2)°

kesS {1,2}
A = a0 |40+ + Y ; ]— .
% 8(e + ALy (D/2)2] d(es + AJ(1)/2)
Ciay () = 4500, ) () = SAT, 5y (1),
C4(t) = A,()C4 () — S A1)
with initial conditions lim_ Al (1) = Jim. Al(t) =0, Jim_ Clioy () =

lim Ci(t) = 0.
t—=T—

Therefore, the value of characteristic function for coalition S = {1,2} can be
calculated in the following way:

Vi({1.25:3(0),0) = Vi oy (1,25 (1)), (51)

where t € [to + jAt,T),j=0,...,1L
5.7. IDP-core

Using the values of characteristic function V;(S;x;0,t0 + jAt), VS C N (46),

(50), (51) and formula (20) we construct set Bj;(t,x}) as a set of integrable vector



Looking Forward Approach with Random Horizon 379

functions B (t, z}) satisfying:

3

Z(l - Fj(t))ﬂzj(t’x;) = —%V({l,?,?)};x;(t),t),

i=1

(1= B ()8 (025) + B ) = — ZVi ({1, 21530, ),

(1= B ()8 (025) + B, 2)) = — ZVi ({1,330, ),

(1= B () (83(05) + B ) = — ZVi((2,3):3(0), ),

(1= B8]t 5) > — V({15 6), ),

(1= B8 5) > — Vi ({2); 5 6), ),

(1= B ()8}(0,25) = ~ 5 Vi([3h 25 (0),) (52)

Then, combining sets B;(t,z}), t € [to + jAt,to + (j + 1)At], j = 0,...,1 for all
random truncated subgames we construct set B(t, #*). Further we calculate the set
of all possible imputations £(zo, T — to) € W (zo, T — to) (26).

The step by step construction of the IDP-core for a linear quadratic game model
of pollution control is presented in the paper (Petrosian et al., 2016).

5.8. Numerical Example

Consider a numerical example, where information about the structure of the
game during the time intervals [to + jA¢t, to + (§ + 1) At] is known for next the time
interval with length T';, where T'; is a random variable distributed by (37) with
A = 0.5. The total game length T' = 4. Information about the game updates every
At = 1. Parameters of the dynamical system are following: @ = 10, b = 0.5. Assume
c1 = 0.15, ¢co = 0.65, and c3 = 0.45 in the payoff function and the initial conditions
to = 0, o = 200. During the realization of the game information horizon take the
following values:

To =2.423, F, =3.538, T, =3.871, 73=4.

Generated values of information horizon influence the distribution of the time untill
the available truncated information being correct. In Fig. 5 it is easy to see how
the information horizon Tj was generated and how the probability density function
£;(t) (38) changes between random truncated subgames.

In Fig. 6-8 we can see cooperative strategies for each player defined with Looking
Forward Approach with random horizon (non smooth solid line) and cooperative
strategies in the original game in (Jorgensen and Yeung, 1999) (smooth dotted line).

Conditionally cooperative trajectory *(t) is composed from solutions of the
random truncated subgames I'f(x%,,to + jAt) with the dynamical system (39).
In Fig. 9 the following comparison is presented: conditionally cooperative trajec-
tory 2*(t) (thick solid line) defined using Looking Forward Approach with random
horizon, conditionally cooperative trajectory z*(¢) (thin solid line) defined with clas-
sical Looking Forward Approach (Petrosian, 2016a) (where T; = 2 is a determined
value), and cooperative trajectory x*(¢) (dotted line) in the original game I'(x, T —
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Fig. 5. Probability density function f;(t), 7 = 0,1,2,3 (38) for each random truncated
subgame.

0 05 1 15 2 25 3 35
Time

Fig. 6. Cooperative strategies for player 1 defined with Looking Forward Approach
with random horizon (non-smooth), and cooperative strategies in the original game in
(Jorgensen and Yeung, 1999) (smooth)

Fig. 7. Cooperative strategies for player 2 defined with Looking Forward Approach
with random horizon (non-smooth), and cooperative strategies in the original game in
(Jorgensen and Yeung, 1999) (smooth)
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Time

Fig. 8. Cooperative strategies for player 3 defined with Looking Forward Approach
with random horizon (non-smooth), and cooperative strategies in the original game in
(Jorgensen and Yeung, 1999) (smooth)

to). Cooperative trajectory x*(t) is defined in (Jorgensen and Yeung, 1999). In the
other two figures you can see conditionally cooperative trajectory @*(¢) or Z*(¢) and
corresponding cooperative trajectories for each truncated subgame.

Fig. 9. The trajectory of the resource stock Z*(¢) (thick solid line) with Looking Forward
Approach with random horizon, trajectory Z”*(¢) (thick dotted line) defined with classical
Looking Forward Approach, and cooperative trajectory z*(¢) (thin dotted line) in the
original game I'(xo, T — to).

Next, in order to allocate cooperative payoff between players it is necessary to
define a set of IDPs (¢, «}) for each random truncated subgame I'f(z} o, to +j At),
j=0,...,1. For that using fixed parameters of the model we numerically calculate
values of characteristic function V;(S;x}(t),t), S C N for each random truncated
subgame I'f (2, to + jAL).

Using values of characteristic function V;(S;x3(t),t), S C N we construct the
set Bj(t,x%),j=0,...,1(20). By combination of sets B;(t,z}) we can construct set
of IDPs for the whole game B(t,&*). On the basis of B(t,*) we construct solution
concept W (xo, T — to) using formula, (26).

Let us demonstrate the property of strong time-consistency of solution concept
W. Suppose that at the beginning of the game I'(zg,T — to) players agreed to
use proportional solution. For each random truncated subgame fj(:c;io, to + jAL)
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Fig. 10. The trajectory of the resource stock £*(¢) (thick solid line) with Looking Forward
Approach with random horizon, and corresponding cooperative trajectories (dotted lines).

200, T T it

0 05 1 15 2 25 3 35 4
Time

Fig. 11. The trajectory of the resource stock z*(¢) (thick solid line) defined with classical
Looking Forward Approach, and corresponding cooperative trajectories (dotted line).

proportional solution for players ¢ € N is defined using the IDP in the following
way':

(1= Fy(0))BErP (t,27) = U;({i}; 27, to + jAL)

EJIV Uj({i}; 250, to + jAL)
1€

Uj(N;x} o, to + jAt), (53)

where U;(S; 2}, to + jAt), VS C N is defined in (19). According to the Looking
Forward Approach proportional solution should allocate cooperative payoff during
the whole game I'(zg, T — t9) using the following IDP:

Brrop(t, %) = (1 — F;(1)B] P (t,a7), t € [JAt, (j + 1)AY],j =0,...,1. (54)
Via integration of BpTop (t,2*) by t it is possible to define the proportional imputa-
tion Epyop(2*(t), T—t) (26). In the Fig. 13,14 it can be seen that Sp,op(t, £*) consists
in the set E(t, Z*), which means that proportional solution is strong time-consistent
with given parameters.

Suppose that at the moment of time tp,. € [tg, T'] players decide that proportional
solution is no longer fair for them and they choose another imputation from the
solution concept W(:i:* (tor), T — tp), for example solution, which is based upon the
Shapley value for each random truncated subgames. For each random truncated
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subgame Shapley Value is calculated according to the formula:

ShI(&* (ty,), tyr) =

(IN] = [SDH(IS| - 1)!
2 IN]! '

(V3(Sitor @ (tr)) = Vy(S\{i}itor & (8))). (55)
SCN
i€S

Using Shapley value it it possible to define IDP for each random truncated subgame

(17). According to the Looking Forward Approach proportional solution should

allocate cooperative payoff during the whole game using the following IDP:

BSh(taj?*) = (1 - Fj(t))ﬂfh(tax;)v te [tO +.jAt7t0 + (-] + 1)At]aj = Oa .. -717

where 87" (t,27%) is defined using the formula (18). It is worth mentioning that the

IDP for Shapley value th(t, x}) and the IDP for proportional solution B;-Dmp(t, %)
are calculated in the way to ensure the time-consistency property, i.e. using the
formula (18). The extended description of the step by step solution of IDP for a
Shapley value is presented in (Shevkoplyas, 2009).

Let us set the moment ¢, = 1.2 when players decide to reconsider the propor-
tional solution. Then, according to (25), the formula for the IDP for the whole game
has the following form:

B

(t j* _ {Bprop(t,j*), t e [t07tbr]7 (56>

BSh(taj:*)v te (tbrvT]'

In Fig. 12 IDP Bp,op(t, #*) for the proportional solution (54) (thick solid line) and
IDP B(t,z*) for the combined solution (56) (dotted line) are presented.

1 1
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Time

Fig. 12. IDP Bp,op(t, &%) for the proportional solution (53) (thick solid line), IDP (¢, &)
for the combined solution (56) (dotted line).

Via the direct integration of 3(¢, &*) (56) by ¢ it is possible to define formula (26)
for resulting allocation &(2*(¢), T — t). According to £(2*(¢t), T — t), players allocate
cooperative payoff in the game I'(z¢,T — to) in the following way:

E(@*(t), T —t) = (12.3,30.2,16.8). (57)

In Fig. 13,14 it can be seen that 3(¢,2*) (56) is within the set B(t,2*) (20), which
means that corresponding imputation &(z*(t), T—t) € W(2*(¢), T —t) with given pa-
rameters. This fact demonstrates the property of strong time-consistency of solution
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concept

W(xo, T — to). Also, in Fig. 13,14 it can be seen that the proportional solution
Bprrop(t,2*) (54) is within the set B(t, £*).

Fig. 13. Axis: 51, B2, t. B3 can be calculated using (20).

Bs

T R I

Fig. 14. Axis: 32, 83, t. f1 can be calculated using (20).

In Fig. 15 the difference between the £(i*(t),T —t) and épmp(ﬁ:* ), T —t)is
presented.

6. Conclusion

A novel approach to definition of a solution for a differential game is presented.
The game is defined on a time interval divided into subintervals. The players do
not have full information about the structure of the game on the full time interval.
Instead, they know parameters of the dynamical system and of the payoff function,
but the duration of this information is unknown in advance. A combined trajectory
is composed recursively by the local trajectories. As a solution IDP-core is used.
Solution for the whole game is described as a new solution concept. It is proved that
the new solution is not only time-consistent but also strong time-consistent which
is a rare property of cooperative differential games.

The approach is illustrated by an example of the resource extraction game.
The comparison between the original approach and the Looking Forward Approach
with random horizon is presented. Combined trajectories for both approaches are
presented. Solution concept based on the IDP-core is constructed. In the final part
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Fig. 15. Imputation Eprop(2*(t), T — t) for the proportional solution (thick solid line),
imputation £(£*(t), T — t) for the combined solution (dotted line).

of the example the strong time consistency property of the constructed solution is
demonstrated. It is supposed that players agreed on using a proportional solution
from the solution set, but at some point they decide to switch to a Shapley value.
As it turns out the resulting solution belongs to the solution set.
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