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Abstract We examine the influence of management of the opinion of a
group members, while the group of agents are considered with different com-
munication structures. We consider the optimization problem in dynamics
with feedback information structure. In the model, the communication struc-
ture plays an important role since not all agents are directly connected with
each other. The influence of the agents on each other is taken into account
in the equation of dynamics of agents’ opinions. An agent weights the other
agents’ opinions and after that forms the next step opinion. Two types of
communication structures are considered in the model. The results of nu-
merical modeling illustrate the influence of some parameters of the model
(control, influence power of agents on each other) on the optimal opinion
dynamics.
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1. Introduction

Decision making often takes place as a result of consensus reached after ne-
gotiations. De Groot model (De Groot, 1974) is a pioneer work in this area and
one of the simplest models used in modeling negotiations initiated to reach a con-
sensus. In this model, the opinion of the participants changes during the nego-
tiations, depending on their "degree of trust" to each other. And a consensus is
reached if there is a limit matrix of influence. The formation of public opinion un-
der the influence of various social factors is described in the Friedkin-Johnsen model
(Friedkin and Johnsen, 1990), which is an analogue of the De Groot model. As the
authors emphasize, this pattern establishes the pattern of interaction in large and
small-sized social communities.

In the dynamics of Hegselmann-Krause (Hegselmann and Krause, 2005), par-
ticipants exchange opinions only with those who are the part of their "circle of
communication". The size of this "circle" can be changed, so we can examine the
large groups of agents, as well as the small communities. In this case, reaching a
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consensus is directly related to the number of subgroups into which the whole group
of agents is divided, and the opinions are changed due to "averaging". Reaching a
consensus in a group with centers of influence is described in (Bauso et al., 2016;
Bure et al., 2017). We should also notice the models (Weisbuch et al., 2005; Sirbu
et al., 2016). In the mentioned papers, there is no participant who controls the opin-
ions of other agents, and all agents are symmetric. In (Mazalov and Parilina, 2020),
the problem of control of the agents’ opinions via influence on some agents of a
social network is examined. In this setting, players control the agents’ opinions.
The purpose of control is to make the average opinion of agents as closer as pos-
sible to the desired one. Modeling of the dynamic process is made for a graph
represented society. The graph communication structure influences the coopera-
tion structure as well (see Parilina and Sedakov, 2014). The models on opinion con-
trols with feedback information structure are examined in (Sedakov and Zhen, 2019;
Rogov and Sedakov, 2020; Dorofeeva, 2020).

However, in most papers the communication structure of the agents has not
taken into account. This factor is important, since the presence or absence of com-
munication between community members directly affects the process of forming
opinions in their iterations. The paper is devoted to the opinion dynamics taking
into account the structure of interactions between the agents, as well as assessing
the influence of control on the finally formed opinions.

The paper is organized as follows. Section 2 contains a general description of
the model without specifying communication structures. In Section 3 we introduce
a model with a communication structure given by a complete graph and find the
optimal control for a given problem. In Section 4 we examine the model with incom-
plete communication structure in which one link is deleted from complete structure.
Numerical simulations demonstrating the results of the previous sections are given
in Section 5. We briefly conclude in Section 6.

2. Model

We consider the opinion dynamics in the society with an infinite time horizon.
A society is represented by a pair of (N, g), where N is a finite set of society agents,
and g is a graph that reflects the communication structure of the society. Graph
g = (N, E) is defined by N, the set of vertices, and E, the set of edges. Besides the
society agents, there is an independent member of the society, called player, who
controls the opinion of the agents. As an example, we can consider the media center
as a player influencing the agents’ opinions. The dynamics of opinions in the model
is given by

zi(t) + X jes, Ti(t)
[Si| + 1

xi(t—l-l):xi(t)—i-ai ( —Ii(t)> +Ui(t), i€ N, (1)

where x;(t) € R! is an opinion of agent i at time ¢, S; = {j : (i,j) € E} is the set
of neighbors of agent i in graph g, a; € Ry is a coefficient defined for any society
agent, u; € U C [0,00) is a control of the player on agent i. A player can influence
the subset of agents. The choice of agents to be influenced is an important task
which is not examined in the paper.

The player’s goal is to maintain the opinion of society agents closer to a cer-
tain level £ minimizing their costs on control the agents’ opinion. The following
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functional represents the player’s costs:

oo n

T(u) =Y 6" [(@ilt) — &) +yui (1),

t=0 =1
where § € (0;1) is a discount factor, v > 0 is the cost per unit control.
In the next sections, we will examine the case of three agents and two types of
communication structure represented by a complete and incomplete graphs. We also
assume that the player can influence the opinion of a unique agent in the society.

3. Model with Communication Structure Given by a Complete Graph

Consider a society defined by three agents who communicate with each other
via structure represented by a graph on Fig. 1.

AN

Fig. 1. Communication structure represented by a complete graph.

The dynamics of agents’ opinion (state variable) is defined by the following
equations:

ot +1) = a1(t) + a (w

3
t t t
2ot +1) = @a(t) + as (“’1( ) ”2?5 )+ 23(t) _IQ(t)> +ult),
t t
Ig(t—F 1) :Ig(t)—l-ag (Il( ) +x2?f ) +$3( ) —Ig(t)) 7
or in vector form:
x(t+1) = Az(t) + Bu(t), (2)
where z(t) = (21(t), 22(t), 23(t))’ € R3, and
L T 0
A=| 2 1-22 2« | p=|[1
ooy 1o o

One can easily notice that matrix A is stochastic.

The initial condition for the state variable is x(0) = (29,29,23)". The player
affects the opinion of only the second agent. The player’s aim is to control the opinion
of the second agent in such a way as to influence the opinion of two other agents
through agent 2 and make their opinions closer to the given value & minimizing the
costs which implies the minimization problem:

3

J) = 3200 | S @ilt) — )2 + 1u2(e)
t=0

=1
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subject to the state dynamics (2) with initial condition z(0) = (9, 29,2%3). We
rewrite minimization problem in a vector form:

J(u) = Z 8" [2/ ()Qx(t) + qu(t) + 33% + yu(t)], (3)
=0

where @ = I3 is an identity matrix of size three and ¢ = (—2z, —2%,—2%). We
should notice that the matrix @ is symmetric and positive definite. The optimization
problem is linear-quadratic.

In dynamic games the information structure should be specified when players
design their strategies. In the following, we assume that the information structure is
feedback Bagar and Olsder, 1998, i.e. the player takes into account time and state
which can be observed. The feedback strategy of the player is ¢(t,2) = v € U.
In the following, we will write u(¢) which is the control variable given by feedback
strategy ¢ (t, z) at time ¢.

We use dynamic programming method. The Bellman equation for the minimiza-
tion problem takes the form:

3
. )2 2
Vite) = min {Z(wl(t) 2)2 +ud(t) + 0V (t+ 1, a(t + 1))} (4)

1=

where z(t 4+ 1) satisfies equation (2). We can rewrite Bellman equation (4) as

V(t,z) = ulél)iélU [x’(t)Qa:(t) + qa(t) + 32% 4+ yu(t) + 6V (t + 1, z(t + 1))} (5)

Assuming that the value function associated with the minimization problem of
(3) be defined as

3 3 3
V(ta(t) =Y kwi(t) + > Y kiymi(t)z; (1) + ko,
i=1 i=1 j=1
where k;; = kj;,i # j, and ko € R'. Using the following notations:
k11 k12 ka3
K = | ka1 kaa ka3 | , k = (K1, k2, k3),
k31 ka2 k33
we can rewrite the value function as
V(t,z(t)) = 2’ (t)Kz(t) + kx(t) + ko. (6)
We assume the player uses feedback strategies of the form
u(t, z(t)) = cx(t) + co, (7
where ¢ = (c1,ca,c3) € R3, ¢g € RL.

Substituting the expression of V(¢ + 1, z(¢t + 1)) from (6) and x(t + 1) from (2),
we obtain the dynamic programming equation given by
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V()= min [:v'(t)Qx(t) + qu(t) + 332 + yud(t)

402 (t+ D)Kot + 1) + ka(t + 1) + 5k0]
= min [w’(t)Qx(t) + qx(t) 4+ 322 + yu?(t)
u(t)eU

+ 6(Ax(t) + Bu(t)) K (Az(t) + Bu(t)) + 6k(Az(t) + Bu(t)) + 5k0]

Solving minimization problem in the right-hand side, it implies

1
u*(t) = —(y+6B'KB)™'§ 5kB+B’KA:1:(t)] . (8)
Taking into account the linear form of control variable (7), we obtain the expressions
of coefficients ¢;, : = 0,1,...,3 in the following form:
1 / -1
¢y = —50kB(y+0B'KB) ", (9)
c=—(y+dB'KB) 'SB'KA. (10)

To find vector k and matrix K we substitute expressions of u and Bellman function
into (5) and obtain the following system:

o' (O Kx(t) + kx(t) + ko = 2/ ()Qu(t) + qz(t) + 322 + y(ca(t) + co)?
+ 6 [(A + Be)x(t) + Beg)' K [(A + Be)x(t) 4+ Beo)
+ 8k [(A + Be)x(t) + Beo| + dko.

The vector k, matrix K and constant kg can be found as the solution of the following
system:

K=Q+~dc+d(A+ Be)K(A+ Be), (11)
k = q+ 2vyeco + k(A + Be) + 26coB'K (A + Be), (12)
ko = 322 + ¢ + 6cok B + 0c3(B)' K B + k. (13)

Therefore, the optimal control minimizing (3) with state dynamics (2) is defined
by (8) and solution of the system of equations (11)—(13).

4. Model with Communication Structure Given by an Incomplete
Graph

Consider a scenario where one connection between agents (between agents 1 and
3) is missing. The player controls the opinion of the second agent as in the previous
model and his task is to make the opinion of the agents closer to the target opinion
of Z. The communication graph is presented in Fig. 2.
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2
1 3
Fig. 2. Communication structure represented by an incomplete graph.

The opinion dynamics in this case is given by the system

,Tl(t'i‘ 1) = .”L'l(t) +a1 (M —1‘1(t)> s

To(t +1) = za(t) + az (wl(t) ki IQB(t) T as(t) xz(t)) + u(t),
wa(t + 1) = s(t) + as <w - :cg(t)) ,

with initial condition x(0) = (29,29, 23), or in vector form:
z(t+1) = Ajz(t) + Bu(t), (14)

where z(t) = (z1(t), z2(t), z3(t))" € R3, and

1-% % 0
A= B - 2
0 g o1-%
Making the similar calculations as in Section 3, we obtain
1
u*(t) = —(y+6B'KB)™'§ kB + B'KAx(t)| . (15)
Taking into account the linear form of control variable (7), we obtain the expressions
of coefficients ¢;, i = 0,1,...,3 in the following form:
1
co = —50kB(y+ SB'KB)™!, (16)
= —(y+6B'KB) 0B K Ay, (17)

where vector k and matrix K satisfy the following system:
Substituting the expressions of u and Bellman function V(¢,z(¢)) and obtain
the following system:

' (O Kx(t) + kx(t) + ko = 2’ (£)Qx(t) + qz(t) + 2% 4+ ~y(cx(t) + co)?
+ 6 [(Ay + Be)x(t) + Beo)' K [(Ar + Be)xz(t) + Beo)
+ 8k [(A1 + Be)z(t) + Begl + dko.

The vector k, matrix K and constant kg can be found as the solution of the following
system:

K =Q+~dc+ (A1 + Be)K(A; + Be),
k = q+ 2vyceo + 0k(A1 + Be) + 26¢oB'K (A1 + Be), (
ko = 32°% 4 ~ycg + dcokB + 6¢3(B) K B + 6k. (2

—~

= =
o O
= =
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where vector ¢ and constant cg satisfy equations (17) and (16) respectively.
Therefore, the optimal control minimizing (3) with state dynamics (14) is defined
by (15) and solution of the system of equations (18)—(20).

5. Numerical Simulation

Using Wolfram Mathematica, we obtain numerical results that allow to analyze
and evaluate the convergence of the opinions of agents, as well as the relationship of
the remaining parameters of the model with each other. We assume that the initial
data of the first and third agents are equal, as well as their coefficients a; = as.

We consider two examples, with complete communication graph and then with
incomplete graph.

For the case of complete communication graph, let the parameters of the model
be

) =23 =04, 29 =0.7, (21)
a1 = a3z =0.9, ax = 0.8,
d=0.6,y=0.1,&=1.

Solving system (2), taking into account expressions (3), (4) and (7), the values
of the opinions of all participants are obtained, and the optimal control trajectory
is determined. The results for the first 20 periods are presented in Table 1.

t=0{t=2|t =4t =6{t =8|t =10{t = 12|t = 14|t = 16|t = 18|t = 20
1(¢)]0.400(0.578|0.688]0.743|0.771| 0.786 | 0.793 | 0.797 | 0.799 | 0.800 | 0.800
2(t)|0.700{0.791]0.7960.798/0.799| 0.800 | 0.800 | 0.800 | 0.801 | 0.801 | 0.801
3(1)|0.400(0.578]0.688|0.743|0.771| 0.786 | 0.793 | 0.797 | 0.799 | 0.800 | 0.800

u(t) [0.245(0.116/0.059 0.04 |0.030{ 0.015 | 0.008 | 0.004 | 0.001 {0.0005[0.0002
Table 1. The dynamics of the optimal control and opinions with the one player and three
agents for a numerical simulations with parameters (21) and complete communication
graph.
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Fig. 3. The dynamics of opinions for three-agent model with complete communication
graph and parameters given by (21) (blue — agents 1 and 3, orange — agent 2).

Analyzing the data in Table 1, we conclude that the opinions of the agents,
starting from the moment ¢ = 13, are as close as possible to each other, despite the
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fact that the initial data are different. This fact can be explained by the fact that
the individual coefficients of agents 1 and 3 are greater than the coefficient of agent
2, and the initial opinion is larger for agent 2.

The opinions are in some sense "stabilized" over time. The player controls the
opinions of the agents. As the opinions of the agents converge, the optimal control
tends to zero, demonstrating a decreasing form of a function. Graphs of agents’
opinions are presented in Fig. 3. The optimal control trajectory is represented in
Fig. 4.

u(t)

1 C ? e o o o & P

5 10 15 20

Fig. 4. The dynamics of optimal control for three-agent model with complete communi-
cation graph and parameters given by (21).

Now we consider the second example and compare the models with complete and
incomplete communication structure. We use the following parameters for modeling:

2 =29 =04, 29 =0.5, (22)
a; = asz = 02, as = 05,
d=0.6,v=05,&=0.6.

Solving systems (2) and (14), taking into account expressions (3), (4), (7) and
(15), we obtain the solution including the agents’ opinions and optimal control
trajectory. In contrast to the previous example, the solution was analyzed for more
than fifty time periods. The results are presented in Table 2.

t=0|t=10|t=20t=30|t=40|t=50
(t)| 0.400 | 0.364 | 0.334 | 0.317 | 0.307 | 0.302
(t)| 0.500 | 0.306 | 0.301 | 0.299 | 0.297 | 0.296
x3(t)| 0.400 | 0.364 | 0.334 | 0.317 | 0.307 | 0.302
u(t) |[—0.107|—0.020|—0.011|{—0.006|—0.004|—0.002
Table 2. The dynamics of the optimal control and opinions for a numerical simulations
with parameters (22) and complete communication graph.

The numerical results of calculations of the opinions and optimal controls with
the parameters defined by (22) for the model with incomplete graph are presented
in Table 3.
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t=0|t=10{t=20|t=30|t=40| t=50
(t)| 0.400 | 0.368 | 0.345 | 0.336 | 0.332 | 0.330
x2(t)| 0.500 | 0.335 | 0.331 | 0.329 | 0.329 | 0.329
x3(t)| 0.400 | 0.368 | 0.345 | 0.336 | 0.332 | 0.330
u(t) [—0.086|—0.012(—0.005|—0.002|—0.001|—0.0003
Table 3. The dynamics of the optimal control and opinions for a numerical simulations
with parameters (22) and incomplete communication graph.

x1().%2(t). x3(t)

042
oo} °.
038}
0.36 |
0.34 -
032f

0.30

Fig.5. The dynamics of opinions for three-agent model with complete communication
graph and parameters given by (22) (blue — agents 1 and 3, orange — agent 2).

The second example is interesting as the individual coefficient as of the second
agent exceeds the coefficients of agents aq, ag by more than two times. However,
despite this fact, the opinions of all three agents have the same decreasing character
in time interval [0; 50]. Opinion dynamics for complete communication graph are
presented in Table 2 and Figure 5. The solution of the problem with incomplete
communication structure is presented in Table 3 and Figure 6. Contrary to the
first example, both models introduce slower changes, although the target opinion
Z = 0.6 is less than in the first example. The discount factor remains the same in
the second example, but the value of 7y is increased in five times, which can be one
of the reasons affecting the nature of the changes.

x1().%2(t). x3(t)

0.391
0.38
0371
0.36 -
0351
0341

0.331

Fig. 6. The dynamics of opinions for three-agent model with incomplete communication
graph and parameters given by (22) (blue — agents 1 and 3, orange — agent 2).
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For a model with incomplete communication graph, the convergence of opin-
ions is faster than for complete graph. It can be explained by the following. With
incomplete communication structure, agents 1 and 3 are isolated from direct "com-
munication" with each other, and they are influenced directly only by agent 2 whose
controlled by the player. This direct communication with the agent 2 and isolation
of agents 1 and 3 from each other causes of rapid convergence of opinions.

~001}
-0.02 -
—003f .°

-0.04 |-

Fig. 7. The dynamics of optimal control for three-agent model with complete (blue) and
incomplete (orange) communication graph and parameters given by (22).

Particular attention should be paid to the optimal control dynamics. Both con-
trol trajectories (for complete and incomplete structures) are represented in Figure
7. For a model with incomplete graph, the optimal control converges to zero faster
than in a model with complete graph. Contrary to the first example, the optimal
control for both cases is an increasing function of time. Moreover, the opinions for
the scenario with incomplete communication structure over the entire duration are
slightly larger than for the scenario with complete communication structure, i.e.,
closer to the target value.

6. Conclusion

The problem of the dynamics of agents’ opinions is considered in the paper. The
communication structure is defined in the form by a complete or incomplete graph
with three nodes representing the agents. The player controls agents’ opinions via
one agent minimizing his costs on control and the difference between the target and
agents’ opinions. The minimization problem is solved assuming feedback information
structure using dynamic programming method. The control variable influences on
the convergence of the agents’ opinions to the target one. Therefore, the given
dynamics makes the process the so-called "predictable". The numerical value of
control decreases in absolute value while the agents’ opinions become close to the
target opinion. However, the second important factor is the presence and absence of
connections between all members of the society. Despite changes in the parameters
of the model, incomplete communication structure between agents slows down the
convergence of the system.

As an illustration of the theoretical results, we consider examples with different
initial opinions of all members of the society, as well as the values of the discount
factor, different coefficients in the cost function.
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These parameters affect the rate of the system convergence. We provide the
important conclusions about convergence of the system obtained from numerical
simulations:

— The higher the price a player pays for control, the slower the process of conver-
gence.

— The process depends on the initial opinions of the agents, i.e., the smaller the
difference between them, the faster the convergence.

It is worth noting that we consider the optimization problem with one player,
so the problem is not a game. However, this study provides a broad perspective for
the further study of conflicting scenarios, in the case when there are more than one
player, and we can consider the game as competition on agents’ opinions (e.g., see
Mazalov and Parilina, 2019).
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