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tion

spa
es. We present 
onditions for the existen
e of stationary Nash equilib-
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1. Introdu
tion

In this paper we study the problem of the existen
e and determining station-

ary Nash equilibria in average sto
hasti
 games with �nite state and a
tion spa
es.

Sto
hasti
 games, named sometimes Markov games, were introdu
ed by Shapley,

1953. He 
onsidered two-person zero-sum sto
hasti
 games for whi
h he proved the

existen
e of the value and the optimal stationary strategies of the players with

respe
t to a dis
ounted payo� 
riterion. Later, this 
lass of games has been ex-

tended to general n-person sto
hasti
 games with dis
ounted and average payo�s


riteria (Gillette, 1957; Fink, 1964; Takahashi, 1964; Vrieze, 1987; Filar et al., 1991;

Neyman and Sorin, 2003). The most important results for n-person sto
hasti
 games

with dis
ounted payo�s have been obtained by Fink, 1964, Takahashi, 1964 and

Sobel, 1971 who proved the existen
e of stationary Nash equilibria in su
h games.

S
hultz, 1986, Filar et al., 1991 showed that the problem of determining stationary

Nash equilibria in a general n-person sto
hasti
 game with dis
ounted payo�s 
an

be represented as a nonlinear programming problem with linear 
onstraints and the

global minimum of the obje
tive fun
tion equal to zero. Mertens and Neyman, 1981

studied two-person zero-sum games and proved the existen
e of uniform ε-optimal

strategies for the players, i.e. they showed that for every ε > 0 ea
h of the two players
has a strategy that guarantees the dis
ounted value up to ε for every dis
ount fa
tor
su�
iently 
lose to 0. These results have been extended by Vieille, 2009 to an arbi-

trary non
ooperative sto
hasti
 game of two players and afterwards they have been

used for studying the problem of the existen
e of Nash equilibria in non-stationary

strategies for two-player average sto
hasti
 games (Vieille, 2002, 2009, Solan, 2009;

Solan and Vieille, 2010). Algorithmi
 approa
hes 
on
erned with determining the

optimal strategies of the players in some 
lasses of sto
hasti
 games 
an be found

in (S
hultz, 1986; Filar et al., 1991; Neyman and Sorin, 2003; Solan, 2009).
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The n-person sto
hasti
 games with limiting average payo�s have been studied

by many authors (Neyman and Sorin, 2003; Rogers, 1969; Sobel, 1971; Solan, 2009;

Solan and Vieille, 2010; Vieille, 2002; Vieille, 2009; Vrieze, 1987) however the exis-

ten
e of stationary Nash equilibria has been proved only for some 
lasses of su
h

games. Rogers, 1969 and Sobel, 1971 showed that stationary Nash equilibria exist

for nonzero-sum sto
hasti
 games with average payo�s when the transition prob-

ability matri
es indu
ed by any stationary strategies of the players are uni
hain.

An important 
lass of average sto
hasti
 games for whi
h stationary Nash equi-

libria exist represents sto
hasti
 positional games (Lozovanu, 2018, 2019). Further-

more Lozovanu, 2018, 2019 shown that for average sto
hasti
 positional games with

uni
hain property and for two-player zero-sum sto
hasti
 positional games there

exist stationary Nash equilibria in pure strategy. The main results 
on
erned with

the existen
e and determining Nash equilibria in two-player average sto
has-

ti
 games 
an be found in (Mertens and Neyman, 1981; Neyman and Sorin, 2003;

Vieille, 2002, 2009, Vieille, 2009; Solan, 2009; Solan and Vieille, 2010). In the gen-

eral 
ase for an average sto
hasti
 game with given starting state a stationary Nash

equilibrium may not exist. This fa
t has been shown by Fles
h et al., 1997 that


onstru
ted an example of a 3-player average sto
hasti
 game with �xed starting

state for whi
h a stationary Nash equilibrium does not exist. Moreover, they shown

that for an m-player (m ≥ 3) average sto
hasti
 game may not exist also stationary

ε-equilibrium (ε > 0). In general, for an average sto
hasti
 game there may exist

a nonempty subset of states su
h that if the game starts in one of them then a

stationary Nash equilibrium exists (Tijs and Vrieze, 1986). However, the problem

of determining the initial states in an average sto
hasti
 game for whi
h stationary

equilibria exist is an open problem.

In this 
ontribution we 
onsider average sto
hasti
 games with �nite state and

a
tion spa
es. We show that an arbitrary average sto
hasti
 game in stationary

strategies 
an be represented as a game in normal form where ea
h payo� is quasi-

monotoni
 (quasi-
on
ave and quasi-
onvex) with respe
t to the strategy of the


orresponding player. Furthermore we show that if the game in normal form has a

pure Nash equilibrium then su
h an equilibrium 
orresponds to a stationary Nash

equilibrium of the average sto
hasti
 game and vi
e versa. Based on this result and

results of Debreu, 1952, Gli
ksberg, 1952, Dasgupta and Maskin, 1986, Reny, 1999

related to existen
e of Nah equilibria in the games with quasi-
on
ave (quasi-
onvex)

payo�s we formulate 
onditions for the existen
e and determining stationary Nash

equilibria in average sto
hasti
 games.

2. Average Sto
hasti
 Games in Pure and Mixed Stationary Strategies

We �rst present the framework of a n-person sto
hasti
 game and then spe
ify

the formulation of sto
hasti
 games with average payo�s when the players use pure

and mixed stationary strategies.

2.1. The Framework of a n-person Average Sto
hasti
 Game

A sto
hasti
 game with n players 
onsists of the following elements:

- a state spa
e X (whi
h we assume to be �nite);

- a �nite set Ai(x) of a
tions with respe
t to ea
h player i ∈ {1, 2, . . . , n}
for an arbitrary state x ∈ X ;
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- a payo� f i(x, a) with respe
t to ea
h player i ∈{1, 2, . . . , n} for ea
h

state x ∈ X and for an arbitrary a
tion ve
tor a ∈∏
i

Ai(x);

- a transition probability fun
tion p : X × ∏
x∈X

n∏
i=1

Ai(x)×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a �xed a
tion ve
tor a ∈∏
i

Ai(x), where
∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈∏
i

Ai(x);

- a starting state x0 ∈ X .

The game starts in the state x0 and the play pro
eeds in a sequen
e of stages.

At stage t the players observe state xt and simultaneously and indepen-

dently 
hoose a
tions ait ∈ Ai(xt), i = 1, 2, . . . , n. Then nature sele
ts a state

y = xt+1 a

ording to probability transitions pat
xt,y for the given a
tion ve
tor

at = (a1t , a
2
t , . . . , a

n
t ). Su
h a play of the game produ
es a sequen
e of states and

a
tions x0, a0, x1, a1, . . . , xt, at, . . . that de�nes a stream of stage payo�s f1
t =

f1(xt, at), f
2
t = f2(xt, at), . . . , f

n
t = fn(xt, at), t = 0, 1, 2, . . . . The in�nite

average sto
hasti
 game is the game with payo�s of the players

ωi
x0

= lim
t→∞

inf E

(
1

t

t−1∑

τ=0

f i
τ

)
, i = 1, 2, . . . , n,

where E is the expe
tation operator with respe
t to the probability measure in a

Markov pro
ess with rewards indu
ed by the initial state x0 and the 
orresponding

ve
tor a
tions at in the states xt ∈ X (see Kallenberg, 2016; Puterman, 2005). Here

ωi
xo

expresses the average payo� per transition of player i in the in�nite game. Ea
h

player in this game has the aim to maximize his average payo� per transitions. In

the 
ase n = 1 this game be
omes the average Markov de
ision problem with a

probability transition fun
tion p : X × ∏
x∈X

A(x) × X → [0, 1] and step rewards

f(x, a) = f1(x, a) in the states x ∈ X for given a
tions a ∈ A(x) = A1(x).
In the paper we will study the sto
hasti
 games when players use pure and mixed

stationary strategies of sele
tion the a
tions in the states.

2.2. Pure and Mixed Stationary Strategies of the Players

A strategy (poli
y) of player i ∈ {1, 2, . . . , n} in a sto
hasti
 game is a mapping

si that provides for every state xt ∈ X a probability distribution over the set of

a
tions Ai(xt). If these probabilities take only values 0 and 1, then s
i
is 
alled a pure

strategy, otherwise si is 
alled a mixed strategy. If these probabilities depend only

on the state xt = x ∈ X (i. e. si do not depend on t), then si is 
alled a stationary

strategy, otherwise si is 
alled a non-stationary strategy .

Thus, a pure stationary strategy of player i ∈ {1, 2, . . . , n} 
an be regarded as a

map si : x → ai ∈ Ai(x) for x ∈ X that determines for ea
h state x an a
tion

ai ∈ Ai(x), i.e. si(x) = ai. Obviously, the 
orresponding sets of pure stationary

strategies S1, S2, . . . , Sn
of the players in the game with �nite state and a
tion

spa
es are �nite sets.

In the following we will identify a pure stationary strategy si(x) of player i with
the set of boolean variables six,ai ∈ {0, 1}, where for a given x ∈ X six,ai = 1 if
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and only if player i �xes the a
tion ai ∈ Ai(x). So, we 
an represent the set of pure

stationary strategies Si
of player i as the set of solutions of the following system:





∑
ai∈Ai(x)

six,ai = 1, ∀x ∈ X ;

six,ai ∈ {0, 1}, ∀x ∈ X, ∀ai ∈ Ai(x).

If in this system we 
hange the restri
tion six,ai ∈ {0, 1} for x ∈ X, ai ∈ Ai(x) by

the 
ondition 0 ≤ six,ai ≤ 1 then we obtain the set of stationary strategies in the

sense of Shapley, 1953, where six,ai is treated as the probability of the 
hoi
es of

the a
tion ai by player i every time when the state x is rea
hed by any route

in the dynami
 sto
hasti
 game. Thus, we 
an identify the set of mixed stationary

strategies of the players with the set of solutions of the system





∑
ai∈Ai(x)

six,ai = 1, ∀x ∈ X ;

six,ai ≥ 0, ∀x ∈ X, ∀ai ∈ Ai(x)
(1)

and for a given pro�le s = (s1, s2, . . . , sn) of mixed strategies s1, s2, . . . , sn of the

players the probability transition psx,y from a state x to a state y 
an be 
al
ulated

as follows

psx,y =
∑

(a1,a2,...,an)∈A(x)

n∏

k=1

skx,akp
(a1,a2,...,an)
x,y . (2)

In the sequel we will distinguish sto
hasti
 games in pure and mixed stationary

strategies.

2.3. Average Sto
hasti
 Games in Pure Stationary Strategies

Let s = (s1, s2, . . . , sn) be a pro�le of pure stationary strategies of the players

and denote by a(s) = (a1(s), a2(s), . . . , an(s)) ∈ ∏
x∈X

n∏
i=1

Ai(x) the a
tion ve
tor

that 
orresponds to s and determines the probability distributions psx,y = p
a(s)
x,y in

the states x ∈ X . Then the average payo�s per transition ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s)

for the players are determined as follows

ωi
x0
(s) =

∑

y∈X

qsx0,yf
i(y, a(s)), i = 1, 2, . . . , n,

where qsxo,y represent the limiting probabilities in the states y ∈ X for the Markov

pro
ess with a probability transition matrix P s = (psx,y) when the transitions start

in x0. So, if for the Markov pro
ess with probability matrix P s
the 
orresponding

limiting probability matrix Qs = (qsx,y) is known then ω1
x, ω

2
x, . . . , ω

n
x 
an be

determined for an arbitrary starting state x ∈ X of the game. The fun
tions

ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S = S1 × S2 × · · · × Sn

de�ne a game in normal

form that we denote by 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉. This game 
orresponds to

an average sto
hasti
 game in pure stationary strategies that in extended form is

determined by the tuple (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, x0).

If an arbitrary pro�le s = (s1, s2, . . . , sn) of pure stationary strategies in a

sto
hasti
 game indu
es a probability matrix P s
that 
orresponds to a Markov

uni
hain then we say that the game possesses the uni
hain property and shortly we


all it uni
hain sto
hasti
 game; otherwise we 
all it multi
hain sto
hasti
 game.



308 Dmitrii Lozovanu, Stefan Pi
kl

2.4. Average Sto
hasti
 Games in Mixed Stationary Strategies

Let s = (s1, s2, . . . , sn) be a pro�le of mixed stationary strategies of the players.

Then elements of the probability transition matrix P s = (psx,y) in the Markov

pro
ess indu
ed by s 
an be 
al
ulated a

ording to (2). Therefore if Qs = (qsx,y)
is the limiting probability matrix of P s

then the average payo�s per transition

ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) for the players are determined as follows

ωi
x0
(s) =

∑

y∈X

qsx0,yf
i(y, s), i = 1, 2, . . . , n, (3)

where

f i(y, s) =
∑

(a1,a2,...,an)∈A(y)

n∏

k=1

sky,akf
i(y, a1, a2, . . . , an) (4)

expresses the average payo� (immediate reward) in the state y ∈ X of player

i when the 
orresponding stationary strategies s1, s2, . . . , sn have been applied by

players 1, 2, . . . , n in y.

Let S
1
, S

2
, . . . , S

n
be the 
orresponding sets of mixed stationary strategies for

the players 1, 2, . . . , n, i.e. ea
h S
i
for i ∈ {1, 2, . . . , n} represents the set of so-

lutions of system (2). The fun
tions ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S = S

1 × S
2 ×

· · · × S
n
, de�ned a

ording to (3),(4), determine a game in normal form that we

denote by 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉. This game 
orresponds to an average sto
has-

ti
 game in mixed stationary strategies that in extended form is determined by the

tuple (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, x0).

2.5. Average Sto
hasti
 Games with Random Starting State

In the paper we will 
onsider also average sto
hasti
 games in whi
h the starting

state is 
hosen randomly a

ording to a given distribution {θx} on X . So, for

a given sto
hasti
 game we will assume that the play starts in the states x ∈ X
with probabilities θx > 0 where

∑
x∈X

θx = 1. If the players use mixed stationary

strategies of sele
tion the a
tions in the states then the payo� fun
tions

ψi
θ(s

1, s2, . . . , sn) =
∑

x∈X

θxω
i
x(s

1, s2, . . . , sn), i = 1, 2, . . . , n

on S = S
1 × S

2 × · · · × S
n
de�ne a game in normal form 〈{Si}i=1,n, {ψi

θ(s)}i=1,n〉
that in extended form is determined by the following tuple (X, {Ai(x)}i=1,n,

{f i(x, a}i=1,n, p, {θx}). In the 
ase θx = 0, ∀x ∈ X \ {x0}, θxo
= 1 the 
onsidered

game be
omes a sto
hasti
 game with �xed starting state x0. In analogues way

we 
an spe
ify the game in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n〉 for the average

sto
hasti
 game with random starting state x0 when players use pure stationary

strategies of sele
tion the a
tions in the states.

2.6. De�nition of Stationary Nash Equilibria

Let s = (s1, s2, . . . , sn) ∈ S
∗
. De�ne s−i = (s1, s2, . . . , si−1, si+1, . . . , sn)

as the ve
tor of stationary strategies of all players other than i and denote

s=(si, s−i), i = 1, 2, . . . , n. The pro�le s∗ =(s1
∗
, s2

∗
, . . . , sn∗) is 
alled stationary



On the Existen
e of Stationary Nash Equilibria in Average Sto
hasti
 Games 309

Nash equilibrium for an average sto
hasti
 game 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉 with

given starting state x0 if

ωi
x0
(si

∗
, s−i∗) ≥ ωi

x0
(si, s−i∗), ∀si ∈ S

i
, i = 1, 2, . . . , n. (5)

The pro�le s∗ = (s1
∗
, s2

∗
, . . . , sn∗) is 
alled stationary Nash equilibrium for an

average sto
hasti
 game 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 when the starting state is 
hosen

randomly a

ording to a given distribution {θx} on X if

ψi
θ(s

i∗, s−i∗) ≥ ψi
θ(s

i, s−i∗), ∀si ∈ S
i
, i = 1, 2, . . . , n. (6)

3. An Approa
h for Determining Stationary Nash Equilibria in

Average Sto
hasti
 Games with Uni
hain Property

In this se
tion we show that an uni
hain average sto
hasti
 game in stationary

strategies 
an be represented as a 
ontinuous game in normal form where the payo�s

are quasi-monotoni
 with respe
t to the 
orresponding strategies of the players. Us-

ing su
h a model we propose an approa
h for determining stationary Nash equilibria

for uni
hain average sto
hasti
 games.

3.1. A Continuous Model for the Average Markov De
ision Problem

with Uni
hain Property

In (Lozovanu, 2011) has been shown that an average Markov de
ision problem

with uni
hain property 
an be formulated as the following optimization problem:

Maximize

ψ(s, q) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx, (7)

subje
t to 



qy −
∑
x∈X

∑
a∈A(x)

pax,ysx,aqx = 0, ∀y ∈ X ;

∑
x∈X

qx = 1;

∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(8)

Here f(x, a) represents the step reward in the state x ∈ X for a given a
tion

a ∈ A(x) in the uni
hain problem and pax,y expresses the probability transition from
x ∈ X to y ∈ X for a ∈ A(x). The variables sx,a 
orrespond to strategies of

sele
tion of the a
tions a ∈ A(x) in the states x ∈ X and qx for x ∈ X represent

the 
orresponding limiting probabilities in the states x ∈ X for the probability

transition matrix P s = (psx,y) indu
ed by the stationary strategy s.
In this problem the average reward ψ(s, q) is maximized under the 
onditions

(8) that determines the set of feasible stationary strategies in the uni
hain problem.

An optimal solution (s∗, q∗) of problem (7), (8) with s∗x,a ∈ {0, 1} 
orresponds to an
optimal stationary strategy s∗ : X → A where a∗ = s∗(x) for x ∈ X if s∗x,a = 1.
Using the notations αx,a = sx,aqx, for x ∈ X, a ∈ A(x), problem (7), (8) 
an be
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easily transformed into the following linear programming problem:

Maximize

ψ(α) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (9)

subje
t to 



qy −
∑
x∈X

∑
a∈A(x)

pax,yαx,a = 0, ∀y ∈ X ;

∑
x∈X

qx = 1;

∑
a∈A(x)

αx,a − qx = 0, ∀x ∈ X ;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(10)

This problem 
an be simpli�ed by eliminating qx from (10) and �nally we obtain

the problem in whi
h it is ne
essary to maximize the obje
tive fun
tion (9) on the

set of solutions of the following system:





∑
a∈A(y)

αy,a −
∑
x∈X

∑
a∈A(x)

pax,y αx,a = 0, ∀y ∈ X ;

∑
x∈X

∑
a∈A(x)

αx,a = 1;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(11)

Based on the relationship mentioned above between problem (7), (8) and problem

(9), (11) in (Lozovanu, 2011) the following result has been announ
ed.

Lemma 1. Let an average Markov de
ision problem be given, where an arbitrary

stationary strategy s generates a Markov uni
hain, and 
onsider the fun
tion

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx

where qx for x ∈ X satisfy the 
ondition





qy −
∑
x∈X

∑
a∈A(x)

pax,ysx,aqx = 0, ∀y ∈ X ;

∑
x∈X

qx = 1.

Then the fun
tion ψ(s) on the set S of solutions of the system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

depends only on sx,a for x ∈ X, a ∈ A(x), and ψ(s) is quasi-monotoni
 on S
(i.e. ψ(s) is quasi-
on
ave and quasi-
onvex on S Boyd and Vandenberghe, 2004).

Moreover, ψ(s) = ωx(s), ∀x ∈ X.

The full proof of this lemma in a more general form is presented in (Lozovanu, 2018).
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3.2. Stationary Equilibria for Average Sto
hasti
 Games with Uni
hain

Property

An average sto
hasti
 game with uni
hain property 
an be formulated in terms

of stationary strategies as follows.

Let S = S
1×S2×· · ·×Sn

, where ea
h S
i
for i ∈ {1, 2, . . . , n} represents the set

of solutions of system (2), i.e. S
i
represents the set of mixed stationary strategies

for player i. On S we de�ne the average payo�s for the players as follows:

ψi(s1, s2, . . . , sn) =
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akf
i(x, a1, a2, . . . , an)qx,

i = 1, 2, . . . , n,

where qx for x ∈ X are determined uniquely from the following system of linear

equations





∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akp
(a1,a2,...,an)
x,y qx = qy, ∀y ∈ X ;

∑
x∈X

qx = 1,

where si ∈ S
i
, i = 1, 2, . . . , n. The fun
tions ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n

on S de�ne a game in normal form 〈{Si}i=1,n, {ψi(s)}i=1,n〉 that


orresponds to a stationary average sto
hasti
 game with uni
hain property,

where ψi(s1, s2, . . . , sn) = ωi
x(s

1, s2, . . . , sn), ∀x ∈ X, i = 1, 2, . . . , n.
From Lemma 1 we obtain the following result.

Lemma 2. For an arbitrary uni
hain sto
hasti
 game 〈{Si}i=1,n, {ψi(s)}i=1,n〉 ea
h
payo� fun
tion ψi(si, ŝ−i), i ∈ {1, 2, . . . , n} is quasi-monotoni
 with respe
t to

si ∈ S
i
for arbitrary �xed ŝ−i ∈ S

−i
.

Based on Lemma 2 and results from (Debreu, 1952; Gli
ksberg, 1952) we obtain

the following theorem.

Theorem 1. Let 〈{Si}i=1,n, {ψi(s)}i=1,n〉 be an average sto
hasti
 game de-

termined by (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x). If for an arbitrary

s = (s1, s2, . . . , sn) ∈S of the game the transition probability matrix P s = (psx,y)


orresponds to a Markov uni
hain then for the game 〈{Si}i=1,n, {ψi(s)}i=1,n〉 there
exists a Nash equilibrium s∗ = (s1

∗
, s2

∗
, . . . , sn∗) whi
h is a Nash equilibrium for

an arbitrary starting state x ∈ X of the game.

Proof. A

ording to Lemma 2 ea
h payo� ψi(si, ŝ−i), i ∈ {1, 2, . . . , n}) is quasi-
monotoni
 with respe
t to si ∈ S

i
for �xed ŝ−i ∈ S

−i
. Additionally, ea
h payo�

ψi(s), i ∈ {1, 2, . . . , n} is 
ontinuous on S be
ause the sto
hasti
 game is uni
hain.

Then a

ording to (Debreu, 1952; Gli
ksberg, 1952) the game 〈{Si}i=1,n, {ψi(s)}i=1,n〉
possesses a pure Nash equilibrium s∗ ∈ S whi
h is a stationary Nash equilibrium for

the uni
hain average sto
hasti
 game with an arbitrary starting state x ∈ X . ⊓⊔
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Thus, if we �nd a pure Nash equilibrium s∗ for the game in normal form

〈{Si}i=1,n, {ψi(s)}i=1,n〉 then s∗ is a stationary Nash equilibrium for the average

sto
hasti
 game with uni
hain property.

4. Some Results for a Multi
hain Average Markov De
ision Problem

In this se
tion we extend the results from Se
tion 3.1. for the multi
hain average

Markov de
ision problem, i.e. we show how this de
ision problem 
an be formulated

in terms of stationary strategies. These results we shall use in the next se
tion for

the average sto
hasti
 games in general 
ase.

4.1. A Linear Programming Approa
h for a Multi
hain De
ision

Problem

The basi
 model that we shall use in the sequel for formulation and study-

ing a Markov de
ision problem in terms of stationary strategies represents the fol-

lowing linear programming problem (Kallenberg, 2016; Lozovanu and Pi
kl, 2015;

Puterman, 2005):

Maximize

ψ(α, β) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (12)

subje
t to





∑
a∈A(y)

αy,a −
∑
x∈X

∑
a∈A(x)

pax,y αx,a = 0, ∀y ∈ X ;

∑
a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑
x∈X

∑
a∈A(x)

pax,yβx,a = θy, ∀y ∈ X ;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(13)

where θy for y ∈ X represent arbitrary positive values that satisfy the 
ondition∑
y∈X

θy = 1. Re
all that f(x, a) denotes the step reward in a state x ∈ X for a given

a
tion a ∈ A(x) in the de
ision problem and pax,y represent the 
orresponding

probability transitions from a state x ∈ X to the states y ∈ X for a ∈ A(x), where∑
y∈X

pax,y = 1.

This problem generalizes the uni
hain linear programming model (9), (11) from

Se
tion 3.1.. In (13) the restri
tions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pax,yβx,a = θy, ∀y ∈ X (14)

with the 
ondition

∑
y∈X

θy = 1 generalize the 
onstraint

∑
x∈X

∑
a∈A(y)

αy,a = 1 in the

uni
hain model. This 
onstraint is obtained if we sum (14) over y. The relationship
between feasible solutions of problem (12), (13) and stationary strategies in the

average Markov de
ision problem is the following(see Puterman, 2005):

Let (α, β) be a feasible solution of the linear programming problem (12), (13)

and denote Xα = {x ∈ X | ∑
a∈X

αx,a > 0}. Then (α, β) possesses the properties that
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∑
a∈A(x)

βx,a > 0 for x ∈ X \Xα and a stationary strategy that 
orresponds to (α, β)

is determined as follows

sx,a =





αx,a∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(15)

where sx,a expresses the probability of 
hoosing the a
tions a ∈ A(x) in the

states x ∈ X . It is easy to see that the set of feasible solutions of problem (12),(13)

generate through (15) the set of stationary strategies S that 
orresponds to the set

of solution of the following system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x)

In (Kallenberg, 2016; Lozovanu and Pi
kl, 2015; Puterman, 2005) the problem

(12), (13) is regarded as the dual model of the following linear programming prob-

lem:

Minimize

φ(ε, ω) =
∑

x∈X

θxωx (16)

subje
t to





εx + ωx ≥ f(x, a) +
∑
y∈X

pax,yεy, ∀x ∈ X, ∀a ∈ A(x);

ωx ≥ ∑
y∈X

pax,yωy, ∀x ∈ X, ∀a ∈ A(x).
(17)

The optimal value of the obje
tive fun
tion in this problem as well as the optimal

values of the obje
tive fun
tions in problems (12), (13) and (16), (17) express the

optimal average reward when the initial state is 
hosen a

ording to distribution

{θx}. Solving problem (16), (17) we obtain the value ω∗
x for ea
h x ∈ X that

represents the optimal average reward when a transition starts in x with probability
equal to 1. This means that if (α∗, β∗) is an optimal solution of problem (12), (13)

then we 
an determine the optimal strategy s∗ and the optimal values of obje
t

fun
tions of problems (16), (17) and (12), (13), where φ(ε∗, ω∗) = ψ(α∗, β∗). An
arbitrary optimal solution of problem (12), (13) or of problem (16), (17) determine

an optimal strategy s∗ that is an optimal stationary strategy for the multi
hain

de
ision problem with an arbitrary starting state x ∈ X .

Remark 1. Problems (12),(13) and (16),(17) 
an be 
onsidered also for the 
ase

when θx = 0 for some x ∈ X. In parti
ular, if θx = 0, ∀x ∈ X \{x0} and θx0 = 1
then these problems are transformed into the models with �xed starting state x0.
In this 
ase for a feasible solution (α, β) the subset X \Xα may 
ontain states for

whi
h

∑
a∈A(x) βx,a = 0. In su
h states it 
ouldn't be used (15) for determining sx,a.

Formula (15) 
an be used for determining the strategies sx,a in the states x ∈ X
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for whi
h either

∑
a∈A(x) αx,a > 0 or

∑
a∈A(x) βx,a > 0 and these strategies

determine the value of the obje
tive fun
tion in the de
ision problem. In the states

x ∈ X0, where

X0 = {x ∈ X |
∑

a∈A(x)

αx,a = 0,
∑

a∈A(x)

βx,a = 0},

the strategies of the sele
tion of the a
tions may be arbitrary be
ause they do not

a�e
t the value of the obje
tive fun
tion.

4.2. A Multi
hain Markov De
ision Model in Terms of Stationary

Strategies

The multi
hain average Markov de
ision model in terms of stationary strategies

that generalizes the uni
hain model (7), (8) from Se
tion 3.1. is the following:

Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (18)

subje
t to 



qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X ;

∑
a∈A(y)

sy,a = 1, ∀y ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(19)

where θy are the same values as in problem (12), (13) and sx,a, qx, wx for x ∈ X ,

a ∈ A(x) represent the variables that must be found.

Theorem 2. Optimization problem (18), (19) determines the optimal stationary

strategies of the multi
hain average Markov de
ision problem.

Proof. Indeed, if we assume that ea
h a
tion set A(x), x ∈ X 
ontains a single

a
tion a′ then system (13) is transformed into the following system of equations





qy −
∑
x∈X

px,yqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

px,ywx = θy, ∀y ∈ X

with 
onditions qy, wy ≥ 0 for y ∈ X , where qy = αy,a′ , wy = βy,a′ , ∀y ∈ X

and px,y = pa
′

x,y, ∀x, y ∈ X . This system uniquely determines qx for x ∈ X and

determines wx for x ∈ X up to an additive 
onstant in ea
h re
urrent 
lass of

P = (px,y) (see Puterman, 2005). Here qx represents the limiting probability in

the state x when transitions start in the states y ∈ X with probabilities θy and

therefore the 
ondition qx ≥ 0 for x ∈ X 
an be released. Note that wx for some

states may be negative, however always the additive 
onstants in the 
orresponding

re
urrent 
lasses 
an be 
hosen so that wx be
ame nonnegative. In general, we


an observe that in (19) the 
ondition wx ≥ 0 for x ∈ X 
an be released and
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this does not a�e
t the value of the obje
tive fun
tion of the problem. In the 
ase

|A(x)| = 1, ∀x ∈ X the average 
ost is determined as ψ =
∑
x∈X

f(x)qx, where

f(x) = f(x, a), ∀x ∈ X .

If the a
tion sets A(x), x ∈ X may 
ontain more than one a
tion then for a

given stationary strategy s ∈ S of a sele
tion of the a
tions in the states we 
an

�nd the average 
ost ψ(s) in a similar way as above by 
onsidering the probability

matrix P s = (psx,y), where

psx,y =
∑

a∈A(x)

pax,ysx,a (20)

expresses the probability transition from a state x ∈ X to a state y ∈ X when the

strategy s of sele
tions of the a
tions in the states is applied. This means that we

have to solve the following system of equations





qy −
∑
x∈X

psx,yqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

psx,ywx = θy, ∀y ∈ X.

If in this system we take into a

ount (20) then this system 
an be written as follows





qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X.
(21)

An arbitrary solution (q, w) of the system of equations (21) uniquely determines qy
for y ∈ X that allows us to determine the average 
ost per transition

ψ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx (22)

when the stationary strategy s is applied. If we are seeking for an optimal stationary

strategy then we should add to (21) the 
onditions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X ; sx,a ≥ 0, ∀x ∈ X, a ∈ A(x) (23)

and to maximize (22) under the 
onstraints (21), (23). In su
h a way we obtain

problem (18), (19) without 
onditions wx ≥ 0 for x ∈ X . As we have noted the


onditions wx ≥ 0 for x ∈ X do not a�e
t the values of the obje
tive fun
tion (18)

and therefore we 
an preserve su
h 
onditions that show the relationship of the

problem (18), (19) with problem (12), (13). ⊓⊔
Corollary 1. If θx > 0, ∀x ∈ X then an arbitrary optimal strategy s∗ of problem

(18),(19) is an optimal stationary strategy for the multi
hain average de
ision prob-

lem with an arbitrary starting state x ∈ X. If θx = 0, ∀x ∈ X \ {x0} and θx0 = 1
then an optimal strategy s∗ of problem (18), (19) is an optimal stationary strategy

for the multi
hain de
ision problem with starting state x0.

The relationship between feasible solutions of problem (12), (13) and feasible

solutions of problem (18), (19) 
an be established on the basis of the following

lemma.
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Lemma 3. Let (s, q, w) be a feasible solution of problem (18), (19). Then

αx,a = sx,aqx, βx,a = sx,awx, ∀x ∈ X, a ∈ A(x) (24)

represent a feasible solution (α, β) of problem (12), (13) and ψ(s, q, w) = ψ(α, β).
If (α, β) is a feasible solution of problem (12),(13) with θx > 0, ∀x ∈ X then a

feasible solution (s, q, w) of problem (18), (19) 
an be determined as follows:

sx,a =





αx,a∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a∑

a∈A(x)

βx,a

for x ∈ X \Xα, a ∈ A(x);
(25)

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X.

If (α, β) is a feasible solution of problem (12),(13) for whi
h θx = 0, ∀x ∈ X \ {x0}
then a feasible solution (s, q, w) of problem (18), (19) 
an be determined as follows:

sx,a =





αx,a∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a∑

a∈A(x)

βx,a

for x ∈ X \ (Xα ∪X0), a ∈ A(x);

arbitrary for x ∈ X0, a ∈ A(x),

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X,

where X0 = {x ∈ X | ∑a∈A(x) αx,a = 0,
∑

a∈A(x) βx,a = 0}.

Proof. If (s, q, w) is a feasible solution of problem (18), (19) and (α, β) is deter-

mined a

ording to (24) then by introdu
ing (24) in (12),(13) we obtain that (13)

is transformed in (19) and ψ(s, q, w) = ψ(α, β), i.e. (α, β) is a feasible solution of

problem (12), (13). The se
ond part of lemma follows dire
tly from the properties

of a feasible solutions of problems (12),(13) and (18),(19). ⊓⊔

4.3. The Main Properties of the Problem in Stationary Strategies

Using problem (18), (19) we 
an now extend the results from Se
tion 3.1. for

the general 
ase of an average Markov de
ision problem.

Theorem 3. Let an average Markov de
ision problem be given and 
onsider the

fun
tion

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (26)
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where qx for x ∈ X satis�es the 
ondition





qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X.
(27)

Then on the set S of solutions of the system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)
(28)

the fun
tion ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and ψ(s) is quasi-

monotoni
 on S (i.e. ψ(s) is quasi-
onvex and quasi-
on
ave on S ).

The proof of this theorem 
an be found in (Lozovanu, 2018).

5. The Main Results for Average Sto
hasti
 Games

In this se
tion we extend the results from Se
tion 3.2. for the 
ase of multi
hain

average sto
hasti
 game in stationary strategies. We show that a multi
hain average

sto
hasti
 game in normal form 
an be formulated as the game in whi
h the payo�s

possess of quasi-monotoni
 property with respe
t to the 
orresponding strategies of

the players. Based on this property we present some 
onditions for the existen
e of

stationary Nash equilibria in the multi
hain average sto
hasti
 game.

5.1. A Normal Form of Average Sto
hasti
 Game in Stationary

Strategies

The multi
hain average sto
hasti
 game in stationary strategies that generalizes

the uni
hain game model from Se
tion 3.2. is the following:

Let S
i
, i ∈ {1, 2, . . . n} be the set of solutions of the system





∑
ai∈Ai(x)

six,ai = 1, ∀x ∈ X ;

six,ai ≥ 0, ∀x ∈ X, ai ∈ Ai(x).
(29)

that determines the set of stationary strategies of player i. Ea
h S
i
is a 
onvex


ompa
t set and an arbitrary extreme point 
orresponds to a basi
 solution si of

system (29), where six,ai ∈ {0, 1}, ∀x ∈ X, ai ∈ A(x), i.e ea
h basi
 solution

of this system 
orresponds to a pure stationary strategy of player i. On the set

S = S
1 × S

2 × · · · × S
n

we de�ne n payo� fun
tions




ψi
θ(s

1, s2, . . . , sn) =
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akf
i(x, a1, a2 . . . an)qx,

i = 1, 2, . . . , n,

(30)
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where qx for x ∈ X are determined uniquely from the following system of linear

equations





qy −
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akp
(a1,a2,...,an)
x,y qx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akp
(a1,a2,...,an)
x,y wx = θy, ∀y ∈ X,

(31)

for an arbitrary �xed s = (s1, s2, . . . , sm) ∈ S. The fun
tions ψi
θ(s

1, s2, . . . , sn),
i = 1, 2, . . . , n, represent the payo� fun
tions for the average sto
hasti
 game

in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉. This game is determined by the tuple

(X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}) where θy for y ∈ X are given nonnega-

tive values su
h that

∑
y∈X θy = 1.

If θy = 0, ∀y ∈ X \ {x0} and θx0 = 1 then we obtain an average sto
hasti


game in normal form 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉 when the starting state x0 is �xed,

i.e. ψi
θ(s

1, s2, . . . , sn) = ωi
x0
(s1, s2, . . . , sn), i = 1, 2, . . . , n. So, in this 
ase the

game is determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, x0).
If θy > 0, ∀y ∈ X and

∑
y∈X θy = 1 then we obtain an average sto
hasti
 game

when the play starts in the states y ∈ X with probabilities θy. In this 
ase for the

payo�s of the players in the game in normal form we have

ψi
θ(s

1, s2, . . . , sn) =
∑

y∈X θyω
i
y(s

1, s2, . . . , sn), i = 1, 2, . . . , n.
(32)

5.2. The Main Properties of Average Sto
hasti
 Games in Normal

Form

Based on results from the previous se
tion we 
an prove the following results.

Theorem 4. Let 〈{Si}i=1,n, {ψi
θ(s)}i=1,n〉 be the game in normal form for

the average sto
hasti
 game in stationary strategies determined by (X, {Ai(x)}i=1,n,

{f i(x, a}i=1,n, p, {θy}) where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1. If for this

game there exists a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) then it is a Nash

equilibrium for the game in normal form 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with an ar-

bitrary y ∈ X, i.e. s∗ = (s1
∗
, s2

∗
, . . . , sn∗) is a stationary Nash equilibrium of

the average sto
hasti
 game with an arbitrary starting state y ∈ X. Conversely,

if for an arbitrary starting state y ∈ X the 
orresponding game in normal form

〈{Si}i=1,n, {ωi
y(s)}i=1,n〉 has a Nash equilibrium then for an arbitrary distribution

fun
tion {θy} on X with θy > 0, ∀y ∈ X (
∑

y∈X θy = 1) the 
orresponding game

in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 of the average sto
hasti
 game deter-

mined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}) has a Nash equilibrium s∗ =

(s1
∗
, s2

∗
, . . . , sn∗) whi
h is a Nash equilibrium for ea
h of the game in normal form

〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with the 
orresponding starting states y ∈ Y .

Proof. (⇒) Let s∗ = (s1
∗
, s2

∗
, . . . , sn∗) be a Nash equilibrium for the game in nor-

mal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n,

p, {θy}), where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1. Then (s1
∗
, s2

∗
, . . . , sn∗) is a Nash
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equilibrium for the average sto
hasti
 game 〈{Si}i=1,n, {ψi
θ′(s)}i=1,n 〉 with an

arbitrary distribution {θ′y} on X, where θ′y > 0, ∀y ∈ X,
∑

y∈X θ′y = 1, i.e

ψi
θ′(si

∗
, s−i∗) ≥ ψi

θ′(si, s−i∗), ∀si ∈ S
i
, i = 1, 2, . . . , n.

If here we express ψi
θ′ via ωi

y using (32) then we obtain

∑

y∈X

θ′y(ω
i
y(s

i∗, s−i∗)− ωi
y(s

i, s−i∗)) ≥ 0, ∀si ∈ S
i
, i = 1, 2, . . . , n.

This property holds for arbitrary θ′y > 0, ∀y ∈ X su
h that

∑
y∈Y θ

′
y = 1 and

therefore for an arbitrary y ∈ X we have

ωi
y(s

i∗, s−i∗)− ωi
y(s

i, s−i∗) ≥ 0, ∀si ∈ S
i
, i = 1, 2, . . . , n.

So, (s1
∗
, s2

∗
, . . . , sn∗) is a Nash equilibrium for ea
h of the game in normal form

〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with the 
orresponding starting states y ∈ X.

(⇐) Assume that for ea
h starting state y ∈ X the average sto
hasti
 game

〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 has a Nash equilibrium. Let us show that for the game

〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉, determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}),

where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1 there exists a Nash equilibrium. We prove

this using an auxiliary average sto
hasti
 game with a new starting state z and

the set of states X ∪ {z}, where for an arbitrary state x ∈ X ea
h player i ∈
{1, 2, . . . , n} has the same set of a
tions Ai(x), the same payo�s f i(x, a) for a ∈
A(x) and the same transition probability distributions pax,y for a ∈ A(x) as in

the game determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}); in the state

z of the auxiliary game ea
h player i ∈ {1, 2, . . . , n} has a single a
tion aiz
and A(z) 
ontains a unique pro�le az = (a1z, a

2
z, . . . , a

n
z ) for whi
h paz

z,z =

0, paz
z,y = θy, ∀y ∈ X and f i(z, az) = 0, i = 1, 2, . . . , n. Obviously, for the auxiliary

average sto
hasti
 game with starting state z, determined by (X ∪ {z}, {Ai(x) ∪
Ai(z)}i=1,n, {f i(x, a), f i(z, az)}i=1,n, p ∪ {paz

x,y}, z) there exists a stationary Nash

equilibrium be
ause a Nash equilibrium exists for an arbitrary average sto
hasti


game 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with starting state y ∈ Y . Taking into a

ount

that the auxiliary game is equivalent to the average sto
hasti
 game, determined by

(X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}), where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1, we
obtain that the 
onsidered average sto
hasti
 game with a random starting state

has a stationary Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) whi
h is a stationary

Nash equilibrium for the average sto
hasti
 game 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with an

arbitrary starting state y ∈ Y . ⊓⊔
From Theorem 3 we 
an easily obtain the following result.

Lemma 4. For an arbitrary game in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 with

θx ≥ 0, ∀x ∈ X,
∑

y∈X θy = 1 ea
h payo� fun
tion ψi
θ(s

1, s2, . . . , sn), i ∈
{1, 2, . . . , n} possesses the property that ψi

θ(s
i, ŝ−i) is quasi-monotoni
 with

respe
t to si ∈ S
i
for arbitrary �xed ŝ−i ∈ S

−i
.

Proof. Indeed, if players 1, 2, . . . , i − 1, i + 1, . . . , n �x their stationary strategies

ŝk ∈ S
k
, k = 1, 2, . . . , i − 1, i + 1, . . . , n, then we obtain an average de
ision
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problem with respe
t to si ∈ S
i
and an average 
ost fun
tion ψi

θ(s
i, ŝ−i). A

ording

to Theorem 3 ψi
θ(s

i, ŝ−i) possesses the property that the value of this fun
tion is

uniquely determined by si ∈ S
i
and it is quasi-monotone with respe
t to si on

S
i
. ⊓⊔

Using this lemma we 
an prove the following result.

Theorem 5. Let 〈{Si}i=1,n, {ψi
θ(s)}i=1,n〉 be the normal form game for the aver-

age sto
hasti
 game determined by (X,A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, {θx}) where

θx > 0, ∀x ∈ X,
∑

y∈X θy = 1. If ea
h fun
tion ψi
θ, i ∈ {1, 2, . . . , n} is 
ontinuous

on S = S1×S2×· · ·×Sn
then the game 〈{Si}i=1,n, {ψi

θ(s)}i=1,n 〉 possesses a Nash

equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) whi
h is a stationary Nash equilibrium for

the average sto
hasti
 game with an arbitrary starting state y ∈ X.

Proof. Indeed, a

ording to Lemma 4 ea
h fun
tion ψi(s1, s2, . . . , sn),
i ∈ {1, 2, . . . , n} satis�es the 
ondition that ψi(si, s−i), is quasi-monotoni
 with

respe
t to si ∈ S
i
for arbitrary �xed s−i ∈ S

−i
. In the 
onsidered game ea
h subset

S
i
is 
onvex and 
ompa
t and a

ording to the 
ondition of the theorem ea
h payo�

fun
tion ψi
θ(s

1, s2, . . . , sn), i ∈ {1, 2, . . . , n} is 
ontinuous on S. Based on results

from (Dasgupta and Maskin, 1986; Debreu, 1952; Reny, 1999; Simon, 1987) these


onditions provide the existen
e of a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) for

the game 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉. A

ording to Theorem 4 su
h an equilibrium

is a Nash equilibrium for the game 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with an arbitrary

starting state y ∈ X . ⊓⊔

Remark 2. Theorems 4 and 5 are valid also for the 
ase of the game 〈{Si}i=1,n,

{ψi
θ(s)}i=1,n 〉 when θy = 0 for some y ∈ X , however in this 
ase we obtain sta-

tionary Nash equilibria only for the games 〈{Si}i=1,n, {ωi
z(s)}i=1,n〉 with starting

states z ∈ X+
, where X+ = {z ∈ X |θz > 0}.

Remark 3. Theorem 5 holds also for the 
ase when the payo�s are not 
ontinuous

but satisfy so-
alled graph-
ontinuous property from (Dasgupta and Maskin, 1986).

6. Stationary Equilibria for Average Sto
hasti
 Positional Games

Average sto
hasti
 positional games have been introdu
ed in (Lozovanu, 2018)

as a generalization of mean payo� games from (Ehrenfeu
ht and My
ielski, 1979).

An average sto
hasti
 positional game represents an average sto
hasti
 game in

whi
h the set of states is divided into several disjoint subsets su
h that ea
h subset

represents the position set for one of the player and ea
h player 
ontrols the Markov

pro
ess only in his position set. In su
h a game ea
h player 
hooses a
tions in his

position set in order to maximize his average reward per transition.

An average sto
hasti
 positional game with n prlayers is determined by the

following elements:

- a state spa
e X (whi
h we assume to be �nite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xn where Xi represents the position set

of player i ∈ {1, 2, . . . , n};
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- a �nite set A(x) of a
tions in ea
h state x ∈ X ;

- a step reward f i(x, a) with respe
t to ea
h player i ∈{1, 2, . . . , n} in ea
h

state x ∈ X and for an arbitrary a
tion a ∈ A(x);

- a transition probability fun
tion p : X× ∏
x∈X

A(x)×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary

y ∈ X for a �xed a
tion a ∈ A(x), where
∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a starting state x0 ∈ X .

The game starts at the moment of time t = 0 in the state x0 where the player

i ∈ {1, 2, . . . ,m} who is the owner of position x0 (x0 ∈ Xi) 
hooses an a
tion

a0 ∈ A(x0) and determines the rewards f1(x0, a0), f
2(x0, a0), . . . , f

m(x0, a0) for the

orresponding players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X
a

ording to probability distribution {pa0

x0,y}. At the moment of time t = 1 the

player k ∈ {1, 2, . . . , n} who is the owner of the state position x1 (x1 ∈ Xk) 
hooses

an a
tion a1 ∈ A(x1) and players 1, 2, . . . ,m re
eive the 
orresponding rewards

f1(x1, a1), f
2(x1, a1), . . . , f

n(x1, a1). Then the game passes to a state y = x2 ∈ X
a

ording to probability distribution {pa1

x1,y} and so on inde�nitely. Su
h a play

of the game produ
es a sequen
e of states and a
tions x0, a0, x1, a1, . . . , xt, at, . . .
that de�nes a stream of stage rewards f1(xt, at), f

2(xt, at), . . . , f
n(xt, at), t =

0, 1, 2, . . . . The average sto
hasti
 positional game is the game with payo�s of the

players

ωi
x0

= lim
t→∞

inf E

(
1

t

t−1∑

τ=0

f i(xτ , aτ )

)
, i = 1, 2, . . . , n.

If px,a ∈ {0, 1} then the average sto
hasti
 positional game be
omes a mean payo�

game. The problem of the existen
e of pure and mixed stationary equilibria in a

sto
hasti
 positional games has been studied in (Lozovanu, 2018; Lozovanu, 2019).

The pure and mixed stationary strategies in su
h a game 
an be de�ned in analogous

way as for a sto
hasti
 game, taking into a

ount that ea
h player sele
t a
tions only

in his state positions and determines in these states the step rewards for all players.

Thus, a stationary strategy of player i ∈ {1, 2, . . . , n} in a sto
hasti
 positional game

is a mapping si that provides for every state x ∈ Xi a probability distribution over

the set of a
tions A(x). This means that the set of stationary strategies S
i
of player

i ∈ {1, 2, . . . , n} 
an be identi�ed with the set of solutions of the system





∑
ai∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(33)

The payo�s ψi
θ(s

1, s2, . . . , sm), i = 1, 2, . . . , n on S = S
1×S2×· · ·×Sn

for the game

in normal form for the 
onsidered positional game we 
an obtain from (30), (31) if

we take into a

ount the parti
ularity of the average stoshasti
 positional game. So,

ψi
θ(s

1, s2, . . . , sm) =

m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m, (34)
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where qx for x ∈ X are determined uniquely from the following system of linear

equations





qy −
m∑

k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y qx = 0, ∀y ∈ X ;

qy + wy −
m∑

k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y wx = θy, ∀y ∈ X

(35)

In (Lozovanu, 2018) is shown that the game 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 de�ned

a

ording to (2) - (35) possesses a Nash equilibrium whi
h is a stationary Nash

equilibrium for the average sto
hasti
 positional game with an arbitrary starting

state y ∈ X . Moreover, in (Lozovanu, 2019) is shown that for two-player zero-sum

sto
hasti
 positional games and for n-player average sto
hasti
 positional games

with uni
hain property there exist stationary Nash equilibria in pure strategies.

7. Con
lusion

An arbitrary average sto
hasti
 game with �nite state and a
tion spa
es 
an

be formulated in terms of stationary strategies as a game in normal form where

ea
h payo� is quasi-monotoni
 (quasi-
on
ave and quasi-
onvex) with respe
t to the

strategy of the 
orresponding player. Su
h a normal form game (the game model

from Se
tion 5) allows to determine all stationary Nash equilibria of the average

sto
hasti
 game if stationary Nash equilibria exist. If the payo�s of the game in

normal form are 
ontinuous or graph 
ontinuous then stationary Nash equilibria

exist. For an average sto
hasti
 game with uni
hain property and for an average

sto
hasti
 positional game stationary Nash equilibria always exist and all stationary

equilibria 
an be found by using the 
orresponding game models in normal form

from Se
tion 4 and Se
tion 6. For two-player zero-sum average sto
hasti
 positional

games and for n-player average sto
hasti
 positional games with uni
hain property

there exist stationary equilibria in pure strategies
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