Contributions to Game Theory and Management, XIII, 304-323

On the Existence of Stationary Nash Equilibria in Average
Stochastic Games with Finite State and Action Spaces

Dmitrii Lozovanu' and Stefan Pickl?

L Institute of Mathematics and Computer Science of Moldova Academy of Sciences,
Academiei 5, Chisinau, MD-2028, Moldova,
E-mail: lozovanu@math.md
2 Institute for Theoretical Computer Science, Mathematics and Operations Research,
Universitdt der Bundeswehr Minchen, 85577 Neubiberg-Miinchen, Germany,
E-mail: stefan.picklQunibw.de

Abstract We consider infinite n-person stochastic games with limiting av-
erage payoffs criteria for the players. The main results of the paper are
concerned with the existence of stationary Nash equilibria and determining
the optimal strategies of the players in the games with finite state and action
spaces. We present conditions for the existence of stationary Nash equilib-
ria in the considered games and propose an approach for determining the
optimal stationary strategies of the players if such strategies exist.
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1. Introduction

In this paper we study the problem of the existence and determining station-
ary Nash equilibria in average stochastic games with finite state and action spaces.
Stochastic games, named sometimes Markov games, were introduced by Shapley,
1953. He considered two-person zero-sum stochastic games for which he proved the
existence of the value and the optimal stationary strategies of the players with
respect to a discounted payoff criterion. Later, this class of games has been ex-
tended to general n-person stochastic games with discounted and average payoffs
criteria (Gillette, 1957; Fink, 1964; Takahashi, 1964; Vrieze, 1987; Filar et al., 1991;
Neyman and Sorin, 2003). The most important results for n-person stochastic games
with discounted payoffs have been obtained by Fink, 1964, Takahashi, 1964 and
Sobel, 1971 who proved the existence of stationary Nash equilibria in such games.
Schultz, 1986, Filar et al., 1991 showed that the problem of determining stationary
Nash equilibria in a general n-person stochastic game with discounted payoffs can
be represented as a nonlinear programming problem with linear constraints and the
global minimum of the objective function equal to zero. Mertens and Neyman, 1981
studied two-person zero-sum games and proved the existence of uniform e-optimal
strategies for the players, i.e. they showed that for every € > 0 each of the two players
has a strategy that guarantees the discounted value up to ¢ for every discount factor
sufficiently close to 0. These results have been extended by Vieille, 2009 to an arbi-
trary noncooperative stochastic game of two players and afterwards they have been
used for studying the problem of the existence of Nash equilibria in non-stationary
strategies for two-player average stochastic games (Vieille, 2002, 2009, Solan, 2009;
Solan and Vieille, 2010). Algorithmic approaches concerned with determining the
optimal strategies of the players in some classes of stochastic games can be found
in (Schultz, 1986; Filar et al., 1991; Neyman and Sorin, 2003; Solan, 2009).
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The n-person stochastic games with limiting average payoffs have been studied
by many authors (Neyman and Sorin, 2003; Rogers, 1969; Sobel, 1971; Solan, 2009;
Solan and Vieille, 2010; Vieille, 2002; Vieille, 2009; Vrieze, 1987) however the exis-
tence of stationary Nash equilibria has been proved only for some classes of such
games. Rogers, 1969 and Sobel, 1971 showed that stationary Nash equilibria exist
for nonzero-sum stochastic games with average payoffs when the transition prob-
ability matrices induced by any stationary strategies of the players are unichain.
An important class of average stochastic games for which stationary Nash equi-
libria exist represents stochastic positional games (Lozovanu, 2018, 2019). Further-
more Lozovanu, 2018, 2019 shown that for average stochastic positional games with
unichain property and for two-player zero-sum stochastic positional games there
exist stationary Nash equilibria in pure strategy. The main results concerned with
the existence and determining Nash equilibria in two-player average stochas-
tic games can be found in (Mertens and Neyman, 1981; Neyman and Sorin, 2003;
Vieille, 2002, 2009, Vieille, 2009; Solan, 2009; Solan and Vieille, 2010). In the gen-
eral case for an average stochastic game with given starting state a stationary Nash
equilibrium may not exist. This fact has been shown by Flesch et al., 1997 that
constructed an example of a 3-player average stochastic game with fixed starting
state for which a stationary Nash equilibrium does not exist. Moreover, they shown
that for an m-player (m > 3) average stochastic game may not exist also stationary
g-equilibrium (e > 0). In general, for an average stochastic game there may exist
a nonempty subset of states such that if the game starts in one of them then a
stationary Nash equilibrium exists (Tijs and Vrieze, 1986). However, the problem
of determining the initial states in an average stochastic game for which stationary
equilibria exist is an open problem.

In this contribution we consider average stochastic games with finite state and
action spaces. We show that an arbitrary average stochastic game in stationary
strategies can be represented as a game in normal form where each payoff is quasi-
monotonic (quasi-concave and quasi-convex) with respect to the strategy of the
corresponding player. Furthermore we show that if the game in normal form has a
pure Nash equilibrium then such an equilibrium corresponds to a stationary Nash
equilibrium of the average stochastic game and vice versa. Based on this result and
results of Debreu, 1952, Glicksberg, 1952, Dasgupta and Maskin, 1986, Reny, 1999
related to existence of Nah equilibria in the games with quasi-concave (quasi-convex)
payoffs we formulate conditions for the existence and determining stationary Nash
equilibria in average stochastic games.

2. Average Stochastic Games in Pure and Mixed Stationary Strategies

We first present the framework of a n-person stochastic game and then specify
the formulation of stochastic games with average payoffs when the players use pure
and mixed stationary strategies.

2.1. The Framework of a n-person Average Stochastic Game

A stochastic game with n players consists of the following elements:
- a state space X (which we assume to be finite);

- a finite set A%(x) of actions with respect to each player i € {1,2,...,n}
for an arbitrary state z € X
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- a payoff fi(z,a) with respect to each player i €{1,2,...,n} for each
state © € X and for an arbitrary action vector a € [ A*(x);
i
s .
- a transition probability function p: X x ] [] 4%(x) x X — [0,1]
reX i=1
that gives the probability transitions pj , from an arbitrary z € X
to an arbitrary y € Y for a fixed action vector a € [[ A*(z), where
i

Y. pi, =1, VzeX, ac [TA(=);
yeX ) i

- a starting state zg € X.

The game starts in the state x9 and the play proceeds in a sequence of stages.
At stage t the players observe state x; and simultaneously and indepen-
dently choose actions ai € A*(x;), i = 1,2,...,n. Then nature selects a state
y = w41 according to probability transitions pg! , for the given action vector
ar = (a},a?,...,a?). Such a play of the game produces a sequence of states and
actions o,daog,¥1,a1,...,%,a,... that defines a stream of stage payoffs f! =
Yz, ar), 2= 2w a0),..., [ = ff(x,a0), t=0,1,2,.... The infinite
average stochastic game is the game with payoffs of the players

t—1
i . . 1 i .
wmo_tggolnfE<¥ 5_0f7>, i=1,2,...,n,

where E is the expectation operator with respect to the probability measure in a
Markov process with rewards induced by the initial state zo and the corresponding
vector actions a; in the states z; € X (see Kallenberg, 2016; Puterman, 2005). Here
wfﬁo expresses the average payoff per transition of player i in the infinite game. Each
player in this game has the aim to maximize his average payoff per transitions. In
the case n = 1 this game becomes the average Markov decision problem with a

probability transition function p : X x [] A(z) x X — [0,1] and step rewards
reX

f(z,a) = fl(x,a) in the states z € X for given actions a € A(x) = Al(z).
In the paper we will study the stochastic games when players use pure and mixed
stationary strategies of selection the actions in the states.

2.2. Pure and Mixed Stationary Strategies of the Players

A strategy (policy) of player i € {1,2,...,n} in a stochastic game is a mapping
s’ that provides for every state z; € X a probability distribution over the set of
actions A*(x;). If these probabilities take only values 0 and 1, then s’ is called a pure
strategy, otherwise s’ is called a mized strategy. If these probabilities depend only
on the state 1, = x € X (i. e. s do not depend on t), then s is called a stationary
strategy, otherwise s’ is called a non-stationary strategy.

Thus, a pure stationary strategy of player i € {1,2,...,n} can be regarded as a
map s’ : x — a' € A'(z) for z € X that determines for each state x an action
a’ € Al(z), i.e. s'(z) = a'. Obviously, the corresponding sets of pure stationary
strategies S',52,..., 8™ of the players in the game with finite state and action
spaces are finite sets.

In the following we will identify a pure stationary strategy s'(x) of player i with
the set of boolean variables s!, . € {0,1}, where for a given z € X s, , =1 if

x,a"
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and only if player i fixes the action a® € A*(z). So, we can represent the set of pure
stationary strategies S* of player ¢ as the set of solutions of the following system:

>SSt =1, Vo e X;
ai€Ai(z ) ’
€ {0,1}, Vzxe X, Va'e A'(z).

za7

€{0,1} for z € X, a' € A%(z) by
the condition 0 <s! . <1 then we obtain the set of stationary strategies in the

If in this system we change the restriction s

z,at

sense of Shapley7 1953 where s’ is treated as the probability of the choices of

z,a’
the action a' by player ¢ every time when the state z is reached by any route
in the dynamic stochastic game. Thus, we can identify the set of mixed stationary

strategies of the players with the set of solutions of the system

oSt =1, Ve e X;
ateAl(x) (1)
s;a >0, Vo € X, Va'e€ Al(x)
and for a given profile s = (s',s%,...,5") of mixed strategies s',s% ..., s" of the

players the probability transition p; , from a state x to a state y can be calculated

as follows .

1 2 n
Py = Z H I;a’“pgcau ), (2)

(at,a2,...,am)€A(x) k=1
In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies.

2.3. Average Stochastic Games in Pure Stationary Strategies

Let s = (s!,s?,...,5") be a profile of pure stationary strategies of the players
and denote by a(s) = (a'(s),a?(s),...,a"(s)) € [] H Ai(x) the action vector
zeX i=

that corresponds to s and determines the probability dlstrlbutlons Phy = pg(j)

the states « € X. Then the average payoffs per transition wl (s), w2 (s),..., w2 (s)
for the players are determined as follows

quoﬂ; y,a ))a Z':1,2,...771,
yeX

where ¢; , represent the limiting probabilities in the states y € X for the Markov
process with a probability transition matrix P® = (p;y) when the transitions start
in xg. So, if for the Markov process with probability matrix P? the corresponding

limiting probability matrix Q° = (¢5,) is known then w},w?,...,w} can be
determined for an arbitrary starting state = € X of the game. The functions
wy (8), w2 (s),...,wk(s) on §=8"x5%x...x8" define a game in normal

form that we denote by ({S"},_15, {wi, (s)};—15 ). This game corresponds to
an average stochastic game in pure stationary strategies that in extended form is
determined by the tuple (X, {A"(2)},_17, {f*(z,a};—1%, p, Zo).

If an arbitrary profile s = (s!,s2,...,s") of pure stationary strategies in a
stochastic game induces a probability matrix P*® that corresponds to a Markov
unichain then we say that the game possesses the unichain property and shortly we

call it unichain stochastic game; otherwise we call it multichain stochastic game.
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2.4. Average Stochastic Games in Mixed Stationary Strategies

Let s = (s',52,...,5™) be a profile of mixed stationary strategies of the players.
Then elements of the probability transition matrix P* = (p; ,) in the Markov
process induced by s can be calculated according to (2). Therefore if Q* = (g3 ,)
is the limiting probability matrix of P?® then the average payoffs per transition

1 2 n .
Wy, (8), wi (8),...,wp (s) for the players are determined as follows
w;}(}(s) = Zq;()yyfl(y7s)7 Z: 1727"'7n7 (3)
yeXx
where

Fas = S Il sl wata....a" (4)

(a',a?,...,an)€A(y) k=1

expresses the average payoff (immediate reward) in the state y € X of player
i when the corresponding stationary strategies s', s2,...,s” have been applied by
players 1,2,...,nin y.

Let ?1, ?2, ... ,?n be the corresponding sets of mixed stationary strategies for
the players 1,2,...,n, i.e. each S' forie {1,2,...,n} represents the set of so-

lutions of system (2). The functions w} (s), w2 (s),...,w? (s) on S = S x5 x

- x 8", defined according to (3),(4), determine a game in normal form that we
denote by ({gl}i:L—n, {wio(s)}i:L—n ). This game corresponds to an average stochas-
tic game in mized stationary strategies that in extended form is determined by the

tuple (X, {Ai(x)}i:L—n, {fi(:v,a}i:L—n, D, To)-
2.5. Average Stochastic Games with Random Starting State

In the paper we will consider also average stochastic games in which the starting
state is chosen randomly according to a given distribution {6,} on X. So, for
a given stochastic game we will assume that the play starts in the states z € X

with probabilities 6, > 0 where > 6, = 1. If the players use mixed stationary
zeX
strategies of selection the actions in the states then the payoff functions

vh(st, s, s") = ZGIw;(sl,SQ,...7s"), 1=1,2,....n
rzeX

omS=5 x8 x---x8" define a game in normal form <{§l}i:17—n, {wé(s)}i:L—n>
that in extended form is determined by the following tuple (X, {A"(2)},_1,
{fi(z,a};_17,p, {62}). In the case f, = 0,Vx € X\ {0}, 0., =1 the considered
game becomes a stochastic game with fixed starting state xg. In analogues way
we can specify the game in normal form ({S*},_15, {¢§(s)};_17;) for the average
stochastic game with random starting state xzo when players use pure stationary
strategies of selection the actions in the states.

2.6. Definition of Stationary Nash Equilibria

Let s = (s',s2,...,s") €S . Define s~i=(s', s2,..., s 1 §t1 .. s
as the vector of stationary strategies of all players other than ¢ and denote
s=(s',s7"), i = 1,2,...,n. The profile s* = (s'",s*",...,5"*) is called stationary
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Nash equilibrium for an average stochastic game <{§i}i:L—n, {wl (8)}im17 ) with
given starting state z¢ if
w;O(sz*, s > wh (s, s, Vs'e ?i, i=1,2,...,n. (5)
The profile s* = (31*,32*,._..,3"*) is called stationary Nash equilibrium for an
average stochastic game ({gl}i:ﬁ, {§(s)}i—1 ) when the starting state is chosen
randomly according to a given distribution {6, } on X if
V(s s7) > (st 5TV, Vst e ?i, i=1,2,...,n. (6)

3. An Approach for Determining Stationary Nash Equilibria in
Average Stochastic Games with Unichain Property

In this section we show that an unichain average stochastic game in stationary
strategies can be represented as a continuous game in normal form where the payoffs
are quasi-monotonic with respect to the corresponding strategies of the players. Us-
ing such a model we propose an approach for determining stationary Nash equilibria
for unichain average stochastic games.

3.1. A Continuous Model for the Average Markov Decision Problem
with Unichain Property

In (Lozovanu, 2011) has been shown that an average Markov decision problem
with unichain property can be formulated as the following optimization problem:
Mazimize

Y(s,q) = Z Z f(xaa)sw,a dz, (7)

¢€X acA(z)
subject to
4y — Z Z p;,ysm,aqgn =0, vy € X;
CEX aEA(x)
> = 1;
z€X
(8)
Z Sz,a = 1, Yz € X,
a€A(x)
Sg,a = 0, Vx e X, a € A(I)

Here f(x,a) represents the step reward in the state = € X for a given action
a € A(z) in the unichain problem and Py, expresses the probability transition from
x € X toy € X for a € A(x). The variables s, , correspond to strategies of
selection of the actions a € A(x) in the states © € X and ¢, for z € X represent
the corresponding limiting probabilities in the states x € X for the probability
transition matrix P°® = (pfcy) induced by the stationary strategy s.

In this problem the average reward (s, q) is maximized under the conditions
(8) that determines the set of feasible stationary strategies in the unichain problem.
An optimal solution (s*,¢*) of problem (7), (8) with s} , € {0,1} corresponds to an
optimal stationary strategy s*: X — A where a* = s*(z) for v € X if 5] , = 1.
Using the notations oy = Sz.4qz, for ¢ € X,a € A(x), problem (7), (8) can be
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easily transformed into the following linear programming problem:

Mazimize _
Y(a) = Z Z f(z,a)azq 9)
r€X acA(x)
subject to
Qy— > > pg,yaw,a =0, Vy € X;
r€X acA(x)
Z gz = 1;
zeX (10)
Y Oga— gz =0, Vz € X;
a€A(z)
Qpa >0, Ve e X, ac Az).

This problem can be simplified by eliminating g, from (10) and finally we obtain
the problem in which it is necessary to maximize the objective function (9) on the
set of solutions of the following system:

> ya— >, > Pay Qe =0, Vy e X;
acA(y) z€X acA(x)

Y. > ma=1 (11)

z€X a€A(x)
0zq >0, Yoz e X, ac Az).

Based on the relationship mentioned above between problem (7), (8) and problem
(9), (11) in (Lozovanu, 2011) the following result has been announced.

Lemma 1. Let an average Markov decision problem be given, where an arbitrary
stationary strategy s generates a Markov unichain, and consider the function

w(S) = Z Z f(xaa)sw,a qz
z€X acA(z)

where q, for x € X satisfy the condition

PR ODY PaySzade =0, VyeEX;

z€X a€A(x)
zeX

Then the function 1 (s) on the set S of solutions of the system

> Sea=1 VrxeX;
a€A(x)

Sz.0 >0, Ve e X, ac Ax)

depends only on szq for v € X, a€ Ax), and W¥(s) is quasi-monotonic on S
(i.e. ¥(s) 1is quasi-concave and quasi-convex on S Boyd and Vandenberghe, 2004).
Moreover, (s) = wy(s), Vo € X.

The full proof of this lemma in a more general form is presented in (Lozovanu, 2018).
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3.2. Stationary Equilibria for Average Stochastic Games with Unichain
Property

An average stochastic game with unichain property can be formulated in terms
of stationary strategies as follows. _

Let S=35 x5 x---x 5", where each S fori e {1,2,...,n} represents the set
of solutions of system (2), ie. S represents the set of mixed stationary strategies
for player i. On S we define the average payoffs for the players as follows:

. L0 .
Pi(st,s?, ..., ") = > 11 s’;_’akfl(x,al,ag,...,a")qm,

z€X (al,a?,...,a™)€A(x) k=1
i=1,2,....n,

where g, for z € X are determined uniquely from the following system of linear
equations

" k (at,a?,...,a™)
I1 S akPzy de = qy, VY€ X;
z€X (a',a?,...,am)€A(z) k=1 '

quzl,

zeX

where s’ € ?1, i=1,2,...,n. The functions (s, s% ..., "), i =1,2,...,n
on S define a game in normal form ({§'},_1=, {¢'(s)},_1>) that
corresponds to a stationary average stochastic game with unichain property,
where ¢ (st,s%,...,8") = wi(st, s ..., s"), Ve e X, i=1,2,...,n.

From Lemma 1 we obtain the following result.

Lemma 2. For an arbitrary unichain stochastic game ({gi}i:ﬁ, {4 (s)}i—1m) each
payoff function '(s,37"), i € {1,2,...,n} is quasi-monotonic with respect to
sies§ for arbitrary fized 37° € S

Based on Lemma 2 and results from (Debreu, 1952; Glicksberg, 1952) we obtain
the following theorem.

Theorem 1. Let ({gi}i:ﬁ, {¢"(s)}i—1m) be an average stochastic game de-
termined by (X, A {Xi},_1m {fi(x,a)}i:L—n, p, x). If for an arbitrary

s = (s',s%...,5") €S of the game the transition probability matriz P* = (p, )

corresponds to a Markov unichain then for the game <{§i}i:L—n, {9 (s)}i=17) there
exists a Nash equilibrium s* = (s'*,s>" ..., s"*) which is a Nash equilibrium for
an arbitrary starting state x € X of the game.

Proof. According to Lemma 2 each payoff ¢'(s,57"), i € {1,2,...,n}) is quasi-
monotonic with respect to s’ € S for fixed §7¢ € S . Additionally, each payoff
Y'(s), i € {1,2,...,n} is continuous on S because the stochastic game is unichain.
Then according to (Debreu, 1952; Glicksberg, 1952) the game ({?l}i:L—n, {wi(s)}i:L—n>
possesses a pure Nash equilibrium s* € S which is a stationary Nash equilibrium for
the unichain average stochastic game with an arbitrary starting state x € X. O
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Thus, if we find a pure Nash equilibrium s* for the game in normal form

({?}i:L—n, {1*(s)};—17) then s* is a stationary Nash equilibrium for the average
stochastic game with unichain property.

4. Some Results for a Multichain Average Markov Decision Problem

In this section we extend the results from Section 3.1. for the multichain average
Markov decision problem, i.e. we show how this decision problem can be formulated
in terms of stationary strategies. These results we shall use in the next section for
the average stochastic games in general case.

4.1. A Linear Programming Approach for a Multichain Decision
Problem

The basic model that we shall use in the sequel for formulation and study-
ing a Markov decision problem in terms of stationary strategies represents the fol-
lowing linear programming problem (Kallenberg, 2016; Lozovanu and Pickl, 2015;
Puterman, 2005):

Mazimize
=D Y f@wa), (12)
z€X acA(z)
subject to
Yo Qua— Y, Y. PhyQza=0, Yy € X;
acA(y) z€X acA(x)
> yat D Bya— 2 X PzyPoa =0y, Vy € X; (13)
a€A(y) ac€A(y) z€X a€A(x)
Ogq >0, By.a >0, Vr € X, a € A(z),

where 6, for y € X represent arbitrary positive values that satisfy the condition

>~ 6, = 1. Recall that f(x,a) denotes the step reward in a state z € X for a given
yeX
action a € A(x) in the decision problem and Pg., represent the corresponding

probability transitions from a state x € X to the states y € X for a € A(z), where

> Py = 1.

yeX
This problem generalizes the unichain linear programming model (9), (11) from
Section 3.1.. In (13) the restrictions

Z Qy q + Z By,a - Z Z pz,yﬁm,a = Hy, v?/ eX (14)

a€A(y) a€A(y) z€X acA(x)

with the condition > 6, = 1 generalize the constraint >, > a4 =1 in the
yeX X acA(y)

unichain model. This constraint is obtained if we sum (14) over y. The relationship
between feasible solutions of problem (12), (13) and stationary strategies in the
average Markov decision problem is the following(see Puterman, 2005):

Let (a,B) be a feasible solution of the linear programming problem (12), (13)

and denote X, = {z € X| Y ayq > 0}. Then (o, 3) possesses the properties that
acX
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> Bra>0forz € X\ X, and a stationary strategy that corresponds to («, )
acA(z)
is determined as follows

o) .
—22 if ze X,

Qg.a
a€A(x)

Br.a if z€X\ X,

> Bia

a€A(z)

(15)

Sm,a =

where s, , expresses the probability of choosing the actions a € A(z) in the
states € X. It is easy to see that the set of feasible solutions of problem (12),(13)
generate through (15) the set of stationary strategies S that corresponds to the set
of solution of the following system

> Spa=1, Ve e X;
acA(z)
82,0 > 0, Vr € X, Va e A(x)

In (Kallenberg, 2016; Lozovanu and Pickl, 2015; Puterman, 2005) the problem
(12), (13) is regarded as the dual model of the following linear programming prob-
lem:

Minimize
¢(€aw) = Z 0wz (16)
zeX
subject to
€x +we > f(w,a) + Y pt ey, Yo € X, Vae A(w);
€x
y (17)
W 2 Y Pg Wy, Ve e X, Vae Az).

yeX

The optimal value of the objective function in this problem as well as the optimal
values of the objective functions in problems (12), (13) and (16), (17) express the
optimal average reward when the initial state is chosen according to distribution
{6,}. Solving problem (16), (17) we obtain the value w} for each x € X that
represents the optimal average reward when a transition starts in « with probability
equal to 1. This means that if (o*, %) is an optimal solution of problem (12), (13)
then we can determine the optimal strategy s* and the optimal values of object
functions of problems (16), (17) and (12), (13), where ¢(c*,w*) = (a*, *). An
arbitrary optimal solution of problem (12), (13) or of problem (16), (17) determine
an optimal strategy s* that is an optimal stationary strategy for the multichain
decision problem with an arbitrary starting state x € X.

Remark 1. Problems (12),(13) and (16),(17) can be considered also for the case
when 6, = 0 for some = € X. In particular, if 6, =0, Vo € X \{zo} and 0,, =1
then these problems are transformed into the models with fixed starting state z.
In this case for a feasible solution («, 3) the subset X \ X, may contain states for
which ZaeA(m) Baz.a = 0. In such states it couldn’t be used (15) for determining s, 4.
Formula (15) can be used for determining the strategies s, , in the states z € X
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for which either ZGGA(I) Ozq >0 or ZGGA(I) Bz,a > 0 and these strategies
determine the value of the objective function in the decision problem. In the states
r € Xo, where

X():{IEX| Z Oéz_’a:O, Z Bz,azo}v

a€A(x) a€A(x)

the strategies of the selection of the actions may be arbitrary because they do not
affect the value of the objective function.

4.2. A Multichain Markov Decision Model in Terms of Stationary
Strategies

The multichain average Markov decision model in terms of stationary strategies
that generalizes the unichain model (7), (8) from Section 3.1. is the following:

Mazimize
w(sa Q7w) = Z Z f(xa a)sw,aQI (18)
z€X acA(z)
subject to
= 2 2 Pa,y Sz,adz =0, Yy € X;
z€X acA(z)
qy + wy - Z Z pg,ysw,awm = 9y7 vy (S _}(7
z€X acA(x) (19)
> Sya=1, Yy € X;
a€A(y)
Sm,azo, VSCQX, VQEA(I), ’szO, VSCGX,

where 0, are the same values as in problem (12), (13) and $g.q, ¢z, wy for z € X,
a € A(x) represent the variables that must be found.

Theorem 2. Optimization problem (18), (19) determines the optimal stationary
strategies of the multichain average Markov decision problem.

Proof. Indeed, if we assume that each action set A(x),z € X contains a single
action a’ then system (13) is transformed into the following system of equations

Qy — Z Da,yqe = 0, vy € X;
reX

qy + Wy — Z pmyywmzeya Vye X
rzeX

with conditions ¢,,w, > 0 for y € X, where ¢y = oy,o/, Wy = Bya, Yy € X
and py ., = pg:y, Vz,y € X. This system uniquely determines g, for x € X and
determines w, for x € X up to an additive constant in each recurrent class of
P = (pg,y) (see Puterman, 2005). Here ¢, represents the limiting probability in
the state = when transitions start in the states y € X with probabilities 6, and
therefore the condition g, > 0 for x € X can be released. Note that w, for some
states may be negative, however always the additive constants in the corresponding
recurrent, classes can be chosen so that w, became nonnegative. In general, we
can observe that in (19) the condition w, > 0 for x € X can be released and
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this does not affect the value of the objective function of the problem. In the case
|A(z)] = 1, Vz € X the average cost is determined as ¢ = > f(x)q,, where

reX
f(z) = f(z,a),Vz € X.

If the action sets A(x), = € X may contain more than one action then for a
given stationary strategy s € S of a selection of the actions in the states we can
find the average cost 1(s) in a similar way as above by considering the probability
matrix P° = (p; ), where

pgsc,y = Z pg,ysr,a (20)
acA(x)

expresses the probability transition from a state x € X to a state y € X when the
strategy s of selections of the actions in the states is applied. This means that we
have to solve the following system of equations

Q — > Pyl =0, Yy € X;
rzeX
qy +wy — pfc,ywwzeya vy € X.
rzeX

If in this system we take into account (20) then this system can be written as follows

Qy — Z Z pg,y Sz,aqz = 0, Yy € X;
T€EX aEA(x)
(21)
Ay + Wy — Z Z p;,ysm,awm = ey, Vy cX.
T€X a€A(x)

An arbitrary solution (g, w) of the system of equations (21) uniquely determines g,
for y € X that allows us to determine the average cost per transition

U(s) =D > f(@,0)s2.00 (22)

zeX aeX

when the stationary strategy s is applied. If we are seeking for an optimal stationary
strategy then we should add to (21) the conditions

Z Spa=1, Ve € X; $3,>0, Vo € X,a € A(x) (23)
a€A(x)

and to maximize (22) under the constraints (21), (23). In such a way we obtain
problem (18), (19) without conditions w, > 0 for x € X. As we have noted the
conditions w, > 0 for z € X do not affect the values of the objective function (18)
and therefore we can preserve such conditions that show the relationship of the
problem (18), (19) with problem (12), (13). O

Corollary 1. If 0, > 0,Vz € X then an arbitrary optimal strategy s* of problem
(18),(19) is an optimal stationary strategy for the multichain average decision prob-
lem with an arbitrary starting state x € X. If 0, = 0,Vx € X \ {zo} and 05, = 1
then an optimal strategy s* of problem (18), (19) is an optimal stationary strategy
for the multichain decision problem with starting state xg.

The relationship between feasible solutions of problem (12), (13) and feasible
solutions of problem (18), (19) can be established on the basis of the following
lemma.
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Lemma 3. Let (s,q,w) be a feasible solution of problem (18), (19). Then
Qg = Sz,aqzx, ﬂm,a = Sz,aWg, Vre X,ac€ A(I) (24)

represent a feasible solution (o, 3) of problem (12), (13) and ¢ (s, q,w) = ¥(a, B).
If (o, B) is a feasible solution of problem (12),(13) with 0, > 0,Vx € X then a
feasible solution (s,q,w) of problem (18), (19) can be determined as follows:

e for we X, a € Alx);

§ [0 7

Soa = aEAém) (25)
T for € X\ X,, a€ Az);

> Bra

acA(x)

4z = Z Qg oa, Wy = Z Bm,a fOT’ r e X.

a€A(x) a€A(x)

If (o, B) is a feasible solution of problem (12),(13) for which 0, = 0,V € X \ {zo}
then a feasible solution (s, q,w) of problem (18), (19) can be determined as follows:

for x € Xq, a € A(z);

Qg a
§ Qg .a

a€A(x)
Sz, = Br.a for z € X\ (XoUZXp), a€ Az);

Y Bra

acA(x)
arbitrary for z € Xy, a€ Ax),

Qe = Z Opay Wy = Z Be.a for e X,

a€A(x) a€A(x)

where Xo = {2 € X| X ca@@) Qa0 =0, X,ca(w) Bea =0}

Proof. If (s,q,w) is a feasible solution of problem (18), (19) and («, 3) is deter-
mined according to (24) then by introducing (24) in (12),(13) we obtain that (13)
is transformed in (19) and (s, ¢, w) = ¥(a, B), i.e. (o, B) is a feasible solution of
problem (12), (13). The second part of lemma follows directly from the properties

of a feasible solutions of problems (12),(13) and (18),(19). O

4.3. The Main Properties of the Problem in Stationary Strategies

Using problem (18), (19) we can now extend the results from Section 3.1. for
the general case of an average Markov decision problem.

Theorem 3. Let an average Markov decision problem be given and consider the

function
w(s) = Z Z f(m,a)sm,a 4z, (26)

z€X acA(x)
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where q, for x € X satisfies the condition

Q= > D DP%ySeads =0, vy € X;
z€X acA(z)
(27)
qytwy— > Y pg,ysw,aww =0y, vy € X.
z€X acA(x)

Then on the set S of solutions of the system

> Ssa=1 VzelX,;
acA(x) (28)
Sz >0, VrelX, ae Ax)

the function (s) depends only on s.. forx € X,a € A(z) and ¢(s) is quasi-
monotonic on S (i.e. () is quasi-convex and quasi-concave on S ).

The proof of this theorem can be found in (Lozovanu, 2018).

5. The Main Results for Average Stochastic Games

In this section we extend the results from Section 3.2. for the case of multichain
average stochastic game in stationary strategies. We show that a multichain average
stochastic game in normal form can be formulated as the game in which the payoffs
possess of quasi-monotonic property with respect to the corresponding strategies of
the players. Based on this property we present some conditions for the existence of
stationary Nash equilibria in the multichain average stochastic game.

5.1. A Normal Form of Average Stochastic Game in Stationary
Strategies

The multichain average stochastic game in stationary strategies that generalizes
the unichain game model from Section 3.2. is the following:

Let gi, i€ {1,2,...n} be the set of solutions of the system

> oost =1, VezelX;
a;, €A (x) . ' ) . (29>
st >0, Ve e X, a' € A'(x).

x,a"

that determines the set of stationary strategies of player i. Each 5" is a convex
compact set and an arbitrary extreme point corresponds to a basic solution s* of
system (29), where s’ ., € {0,1}, Vo € X, a* € A(x), i.e each basic solution

of this system corresponds to a pure stationary strategy of player i. On the set
= =1 =2 — .
S§=5 x8 x---x 8" wedefine n payoff functions

s’; akfi(x, at,a?...a")qy,
1 (30)

i=1,2,....n,

s

1/12(31,52,...,3") =5

z€X (al,a?,...,a")EA(z) k
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where ¢, for z € X are determined uniquely from the following system of linear
equations

yeeey

==
H
E
ol
)E/\
Oy
&
B
nN
=]
3
<
S
Il
=
<C
<
m

Qy =2

z€X (a',a?,...,a™)EA(x) :1

(31)
& k (at,a?,...,a™)
qy +wy — > > I1 S akPz,y wy = 0y, Vy € X,
z€X (a',a?,...,a”)€A(z) k=1
for an arbitrary fixed s = (s!, s2,..., s™) € S. The functions ¥} (s!,s?,...,s"),
i = 1,2,...,n, represent the payoff functions for the average stochastic game

in normal form ({S'},_15, {¥}(s)},—17 ). This game is determined by the tuple
(X, {AY(2)} 1y (S, ‘1}1 T P {HU} ) where 6, for y € X are given nonnega-
tive values such that Y 6, = 1.

If ,=0, Vye X \ {zo} and 6y, =1 then we obtain an average stochastic
game in normal form ({S" Vieto {wh, (s)}i—1 ) when the starting state g is fixed,
e (st s?%,..., s") = wfao(sl,sz, el s”), i =1,2,...,n. So, in this case the
game is determined by (X, {AZ(I)}i:L_nv {fz(:c,a}izl,—n, D, To).

Ifo, >0, Vy € X and ZyEX 6, = 1 then we obtain an average stochastic game
when the play starts in the states y € X with probabilities 6,. In this case for the
payoffs of the players in the game in normal form we have

vh(st, 8% L., s")zZyGXHywé(sl,SQ, 8", i=1,2,...,n. (32)

5.2. The Main Properties of Average Stochastic Games in Normal
Form

Based on results from the previous section we can prove the following results.

Theorem 4. Let ({Fl}i:L—n, {¢§(5)}l:ﬁ> be the game in normal form for
the average stochastic game in stationary strategies determined by (X, {A*(x)},_17,
{fi(x,a};_17,p,{0,}) where 6, > 0, Vy € X, dyexbty = 1. If for this
= (s'7, 2*,...,5"*) then it is a Nash

equilibrium for the game in normal form <{§i}i:17—n,{wé(s)}i:1,—n ) with an ar-

game there exists a Nash equilibrium s*

bitrary y € X, i.e. s* = (s*7,s%",...,5"") is a stationary Nash equilibrium of
the average stochastic game with an arbitrary starting state y € X. Conversely,
if for an arbitrary starting state y € X the corresponding game in normal form

({?Z}mﬁ, {w;(s)}i—1) has a Nash equilibrium then for an arbitrary distribution
function {0,} on X with 0y > 0,Vy € X (3_,cx by = 1) the corresponding game
in normal form ({?Z}i:ﬁ,{z/}g(s)}i:L—n ) of the average stochastic game deter-
mined by (X, {Ai(x)}i:ﬁ,{fi(a:,a}i:L—n,p, {0y}) has a Nash equilibrium s* =
(31*_, s2" ..., ") which is a Nash equilibrium for each of the game in normal form

({?}mﬁ, {wj (s)}i—1 ) with the corresponding starting states y €Y.

Proof. (=) Let s* = (51", s%%,...,5"") be a Nash equilibrium for the game in nor-

mal form ({5'},_ o> {06(8)}i—17 ) determined by (X, {A"(2)},_17, {f*(z, a},_17,
p,{0,}), where 6, > 0,¥y € X,>° .0, = 1. Then (s'",s*",...,s"*) is a Nash
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equilibrium for the average stochastic game <{§i}i:L—n, {4 (s) }:1 ) with an
arbitrary distribution {6} on X, where 0, >0, Vy € X, >° 0, =1, 1ie

Wi (st s7) > b (st s, vs'eS, i=1,2,...,n.

If here we express g, via w,,

, using (32) then we obtain

Z 9;(w;(si*,5_i*) —w;(si,s_i*)) >0,Vs' € gi, i=1,2,...,n.

yeX
This property holds for arbitrary 6 >0, Vy € X such that > ., 0, =1 and
therefore for an arbitrary y € X we have

w;(si*,s_i*)—w;(si,s_i*) >0, Vs egi, 1=1,2,...,n.
So, ‘(51*, s2" ...,s™") is a Nash equilibrium for each of the game in normal form

<{§l}i:17—n, {wé(s)}i:L—n } with the corresponding starting states y € X.
(<:) Assume that for each starting state y € X the average stochastic game

<{§l}i:17—n, {wi(s)}iz 75 ) has a Nash equilibrium. Let us show that for the game

{5 {5(5) Y, ), determined by (X, {A%(2)},_r5, {f (2, a} . P2 {0, ).
where 6‘ > 0,Vy € X, ZyGX = 1 there exists a Nash equilibrium. We prove
this using an auxiliary average stochastic game with a new starting state z and
the set of states X U {z}, where for an arbitrary state € X each player i €
{1,2,...,n} has the same set of actions A’(x), the same payoffs fi(x,a) for a €
A(x) and the same transition probability distributions p§ , for a € A(z) as in

the game determined by (X, {A'(z)},_17, {f"(z,a},_17, p, {6,}); in the state

z of the auxiliary game each player i € {1,2,...,n} has a single action a’
and A(z) contains a unique profile a, = (ai,az,...,a’;) for which p%:, =

0, pds, =0,,Vy € X and f'(z,a.) =0, i =1,2,...,n. Obviously, for the auxiliary
average stochastic game with starting state z, determined by (X U {2}, {A%(z) U
A'(2) Yzt A (m,a), f1(2,02) }—17,p U {P37, ), 2) there exists a stationary Nash
equilibrium because a Nash equilibrium exists for an arbitrary average stochastic
game ({?}i:L—n, {w; (s)}i—1 ) with starting state y € Y. Taking into account
that the auxiliary game is equivalent to the average stochastic game, determined by
(X, {Az(x)}i:ﬁ, {fz(:v,a}i:L—n,p, {0y}), where 6, >0, Yy € X, ZyGX 0, =1, we
obtain that the considered average stochastic game with a random starting state

has a stationary Nash equilibrium s* = (s'",s%",. ..,8") which is a stationary
Nash equilibrium for the average stochastic game <{§Z}i:L—n, {wi (s)}i—17 ) with an
arbitrary starting state y € Y. O

From Theorem 3 we can easily obtain the following result.

Lemma 4. For an arbitrary game in normal form ({gi}i:ﬁ, {0§(s)}izts ) with
0 > 0,V € X, 3 0, =1 each payoﬁf@ncl}fion}zﬁé(sl, s2, ..., 8", i€
{1,2,...,n} possesses the property that y(s',87") is quasi-monotonic with

respect to st € S for arbitrary fized 37 € S

Proof. Indeed, if players 1,2,...,¢ — 1,4+ 1, ..., n fix their stationary strategies
o =k . . . ..
s ¢S, k=1,2,...,i—1,i+1, ..., n, then we obtain an average decision
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problem with respect to s € S and an average cost function ¥} (s®, 87%). According
to Theorem 3 vy (s’, §7") possesses the property that the value of this function is

uniquely determined by s* € S* and it is quasi-monotone with respect to s* on
o

S O
Using this lemma we can prove the following result.

Theorem 5. Let <{§Z}i:1,_n’ {§(s)}iztm) be the normal form game for the aver-
age stochastic game determined by (X, A, {X;},_15, {f"(x,a)},_177,p, {02}) where
0, >0, Vx € X, ZyGX 0, = 1. If each function ¥}, i € {1,2,...,n} is continuous
onS = S1xS52x.--.xS" then the game <{§l}i:17—n, {0§(s)}iz1s ) possesses a Nash
equilibrium s* = (sl*, 25 s™*)  which is a stationary Nash equilibrium for
the average stochastic game with an arbitrary starting state y € X.

Proof. Indeed, according to Lemma 4 each function <i(st, s2, ..., s"),
i€{l1,2,...,n} satisfies the condition that *(s?,37%), is quasi-monotonic with
respect to st e S for arbitrary fixed 3¢ € S~". In the considered game each subset
S" is convex and compact and according to the condition of the theorem each payoff
function ¥p(st, s, ..., s"), i € {1,2, ..., n} is continuous on S. Based on results
from (Dasgupta and Maskin, 1986; Debreu, 1952; Reny, 1999; Simon, 1987) these
conditions provide the existence of a Nash equilibrium s* = (31*, 25 s"*) for

the game ({?}mﬁ, {¥§(s)}i—tm )- According to Theorem 4 such an equilibrium

is a Nash equilibrium for the game ({?}mﬁ, {w;(s)}i—15 ) with an arbitrary
starting state y € X. O
Remark 2. Theorems 4 and 5 are valid also for the case of the game ({?i}i:L—n,
{¥§(s)}i—t ) when 6, = 0 for some y € X, however in this case we obtain sta-
tionary Nash equilibria only for the games ({gl}i:ﬁ, {wi(s)};—17) with starting
states z € X+, where X = {z € X|6, > 0}.

Remark 3. Theorem 5 holds also for the case when the payoffs are not continuous
but satisfy so-called graph-continuous property from (Dasgupta and Maskin, 1986).

6. Stationary Equilibria for Average Stochastic Positional Games

Average stochastic positional games have been introduced in (Lozovanu, 2018)
as a generalization of mean payoff games from (Ehrenfeucht and Mycielski, 1979).
An average stochastic positional game represents an average stochastic game in
which the set of states is divided into several disjoint subsets such that each subset
represents the position set for one of the player and each player controls the Markov
process only in his position set. In such a game each player chooses actions in his
position set in order to maximize his average reward per transition.

An average stochastic positional game with n prlayers is determined by the
following elements:

- a state space X (which we assume to be finite);

- a partition X = X; U Xo U --- U X,, where X; represents the position set
of player i € {1,2,...,n};
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- a finite set A(z) of actions in each state x € X;

- a step reward f%(x,a) with respect to each player i €{1,2,...,n} in each
state z € X and for an arbitrary action a € A(x);

- a transition probability function p: X x [[ A(z) x X — [0, 1] that gives
reX
the probability transitions pj , from an arbitrary r € X to an arbitrary

y € X for a fixed action a € A(x), where »_ pi =1, Vz € X, a € A(z);
yeX

- a starting state zg € X.

The game starts at the moment of time ¢ = 0 in the state xg where the player
i € {1,2,...,m} who is the owner of position xy (xo € X;) chooses an action
ap € A(xo) and determines the rewards f!(xo,ao), f*(2o, ao), - - -, f™(xo, ao) for the
corresponding players 1,2, ..., m. After that the game passes to a state y = z1 € X
according to probability distribution {pg°  }. At the moment of time ¢t = 1 the
player k € {1,2,...,n} who is the owner of the state position z1 (x1 € X) chooses
an action a; € A(z1) and players 1,2,...,m receive the corresponding rewards
Y x1,a1), f2(x1,01), ..., f*(21,a1). Then the game passes to a state y =z € X
according to probability distribution {pgiy} and so on indefinitely. Such a play
of the game produces a sequence of states and actions xg, ag, 1,01, ...,Z¢, G, . . .
that defines a stream of stage rewards fl(z;,a¢), f2(x¢,ae), ..., f" (2, a¢), t =
0,1,2,.... The average stochastic positional game is the game with payoffs of the

players
=
wy, = lim inf E (—Zfl(xq.,a,.)> , 1=1,2,...,n.
t— 00 t =

If pyo € {0,1} then the average stochastic positional game becomes a mean payoff
game. The problem of the existence of pure and mixed stationary equilibria in a
stochastic positional games has been studied in (Lozovanu, 2018; Lozovanu, 2019).
The pure and mixed stationary strategies in such a game can be defined in analogous
way as for a stochastic game, taking into account that each player select actions only
in his state positions and determines in these states the step rewards for all players.
Thus, a stationary strategy of player i € {1,2,...,n} in a stochastic positional game
is a mapping s’ that provides for every state z € X; a probability distribution over
the set of actions A(z). This means that the set of stationary strategies S of player
i €{1,2,...,n} can be identified with the set of solutions of the system

>osha=1, Vo e Xi;
at€A(x) (33)
st 4 >0, Ve e X;, Vae A(x).

The payoffs wé(SI,SQ, o, 8™)i=1,2,...,n0nS = T xS x---x 5" for the game
in normal form for the considered positional game we can obtain from (30), (31) if
we take into account the particularity of the average stoshastic positional game. So,

ng(sl,sQ,...,sm):i Z Z sﬁyafi(x,a)qm, i=1,2,...,m, (34)

k=1 z€X) acA(x)
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where ¢, for z € X are determined uniquely from the following system of linear
equations

qy — Z Z Z S];,a pg,y Az = 07 vy € X7
k=1 z€Xr a€A(x)
(35)

m

dy + Wy — Z Z Z Sl;,a p;,y We = Gyv \V/y eX
k=1 z€Xy a€A(x)

In (Lozovanu, 2018) is shown that the game ({?Z}i:L—n, {¥5(s)} izt ) defined
according to (2) - (35) possesses a Nash equilibrium which is a stationary Nash
equilibrium for the average stochastic positional game with an arbitrary starting
state y € X. Moreover, in (Lozovanu, 2019) is shown that for two-player zero-sum
stochastic positional games and for n-player average stochastic positional games

with unichain property there exist stationary Nash equilibria in pure strategies.

7. Conclusion

An arbitrary average stochastic game with finite state and action spaces can
be formulated in terms of stationary strategies as a game in normal form where
each payof! is quasi-monotonic (quasi-concave and quasi-convex) with respect to the
strategy of the corresponding player. Such a normal form game (the game model
from Section 5) allows to determine all stationary Nash equilibria of the average
stochastic game if stationary Nash equilibria exist. If the payoffs of the game in
normal form are continuous or graph continuous then stationary Nash equilibria
exist. For an average stochastic game with unichain property and for an average
stochastic positional game stationary Nash equilibria always exist and all stationary
equilibria can be found by using the corresponding game models in normal form
from Section 4 and Section 6. For two-player zero-sum average stochastic positional
games and for n-player average stochastic positional games with unichain property
there exist stationary equilibria in pure strategies

References

Boyd, S. and Vandenberghe, L. (2004). Convezx optimization. Cambrigge university press.

Dasgupta, P. and Maskin, E. (1986). The ewistence of equilibrium in discontinuous eco-
nomic games, I: Theory. The Review of economic studies, 53, 1-26.

Debreu, G. (1952). A social equilibrium ezistence theorem. Proceedings of the National
Academy of Sciences, 38, 886-893.

Ehrenfeucht, A., Mycielski, J. (1979). Positional strategies for mean payoff games. Int. J.
of Game Theory, 8, 109-113.

Filar, J., Vrieze, K. (1997). Competitive Markov Decision Processes. New York, NY,
Springer.

Filar, J. A., Schultz, T. A., Thuijsman, F., Vrieze, O. (1991). Nonlinear programming and
stationary equilibria in stochastic games. Mathematical Programming, 50, 227-237.

Fink, A. M. (1964). Equilibrium in a stochastic n-person game. Journal of Science of the
Hiroshima University, ser. math., 28, 89-93..

Flesch, J., Thuijsman, F., Vrieze, K. (1997). Cyclic Markov equilibria in stochastic games.
International Journal of Game Theory, 26, 303-314.

Gillette, D. (1957). Stochastic games with zero stop probabilities. Contributions to the
Theory of Games, 3, 179-187.



On the Existence of Stationary Nash Equilibria in Average Stochastic Games 323

Glicksberg, I. L. (1952). A further generalization of the Kakutani fized point theorem wih
application to Nash equilibrium points. Proceedings of the American Mathematical
Society, 38, 170-174.

Kallenberg, L. (2016). Markov decision processes. University of Leiden, Netherland 2016.

Lozovanu, D. (2011). The game-theoretical approach to Markov decision problems and
determining Nash equilibria for stochastic positional games. International Journal of
Mathematical Modelling and Numerical Optimisation, 2, 162-174.

Lozovanu, D. (2018). Stationary Nash equilibria for average stochastic positional
games.Chapter 9 in the book "Frontiers of Dynamic Games, Static and Dynamic Game
Theory: Fondation and Application"(L.Petrosyan et al. eds), Springer, 139-163.

Lozovanu, D. (2019). Pure and Mized Stationary Nash equilibria for average stochastic
positional games. Chapter 8 in the book "Frontiers of Dynamic Games, Static and
Dynamic Game Theory: Fondation and Application"(L.Petrosyan et al. eds), Springer,
131-174.

Lozovanu, D., Pickl, S. (2015). Optimization of stochastic discrete systems and control
on complex networks. Springer.

Mertens, J.-F., Neyman, A. (1981). Stochastic games. International Journal of Game
Theory, 10, 53-66.

Neyman, A., Sorin, S. (2003). Stochastic games and applications. NATO science series, C,
569, Mathematical and physical sciences, Kluwer Academic Publishers.

Puterman, M. L. (2005). Markov decision processes: Discrete stochastic dynamic program-
ming. Wiley, New Jersey.

Reny, P.J. (1999). On the existence of pure and mized strategy Nash equilibria in discon-
tinuous games. Econometrica, 67, 1029-1056.

Rogers, P.D. (1969). Nonzero-sum stochastic games. Technical Report, DTIC Document.

Schultz, T.A. (1986). Mathematical programming and stochastic games. Ph. D. Thesis,
The John Hopkins University, Baltimore, Maryland.

Shapley, L. S. (1953). Stochastic games. Proceedings of the National Academy of Sciences,
39, 1095-1100.

Simon, L. K. (1987). Games with discontinuous payoffs. The Review of Economic Studies,
54, 569-597.

Sobel, M. J. (1971). Noncooperative stochastic games. The Annals of Mathematical Statis-
tics, 42, 1930-1935.

Solan, E. (2009). Stochastic games. In: Encyclopedia of Complezity and Systems Science.
8698-8708, Springer.

Solan, E., Vieille, N. (2010). Computing uniformly optimal strategies in two-player stochas-
tic games. Economic Theory, 42, 237-253.

Takahashi, M. (1964). Equilibrium points of stochastic non-cooperative n-person games.
Journal of Science of the Hiroshima University, Series AI, Math., 28, 95-99.

Tijs, S., Vrieze, O. (1986). On the existence of easy initial states for undiscounted stochastic
games. Mathematics of Operations Research, 11, 506-513.

Vieille, N. (2002). Stochastic games: Recent results. Handbook of Game Theory with
Economic Applications, 3, 1833-1850.

Vieille, N. (2009). Equilibrium in 2-person stochastic games LII. Israel Journal of Math-
ematics, 8698-8708.

Vrieze, O.J. (1987). Stochastic games with finite state and action spaces. CWI Tracts, 33,
1-221.



