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Abstrat In the paper, onstrutions of the generalized method of har-

ateristis are applied for alulating the generalized minimax (visosity)

solutions of Hamilton-Jaobi equations in dynami bimatrix games. The

struture of the game presumes interations of two players in the framework

of the evolutionary game model. Stohasti ontats between players our

aording to the dynami proess, whih an be interpreted as a system

of Kolmogorov's di�erential equations with ontrols instead of probability

parameters. It is assumed that ontrol parameters are not �xed and an be

onstruted by the feedbak priniple. Two types of payo� funtions are on-

sidered: short-term payo�s are determined in the urrent moments of time,

and long-term payo�s are determined as limit funtionals on the in�nite

time horizon. The notion of dynami Nash equilibrium in the lass of on-

trolled feedbaks is onsidered for the long-term payo�s. In the framework

of onstrutions of dynami equilibrium, the solutions are designed on the

basis of maximization of guaranteed payo�s. Suh guaranteeing strategies

are built in the framework of the theory of minimax (visosity) solutions

of Hamilton-Jaobi equations. The analytial formulas are obtained for the

value funtions in the ases of di�erent orientations for the �zigzags� (broken

lines) of aeptable situations in the stati game. The equilibrium trajeto-

ries generated by the minimax solutions shift the system in the diretion of

ooperative Pareto points. The proposed approah provides new qualitative

properties of the equilibrium trajetories in the dynami bimatrix games

whih guarantee better results of payo�s for both players than stati Nash

equilibria. As an example, interations of two �rms on the market of in-

novative eletroni devies are examined within the proposed approah for

treating dynami bimatrix games.

Keywords: optimal ontrol, dynami bimatrix games, value funtions, min-

imax solutions of Hamilton-Jaobi equations, dynami Nash equilibrium tra-

jetories, shift to Pareto maximum.

1. Introdution

In the paper, a model of evolutionary non-zero sum game between two players

(oalitions of players) is onsidered in the framework of di�erential games the-

ory (Krasovskii and Krasovskii, 1995; Krasovskii, 1985; Krasovskii and Subbotin,

1988). We use some ideas and approahes proposed in (Kleimenov, 1993) for non-

antagonisti di�erential games. The methods for analysis of evolutionary games
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suggested in the paper (Kryazhimskii and Osipov, 1995) are applied for derivation

of the game dynamis . The main attention is paid to the onstrution of the dy-

nami Nash equilibrium with guaranteeing strategies of players, whih maximize

orresponding payo� funtions (Pontryagin et al., 1961; Krasovskii and Subbotin,

1988). Solution trajetories are generated, whih provide better result omparing

to lassi models, for example, models with the repliator dynamis.

The dynamis of game interations orresponds to the di�erential games the-

ory (Kleimenov, 1993; Krasovskii, 1985; Krasovskii and Subbotin, 1988; Kryazhim-

skii and Osipov, 1995; Kurzhanskii, 1977) and evolutionary game models (Basar

and Olsder, 1982; Friedman, 1991; Hofbauer and Sigmund, 1988; Intriligator, 1971;

Tarasyev, 1994).

The main idea of the paper is to apply the theory of generalized minimax (visos-

ity) solutions for Hamilton-Jaobi equations (Crandall and Lions, 1983; Subbotin,

1991) to analysis of the dynami bimatrix games.

It is assumed that random interations between players are presented by the

ontrolled dynami proess, in whih orresponding probabilities form a phase ve-

tor. Information signals for partiipants play the role of ontrol parameters. Suh

dynamis an be interpreted as a generalization of the well-known Kolmogorov's

equations, whih are used in some stohasti models of mathematial eonomis and

queue theory. The generalization is based on introdution of ontrols instead the

probability parameters whih desribe inoming and outgoing �ows inside groups

of players. The dynami proess evolves on an in�nite time interval. Partiipants'

payo�s at eah round are spei�ed by the payo� matries. Groups' payo�s are deter-

mined as the average value of partiipants' payo�s. Various types of these averages

are onsidered: terminal (short run) � for a �xed terminal time, and multi-terminal

(long run) � for the limit on the in�nite time interval. Let us note that the non-zero

sum game was analyzed in (Tarasyev, 1994) with the disounted integral payo�

funtionals. Multi-terminal funtionals are assoiated with the onept whih takes

into the aount not only loal terminal interests of groups, but also are oriented

on hanges in the future.

The de�nition of the dynami Nash equilibrium is introdued in the lass of

feedbak ontrol strategies. Let us note that feedbaks generated by the lassi

�punishing� strategy in stati bimatrix games are a natural example of the Nash

equilibrium in dynami terms. The nature of suh reations are antagonisti: they

minimize the payo� of the opponent, not maximizing their own.

A di�erent approah is proposed on the basis of the onept of the �guarantee�

providing better results than lassi solutions. These new solutions are generated

in the framework of the positional di�erential games theory and involve the guar-

anteeing feedbaks in the auxiliary zero-sum games (Kleimenov, 1993; Krasovskii

and Subbotin, 1988; Petrosjan and Zenkevih, 2015). So, the non-zero sum games

are onsidered in the framework of the theory for minimax solutions of Hamilton-

Jaobi equations (Crandall and Lions, 1983; Subbotin, 1991; Subbotin and Tarasyev,

1985; Tarasyev, 1994). For the analytial onstrution of the value funtion and

optimal guaranteeing feedbaks we use methods of the di�erential games theory

(Kleimenov, 1993; Krasovskii and Subbotin, 1988), the generalized harateristis

of the Hamilton-Jaobi equations (Subbotin, 1991), and onstrutions of the via-

bility theory (Aubin, 1990). The orresponding neessary and su�ient onditions

are veri�ed for the value funtions, partiularly, in terms of onjugate derivatives
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(Subbotin and Tarasyev, 1985). The struture of the value funtions is suh that the

synthesis of guaranteeing feedbaks for ontrols is determined by swithing urves

from one harateristi of the Hamilton-Jaobi equation to another one. Let us note,

that similar ideas for the numerial onstrution of the solution are used in papers

(Klaassen et al., 2004; Tarasyev and Watanabe, 2001; Krasovskii and Tarasyev,

2008; Krasovskii and Tarasyev, 2011; Krasovskii and Tarasyev, 2015; Krasovskii

and Tarasyev, 2018).

The qualitative behavior of the proposed equilibrium solutions, generated by

the guarantee synthesis, signi�antly di�ers from trajetories of evolutionary games

presented in lassi models with the dynami repliator. Let us note that suh tra-

jetories usually onverge to the stati Nash equilibrium or irulate in its surround-

ings (Hofbauer and Sigmund, 1988). New equilibrium solutions are not smooth and

have the swithing regimes within harateristis of the Hamilton-Jaobi equations.

Unlike lassial trajetories, they are loated at the intersetion of areas, for whih

the values of players' payo�s are better than the orresponding payo�s alulated in

the stati Nash equilibrium. The proposed equilibrium solutions do not onverge to

the stati Nash equilibrium, and their marginal payo�s are better than at the point

of the Nash equilibrium. In this sense, one an say about shift of Nash equilibrium

trajetories to the set of Pareto maximum points.

We provide analyti formulas for the value funtions in the ases of di�erent

orientations for the �zigzags� (broken lines) of aeptable situations in the stati

game (Vorobyev, 1985). The equilibrium trajetories generated by the minimax

solutions onverge either to the intersetion points of the synthesized swithing

lines, or to Pareto maximum points on the boundary of the square of aeptable

situations, i.e. to �new� equilibrium points with better payo� indies. Thus, it is

demonstrated that the proposed approah provides new qualitative properties of

the equilibrium trajetories in the dynami bimatrix games. As an example, we

onsider interations of two �rms on the market of innovative eletroni devies,

whih give the dynami bimatrix game with the left orientation of �zigzag� (broken

line) of aeptable situations. We onstrut ontrol synthesis for both players basing

on the value funtions as the generalized minimax solutions of the Hamilton-Jaobi

equations, and generate the Nash equilibrium trajetories whih shift the game

solution in the diretion of the Pareto maximum set.

2. Evolutionary Game. Dynami Nash Equilibrium

2.1. Model Dynamis, Payo� Funtions

Let us onsider the system of di�erential equations, whih desribes the behavior

dynamis of two players:

ẋ(t) = −x(t) + u(t), x(t0) = x0,
ẏ(t) = −y(t) + v(t), y(t0) = y0.

(1)

Here the parameter x = x(t), 0 ≤ x ≤ 1 means the probability that the �rst

player holds to the �rst strategy (respetively, (1 − x) is the probability that he

holds to the seond strategy). Parameter y = y(t), 0 ≤ y ≤ 1 stands for the

probability of hoosing the �rst strategy by the seond player (respetively, (1− y)
is the probability that he holds to the seond strategy). Control parameters u = u(t)
and v = v(t) satisfy onditions 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and an be interpreted as

signals that reommend hanging strategies by players.
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For example, the value u = 0 (v = 0) orresponds to the signal: �hange the �rst
strategy to the seond�. The value u = 1 (v = 1) orresponds to the signal: �hange
the seond strategy to the �rst�. The value u = x (v = y) orresponds to the signal:
�keep the previous strategy�.

Let us note, that the basis for the dynamis (1) and its properties were onsidered

in (Kryazhimskii and Osipov, 1995; Tarasyev, 1994). In this dynamis, Kolmogorov's

di�erential equations are generalized under the assumption that the oe�ients

of inoming and outgoing �ows between players are not set a priori and an be

onstruted in the ontrol proess on the feedbak priniple.

As an interpretation of the dynamis (1), we onsider the game interation of two

players (or their investments) on two markets. Let x be a part of the funds, whih the
�rst player (it may be a �nanial or industrial group) invest in the �rst market (this

may be a �nanial market, a market of goods or innovative tehnologies (Vorobyev,

1985)). Respetively, 1−x is the investment of the �rst player in the seond market.

Let y be the part of the funds that the seond player invest in the �rst market.

Respetively, 1− y is the investment of the seond player in the seond market. Let

us assume that ativity of players is regulated by a governing body. Using ontrol

parameters u and v, a governing body an in�uene on the distribution of funds x
and y. The dynamis of this in�uene is desribed by the system (1) and provides

some inertia of players in relation to ontrol signals u, v, while the veloities ẋ, ẏ of
hanging of apital proportions x, y are not right proportional to the signals, and

depend on the size of these proportions. For example, the �rst equation in (1) means

that aording to the signal u = 0 the proportion x dereases to zero aording to

the dynamis

˙x(t) = −x(t).
An important property of dynamis (1) is that the square, (x, y) ∈ [0, 1]× [0, 1],

is its strongly invariant set. That is, any trajetory of dynamis (1), whih starts in

the square, survives in it on the in�nite time horizon.

Let us assume, that payo�s of the �rst (seond) player are desribed by the

matrix A = aij (B = bij)

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

Let us onsider, for example, for the game of two players on two markets the

following situation, whih we will all almost antagonisti. Let us assume that the

�rst market is more pro�table for investments than the seond one. The �rst player is

stronger than the the seond one. He is trying to apture both markets. The seond

player is trying to avoid interations with the �rst player on the same market.

The terminal payo� funtions of players are determined as a mathematial expe-

tation of payo�s generated by orresponding matries A, B, and an be interpreted

as �loal� interests of players

gA(x(T ), y(T )) =

a11x(T )y(T ) + a12x(T )(1− y(T )) + a21(1− x(T ))y(T ) + a22(1− x(T ))(1 − y(T )) =

CAx(T )y(T )− α1x(T )− α2y(T ) + a22.
(2)

The funtion gB for the matrix B is determined analogously. Here the oe�ients

CA, α1, α2 are determined aording to the lassial theory of bimatrix games
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(Vorobyev, 1985)

CA = a11 − a12 − a21 + a22, α1 = a22 − a12, α2 = a22 − a21.

The oe�ients CB, β1, β2 for the matrix B are determined analogously.

The �global� interests J∞
A of the �rst player are determined as multivalued (two-

digit) funtions formed by lower and upper limits of average values

J∞
A = [J−

A , J
+
A ],

J−
A = J−

A (x(·), y(·)) = lim inf
t→∞

gA(x(t), y(t)),

J+
A = J+

A (x(·), y(·)) = lim sup
t→∞

gA(x(t), y(t)),

(3)

alulated for the trajetories (x(·), y(·)) of the system (1). For the seond player

the �global� interests J∞
B are determined symmetrially.

Let us onsider an evolutionary non-zero sum game with the dynamis (1) and

global payo�s, given by the sheme (3). In the di�erential games theory (Kleimenov,

1993; Krasovskii and Subbotin, 1988) there exists an approah for onstrution of

the equilibrium solutions from the lass of strategies, de�ned on the feedbak prin-

iple U = u(t, x, y, ε), V = v(t, x, y, ε), for the non-zero sum games. Suh approah

is based on the solution of auxiliary zero sum games. Aording to our statement

of the problem, we onsider zero sum games for the funtionals J−
A , J

+
A , J

−
B , J

+
B .

It is known, that problems with zero sum an be solved in the framework of di�er-

ential games theory, and the solution for guaranteeing strategies an be obtained

in the framework of the dynami programming priniple. Suh priniple requires

�nding the value funtions, whih are generalized minimax solutions of Hamilton-

Jaobi equations, namely, the problem is redued to solving the equations in partial

derivatives of the �rst order.

2.2. Dynami Nash Equilibrium

Following (Kleimenov, 1993; Kryazhimskii and Osipov, 1995), we present the

de�nition of the dynami Nash equilibrium in the lass of positional strategies (feed-

baks) U = u(t, x, y, ε), V = v(t, x, y, ε) for the non-zero sum game with the given

dynamis and the multivalued payo� funtionals.

De�nition 1. Let ε > 0 and (x0, y0) ∈ [0, 1] × [0, 1]. The pair of feedbaks U0 =
u0(t, x, y, ε), V 0 = v0(t, x, y, ε) is alled the Nash equilibrium at the initial point

(x0, y0), if for any other feedbaks U = u(t, x, y, ε), V = v(t, x, y, ε) the following

onditions take plae: for any trajetories

(x0(·), y0(·)) ∈ X(x0, y0, U
0, V 0),

(x1(·), y1(·)) ∈ X(x0, y0, U, V
0), (x2(·), y2(·)) ∈ X(x0, y0, U

0, V )

the inequalities are true:

J−
A (x0(·), y0(·)) ≥ J+

A (x1(·), y1(·))− ε, J−
B (x0(·), y0(·)) ≥ J+

B (x2(·), y2(·))− ε.

Here the symbol X stands for the set of trajetories, whih start from the initial

point (x0, y0) and are generated by the orresponded strategies (U0, V 0), (U, V 0),
(U0, V ) (see (Krasovskii and Subbotin, 1988)).
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2.3. Auxiliary Zero-Sum Games

For onstrution of the desired equilibrium feedbaks U0
, V 0

we use the results

(Kleimenov, 1993). Aording to this approah, we onstrut the equilibrium us-

ing optimal feedbaks for di�erential games ΓA = Γ−
A ∪ Γ+

A and ΓB = Γ−
B ∪ Γ+

B

with payo�s J∞
A and J∞

B . In the game ΓA the �rst player maximizes the funtional

J−
A (x(·), y(·)) with the guarantee, using the feedbak U = u(t, x, y, ε), and the se-

ond player, on the ontrary, tries to minimize the funtional J+
A (x(·), y(·)), using the

feedbak V = v(t, x, y, ε). Vie versa, in the game ΓB the seond player maximizes

the funtional J−
B (x(·), y(·)) with the guarantee, and the �rst player minimizes the

funtional J+
B (x(·), y(·)).

Let us introdue the following notations. The feedbaks solving, respetively,

the problem of guaranteeing maximization of the payo� funtionals J−
A , J

−
B are

denoted by symbols u0A = u0A(t, x, y, ε) and v0B = v0B(t, x, y, ε). Let us note, that
suh feedbaks present the guaranteeing maximization of players' payo�s in the

long run, and an be alled �positive� feedbaks. By symbols u0B = u0B(t, x, y, ε) and
v0A = v0A(t, x, y, ε) we denote feedbaks whih are most unfavorable to the opposing

players; namely, those feedbaks, whih minimizes the payo� funtional J+
B , J

+
A of

opposing players, respetively. Let us all these feedbaks �punishing�.

Let us note, that in�exible solutions to these problems an be obtained in the

framework of the lassial theory of bimatrix games. In fat, let us suppose for

de�niteness (although this is not essential for onstruting solutions in the general

ase) that the following onditions are satis�ed:

CA > 0, 0 < xA =
α2

CA
< 1, 0 < yA =

α1

CA
< 1,

CB < 0, 0 < xB =
β2
CB

< 1, 0 < yB =
β1
CB

< 1.

Proposition 1. The di�erential games Γ−
A , Γ

+
A (Γ−

B , Γ
+
B ) have equal values

ω−
A = ω+

A = ωA =
a22CA − α1α2

CA
, ω−

B = ω+
B = ωB =

b22CB − β1β2
CB

for arbitrary initial position (x0, y0) ∈ [0, 1]× [1, 0]. These values an be guaranteed

by �positive� feedbaks uclA, v
cl
B orresponding to the lassi solutions xA, yB

uclA(x, y) =





0, xA < x ≤ 1
1, 0 ≤ x < xA
[0, 1] , x = xA

, vclB(x, y) =





0, yB < y ≤ 1
1, 0 ≤ y < yB
[0, 1] , y = yB

.

The �punishing� feedbaks are determined by formulas

uclB(x, y) =





0, xB < x ≤ 1
1, 0 ≤ x < xB
[0, 1] , x = xB

, vclA(x, y) =





0, yA < y ≤ 1
1, 0 ≤ y < yA
[0, 1] , y = yA

and orrespond to the lassi stati solutions xB , yA, whih generate the stati Nash

equilibrium NE = (xB , yA).

Proof. The proof of this proposition is justi�ed by the diret substitution of strate-

gies uclA, v
cl
B and strategies uclB, v

cl
A in the dynamis (1). ⊓⊔
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Note 1. The values of payo� funtions gA(x, y), gB(x, y) oinide at points (xA, yB),
(xB , yA)

gA(xA, yB) = gA(xB , yA) = ωA, gB(xA, yB) = gB(xB , yA) = ωB.

The point NE = (xB , yA) is the �mutually punishing� Nash equilibrium, and the

point xA, yB does not possess the equilibrium properties in the orresponding stati

game.

2.4. Constrution of the Nash Equilibrium

Let us onstrut the pair of feedbaks, whih form the dynami Nash equilibrium.

For that, we onnet the �positive� feedbaks u0A, v
0
B and the �punishing� feedbaks

u0B, v
0
A.

Let us hoose the initial position (x0, y0) ∈ [0, 1] × [0, 1] and the auray pa-

rameter ε > 0. Let us hoose the trajetory (x0(·), y0(·)) ∈ X(x0, y0, U
0
A(·), v0B(·)),

generated by the �positive� feedbaks u0A = U0
A(t, x, y, ε) and v

0
B = v0B(t, x, y, ε). Let

us take the time moment Tε > 0 suh that

gA(x
0(t), y0(t)) > J−

A (x0(·), y0(·))− ε, gB(x
0(t), y0(t)) > J−

B (x0(·), y0(·))− ε,
t ∈ [Tε,+∞].

Let us denote by uεA(t): [0, Tε) → [0, 1], vεB(t): [0, Tε) → [0, 1] the step-by-

step realization of the strategies v0A, v
0
B suh that the orresponding step-by-step

mehanism (xε(·), yε(·)) satis�es the ondition

max
t∈[0,Tε]

‖(x0(t), y0(t))− (xε(t), yε(t))‖ < ε.

From the results of the paper (Kleimenov, 1993) the next proposition follows.

Proposition 2. The pair of feedbaks U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε), on-
neting together the �positive� feedbaks u0A, v

0
B and the �punishing� feedbaks u0B,

v0A aording to the relations

U0 =

{
uεA(t), if ‖(x, y)− (xε(t), yε(t))‖ < ε,
u0B(x, y), otherwise,

V 0 =

{
vεB(t), if ‖(x, y)− (xε(t), yε(t))‖ < ε,
v0A(x, y), otherwise,

is the dynami ε-Nash equilibrium.

Note 2. Let us note that the number ε an be interpreted as the parameter of

�trust� of players to eah other or as the level of �risk�, whih players allow in the

game. This parameter determines the risk barrier that surrounds the equilibrium

trajetory (xε(·), yε(·)). The players either follow the equilibrium trajetory, without

leaving the presribed risk barrier, getting the more pro�table index of values, or

stepping over it and the �punishing� strategy gives worse results.

Below we onstrut the �exible �positive� feedbaks, whih generate trajetories

(xfl(·), yfl(·)) reduing to �better� positions, than the in�exible dynami equilibrium

(xB , yA), (xA, yB) by both riteria J∞
A (xfl(·), yfl(·)) ≥ ωA, J

∞
B (xfl(·), yfl(·)) ≥ ωB.
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3. Di�erential Game with Terminal Funtional

3.1. Value Funtions and Generalized Solutions of Hamilton-Jaobi

Equations

In this setion, we onsider an auxiliary terminal di�erential zero-sum game with

the dynamis (1) and payo� funtionals (2). Further, solutions of terminal di�er-

ential games are used for the onstrution of antiipating feedbaks by alulating

the lower envelope of multi-terminal funtionals. The value funtions wi(T, t, x, y),
i = 1, 2 of terminal games are determined as values of orresponding maximins

(minimaxs)

w1(T, t0, x0, y0) =
max

u(t,x,y)
min

(x1(·),y1(·))
gA(x1(T ), y1(T )) = min

v(t,x,y)
max

(x2(·),y2(·))
gA(x2(T ), y2(T )),

w2(T, t0, x0, y0) =
max

v(t,x,y)
min

(x2(·),y2(·))
gB(x2(T ), y2(T )) = min

u(t,x,y)
max

(x1(·),y1(·))
gB(x1(T ), y1(T ))

for eah initial position (t0, x0, y0). Here trajetories (x1(·), y1(·)) are generated by

feedbaks u(t, x, y, ε) and random behaviors v(t). Trajetories (x2(·), y2(·)) are gen-
erated by feedbaks v(t, x, y, ε) and random behaviors u(t) from the initial position

(t0, x0, y0).
The value funtions wi(T, t, x, y), i = 1, 2 satisfy the priniple of the dynami

programming, whih implies the existene of non-inreasing and non-dereasing

diretions ahievable for the dynami system at eah urrent position (the so alled

properties u and v of stability of the value funtion). At the points, where the

value funtions are di�erentiable, these properties pass into the �rst-order partial

di�erential Hamilton-Jaobi equations

∂w1

∂t
− ∂w1

∂x
x− ∂w1

∂y
y + max

0≤u≤1

∂w1

∂x
u+ min

0≤v≤1

∂w1

∂y
v = 0, (4)

∂w2

∂t
− ∂w2

∂x
x− ∂w2

∂y
y + min

0≤u≤1

∂w2

∂x
u+ max

0≤v≤1

∂w2

∂y
v = 0. (5)

The value funtions wi(T, t, x, y), i = 1, 2 also satisfy the boundary ondition,

when t = T :

w1(T, T, x, y) = gA(x, y), w2(T, T, x, y) = gB(x, y). (6)

Let us onsider the terminal boundary problems (4)�(6) for the value funtions

w1(T, t, x, y), w2(T, t, x, y). It is known (Crandall and Lions, 1983; Subbotin, 1991),

that value funtion w1(T, t, x, y) oinides with the generalized solution of this prob-
lem, whih is unique and is determined by the terminal boundary value (6), and

the pair of di�erential inequalities for onjugate derivatives D∗w1 and D∗w1, or-

responding to the Hamilton-Jaobi equation (4)

D∗w1(T, t, x, y)|(s) ≥ H(x, y, s), D∗w1(T, t, x, y)|(s) ≤ H(x, y, s), (7)

(t, x, y) ∈ [t0, T ]× (0, 1)× (0, 1), s = (s1, s2) ∈ R
2.
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The onjugate derivatives D∗w1 and D∗w1 and the Hamiltonian H are given by

the formulas (Subbotin and Tarasyev, 1985)

D∗w1(T, t, x, y)|(s) = sup
h∈R2

(〈s, h〉 − ∂−w1(T, t, x, y)|(1, h)),

D∗w1(T, t, x, y)|(s) = inf
h∈R2

(〈s, h〉 − ∂+w1(T, t, x, y)|(1, h)),

H(x, y, s) = −s1x− s2y + max
0≤u≤1

s1u+ min
0≤v≤1

s2v.

Expressions ∂−w1(T, t, x, y)|(1, h), ∂+w1(T, t, x, y)|(1, h) stand for diretional deriva-
tives of the value funtion w1 at the point (t, x, y) in the diretion (1, h), h =
(h1, h2) ∈ R2

∂−w1(T, t, x, y)|(1, h)) = lim inf
δ↓0

w1(T, t+ δ, x+ δh1, y + δh2)− w1(T, t, x, y)

δ
,

∂+w1(T, t, x, y)|(1, h)) = lim sup
δ↓0

w1(T, t+ δ, x+ δh1, y + δh2)− w1(T, t, x, y)

δ
.

For the pieewise smooth value funtion w1 the diretional derivatives and the

onjugate derivatives an be alulated in the framework of non-smooth and onvex

analysis. Let us assume that in the viinity (t, x, y) ∈ Oε(t∗, x∗, y∗) the funtion w1

is given by the formulas

w1(T, t, x, y) = min
i∈I

max
j∈J

ϕij(T, t, x, y) = max
j∈J

min
i∈I

ϕij(T, t, x, y).

Here symbols I, J stand for the �nite sets of indies i, j respetively.
The diretional derivatives in this ase are determined by the relations

∂w1(T, t∗, x∗, y∗)|(h) = min
i∈I

max
j∈J

(aij + 〈bij , h〉) = max
j∈J

min
i∈I

(aij + 〈bij , h〉),

aij =
∂ϕij

∂t
, bij =

(∂ϕij

∂x
,
∂ϕij

∂y

)
.

Let us introdue the notations

C =
⋂

i∈I

Bi, Bi = co{bij : j ∈ J}, D =
⋂

j∈J

Bj , Bj = co{bij : i ∈ I}.

The onjugate derivatives are determined by the relations

D∗w1(T, t∗, x∗, y∗)|(s) =





max
i∈I

min{−
∑

j∈J

λj(s)aij}, s ∈ C,

+∞, s /∈ C,

D∗w1(T, t∗, x∗, y∗)|(s) =





min
j∈J

max{−
∑

i∈I

λi(s)aij}, s ∈ D,

−∞, s /∈ D.

Here the oe�ients λj(s) satisfy the onditions

∑

j∈J

λj(s)bij = s, λj(s) ≥ 0,
∑

j∈J

λj(s) = 1.
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3.2. Desription of Analytial Solution for Boundary Problem

The boundary problem (4), (6) has an analytial solution. The orresponding

value funtion w1(T, t, x, y) is pieewise smooth and onsists of �ve smooth fun-

tions ϕk(T, t, x, y), k = 1, . . . , 5. The analytial formulas for smooth omponents

ϕk(T, t, x, y), k = 1, . . . , 5 an be obtained using the method of harateristis for

the linear Hamilton-Jaobi equations, whih arise from nonlinear (4) by the substi-

tuting di�erent ombinations of the extremal values 0 and 1 in the expressions max
and min. Let us provide the formulas for these funtions:

ϕ1(T, t, x, y) = CAe
2(t−T )xy − α1e

t−Tx− α2e
t−T y + a22, (8)

ϕ2(T, t, x, y) = CAe
2(t−T )xy − α1e

t−Tx

−
(
CAe

2(t−T ) + (α2 − CA)e
(t−T )

)
y + α1e

(t−T ) + a12,
(9)

ϕ3(T, t, x, y) = CAe
2(t−T )xy −

(
CAe

2(t−T ) + (α1 − CA)e
(t−T )

)
x−

(CAe
2(t−T ) + (α2 − CA)e

(t−T ))y + CAe
2(t−T ) + (α1 + α2 − 2CA)e

(t−T ) + a11,
(10)

ϕ4(T, t, x, y) = CAe
2(t−T )xy −

(
CAe

2(t−T ) + (α1 − CA)e
(t−T )

)
x−

α2e
t−T y + α2e

t−T + a21,
(11)

ϕ5(T, t, x, y) =
a22CA − α1α2

CA
=
a11a22 − a12a21

CA
=
DA

CA
= vA.

The funtions ϕk, k = 1, . . . , 5 are pasting together on the four lines Lm = Lm(T, t),
m = 1, . . . , 4

L1 =
{
(x, y) : x1(T, t) ≤ x ≤ 1, y = y2(T, t)

}
,

L2 =
{
(x, y) : x = x1(T, t), y1(T, t) ≤ y ≤ 1

}
,

L3 =
{
(x, y) : 0 ≤ x ≤ x2(T, t), y = y1(T, t)

}
,

L4 =
{
(x, y) : x = x2(T, t), 0 ≤ y ≤ y2(T, t)

}
.

Here

x1(T, t) = max

{
0, 1−

(
1− α2

CA

)
e(T−t)

}
, x2(T, t) = max

{
1,
α2

CA
e(T−t)

}
,

y1(T, t) = max

{
0, 1−

(
1− α1

CA

)
e(T−t)

}
, y2(T, t) = max

{
1,
α1

CA
e(T−t)

}
.

Proposition 3. The value funtion w1(T, t, x, y) is determined by the relation

w1(T, t, x, y) = ϕk(T, t, x, y), (x, y) ∈ Dk(T, t), k = 1, . . . , 5. (12)

Here domains Dk = Dk(T, t), k = 1, . . . , 5 are given by inequalities

D1(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : x2(T, t) ≤ x ≤ 1, 0 ≤ y ≤ y2(T, t)},
D2(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : x1(T, t) ≤ x ≤ 1, y2(T, t) ≤ y ≤ 1},
D3(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : 0 ≤ x ≤ x1(T, t), y1 ≤ y ≤ 1(T, t)},
D4(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : 0 ≤ x ≤ x2(T, t), 0 ≤ y ≤ y1(T, t)},
D5(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : x1(T, t) ≤ x ≤ x2(T, t),
y1(T, t) ≤ y ≤ y2(T, t)}.

(13)
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One an hek the validity of di�erential inequalities in the neessary and su�-

ient onditions (6), (7) for the funtion w1(T, t, x, y), determined by the formulas

(12), (13).

4. Value Funtion of the Game with Multi-Terminal Payo� Funtional

4.1. Di�erential Game with Multi-terminal Funtional

In the previous setion we obtained the solution for the auxiliary terminal bound-

ary problem (4), (6). The solution of this problem (the value funtion) w1(T, t, x, y)
depends on the terminal time moment T . De�nitely, suh solution is not a proper

one in the evolutionary sense, beause we obtain a �good� result only at the time

moment T , but not in other time moments, inluding in�nity. Thus, here we on-

strut the value funtion for the di�erential game with the multi-terminal payo�

funtional

GA

(
x(·), y(·)

)
= inf

t0≤t<+∞
gA
(
x(t), y(t)

)
. (14)

The funtional (14) determines the foreseeing priniple, sine it takes into the a-

ount future positions gA
(
x(t), y(t)

)
, starting at the initial time t0, and ending at

in�nity +∞.

Using results obtained in the di�erential games theory (Krasovskii and Subbotin,

1988) and the viability theory (Aubin, 1990), one an prove that the di�erential

zero-sum game with the dynamis (1) and the funtional (14) has the value. More

preisely, the next statement is true.

Theorem 1. There exists the saddle point that determines the stationary value

funtion

sup
u(t,x,y,ε)

inf(
x1(·),y1(·)

) inf
s∈[t0,+∞]

gA
(
x1(s), y1(s)

)
=

inf
v(t,x,y,ε)

sup(
x2(·),y2(·)

) inf
s∈[t0,+∞]

gA
(
x2(s), y2(s)

)
=

lim
T→+∞

min
v(t,x,y,ε)

max(
x2(·),y2(·)

) min
s∈[t0,T ]

gA
(
x2(s), y2(s)

)
=

lim
T→+∞

max
u(t,x,y,ε)

min(
x1(·),y1(·)

) min
s∈[t0,T ]

gA
(
x1(s), y1(s)

)
= wA(t0, x0, y0) = wA(x0, y0).

Here the trajetories

(
x1(·), y1(·)

)
,

(
x2(·), y2(·)

)
are generated from the initial po-

sition (t0, x0, y0) by feedbaks u(t, x, y, ε), v(t, x, y, ε) of the maximizing and mini-

mizing players, respetively, and arbitrary ontrols of their opponents.

Proof. The proof follows from the theorem on the alternative (Krasovskii and Sub-

botin, 1988), the stationary property of the dynamis (1), the �niteness of values

of the funtional GA (14), and an be dedued through the onept of the ore

viability (Aubin, 1990). The sheme of the proof is the following.
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In the general ase the next onditions take plae:

sup
u(t,x,y,ε)

inf(
x1(·),y1(·)

) inf
s∈[t0,+∞]

gA
(
x1(s), y1(s)

)
≤

inf
v(t,x,y,ε)

sup(
x2(·),y2(·)

) inf
s∈[t0,+∞]

gA
(
x2(s), y2(s)

)
≤

lim
T→+∞

min
v(t,x,y,ε)

max(
x2(·),y2(·)

) min
s∈[t0,T ]

gA
(
x2(s), y2(s)

)
=

lim
T→+∞

max
u(t,x,y,ε)

min(
x1(·),y1(·)

) min
s∈[t0,T ]

gA
(
x1(s), y1(s)

)
= wA(t, x, y).

(15)

One an verify the next properties of the funtion wA(t, x, y).

Property 1. The funtion wA is a stationary one

wA(t, x, y) = wA(s, x, y) = wA(x, y), (xi, yi) ∈ [0, 1]× [0, 1], t ∈ R, s ∈ R.

Property 2. The funtion wA satis�es the Lipshitz ondition

|wA(x1, y1)−wA(x2, y2)| ≤ K(|x1−x2|+ |y1− y2|), (xi, yi) ∈ [0, 1]× [0, 1], i = 1, 2.

Property 3. The funtion wA is majorized by the payo� gA

wA(x, y) ≤ gA(x, y), (x, y) ∈ [0, 1]× [0, 1]. (16)

Property 4. The funtion wA is the maximal funtion that satis�es the ondition

(16) and the priniple of the dynami programming. Namely, the properties of u-
stability and v-stability an be presented as follows

min
0≤v≤1

max
0≤u≤1

∂+wA(x, y)|(−x + u,−y + v) ≥ 0, (x, y) ∈ (0, 1)× (0, 1), (17)

max
0≤u≤1

min
0≤v≤1

∂−wA(x, y)|(−x+ u,−y + v) ≥ 0, (x, y) ∈ (0, 1)× (0, 1). (18)

Property 5. The properties of u-stability (17) and v-stability (18) an be rewritten
in terms of the onjugate derivatives (Subbotin and Tarasyev, 1985)

D∗wA(x, y)|(s) ≤ H(x, y, s), (x, y) ∈ (0, 1)× (0, 1), s = (s1, s2) ∈ R
2, (19)

D∗wA(x, y)|(s) ≥ H(x, y, s),
(x, y) ∈ (0, 1)× (0, 1), wA(x, y) < gA(x, y), s = (s1, s2) ∈ R2.

(20)

Taking into aount the stability properties and using the onept of strategy of

�extremal shift� (Krasovskii, 1985), one an prove that the orresponding traje-

tories provide that the value of the funtional GA (14) in [t0,+∞) is equal to the

value of the funtion wA. Hene, all inequalities in (15) turn into the equalities, and

this fat proves the Theorem.

4.2. Desription of Solution for Game with Multi-Terminal Funtional

For desription of the analyti solution of the game let us introdue smooth

omponents ϕ1 (8), ϕ3 (10) of the value funtion w1 (12) in terms of the bakward

time parameter s = t − T . Let us onstrut the lower envelopes of these smooth
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omponents, whih present the multi-terminal interests of players. In onstruting

the envelope ψ1
A for the omponent ϕ1 it is neessary to alulate the derivative by

the parameter s, to equate it to zero, to �nd the root of the resulting equation, and

to substitute the root in the omponent ϕ1. Finally, we obtain

ψ1
A(x, y) = ϕ1(s, x, y) = a22 −

(α1x+ α2y)
2

4CAxy
.

Analogously, for the omponent ϕ3 we obtain its lower envelope ψ
2
A by the parameter

s

ψ2
A(x, y) = ϕ3(s, x, y) = a11 −

((CA − α1)(1 − x) + (CA − α2)(1− y))2

4CA(1 − x)(1 − y)
.

In a similar way, we determine the lower envelopes ψ3
A, ψ

4
A of the omponents ϕ2

(9), ϕ4 (11)

ψ3
A(x, y) = CAxy − α1x− α2y + a22,

ψ4
A(x, y) =

a22CA − α1α2

CA
= ωA.

The smooth funtions ψi
A, i = 1, . . . , 4, are pasting on the lines Kj

A, j = 1, . . . , 5,

K1
A =

{
(x, y) : x =

α2

CA
, 0 ≤ y ≤ 1

}
,

K2
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1

CA
≤ y ≤ 1, y =

α1

α2
x

}
,

K3
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
, 0 ≤ y ≤ α1

CA
, y = − (CA − α1)

(CA − α2)
(1− x) + 1

}
,

K4
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ α1

CA
, y =

α1x

2CAx− α2

}
,

K5
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,
α1

CA
≤ y ≤ 1, y = − (CA − α1)(1− x)

2CA(1− x)− (CA − α2)
+ 1

}
,

where (x, y) ∈ [0, 1]× [0, 1].
Let us introdue the analyti desription of the value funtion wA.

Statement 1.When CA > 0 the value funtion (x, y) 7→ wA(x, y) is determined

as

wA(x, y) = ψi
A(x, y), if (x, y) ∈ Ei

A, i = 1, . . . , 4. (21)

Here domains Ei
A, i = 1, . . . , 4, are given as follows
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E1
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1x

2CAx− α2
≤ y ≤ α1

α2
x
}
,

E2
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

− (CA − α1)

(CA − α2)
(1− x) + 1 ≤ y ≤ − (CA − α1)(1 − x)

2CA(1 − x)− (CA − α2)
+ 1
}
,

E3
A = E31

A ∪ E32
A ,

E31
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ α1x

2CAx− α2

}
,

E32
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

− (CA − α1)(1− x)

2CA(1− x)− (CA − α2)
+ 1 ≤ y ≤ 1

}
,

E4
A = E41

A ∪ E42
A ,

E41
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1

α2
x ≤ y ≤ 1

}
,

E42
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
, 0 ≤ y ≤ − (CA − α1)

(CA − α2)
(1− x) + 1

}
, (22)

where (x, y) ∈ [0, 1]× [0, 1].
Let us onsider, as an example, the following payo� matrix for the �rst player

in the ase when CA > 0:

A =

(
3 1
0 3

)
, (23)

The game parameters for this matrix have the following values:

CA = 5, α1 = 2, α2 = 3, xA = 0.6, yA = 0.4.

The struture of the value funtion wA for the matrix A (23) in the ase when

CA > 0 is presented on Fig. 1.

Let us onsider the ase when CA < 0.
The lower envelopes in this ase are determined as follows:

ψ1
A(x, y) = a21 +

((CA − α1)x+ α2(1− y))2

4CAx(1 − y)
,

ψ2
A(x, y) = a12 +

(α1(1− x) + (CA − α2)y)
2

4CA(1 − x)y
,

ψ3
A(x, y) = CAxy − α1x− α2y + a22,

ψ4
A(x, y) = ωA.
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Smooth funtions ψi
A, i = 1, . . . , 4, are pasting on the lines Kj

A, j = 1, . . . , 5,

K1
A =

{
(x, y) : x =

α2

CA
, 0 ≤ y ≤ 1

}
,

K2
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ α1

CA
, y = − (CA − α1)

α2
x+ 1

}
,

K3
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,
α1

CA
≤ y ≤ 1, y =

α1

(CA − α2)
(1 − x)

}
,

K4
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1

CA
≤ y ≤ 1, y = − (CA − α1)x

2CAx− α2
+ 1

}
,

K5
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
, 0 ≤ y ≤ α1

CA
, y =

α1(1− x)

2CA(1− x)− (CA − α2)
+ 1

}
,

where (x, y) ∈ [0, 1]× [0, 1].
The domains Ei

A, i = 1, ..., 4, are determined as follows:

0 0.5 1
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0.4
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1
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K
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2

K
A

3

K
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4
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y
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E
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42

K
A

5

E
A

1

Fig. 1. The struture of the value funtion wA in the ase when CA > 0.
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E1
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

− (CA − α1)

α2
x+ 1 ≤ y ≤ − (CA − α1)x

2CAx− α2
+ 1
}
,

E2
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

α1(1− x)

2CA(1− x)− (CA − α2)
+ 1 ≤ y ≤ α1

(CA − α2)
(1− x)

}
,

E3
A = E31

A ∪E32
A ,

E31
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, − (CA − α1)x

2CAx− α2
+ 1 ≤ y ≤ 1

}
,

E32
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

0 ≤ y ≤ α1(1 − x)

2CA(1− x) − (CA − α2)
+ 1
}
,

E4
A = E41

A ∪E42
A ,

E41
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ − (CA − α1)

α2
x+ 1

}
,

E42
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

α1

(CA − α2)
(1− x) ≤ y ≤ 1

}
, (24)

where (x, y) ∈ [0, 1]× [0, 1].
Let us onsider, as an example, the following payo� matrix for the �rst player

in the ase when CA < 0:

A =

(
−3 −2
0 −4

)
, (25)

The game parameters for this matrix have the following values:

CA = −5, α1 = −2, α2 = −4, xA = 0.8, yA = 0.4.

The struture of the value funtion wA for the matrix A (25) in the ase when

CA < 0 is presented on Fig. 2.

Let us note that both ases of positive and negative signs of the basi parameter

CA, whih generate di�erent orientations, �left� and �right�, for �zigzags� (broken

lines) of aeptable situations in the stati game (Vorobyev, 1985) is important for

onstrution the Nash equilibrium trajetories in the onsidered below example of

interations of two players on the market of innovative eletroni devies.

4.3. Veri�ation of u− and v− Stability in the Multi-Terminal Game

In this setion, we prove that the neessary and su�ient onditions for the

funtion wA are satis�ed for it oinidene with the value of a multi-terminal game.

Proposition 4. For the funtion wA in the ase when CA > 0 the boundary on-

dition (16) and di�erential inequalities (19), (20) are ful�lled.

Proof. The boundary ondition obviously holds, beause funtions ψi
A, i = 1, . . . , 4

are the lower envelopes of the terminal solutions w1(T, t, x, y) and, hene,

ψi
A(x, y) ≤ ϕi(t, x, y) ≤ gA(x, y), i = 1, . . . , 4, (x, y) ∈ [0, 1]× [0, 1].
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Fig. 2. The struture of the value funtion wA in the ase when CA < 0.

Let us hek, that the di�erential inequalities (19), (20) are ful�lled for the

funtion wA. One an prove that funtions ψi
A, i = 1, 2, 4, satisfy the Hamilton-

Jaobi equation at the interior points of domains Ei
A, i = 1, 2, 4. Also one an hek,

that the funtion ψ3
A (21) oinides with the boundary funtion gA and satis�es the

inequality

−∂ψ
3
A

∂x
x− ∂ψ3

A

∂y
y +max

{
0,
∂ψ3

A

∂x

}
+min

{
0,
∂ψ3

A

∂y

}
≥ 0

at the interior points of the domain E3
A.

It remains to verify the di�erential inequalities (19), (20) on the pasting lines

Kj
A, j = 1, . . . , 5. Let us do this, for example, on the lines K2

A,K
3
A. At the points of

the line K2
A, the funtions ψ

1
A and ψ4

A are ontinuously pasted. Let us alulate the

partial derivatives of these funtions

∂ψ1
A

∂x
=
α2
2y

2 − α2
1x

2

4CAx2y
,

∂ψ1
A

∂y
=
α2
1x

2 − α2
2y

2

4CAxy2
,

∂ψ4
A

∂x
= 0,

∂ψ4
A

∂y
= 0.

One an note that these derivatives are equal to zero on the line K2
A

∂ψ1
A

∂x
=
∂ψ4

A

∂x
= 0,

∂ψ1
A

∂y
=
∂ψ4

A

∂y
= 0.

In other words, the funtions ψ1
A and ψ4

A are smoothly pasted together. Hene,

the inequalities (19), (20) on the line K2
A turn into the equality. Analogously, one

an prove smooth pasting of the funtions ψ2
A, ψ

4
A on the line K3

A.
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Let us onsider the line K4
A, where the funtions ψ

1
A and ψ3

A are pasted together.

One an hek that this pasting is smooth, sine for the partial derivatives on the

line K4
A we obtain the relations

∂ψ1
A

∂x
=
∂ψ3

A

∂x
=
α1(α2 − CAx)

2CAx− α2
,

∂ψ1
A

∂y
=
∂ψ3

A

∂y
= CAx− α2.

Similarly, one an hek the smoothness of the funtion wA on the line K5
A.

Along the lineK1
A the funtions ψ3

A and ψ4
A are pasted together. Their derivatives

on the line K1
A are determined as

∂ψ3
A

∂x
= CAy − α1,

∂ψ4
A

∂x
= 0,

∂ψ3
A

∂y
=
∂ψ4

A

∂y
= 0.

Let us note that there is no need to hek the inequality (20) on the line K1
A, sine

the following relations are ful�lled wA = ψ3
A = ψ4

A = gA. It is neessary only to

verify the ondition (19). One an hek that in the viinity of points of the line

K1
A the funtion wA is determined by the operation of minimum

wA(x, y) = min{ψ3
A(x, y), ψ

4
A(x, y)}.

Hene, for points (x, y) ∈ K1
A we obtain

∂wA(x, y)|(h1, h2) = min{0, (CAy − α1)h1},

D∗wA(x, y)|(s1, s2) =
{
0, s1 = λ(CAy − α1), s2 = 0,
−∞, otherwise.

(26)

Here the parameter λ satis�es the inequalities 0 ≤ λ ≤ 1. For points (x, y) ∈ K1
A

and vetors s = (s1, s2), s1 = λ(CAy − α1), s2 = 0, the Hamiltonian H(x, y, s) is
determined by the relation

H(x, y, s) = −s1x+max{0, s1} =

{
−s1x, s1 ≤ 0,
s1(1− x), otherwise.

(27)

It is obvious that for these values the Hamiltonian (27) is larger or equal to the

lower onjugate derivative (26). Hene, the inequality (19) is proved on the line

K1
A.

Thus, we have proved that the funtion wA (21), (22) is the value funtion in

the game with the multi-terminal funtional.

The proof of the proposition (4) for the ase when CA < 0 is arried out analo-

gously.

Note 3. In the domain E4
A, the next relations are valid

gA(x, y) ≥ wA(x, y) = ωA.

Note 4. The positional strategy U0
A = u0A(x, y) orresponding to the value funtion

wA (see relations (28)) provides the viability property for trajetories (x(·), y(·)) of
the system (1) in the domain E4

A.

Note 5. For the matrix B the value funtion wB and domains EB an be onstruted

analogously.
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5. Flexible �Positive� Feedbaks

5.1. Optimal Feedbak Controls

Let us give the desription of the �exible �positive� feedbak ontrols u0A =
uflA = uflA(x, y), whih solve the problem of guaranteeing maximization for the multi-

terminal funtional GA(x1(·), y1(·)) (14) on trajetories (x1(·), y1(·)) of the system
(1). This ontrol is onstruted by the priniple of the �extremal shift� in the dire-

tion of the gradient (generalized gradient) of the value funtion wA.

Let us note that the partial derivative ∂wA/∂x of the value funtion wA hanges

its sign on the lines K2
A and K3

A. Thus, the optimal feedbak ontrol u0A has the

following struture (see, for example, (Krasovskii and Subbotin, 1988)). The on-

trol parameter uflA = uflA(x, y) is equal to zero, if the urrent position (x, y) =
(x1(t), y1(t)) lies on the right to the line KA = K2

A ∪ K3
A, equals to one, if the

urrent position lies to the left of this line, and an take arbitrary values at points

of the line KA. Namely, if CA > 0, then

u0A = uflA = uflA(x, y) =





0, (x, y) ∈ D1
A,

1, (x, y) ∈ D2
A,

[0, 1], (x, y) ∈ KA.
(28)

D1
A = D11

A ∪D12
A ,

D11
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y <

α1

α2
x, y ≥ α1

CA

}
,

D12
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y < − (CA − α1)

(CA − α2)
(1 − x) + 1, y ≤ α1

CA

}
,

D2
A = D21

A ∪D22
A ,

D21
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y >

α1

α2
x, y ≥ α1

CA

}
,

D22
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y > − (CA − α1)

(CA − α2)
(1 − x) + 1, y ≤ α1

CA

}
,

KA = K2
A ∪K3

A,

K2
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y =

α1

α2
x, y ≥ α1

CA

}
,

K3
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y = − (CA − α1)

(CA − α2)
(1 − x) + 1, y ≤ α1

CA

}
.

If CA < 0, then the �exible �positive� feedbak ontrol uflA has the analogous

struture.

The guaranteeing problem for optimization of the multi-terminal funtional

GB(x2(·), y2(·)) for the seond player is solved analogously.

5.2. Multi-Terminal Optimal Control

Optimal ontrols uflA(x, y) (28) guarantee that the urrent payo� of the �rst

player beomes in the long term not worse than the value ωA = DA/CA of the

matrix zero-sum game for the matrix A. The next statement is true.
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Statement 2. For any initial position (x0, y0) ∈ [0, 1] × [0, 1] and for any tra-

jetory

(x1(·), y1(·)) ∈ X(x0, y0, u
fl
A), x1(t0) = x0, y1(t0) = y0, t0 = 0,

generated by the optimal ontrol uflA = uflA(x, y), there exists a �nite time ts ∈
[0, TA],

TA = ln

(
max

{
CA

α2
,

CA

CA − α2

})
,

at whih the trajetory (x1(·), y1(·)) enters the domain E4
A (see (22)),

(x1(ts), y1(ts)) ∈ E4
A,

where the value funtion wA is equal to the value ωA of the matrix game,

wA(x1(ts), y1(ts)) = ωA,

and stays in the domain E4
A on the time interval [ts,+∞) (and, hene, on the time

interval [TA,+∞)). Thus, aording to the de�nition of the value funtion wA, the

next inequality takes plae

gA(x1(t), y1(t)) ≥ ωA, t ≥ ts

and, in partiular,

lim inf
t→+∞

gA(x1(t), y1(t)) ≥ ωA.

Proof. Let us note that the domain E4
A (see (22)) has non-empty intersetions with

all lines Lλ, 0 ≤ λ ≤ 1,

Lλ = {(x, y) ∈ (0, 1)× (0, 1): y = λ}.

Hene, any trajetory (x1(·), y1(·)), generated by the feedbak optimal ontrol uflA
(the value of whih is equal to zero or one) intersets this domain E4

A. Thus, the

projetion of the veloity on the lines Lλ for suh trajetories is not equal to zero

and keeps the sign till the moment of the intersetion of the trajetory with the

domain E4
A.

The analogous statement an be formulated for the game with the matrix B.

Statement 3. Intersetion E0
of the sets E4

A and E4
B is non-empty, i.e. E0 =

E4
A ∩ E4

B 6= ∅, and, hene, the optimal strategies uflA, v
fl
B generate the trajetory

(xfl(·), yfl(·)), whih enters the intersetion E0
and stays in it on the time interval

[T 0,+∞), T 0 = max{TA, TB}. In the set E0
, the following inequalities are ful�lled

gA(x
fl(t), yfl(t)) ≥ ωA, gB(x

fl(t), y(flt)) ≥ ωB, t ∈ [T 0,+∞).

Thus, the set E0
an be alled the favorable domain for both players.
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6. Nash Equilibrium with Flexible �Positive� Controls

6.1. Struture of the Nash Equilibrium

Let us onstrut the pair of ontrols for the Nash equilibrium, pasting to-

gether the �exible �positive� ontrols u0A = uflA, v
0
B = vflB and the �punishing�

ontrols u0B = uclB, v
0
A = vclA. Let us hoose the initial position (x0, y0) ∈ [0, 1] ×

[0, 1] and the auray parameter ε > 0. Let us �x the trajetory (xfl(·), yfl(·)) ∈
X(x0, y0, u

fl
A(·), vflB(·)), generated by the �exible �positive� ontrols uflA and vflB . Let

us hoose the moment of time Tε > 0 suh that

gA(x
fl(t), yfl(t)) > J−

A (xfl(·), yfl(·))− ε,
gB(x

fl(t), yfl(t)) > J−
B (xfl(·), yfl(·))− ε,

t ∈ [Tε,+∞).

Let us denote by the symbol ufl,εA (t) : [0, Tε) → [0, 1], vfl,εB (t) : [0, Tε) → [0, 1], the
step-by-step realization of the strategies uflA, v

fl
B , suh that the orresponding step-by

step motion (xflε (·), yflε (·)) satis�es the ondition

max
t∈[0,Tε]

‖(xfl(t), yfl(t))− (xflε (t), y
fl
ε (t))‖ < ε.

Applying the onstrution of the Nash equilibrium from (Kleimenov, 1993), we

obtain the following result.

Statement 4. The pair of ontrols U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε) pasted
together by the �exible �positive� ontrols uflA, v

fl
B, and the �punishing� ontrols uclB,

vclA,

U0 = u0(t, x, y, ε) =

{
ufl,εA (t), ‖(x, y)− (xflε (t), y

fl
ε (t))‖ < ε,

uclB(x, y), otherwise
(29)

V 0 = v0(t, x, y, ε) =

{
vfl,εB (t), ‖(x, y)− (xflε (t), y

fl
ε (t))‖ < ε,

vclA(x, y), otherwise
(30)

is the dynami ε-Nash equilibrium.

Let us note that the trajetory (xflε (·), yflε (·)) is the ore of the dynami Nash

equilibrium. Thus, it an be alled the equilibrium trajetory. It is generated by the

guaranteeing ontrols uflA and vflB, and provides values for both payo� funtionals

better than the stati Nash equilibrium.

6.2. Trajetories for Felxible �Positive� Controls

The question of interest is the qualitative behavior of the trajetories generated

by the �exible �positive� ontrols whih form the basis for the dynami Nash equi-

librium (29), (30). To lassify the possible behavior of these trajetories, we an

formulate the following statement.

Statement 5. The values of the payo� funtionals J−
A , J

−
B on the arbitrary

trajetory (xfl(·), yfl(·)) generated by the �exible �positive� feedbak ontrols uflA,
vflB, are not worse than values of these funtionals on any trajetory onverging

to the stati Nash equilibrium (xB , yA) = (β2/CB, α1/CA), on whih the ompo-

nents of players' distributions are unfavorable for opposite players. Moreover, the
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trajetories (xfl(·), yfl(·)) enter the favorable domain E0
and stay there on the in�-

nite time interval. The next variants of the qualitative behavior of the trajetories

(xfl(·), yfl(·)) in the domain E0
are possible:

- it an onverge to the intersetion of lines KA, KB;

- it an approah the points loated on the border of the square (in the ase when

the intersetion of lines KA, KB is empty);

- it an approah the non-antagonisti stati Nash equilibrium with Pareto proper-

ties (in the ase when suh equilibrium exists);

- it an irulate in the domain E0
.

7. Examples of Equilibrium Trajetories in Evolutionary Bimatrix

Games

Let us onsider, as an example, the payo� matries of two players on the market

of eletronis: Samsung Corporation (matrix A) and Apple Corporation (matrix

B):

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

We onsider annual sales of players and their investments in 2018 aording to the

data from the internet. Resoures that we used are the following:

https://news.samsung.om/

http://www.annualreports.om/Company/apple-in

Let us present the elements of matries A and B:

a11 = (S1
o + (S1

b + S2
b )/2− I1l ),

a12 = (S1
o + S1

b − I1l ),
a21 = (S1

o + S1
a − I1s ),

a22 = (S1
o − I1s ).

b11 = (S2
o + (S1

b + S2
b + S2

a)/3− I2l ),
b12 = (S2

o + S2
b − I2l ),

b21 = (S2
o + S2

a − I2s ),
b22 = (S2

o − I2s ).

We obtain payo� matries in the view:

A =

(
(S1

o + (S1
b + S2

b )/2− I1l ) (S
1
o + S1

b − I1l )
(S1

o + S1
a − I1s ) (S1

o − I1s )

)
,

B =

(
(S2

o + (S1
b + S2

b + S2
a)/3− I2l ) (S

2
o + S2

b − I2l )
(S2

o + S2
a − I2s ) (S2

o − I2s )

)
.

Here S1
o = 220 billion dollars is the ordinary sales of Samsung orp.;

S1
b = 22 billion dollars is the bonus sales of Samsung orp. due to investments in

new tehnologies;

S1
a = 8 billion dollars is the sales of Samsung orp. due to absorption of new

tehnologies from Apple orp. without own investments;

I1l = 15 billion dollars is the long-term investments of Samsung orp.;

I1s = 0 billion dollars is the short-term investments of Samsung orp.;

S2
o = 215 billion dollars is the ordinary sales of Apple orp.;

S2
b = 14 billion dollars is the bonus sales of Apple orp. due to investments in new
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tehnologies;

S2
a = 4 billion dollars is the sales of Apple orp. due to absorption of new tehnolo-

gies from Samsung orp. without own investments;

I2l = 11.5 billion dollars is the long-term investments of Apple orp.;

I2s = 0 billion dollars is the short-term investments of Apple orp.;

The resulting payo� matries have the following form:

A =

(
223 227
228 220

)
, B =

(
216.83 217.5
219 215

)
.

The main game parameters are determined as follows:

CA = a11 − a12 − a21 + a22 = −12,
α1 = a22 − a12 = −7, α2 = a22 − a21 = −8,

xA =
α2

CA
= 0.67, yA =

α1

CA
= 0.58.

CB = b11 − b12 − b21 + b22 = −4.67,
β1 = b22 − b12 = −2.5, β2 = b22 − b21 = −4,

xB =
β2
CB

= 0.86, yB =
β1
CB

= 0.54.

On Fig. 3 we present the saddle point SA of the stati game with the matrix A,
the swithing line KA, and the vetor �eld of motions for the �rst player.

On Fig. 4 we present the saddle point SB of the stati game with the matrix B,
the swithing line KB, and the vetor �eld of motions for the seond player.

On Fig. 5 we present three situations of the Nash equilibrium N1, N2 and N3

in the stati game; the swithing lines KA and KB; the equilibrium trajetories T1,
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Fig. 3. Swithing lines for the ontrol feedbak of the �rst player.
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Fig. 4. Swithing lines for the ontrol feedbak of the seond player.

T2 and T3 starting from the initial points IP1, IP2 and IP3 and onverging to the

point F1 of the Pareto maximum.

Values of the funtionals gA and gB at the �nal point F1 of the equilibrium

trajetories are better than at the points of the Nash equilibrium N1 and N2. Values

of the funtionals gA and gB at the point N3 are better than at the point F1, whih

an be explained as follows. Both players are aimed to approah this point, but the

�rst player insures against big payo� losses and stays in the favorable domain. So,

at the limit point of the Nash equilibrium trajetory the �rst player prefers to share

investments between own tehnologies and absorption of the opponent tehnologies,

and the seond player makes the deision to rely fully on own tehnologies.

8. Conlusion

The paper deals with development of the generalized method of harateristis

for onstrution of the generalized minimax (visosity) solutions of Hamilton-Jaobi

equations in dynami bimatrix games. These solutions play the key role in the stru-

ture of the dynami Nash equilibrium sine they synthesize optimal feedbaks of

players and generate equilibrium trajetories with the guaranteeing properties. We

obtain the analytial formulas for the value funtions as the generalized minimax

(visosity) solutions of the Hamilton-Jaobi equations in the ases of di�erent ori-

entations for the �zigzags� (broken lines) of aeptable situations in the stati game.

It is proved that the equilibrium trajetories generated by the generalized minimax

solutions shift the system in the diretion of ooperative Pareto points. The pro-

posed approah provides better results of payo�s for both players at the limit points
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Fig. 5. Equilibrium trajetories of the dynami bimatrix game.

of the equilibrium trajetories in the dynami bimatrix games than the stati Nash

equilibrium or trajetories of the repliator dynamis in the evolutionary games.

We onsider an example of two ompetitive players on the market of innovative

eletroni devies and onstrut the Nash equilibrium trajetories in the dynami

bimatrix games whih shift unfavorable Nash equilibria to the set of Pareto maxi-

mum points.
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