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Abstra
t In the paper, 
onstru
tions of the generalized method of 
har-

a
teristi
s are applied for 
al
ulating the generalized minimax (vis
osity)

solutions of Hamilton-Ja
obi equations in dynami
 bimatrix games. The

stru
ture of the game presumes intera
tions of two players in the framework

of the evolutionary game model. Sto
hasti
 
onta
ts between players o

ur

a

ording to the dynami
 pro
ess, whi
h 
an be interpreted as a system

of Kolmogorov's di�erential equations with 
ontrols instead of probability

parameters. It is assumed that 
ontrol parameters are not �xed and 
an be


onstru
ted by the feedba
k prin
iple. Two types of payo� fun
tions are 
on-

sidered: short-term payo�s are determined in the 
urrent moments of time,

and long-term payo�s are determined as limit fun
tionals on the in�nite

time horizon. The notion of dynami
 Nash equilibrium in the 
lass of 
on-

trolled feedba
ks is 
onsidered for the long-term payo�s. In the framework

of 
onstru
tions of dynami
 equilibrium, the solutions are designed on the

basis of maximization of guaranteed payo�s. Su
h guaranteeing strategies

are built in the framework of the theory of minimax (vis
osity) solutions

of Hamilton-Ja
obi equations. The analyti
al formulas are obtained for the

value fun
tions in the 
ases of di�erent orientations for the �zigzags� (broken

lines) of a

eptable situations in the stati
 game. The equilibrium traje
to-

ries generated by the minimax solutions shift the system in the dire
tion of


ooperative Pareto points. The proposed approa
h provides new qualitative

properties of the equilibrium traje
tories in the dynami
 bimatrix games

whi
h guarantee better results of payo�s for both players than stati
 Nash

equilibria. As an example, intera
tions of two �rms on the market of in-

novative ele
troni
 devi
es are examined within the proposed approa
h for

treating dynami
 bimatrix games.

Keywords: optimal 
ontrol, dynami
 bimatrix games, value fun
tions, min-

imax solutions of Hamilton-Ja
obi equations, dynami
 Nash equilibrium tra-

je
tories, shift to Pareto maximum.

1. Introdu
tion

In the paper, a model of evolutionary non-zero sum game between two players

(
oalitions of players) is 
onsidered in the framework of di�erential games the-

ory (Krasovskii and Krasovskii, 1995; Krasovskii, 1985; Krasovskii and Subbotin,

1988). We use some ideas and approa
hes proposed in (Kleimenov, 1993) for non-

antagonisti
 di�erential games. The methods for analysis of evolutionary games
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suggested in the paper (Kryazhimskii and Osipov, 1995) are applied for derivation

of the game dynami
s . The main attention is paid to the 
onstru
tion of the dy-

nami
 Nash equilibrium with guaranteeing strategies of players, whi
h maximize


orresponding payo� fun
tions (Pontryagin et al., 1961; Krasovskii and Subbotin,

1988). Solution traje
tories are generated, whi
h provide better result 
omparing

to 
lassi
 models, for example, models with the repli
ator dynami
s.

The dynami
s of game intera
tions 
orresponds to the di�erential games the-

ory (Kleimenov, 1993; Krasovskii, 1985; Krasovskii and Subbotin, 1988; Kryazhim-

skii and Osipov, 1995; Kurzhanskii, 1977) and evolutionary game models (Basar

and Olsder, 1982; Friedman, 1991; Hofbauer and Sigmund, 1988; Intriligator, 1971;

Tarasyev, 1994).

The main idea of the paper is to apply the theory of generalized minimax (vis
os-

ity) solutions for Hamilton-Ja
obi equations (Crandall and Lions, 1983; Subbotin,

1991) to analysis of the dynami
 bimatrix games.

It is assumed that random intera
tions between players are presented by the


ontrolled dynami
 pro
ess, in whi
h 
orresponding probabilities form a phase ve
-

tor. Information signals for parti
ipants play the role of 
ontrol parameters. Su
h

dynami
s 
an be interpreted as a generalization of the well-known Kolmogorov's

equations, whi
h are used in some sto
hasti
 models of mathemati
al e
onomi
s and

queue theory. The generalization is based on introdu
tion of 
ontrols instead the

probability parameters whi
h des
ribe in
oming and outgoing �ows inside groups

of players. The dynami
 pro
ess evolves on an in�nite time interval. Parti
ipants'

payo�s at ea
h round are spe
i�ed by the payo� matri
es. Groups' payo�s are deter-

mined as the average value of parti
ipants' payo�s. Various types of these averages

are 
onsidered: terminal (short run) � for a �xed terminal time, and multi-terminal

(long run) � for the limit on the in�nite time interval. Let us note that the non-zero

sum game was analyzed in (Tarasyev, 1994) with the dis
ounted integral payo�

fun
tionals. Multi-terminal fun
tionals are asso
iated with the 
on
ept whi
h takes

into the a

ount not only lo
al terminal interests of groups, but also are oriented

on 
hanges in the future.

The de�nition of the dynami
 Nash equilibrium is introdu
ed in the 
lass of

feedba
k 
ontrol strategies. Let us note that feedba
ks generated by the 
lassi


�punishing� strategy in stati
 bimatrix games are a natural example of the Nash

equilibrium in dynami
 terms. The nature of su
h rea
tions are antagonisti
: they

minimize the payo� of the opponent, not maximizing their own.

A di�erent approa
h is proposed on the basis of the 
on
ept of the �guarantee�

providing better results than 
lassi
 solutions. These new solutions are generated

in the framework of the positional di�erential games theory and involve the guar-

anteeing feedba
ks in the auxiliary zero-sum games (Kleimenov, 1993; Krasovskii

and Subbotin, 1988; Petrosjan and Zenkevi
h, 2015). So, the non-zero sum games

are 
onsidered in the framework of the theory for minimax solutions of Hamilton-

Ja
obi equations (Crandall and Lions, 1983; Subbotin, 1991; Subbotin and Tarasyev,

1985; Tarasyev, 1994). For the analyti
al 
onstru
tion of the value fun
tion and

optimal guaranteeing feedba
ks we use methods of the di�erential games theory

(Kleimenov, 1993; Krasovskii and Subbotin, 1988), the generalized 
hara
teristi
s

of the Hamilton-Ja
obi equations (Subbotin, 1991), and 
onstru
tions of the via-

bility theory (Aubin, 1990). The 
orresponding ne
essary and su�
ient 
onditions

are veri�ed for the value fun
tions, parti
ularly, in terms of 
onjugate derivatives
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(Subbotin and Tarasyev, 1985). The stru
ture of the value fun
tions is su
h that the

synthesis of guaranteeing feedba
ks for 
ontrols is determined by swit
hing 
urves

from one 
hara
teristi
 of the Hamilton-Ja
obi equation to another one. Let us note,

that similar ideas for the numeri
al 
onstru
tion of the solution are used in papers

(Klaassen et al., 2004; Tarasyev and Watanabe, 2001; Krasovskii and Tarasyev,

2008; Krasovskii and Tarasyev, 2011; Krasovskii and Tarasyev, 2015; Krasovskii

and Tarasyev, 2018).

The qualitative behavior of the proposed equilibrium solutions, generated by

the guarantee synthesis, signi�
antly di�ers from traje
tories of evolutionary games

presented in 
lassi
 models with the dynami
 repli
ator. Let us note that su
h tra-

je
tories usually 
onverge to the stati
 Nash equilibrium or 
ir
ulate in its surround-

ings (Hofbauer and Sigmund, 1988). New equilibrium solutions are not smooth and

have the swit
hing regimes within 
hara
teristi
s of the Hamilton-Ja
obi equations.

Unlike 
lassi
al traje
tories, they are lo
ated at the interse
tion of areas, for whi
h

the values of players' payo�s are better than the 
orresponding payo�s 
al
ulated in

the stati
 Nash equilibrium. The proposed equilibrium solutions do not 
onverge to

the stati
 Nash equilibrium, and their marginal payo�s are better than at the point

of the Nash equilibrium. In this sense, one 
an say about shift of Nash equilibrium

traje
tories to the set of Pareto maximum points.

We provide analyti
 formulas for the value fun
tions in the 
ases of di�erent

orientations for the �zigzags� (broken lines) of a

eptable situations in the stati


game (Vorobyev, 1985). The equilibrium traje
tories generated by the minimax

solutions 
onverge either to the interse
tion points of the synthesized swit
hing

lines, or to Pareto maximum points on the boundary of the square of a

eptable

situations, i.e. to �new� equilibrium points with better payo� indi
es. Thus, it is

demonstrated that the proposed approa
h provides new qualitative properties of

the equilibrium traje
tories in the dynami
 bimatrix games. As an example, we


onsider intera
tions of two �rms on the market of innovative ele
troni
 devi
es,

whi
h give the dynami
 bimatrix game with the left orientation of �zigzag� (broken

line) of a

eptable situations. We 
onstru
t 
ontrol synthesis for both players basing

on the value fun
tions as the generalized minimax solutions of the Hamilton-Ja
obi

equations, and generate the Nash equilibrium traje
tories whi
h shift the game

solution in the dire
tion of the Pareto maximum set.

2. Evolutionary Game. Dynami
 Nash Equilibrium

2.1. Model Dynami
s, Payo� Fun
tions

Let us 
onsider the system of di�erential equations, whi
h des
ribes the behavior

dynami
s of two players:

ẋ(t) = −x(t) + u(t), x(t0) = x0,
ẏ(t) = −y(t) + v(t), y(t0) = y0.

(1)

Here the parameter x = x(t), 0 ≤ x ≤ 1 means the probability that the �rst

player holds to the �rst strategy (respe
tively, (1 − x) is the probability that he

holds to the se
ond strategy). Parameter y = y(t), 0 ≤ y ≤ 1 stands for the

probability of 
hoosing the �rst strategy by the se
ond player (respe
tively, (1− y)
is the probability that he holds to the se
ond strategy). Control parameters u = u(t)
and v = v(t) satisfy 
onditions 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and 
an be interpreted as

signals that re
ommend 
hanging strategies by players.
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For example, the value u = 0 (v = 0) 
orresponds to the signal: �
hange the �rst
strategy to the se
ond�. The value u = 1 (v = 1) 
orresponds to the signal: �
hange
the se
ond strategy to the �rst�. The value u = x (v = y) 
orresponds to the signal:
�keep the previous strategy�.

Let us note, that the basis for the dynami
s (1) and its properties were 
onsidered

in (Kryazhimskii and Osipov, 1995; Tarasyev, 1994). In this dynami
s, Kolmogorov's

di�erential equations are generalized under the assumption that the 
oe�
ients

of in
oming and outgoing �ows between players are not set a priori and 
an be


onstru
ted in the 
ontrol pro
ess on the feedba
k prin
iple.

As an interpretation of the dynami
s (1), we 
onsider the game intera
tion of two

players (or their investments) on two markets. Let x be a part of the funds, whi
h the
�rst player (it may be a �nan
ial or industrial group) invest in the �rst market (this

may be a �nan
ial market, a market of goods or innovative te
hnologies (Vorobyev,

1985)). Respe
tively, 1−x is the investment of the �rst player in the se
ond market.

Let y be the part of the funds that the se
ond player invest in the �rst market.

Respe
tively, 1− y is the investment of the se
ond player in the se
ond market. Let

us assume that a
tivity of players is regulated by a governing body. Using 
ontrol

parameters u and v, a governing body 
an in�uen
e on the distribution of funds x
and y. The dynami
s of this in�uen
e is des
ribed by the system (1) and provides

some inertia of players in relation to 
ontrol signals u, v, while the velo
ities ẋ, ẏ of

hanging of 
apital proportions x, y are not right proportional to the signals, and

depend on the size of these proportions. For example, the �rst equation in (1) means

that a

ording to the signal u = 0 the proportion x de
reases to zero a

ording to

the dynami
s

˙x(t) = −x(t).
An important property of dynami
s (1) is that the square, (x, y) ∈ [0, 1]× [0, 1],

is its strongly invariant set. That is, any traje
tory of dynami
s (1), whi
h starts in

the square, survives in it on the in�nite time horizon.

Let us assume, that payo�s of the �rst (se
ond) player are des
ribed by the

matrix A = aij (B = bij)

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

Let us 
onsider, for example, for the game of two players on two markets the

following situation, whi
h we will 
all almost antagonisti
. Let us assume that the

�rst market is more pro�table for investments than the se
ond one. The �rst player is

stronger than the the se
ond one. He is trying to 
apture both markets. The se
ond

player is trying to avoid intera
tions with the �rst player on the same market.

The terminal payo� fun
tions of players are determined as a mathemati
al expe
-

tation of payo�s generated by 
orresponding matri
es A, B, and 
an be interpreted

as �lo
al� interests of players

gA(x(T ), y(T )) =

a11x(T )y(T ) + a12x(T )(1− y(T )) + a21(1− x(T ))y(T ) + a22(1− x(T ))(1 − y(T )) =

CAx(T )y(T )− α1x(T )− α2y(T ) + a22.
(2)

The fun
tion gB for the matrix B is determined analogously. Here the 
oe�
ients

CA, α1, α2 are determined a

ording to the 
lassi
al theory of bimatrix games
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(Vorobyev, 1985)

CA = a11 − a12 − a21 + a22, α1 = a22 − a12, α2 = a22 − a21.

The 
oe�
ients CB, β1, β2 for the matrix B are determined analogously.

The �global� interests J∞
A of the �rst player are determined as multivalued (two-

digit) fun
tions formed by lower and upper limits of average values

J∞
A = [J−

A , J
+
A ],

J−
A = J−

A (x(·), y(·)) = lim inf
t→∞

gA(x(t), y(t)),

J+
A = J+

A (x(·), y(·)) = lim sup
t→∞

gA(x(t), y(t)),

(3)


al
ulated for the traje
tories (x(·), y(·)) of the system (1). For the se
ond player

the �global� interests J∞
B are determined symmetri
ally.

Let us 
onsider an evolutionary non-zero sum game with the dynami
s (1) and

global payo�s, given by the s
heme (3). In the di�erential games theory (Kleimenov,

1993; Krasovskii and Subbotin, 1988) there exists an approa
h for 
onstru
tion of

the equilibrium solutions from the 
lass of strategies, de�ned on the feedba
k prin-


iple U = u(t, x, y, ε), V = v(t, x, y, ε), for the non-zero sum games. Su
h approa
h

is based on the solution of auxiliary zero sum games. A

ording to our statement

of the problem, we 
onsider zero sum games for the fun
tionals J−
A , J

+
A , J

−
B , J

+
B .

It is known, that problems with zero sum 
an be solved in the framework of di�er-

ential games theory, and the solution for guaranteeing strategies 
an be obtained

in the framework of the dynami
 programming prin
iple. Su
h prin
iple requires

�nding the value fun
tions, whi
h are generalized minimax solutions of Hamilton-

Ja
obi equations, namely, the problem is redu
ed to solving the equations in partial

derivatives of the �rst order.

2.2. Dynami
 Nash Equilibrium

Following (Kleimenov, 1993; Kryazhimskii and Osipov, 1995), we present the

de�nition of the dynami
 Nash equilibrium in the 
lass of positional strategies (feed-

ba
ks) U = u(t, x, y, ε), V = v(t, x, y, ε) for the non-zero sum game with the given

dynami
s and the multivalued payo� fun
tionals.

De�nition 1. Let ε > 0 and (x0, y0) ∈ [0, 1] × [0, 1]. The pair of feedba
ks U0 =
u0(t, x, y, ε), V 0 = v0(t, x, y, ε) is 
alled the Nash equilibrium at the initial point

(x0, y0), if for any other feedba
ks U = u(t, x, y, ε), V = v(t, x, y, ε) the following


onditions take pla
e: for any traje
tories

(x0(·), y0(·)) ∈ X(x0, y0, U
0, V 0),

(x1(·), y1(·)) ∈ X(x0, y0, U, V
0), (x2(·), y2(·)) ∈ X(x0, y0, U

0, V )

the inequalities are true:

J−
A (x0(·), y0(·)) ≥ J+

A (x1(·), y1(·))− ε, J−
B (x0(·), y0(·)) ≥ J+

B (x2(·), y2(·))− ε.

Here the symbol X stands for the set of traje
tories, whi
h start from the initial

point (x0, y0) and are generated by the 
orresponded strategies (U0, V 0), (U, V 0),
(U0, V ) (see (Krasovskii and Subbotin, 1988)).
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2.3. Auxiliary Zero-Sum Games

For 
onstru
tion of the desired equilibrium feedba
ks U0
, V 0

we use the results

(Kleimenov, 1993). A

ording to this approa
h, we 
onstru
t the equilibrium us-

ing optimal feedba
ks for di�erential games ΓA = Γ−
A ∪ Γ+

A and ΓB = Γ−
B ∪ Γ+

B

with payo�s J∞
A and J∞

B . In the game ΓA the �rst player maximizes the fun
tional

J−
A (x(·), y(·)) with the guarantee, using the feedba
k U = u(t, x, y, ε), and the se
-

ond player, on the 
ontrary, tries to minimize the fun
tional J+
A (x(·), y(·)), using the

feedba
k V = v(t, x, y, ε). Vi
e versa, in the game ΓB the se
ond player maximizes

the fun
tional J−
B (x(·), y(·)) with the guarantee, and the �rst player minimizes the

fun
tional J+
B (x(·), y(·)).

Let us introdu
e the following notations. The feedba
ks solving, respe
tively,

the problem of guaranteeing maximization of the payo� fun
tionals J−
A , J

−
B are

denoted by symbols u0A = u0A(t, x, y, ε) and v0B = v0B(t, x, y, ε). Let us note, that
su
h feedba
ks present the guaranteeing maximization of players' payo�s in the

long run, and 
an be 
alled �positive� feedba
ks. By symbols u0B = u0B(t, x, y, ε) and
v0A = v0A(t, x, y, ε) we denote feedba
ks whi
h are most unfavorable to the opposing

players; namely, those feedba
ks, whi
h minimizes the payo� fun
tional J+
B , J

+
A of

opposing players, respe
tively. Let us 
all these feedba
ks �punishing�.

Let us note, that in�exible solutions to these problems 
an be obtained in the

framework of the 
lassi
al theory of bimatrix games. In fa
t, let us suppose for

de�niteness (although this is not essential for 
onstru
ting solutions in the general


ase) that the following 
onditions are satis�ed:

CA > 0, 0 < xA =
α2

CA
< 1, 0 < yA =

α1

CA
< 1,

CB < 0, 0 < xB =
β2
CB

< 1, 0 < yB =
β1
CB

< 1.

Proposition 1. The di�erential games Γ−
A , Γ

+
A (Γ−

B , Γ
+
B ) have equal values

ω−
A = ω+

A = ωA =
a22CA − α1α2

CA
, ω−

B = ω+
B = ωB =

b22CB − β1β2
CB

for arbitrary initial position (x0, y0) ∈ [0, 1]× [1, 0]. These values 
an be guaranteed

by �positive� feedba
ks uclA, v
cl
B 
orresponding to the 
lassi
 solutions xA, yB

uclA(x, y) =





0, xA < x ≤ 1
1, 0 ≤ x < xA
[0, 1] , x = xA

, vclB(x, y) =





0, yB < y ≤ 1
1, 0 ≤ y < yB
[0, 1] , y = yB

.

The �punishing� feedba
ks are determined by formulas

uclB(x, y) =





0, xB < x ≤ 1
1, 0 ≤ x < xB
[0, 1] , x = xB

, vclA(x, y) =





0, yA < y ≤ 1
1, 0 ≤ y < yA
[0, 1] , y = yA

and 
orrespond to the 
lassi
 stati
 solutions xB , yA, whi
h generate the stati
 Nash

equilibrium NE = (xB , yA).

Proof. The proof of this proposition is justi�ed by the dire
t substitution of strate-

gies uclA, v
cl
B and strategies uclB, v

cl
A in the dynami
s (1). ⊓⊔
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Note 1. The values of payo� fun
tions gA(x, y), gB(x, y) 
oin
ide at points (xA, yB),
(xB , yA)

gA(xA, yB) = gA(xB , yA) = ωA, gB(xA, yB) = gB(xB , yA) = ωB.

The point NE = (xB , yA) is the �mutually punishing� Nash equilibrium, and the

point xA, yB does not possess the equilibrium properties in the 
orresponding stati


game.

2.4. Constru
tion of the Nash Equilibrium

Let us 
onstru
t the pair of feedba
ks, whi
h form the dynami
 Nash equilibrium.

For that, we 
onne
t the �positive� feedba
ks u0A, v
0
B and the �punishing� feedba
ks

u0B, v
0
A.

Let us 
hoose the initial position (x0, y0) ∈ [0, 1] × [0, 1] and the a

ura
y pa-

rameter ε > 0. Let us 
hoose the traje
tory (x0(·), y0(·)) ∈ X(x0, y0, U
0
A(·), v0B(·)),

generated by the �positive� feedba
ks u0A = U0
A(t, x, y, ε) and v

0
B = v0B(t, x, y, ε). Let

us take the time moment Tε > 0 su
h that

gA(x
0(t), y0(t)) > J−

A (x0(·), y0(·))− ε, gB(x
0(t), y0(t)) > J−

B (x0(·), y0(·))− ε,
t ∈ [Tε,+∞].

Let us denote by uεA(t): [0, Tε) → [0, 1], vεB(t): [0, Tε) → [0, 1] the step-by-

step realization of the strategies v0A, v
0
B su
h that the 
orresponding step-by-step

me
hanism (xε(·), yε(·)) satis�es the 
ondition

max
t∈[0,Tε]

‖(x0(t), y0(t))− (xε(t), yε(t))‖ < ε.

From the results of the paper (Kleimenov, 1993) the next proposition follows.

Proposition 2. The pair of feedba
ks U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε), 
on-
ne
ting together the �positive� feedba
ks u0A, v

0
B and the �punishing� feedba
ks u0B,

v0A a

ording to the relations

U0 =

{
uεA(t), if ‖(x, y)− (xε(t), yε(t))‖ < ε,
u0B(x, y), otherwise,

V 0 =

{
vεB(t), if ‖(x, y)− (xε(t), yε(t))‖ < ε,
v0A(x, y), otherwise,

is the dynami
 ε-Nash equilibrium.

Note 2. Let us note that the number ε 
an be interpreted as the parameter of

�trust� of players to ea
h other or as the level of �risk�, whi
h players allow in the

game. This parameter determines the risk barrier that surrounds the equilibrium

traje
tory (xε(·), yε(·)). The players either follow the equilibrium traje
tory, without

leaving the pres
ribed risk barrier, getting the more pro�table index of values, or

stepping over it and the �punishing� strategy gives worse results.

Below we 
onstru
t the �exible �positive� feedba
ks, whi
h generate traje
tories

(xfl(·), yfl(·)) redu
ing to �better� positions, than the in�exible dynami
 equilibrium

(xB , yA), (xA, yB) by both 
riteria J∞
A (xfl(·), yfl(·)) ≥ ωA, J

∞
B (xfl(·), yfl(·)) ≥ ωB.
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3. Di�erential Game with Terminal Fun
tional

3.1. Value Fun
tions and Generalized Solutions of Hamilton-Ja
obi

Equations

In this se
tion, we 
onsider an auxiliary terminal di�erential zero-sum game with

the dynami
s (1) and payo� fun
tionals (2). Further, solutions of terminal di�er-

ential games are used for the 
onstru
tion of anti
ipating feedba
ks by 
al
ulating

the lower envelope of multi-terminal fun
tionals. The value fun
tions wi(T, t, x, y),
i = 1, 2 of terminal games are determined as values of 
orresponding maximins

(minimaxs)

w1(T, t0, x0, y0) =
max

u(t,x,y)
min

(x1(·),y1(·))
gA(x1(T ), y1(T )) = min

v(t,x,y)
max

(x2(·),y2(·))
gA(x2(T ), y2(T )),

w2(T, t0, x0, y0) =
max

v(t,x,y)
min

(x2(·),y2(·))
gB(x2(T ), y2(T )) = min

u(t,x,y)
max

(x1(·),y1(·))
gB(x1(T ), y1(T ))

for ea
h initial position (t0, x0, y0). Here traje
tories (x1(·), y1(·)) are generated by

feedba
ks u(t, x, y, ε) and random behaviors v(t). Traje
tories (x2(·), y2(·)) are gen-
erated by feedba
ks v(t, x, y, ε) and random behaviors u(t) from the initial position

(t0, x0, y0).
The value fun
tions wi(T, t, x, y), i = 1, 2 satisfy the prin
iple of the dynami


programming, whi
h implies the existen
e of non-in
reasing and non-de
reasing

dire
tions a
hievable for the dynami
 system at ea
h 
urrent position (the so 
alled

properties u and v of stability of the value fun
tion). At the points, where the

value fun
tions are di�erentiable, these properties pass into the �rst-order partial

di�erential Hamilton-Ja
obi equations

∂w1

∂t
− ∂w1

∂x
x− ∂w1

∂y
y + max

0≤u≤1

∂w1

∂x
u+ min

0≤v≤1

∂w1

∂y
v = 0, (4)

∂w2

∂t
− ∂w2

∂x
x− ∂w2

∂y
y + min

0≤u≤1

∂w2

∂x
u+ max

0≤v≤1

∂w2

∂y
v = 0. (5)

The value fun
tions wi(T, t, x, y), i = 1, 2 also satisfy the boundary 
ondition,

when t = T :

w1(T, T, x, y) = gA(x, y), w2(T, T, x, y) = gB(x, y). (6)

Let us 
onsider the terminal boundary problems (4)�(6) for the value fun
tions

w1(T, t, x, y), w2(T, t, x, y). It is known (Crandall and Lions, 1983; Subbotin, 1991),

that value fun
tion w1(T, t, x, y) 
oin
ides with the generalized solution of this prob-
lem, whi
h is unique and is determined by the terminal boundary value (6), and

the pair of di�erential inequalities for 
onjugate derivatives D∗w1 and D∗w1, 
or-

responding to the Hamilton-Ja
obi equation (4)

D∗w1(T, t, x, y)|(s) ≥ H(x, y, s), D∗w1(T, t, x, y)|(s) ≤ H(x, y, s), (7)

(t, x, y) ∈ [t0, T ]× (0, 1)× (0, 1), s = (s1, s2) ∈ R
2.
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The 
onjugate derivatives D∗w1 and D∗w1 and the Hamiltonian H are given by

the formulas (Subbotin and Tarasyev, 1985)

D∗w1(T, t, x, y)|(s) = sup
h∈R2

(〈s, h〉 − ∂−w1(T, t, x, y)|(1, h)),

D∗w1(T, t, x, y)|(s) = inf
h∈R2

(〈s, h〉 − ∂+w1(T, t, x, y)|(1, h)),

H(x, y, s) = −s1x− s2y + max
0≤u≤1

s1u+ min
0≤v≤1

s2v.

Expressions ∂−w1(T, t, x, y)|(1, h), ∂+w1(T, t, x, y)|(1, h) stand for dire
tional deriva-
tives of the value fun
tion w1 at the point (t, x, y) in the dire
tion (1, h), h =
(h1, h2) ∈ R2

∂−w1(T, t, x, y)|(1, h)) = lim inf
δ↓0

w1(T, t+ δ, x+ δh1, y + δh2)− w1(T, t, x, y)

δ
,

∂+w1(T, t, x, y)|(1, h)) = lim sup
δ↓0

w1(T, t+ δ, x+ δh1, y + δh2)− w1(T, t, x, y)

δ
.

For the pie
ewise smooth value fun
tion w1 the dire
tional derivatives and the


onjugate derivatives 
an be 
al
ulated in the framework of non-smooth and 
onvex

analysis. Let us assume that in the vi
inity (t, x, y) ∈ Oε(t∗, x∗, y∗) the fun
tion w1

is given by the formulas

w1(T, t, x, y) = min
i∈I

max
j∈J

ϕij(T, t, x, y) = max
j∈J

min
i∈I

ϕij(T, t, x, y).

Here symbols I, J stand for the �nite sets of indi
es i, j respe
tively.
The dire
tional derivatives in this 
ase are determined by the relations

∂w1(T, t∗, x∗, y∗)|(h) = min
i∈I

max
j∈J

(aij + 〈bij , h〉) = max
j∈J

min
i∈I

(aij + 〈bij , h〉),

aij =
∂ϕij

∂t
, bij =

(∂ϕij

∂x
,
∂ϕij

∂y

)
.

Let us introdu
e the notations

C =
⋂

i∈I

Bi, Bi = co{bij : j ∈ J}, D =
⋂

j∈J

Bj , Bj = co{bij : i ∈ I}.

The 
onjugate derivatives are determined by the relations

D∗w1(T, t∗, x∗, y∗)|(s) =





max
i∈I

min{−
∑

j∈J

λj(s)aij}, s ∈ C,

+∞, s /∈ C,

D∗w1(T, t∗, x∗, y∗)|(s) =





min
j∈J

max{−
∑

i∈I

λi(s)aij}, s ∈ D,

−∞, s /∈ D.

Here the 
oe�
ients λj(s) satisfy the 
onditions

∑

j∈J

λj(s)bij = s, λj(s) ≥ 0,
∑

j∈J

λj(s) = 1.
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3.2. Des
ription of Analyti
al Solution for Boundary Problem

The boundary problem (4), (6) has an analyti
al solution. The 
orresponding

value fun
tion w1(T, t, x, y) is pie
ewise smooth and 
onsists of �ve smooth fun
-

tions ϕk(T, t, x, y), k = 1, . . . , 5. The analyti
al formulas for smooth 
omponents

ϕk(T, t, x, y), k = 1, . . . , 5 
an be obtained using the method of 
hara
teristi
s for

the linear Hamilton-Ja
obi equations, whi
h arise from nonlinear (4) by the substi-

tuting di�erent 
ombinations of the extremal values 0 and 1 in the expressions max
and min. Let us provide the formulas for these fun
tions:

ϕ1(T, t, x, y) = CAe
2(t−T )xy − α1e

t−Tx− α2e
t−T y + a22, (8)

ϕ2(T, t, x, y) = CAe
2(t−T )xy − α1e

t−Tx

−
(
CAe

2(t−T ) + (α2 − CA)e
(t−T )

)
y + α1e

(t−T ) + a12,
(9)

ϕ3(T, t, x, y) = CAe
2(t−T )xy −

(
CAe

2(t−T ) + (α1 − CA)e
(t−T )

)
x−

(CAe
2(t−T ) + (α2 − CA)e

(t−T ))y + CAe
2(t−T ) + (α1 + α2 − 2CA)e

(t−T ) + a11,
(10)

ϕ4(T, t, x, y) = CAe
2(t−T )xy −

(
CAe

2(t−T ) + (α1 − CA)e
(t−T )

)
x−

α2e
t−T y + α2e

t−T + a21,
(11)

ϕ5(T, t, x, y) =
a22CA − α1α2

CA
=
a11a22 − a12a21

CA
=
DA

CA
= vA.

The fun
tions ϕk, k = 1, . . . , 5 are pasting together on the four lines Lm = Lm(T, t),
m = 1, . . . , 4

L1 =
{
(x, y) : x1(T, t) ≤ x ≤ 1, y = y2(T, t)

}
,

L2 =
{
(x, y) : x = x1(T, t), y1(T, t) ≤ y ≤ 1

}
,

L3 =
{
(x, y) : 0 ≤ x ≤ x2(T, t), y = y1(T, t)

}
,

L4 =
{
(x, y) : x = x2(T, t), 0 ≤ y ≤ y2(T, t)

}
.

Here

x1(T, t) = max

{
0, 1−

(
1− α2

CA

)
e(T−t)

}
, x2(T, t) = max

{
1,
α2

CA
e(T−t)

}
,

y1(T, t) = max

{
0, 1−

(
1− α1

CA

)
e(T−t)

}
, y2(T, t) = max

{
1,
α1

CA
e(T−t)

}
.

Proposition 3. The value fun
tion w1(T, t, x, y) is determined by the relation

w1(T, t, x, y) = ϕk(T, t, x, y), (x, y) ∈ Dk(T, t), k = 1, . . . , 5. (12)

Here domains Dk = Dk(T, t), k = 1, . . . , 5 are given by inequalities

D1(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : x2(T, t) ≤ x ≤ 1, 0 ≤ y ≤ y2(T, t)},
D2(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : x1(T, t) ≤ x ≤ 1, y2(T, t) ≤ y ≤ 1},
D3(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : 0 ≤ x ≤ x1(T, t), y1 ≤ y ≤ 1(T, t)},
D4(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : 0 ≤ x ≤ x2(T, t), 0 ≤ y ≤ y1(T, t)},
D5(T, t) = {(x, y) ∈ [0, 1]× [0, 1] : x1(T, t) ≤ x ≤ x2(T, t),
y1(T, t) ≤ y ≤ y2(T, t)}.

(13)
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One 
an 
he
k the validity of di�erential inequalities in the ne
essary and su�-


ient 
onditions (6), (7) for the fun
tion w1(T, t, x, y), determined by the formulas

(12), (13).

4. Value Fun
tion of the Game with Multi-Terminal Payo� Fun
tional

4.1. Di�erential Game with Multi-terminal Fun
tional

In the previous se
tion we obtained the solution for the auxiliary terminal bound-

ary problem (4), (6). The solution of this problem (the value fun
tion) w1(T, t, x, y)
depends on the terminal time moment T . De�nitely, su
h solution is not a proper

one in the evolutionary sense, be
ause we obtain a �good� result only at the time

moment T , but not in other time moments, in
luding in�nity. Thus, here we 
on-

stru
t the value fun
tion for the di�erential game with the multi-terminal payo�

fun
tional

GA

(
x(·), y(·)

)
= inf

t0≤t<+∞
gA
(
x(t), y(t)

)
. (14)

The fun
tional (14) determines the foreseeing prin
iple, sin
e it takes into the a
-


ount future positions gA
(
x(t), y(t)

)
, starting at the initial time t0, and ending at

in�nity +∞.

Using results obtained in the di�erential games theory (Krasovskii and Subbotin,

1988) and the viability theory (Aubin, 1990), one 
an prove that the di�erential

zero-sum game with the dynami
s (1) and the fun
tional (14) has the value. More

pre
isely, the next statement is true.

Theorem 1. There exists the saddle point that determines the stationary value

fun
tion

sup
u(t,x,y,ε)

inf(
x1(·),y1(·)

) inf
s∈[t0,+∞]

gA
(
x1(s), y1(s)

)
=

inf
v(t,x,y,ε)

sup(
x2(·),y2(·)

) inf
s∈[t0,+∞]

gA
(
x2(s), y2(s)

)
=

lim
T→+∞

min
v(t,x,y,ε)

max(
x2(·),y2(·)

) min
s∈[t0,T ]

gA
(
x2(s), y2(s)

)
=

lim
T→+∞

max
u(t,x,y,ε)

min(
x1(·),y1(·)

) min
s∈[t0,T ]

gA
(
x1(s), y1(s)

)
= wA(t0, x0, y0) = wA(x0, y0).

Here the traje
tories

(
x1(·), y1(·)

)
,

(
x2(·), y2(·)

)
are generated from the initial po-

sition (t0, x0, y0) by feedba
ks u(t, x, y, ε), v(t, x, y, ε) of the maximizing and mini-

mizing players, respe
tively, and arbitrary 
ontrols of their opponents.

Proof. The proof follows from the theorem on the alternative (Krasovskii and Sub-

botin, 1988), the stationary property of the dynami
s (1), the �niteness of values

of the fun
tional GA (14), and 
an be dedu
ed through the 
on
ept of the 
ore

viability (Aubin, 1990). The s
heme of the proof is the following.
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In the general 
ase the next 
onditions take pla
e:

sup
u(t,x,y,ε)

inf(
x1(·),y1(·)

) inf
s∈[t0,+∞]

gA
(
x1(s), y1(s)

)
≤

inf
v(t,x,y,ε)

sup(
x2(·),y2(·)

) inf
s∈[t0,+∞]

gA
(
x2(s), y2(s)

)
≤

lim
T→+∞

min
v(t,x,y,ε)

max(
x2(·),y2(·)

) min
s∈[t0,T ]

gA
(
x2(s), y2(s)

)
=

lim
T→+∞

max
u(t,x,y,ε)

min(
x1(·),y1(·)

) min
s∈[t0,T ]

gA
(
x1(s), y1(s)

)
= wA(t, x, y).

(15)

One 
an verify the next properties of the fun
tion wA(t, x, y).

Property 1. The fun
tion wA is a stationary one

wA(t, x, y) = wA(s, x, y) = wA(x, y), (xi, yi) ∈ [0, 1]× [0, 1], t ∈ R, s ∈ R.

Property 2. The fun
tion wA satis�es the Lips
hitz 
ondition

|wA(x1, y1)−wA(x2, y2)| ≤ K(|x1−x2|+ |y1− y2|), (xi, yi) ∈ [0, 1]× [0, 1], i = 1, 2.

Property 3. The fun
tion wA is majorized by the payo� gA

wA(x, y) ≤ gA(x, y), (x, y) ∈ [0, 1]× [0, 1]. (16)

Property 4. The fun
tion wA is the maximal fun
tion that satis�es the 
ondition

(16) and the prin
iple of the dynami
 programming. Namely, the properties of u-
stability and v-stability 
an be presented as follows

min
0≤v≤1

max
0≤u≤1

∂+wA(x, y)|(−x + u,−y + v) ≥ 0, (x, y) ∈ (0, 1)× (0, 1), (17)

max
0≤u≤1

min
0≤v≤1

∂−wA(x, y)|(−x+ u,−y + v) ≥ 0, (x, y) ∈ (0, 1)× (0, 1). (18)

Property 5. The properties of u-stability (17) and v-stability (18) 
an be rewritten
in terms of the 
onjugate derivatives (Subbotin and Tarasyev, 1985)

D∗wA(x, y)|(s) ≤ H(x, y, s), (x, y) ∈ (0, 1)× (0, 1), s = (s1, s2) ∈ R
2, (19)

D∗wA(x, y)|(s) ≥ H(x, y, s),
(x, y) ∈ (0, 1)× (0, 1), wA(x, y) < gA(x, y), s = (s1, s2) ∈ R2.

(20)

Taking into a

ount the stability properties and using the 
on
ept of strategy of

�extremal shift� (Krasovskii, 1985), one 
an prove that the 
orresponding traje
-

tories provide that the value of the fun
tional GA (14) in [t0,+∞) is equal to the

value of the fun
tion wA. Hen
e, all inequalities in (15) turn into the equalities, and

this fa
t proves the Theorem.

4.2. Des
ription of Solution for Game with Multi-Terminal Fun
tional

For des
ription of the analyti
 solution of the game let us introdu
e smooth


omponents ϕ1 (8), ϕ3 (10) of the value fun
tion w1 (12) in terms of the ba
kward

time parameter s = t − T . Let us 
onstru
t the lower envelopes of these smooth
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omponents, whi
h present the multi-terminal interests of players. In 
onstru
ting

the envelope ψ1
A for the 
omponent ϕ1 it is ne
essary to 
al
ulate the derivative by

the parameter s, to equate it to zero, to �nd the root of the resulting equation, and

to substitute the root in the 
omponent ϕ1. Finally, we obtain

ψ1
A(x, y) = ϕ1(s, x, y) = a22 −

(α1x+ α2y)
2

4CAxy
.

Analogously, for the 
omponent ϕ3 we obtain its lower envelope ψ
2
A by the parameter

s

ψ2
A(x, y) = ϕ3(s, x, y) = a11 −

((CA − α1)(1 − x) + (CA − α2)(1− y))2

4CA(1 − x)(1 − y)
.

In a similar way, we determine the lower envelopes ψ3
A, ψ

4
A of the 
omponents ϕ2

(9), ϕ4 (11)

ψ3
A(x, y) = CAxy − α1x− α2y + a22,

ψ4
A(x, y) =

a22CA − α1α2

CA
= ωA.

The smooth fun
tions ψi
A, i = 1, . . . , 4, are pasting on the lines Kj

A, j = 1, . . . , 5,

K1
A =

{
(x, y) : x =

α2

CA
, 0 ≤ y ≤ 1

}
,

K2
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1

CA
≤ y ≤ 1, y =

α1

α2
x

}
,

K3
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
, 0 ≤ y ≤ α1

CA
, y = − (CA − α1)

(CA − α2)
(1− x) + 1

}
,

K4
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ α1

CA
, y =

α1x

2CAx− α2

}
,

K5
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,
α1

CA
≤ y ≤ 1, y = − (CA − α1)(1− x)

2CA(1− x)− (CA − α2)
+ 1

}
,

where (x, y) ∈ [0, 1]× [0, 1].
Let us introdu
e the analyti
 des
ription of the value fun
tion wA.

Statement 1.When CA > 0 the value fun
tion (x, y) 7→ wA(x, y) is determined

as

wA(x, y) = ψi
A(x, y), if (x, y) ∈ Ei

A, i = 1, . . . , 4. (21)

Here domains Ei
A, i = 1, . . . , 4, are given as follows
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E1
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1x

2CAx− α2
≤ y ≤ α1

α2
x
}
,

E2
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

− (CA − α1)

(CA − α2)
(1− x) + 1 ≤ y ≤ − (CA − α1)(1 − x)

2CA(1 − x)− (CA − α2)
+ 1
}
,

E3
A = E31

A ∪ E32
A ,

E31
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ α1x

2CAx− α2

}
,

E32
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

− (CA − α1)(1− x)

2CA(1− x)− (CA − α2)
+ 1 ≤ y ≤ 1

}
,

E4
A = E41

A ∪ E42
A ,

E41
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1

α2
x ≤ y ≤ 1

}
,

E42
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
, 0 ≤ y ≤ − (CA − α1)

(CA − α2)
(1− x) + 1

}
, (22)

where (x, y) ∈ [0, 1]× [0, 1].
Let us 
onsider, as an example, the following payo� matrix for the �rst player

in the 
ase when CA > 0:

A =

(
3 1
0 3

)
, (23)

The game parameters for this matrix have the following values:

CA = 5, α1 = 2, α2 = 3, xA = 0.6, yA = 0.4.

The stru
ture of the value fun
tion wA for the matrix A (23) in the 
ase when

CA > 0 is presented on Fig. 1.

Let us 
onsider the 
ase when CA < 0.
The lower envelopes in this 
ase are determined as follows:

ψ1
A(x, y) = a21 +

((CA − α1)x+ α2(1− y))2

4CAx(1 − y)
,

ψ2
A(x, y) = a12 +

(α1(1− x) + (CA − α2)y)
2

4CA(1 − x)y
,

ψ3
A(x, y) = CAxy − α1x− α2y + a22,

ψ4
A(x, y) = ωA.
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Smooth fun
tions ψi
A, i = 1, . . . , 4, are pasting on the lines Kj

A, j = 1, . . . , 5,

K1
A =

{
(x, y) : x =

α2

CA
, 0 ≤ y ≤ 1

}
,

K2
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ α1

CA
, y = − (CA − α1)

α2
x+ 1

}
,

K3
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,
α1

CA
≤ y ≤ 1, y =

α1

(CA − α2)
(1 − x)

}
,

K4
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

α1

CA
≤ y ≤ 1, y = − (CA − α1)x

2CAx− α2
+ 1

}
,

K5
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
, 0 ≤ y ≤ α1

CA
, y =

α1(1− x)

2CA(1− x)− (CA − α2)
+ 1

}
,

where (x, y) ∈ [0, 1]× [0, 1].
The domains Ei

A, i = 1, ..., 4, are determined as follows:
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Fig. 1. The stru
ture of the value fun
tion wA in the 
ase when CA > 0.
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E1
A =

{
(x, y) :

α2

CA
≤ x ≤ 1,

− (CA − α1)

α2
x+ 1 ≤ y ≤ − (CA − α1)x

2CAx− α2
+ 1
}
,

E2
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

α1(1− x)

2CA(1− x)− (CA − α2)
+ 1 ≤ y ≤ α1

(CA − α2)
(1− x)

}
,

E3
A = E31

A ∪E32
A ,

E31
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, − (CA − α1)x

2CAx− α2
+ 1 ≤ y ≤ 1

}
,

E32
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

0 ≤ y ≤ α1(1 − x)

2CA(1− x) − (CA − α2)
+ 1
}
,

E4
A = E41

A ∪E42
A ,

E41
A =

{
(x, y) :

α2

CA
≤ x ≤ 1, 0 ≤ y ≤ − (CA − α1)

α2
x+ 1

}
,

E42
A =

{
(x, y) : 0 ≤ x ≤ α2

CA
,

α1

(CA − α2)
(1− x) ≤ y ≤ 1

}
, (24)

where (x, y) ∈ [0, 1]× [0, 1].
Let us 
onsider, as an example, the following payo� matrix for the �rst player

in the 
ase when CA < 0:

A =

(
−3 −2
0 −4

)
, (25)

The game parameters for this matrix have the following values:

CA = −5, α1 = −2, α2 = −4, xA = 0.8, yA = 0.4.

The stru
ture of the value fun
tion wA for the matrix A (25) in the 
ase when

CA < 0 is presented on Fig. 2.

Let us note that both 
ases of positive and negative signs of the basi
 parameter

CA, whi
h generate di�erent orientations, �left� and �right�, for �zigzags� (broken

lines) of a

eptable situations in the stati
 game (Vorobyev, 1985) is important for


onstru
tion the Nash equilibrium traje
tories in the 
onsidered below example of

intera
tions of two players on the market of innovative ele
troni
 devi
es.

4.3. Veri�
ation of u− and v− Stability in the Multi-Terminal Game

In this se
tion, we prove that the ne
essary and su�
ient 
onditions for the

fun
tion wA are satis�ed for it 
oin
iden
e with the value of a multi-terminal game.

Proposition 4. For the fun
tion wA in the 
ase when CA > 0 the boundary 
on-

dition (16) and di�erential inequalities (19), (20) are ful�lled.

Proof. The boundary 
ondition obviously holds, be
ause fun
tions ψi
A, i = 1, . . . , 4

are the lower envelopes of the terminal solutions w1(T, t, x, y) and, hen
e,

ψi
A(x, y) ≤ ϕi(t, x, y) ≤ gA(x, y), i = 1, . . . , 4, (x, y) ∈ [0, 1]× [0, 1].
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Fig. 2. The stru
ture of the value fun
tion wA in the 
ase when CA < 0.

Let us 
he
k, that the di�erential inequalities (19), (20) are ful�lled for the

fun
tion wA. One 
an prove that fun
tions ψi
A, i = 1, 2, 4, satisfy the Hamilton-

Ja
obi equation at the interior points of domains Ei
A, i = 1, 2, 4. Also one 
an 
he
k,

that the fun
tion ψ3
A (21) 
oin
ides with the boundary fun
tion gA and satis�es the

inequality

−∂ψ
3
A

∂x
x− ∂ψ3

A

∂y
y +max

{
0,
∂ψ3

A

∂x

}
+min

{
0,
∂ψ3

A

∂y

}
≥ 0

at the interior points of the domain E3
A.

It remains to verify the di�erential inequalities (19), (20) on the pasting lines

Kj
A, j = 1, . . . , 5. Let us do this, for example, on the lines K2

A,K
3
A. At the points of

the line K2
A, the fun
tions ψ

1
A and ψ4

A are 
ontinuously pasted. Let us 
al
ulate the

partial derivatives of these fun
tions

∂ψ1
A

∂x
=
α2
2y

2 − α2
1x

2

4CAx2y
,

∂ψ1
A

∂y
=
α2
1x

2 − α2
2y

2

4CAxy2
,

∂ψ4
A

∂x
= 0,

∂ψ4
A

∂y
= 0.

One 
an note that these derivatives are equal to zero on the line K2
A

∂ψ1
A

∂x
=
∂ψ4

A

∂x
= 0,

∂ψ1
A

∂y
=
∂ψ4

A

∂y
= 0.

In other words, the fun
tions ψ1
A and ψ4

A are smoothly pasted together. Hen
e,

the inequalities (19), (20) on the line K2
A turn into the equality. Analogously, one


an prove smooth pasting of the fun
tions ψ2
A, ψ

4
A on the line K3

A.
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Let us 
onsider the line K4
A, where the fun
tions ψ

1
A and ψ3

A are pasted together.

One 
an 
he
k that this pasting is smooth, sin
e for the partial derivatives on the

line K4
A we obtain the relations

∂ψ1
A

∂x
=
∂ψ3

A

∂x
=
α1(α2 − CAx)

2CAx− α2
,

∂ψ1
A

∂y
=
∂ψ3

A

∂y
= CAx− α2.

Similarly, one 
an 
he
k the smoothness of the fun
tion wA on the line K5
A.

Along the lineK1
A the fun
tions ψ3

A and ψ4
A are pasted together. Their derivatives

on the line K1
A are determined as

∂ψ3
A

∂x
= CAy − α1,

∂ψ4
A

∂x
= 0,

∂ψ3
A

∂y
=
∂ψ4

A

∂y
= 0.

Let us note that there is no need to 
he
k the inequality (20) on the line K1
A, sin
e

the following relations are ful�lled wA = ψ3
A = ψ4

A = gA. It is ne
essary only to

verify the 
ondition (19). One 
an 
he
k that in the vi
inity of points of the line

K1
A the fun
tion wA is determined by the operation of minimum

wA(x, y) = min{ψ3
A(x, y), ψ

4
A(x, y)}.

Hen
e, for points (x, y) ∈ K1
A we obtain

∂wA(x, y)|(h1, h2) = min{0, (CAy − α1)h1},

D∗wA(x, y)|(s1, s2) =
{
0, s1 = λ(CAy − α1), s2 = 0,
−∞, otherwise.

(26)

Here the parameter λ satis�es the inequalities 0 ≤ λ ≤ 1. For points (x, y) ∈ K1
A

and ve
tors s = (s1, s2), s1 = λ(CAy − α1), s2 = 0, the Hamiltonian H(x, y, s) is
determined by the relation

H(x, y, s) = −s1x+max{0, s1} =

{
−s1x, s1 ≤ 0,
s1(1− x), otherwise.

(27)

It is obvious that for these values the Hamiltonian (27) is larger or equal to the

lower 
onjugate derivative (26). Hen
e, the inequality (19) is proved on the line

K1
A.

Thus, we have proved that the fun
tion wA (21), (22) is the value fun
tion in

the game with the multi-terminal fun
tional.

The proof of the proposition (4) for the 
ase when CA < 0 is 
arried out analo-

gously.

Note 3. In the domain E4
A, the next relations are valid

gA(x, y) ≥ wA(x, y) = ωA.

Note 4. The positional strategy U0
A = u0A(x, y) 
orresponding to the value fun
tion

wA (see relations (28)) provides the viability property for traje
tories (x(·), y(·)) of
the system (1) in the domain E4

A.

Note 5. For the matrix B the value fun
tion wB and domains EB 
an be 
onstru
ted

analogously.



236 Nikolay A. Krasovskii, Alexander M. Tarasyev

5. Flexible �Positive� Feedba
ks

5.1. Optimal Feedba
k Controls

Let us give the des
ription of the �exible �positive� feedba
k 
ontrols u0A =
uflA = uflA(x, y), whi
h solve the problem of guaranteeing maximization for the multi-

terminal fun
tional GA(x1(·), y1(·)) (14) on traje
tories (x1(·), y1(·)) of the system
(1). This 
ontrol is 
onstru
ted by the prin
iple of the �extremal shift� in the dire
-

tion of the gradient (generalized gradient) of the value fun
tion wA.

Let us note that the partial derivative ∂wA/∂x of the value fun
tion wA 
hanges

its sign on the lines K2
A and K3

A. Thus, the optimal feedba
k 
ontrol u0A has the

following stru
ture (see, for example, (Krasovskii and Subbotin, 1988)). The 
on-

trol parameter uflA = uflA(x, y) is equal to zero, if the 
urrent position (x, y) =
(x1(t), y1(t)) lies on the right to the line KA = K2

A ∪ K3
A, equals to one, if the


urrent position lies to the left of this line, and 
an take arbitrary values at points

of the line KA. Namely, if CA > 0, then

u0A = uflA = uflA(x, y) =





0, (x, y) ∈ D1
A,

1, (x, y) ∈ D2
A,

[0, 1], (x, y) ∈ KA.
(28)

D1
A = D11

A ∪D12
A ,

D11
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y <

α1

α2
x, y ≥ α1

CA

}
,

D12
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y < − (CA − α1)

(CA − α2)
(1 − x) + 1, y ≤ α1

CA

}
,

D2
A = D21

A ∪D22
A ,

D21
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y >

α1

α2
x, y ≥ α1

CA

}
,

D22
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y > − (CA − α1)

(CA − α2)
(1 − x) + 1, y ≤ α1

CA

}
,

KA = K2
A ∪K3

A,

K2
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y =

α1

α2
x, y ≥ α1

CA

}
,

K3
A =

{
(x, y) ∈ [0, 1]× [0, 1] : y = − (CA − α1)

(CA − α2)
(1 − x) + 1, y ≤ α1

CA

}
.

If CA < 0, then the �exible �positive� feedba
k 
ontrol uflA has the analogous

stru
ture.

The guaranteeing problem for optimization of the multi-terminal fun
tional

GB(x2(·), y2(·)) for the se
ond player is solved analogously.

5.2. Multi-Terminal Optimal Control

Optimal 
ontrols uflA(x, y) (28) guarantee that the 
urrent payo� of the �rst

player be
omes in the long term not worse than the value ωA = DA/CA of the

matrix zero-sum game for the matrix A. The next statement is true.
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Statement 2. For any initial position (x0, y0) ∈ [0, 1] × [0, 1] and for any tra-

je
tory

(x1(·), y1(·)) ∈ X(x0, y0, u
fl
A), x1(t0) = x0, y1(t0) = y0, t0 = 0,

generated by the optimal 
ontrol uflA = uflA(x, y), there exists a �nite time ts ∈
[0, TA],

TA = ln

(
max

{
CA

α2
,

CA

CA − α2

})
,

at whi
h the traje
tory (x1(·), y1(·)) enters the domain E4
A (see (22)),

(x1(ts), y1(ts)) ∈ E4
A,

where the value fun
tion wA is equal to the value ωA of the matrix game,

wA(x1(ts), y1(ts)) = ωA,

and stays in the domain E4
A on the time interval [ts,+∞) (and, hen
e, on the time

interval [TA,+∞)). Thus, a

ording to the de�nition of the value fun
tion wA, the

next inequality takes pla
e

gA(x1(t), y1(t)) ≥ ωA, t ≥ ts

and, in parti
ular,

lim inf
t→+∞

gA(x1(t), y1(t)) ≥ ωA.

Proof. Let us note that the domain E4
A (see (22)) has non-empty interse
tions with

all lines Lλ, 0 ≤ λ ≤ 1,

Lλ = {(x, y) ∈ (0, 1)× (0, 1): y = λ}.

Hen
e, any traje
tory (x1(·), y1(·)), generated by the feedba
k optimal 
ontrol uflA
(the value of whi
h is equal to zero or one) interse
ts this domain E4

A. Thus, the

proje
tion of the velo
ity on the lines Lλ for su
h traje
tories is not equal to zero

and keeps the sign till the moment of the interse
tion of the traje
tory with the

domain E4
A.

The analogous statement 
an be formulated for the game with the matrix B.

Statement 3. Interse
tion E0
of the sets E4

A and E4
B is non-empty, i.e. E0 =

E4
A ∩ E4

B 6= ∅, and, hen
e, the optimal strategies uflA, v
fl
B generate the traje
tory

(xfl(·), yfl(·)), whi
h enters the interse
tion E0
and stays in it on the time interval

[T 0,+∞), T 0 = max{TA, TB}. In the set E0
, the following inequalities are ful�lled

gA(x
fl(t), yfl(t)) ≥ ωA, gB(x

fl(t), y(flt)) ≥ ωB, t ∈ [T 0,+∞).

Thus, the set E0

an be 
alled the favorable domain for both players.
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6. Nash Equilibrium with Flexible �Positive� Controls

6.1. Stru
ture of the Nash Equilibrium

Let us 
onstru
t the pair of 
ontrols for the Nash equilibrium, pasting to-

gether the �exible �positive� 
ontrols u0A = uflA, v
0
B = vflB and the �punishing�


ontrols u0B = uclB, v
0
A = vclA. Let us 
hoose the initial position (x0, y0) ∈ [0, 1] ×

[0, 1] and the a

ura
y parameter ε > 0. Let us �x the traje
tory (xfl(·), yfl(·)) ∈
X(x0, y0, u

fl
A(·), vflB(·)), generated by the �exible �positive� 
ontrols uflA and vflB . Let

us 
hoose the moment of time Tε > 0 su
h that

gA(x
fl(t), yfl(t)) > J−

A (xfl(·), yfl(·))− ε,
gB(x

fl(t), yfl(t)) > J−
B (xfl(·), yfl(·))− ε,

t ∈ [Tε,+∞).

Let us denote by the symbol ufl,εA (t) : [0, Tε) → [0, 1], vfl,εB (t) : [0, Tε) → [0, 1], the
step-by-step realization of the strategies uflA, v

fl
B , su
h that the 
orresponding step-by

step motion (xflε (·), yflε (·)) satis�es the 
ondition

max
t∈[0,Tε]

‖(xfl(t), yfl(t))− (xflε (t), y
fl
ε (t))‖ < ε.

Applying the 
onstru
tion of the Nash equilibrium from (Kleimenov, 1993), we

obtain the following result.

Statement 4. The pair of 
ontrols U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε) pasted
together by the �exible �positive� 
ontrols uflA, v

fl
B, and the �punishing� 
ontrols uclB,

vclA,

U0 = u0(t, x, y, ε) =

{
ufl,εA (t), ‖(x, y)− (xflε (t), y

fl
ε (t))‖ < ε,

uclB(x, y), otherwise
(29)

V 0 = v0(t, x, y, ε) =

{
vfl,εB (t), ‖(x, y)− (xflε (t), y

fl
ε (t))‖ < ε,

vclA(x, y), otherwise
(30)

is the dynami
 ε-Nash equilibrium.

Let us note that the traje
tory (xflε (·), yflε (·)) is the 
ore of the dynami
 Nash

equilibrium. Thus, it 
an be 
alled the equilibrium traje
tory. It is generated by the

guaranteeing 
ontrols uflA and vflB, and provides values for both payo� fun
tionals

better than the stati
 Nash equilibrium.

6.2. Traje
tories for Felxible �Positive� Controls

The question of interest is the qualitative behavior of the traje
tories generated

by the �exible �positive� 
ontrols whi
h form the basis for the dynami
 Nash equi-

librium (29), (30). To 
lassify the possible behavior of these traje
tories, we 
an

formulate the following statement.

Statement 5. The values of the payo� fun
tionals J−
A , J

−
B on the arbitrary

traje
tory (xfl(·), yfl(·)) generated by the �exible �positive� feedba
k 
ontrols uflA,
vflB, are not worse than values of these fun
tionals on any traje
tory 
onverging

to the stati
 Nash equilibrium (xB , yA) = (β2/CB, α1/CA), on whi
h the 
ompo-

nents of players' distributions are unfavorable for opposite players. Moreover, the
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traje
tories (xfl(·), yfl(·)) enter the favorable domain E0
and stay there on the in�-

nite time interval. The next variants of the qualitative behavior of the traje
tories

(xfl(·), yfl(·)) in the domain E0
are possible:

- it 
an 
onverge to the interse
tion of lines KA, KB;

- it 
an approa
h the points lo
ated on the border of the square (in the 
ase when

the interse
tion of lines KA, KB is empty);

- it 
an approa
h the non-antagonisti
 stati
 Nash equilibrium with Pareto proper-

ties (in the 
ase when su
h equilibrium exists);

- it 
an 
ir
ulate in the domain E0
.

7. Examples of Equilibrium Traje
tories in Evolutionary Bimatrix

Games

Let us 
onsider, as an example, the payo� matri
es of two players on the market

of ele
troni
s: Samsung Corporation (matrix A) and Apple Corporation (matrix

B):

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

We 
onsider annual sales of players and their investments in 2018 a

ording to the

data from the internet. Resour
es that we used are the following:

https://news.samsung.
om/

http://www.annualreports.
om/Company/apple-in


Let us present the elements of matri
es A and B:

a11 = (S1
o + (S1

b + S2
b )/2− I1l ),

a12 = (S1
o + S1

b − I1l ),
a21 = (S1

o + S1
a − I1s ),

a22 = (S1
o − I1s ).

b11 = (S2
o + (S1

b + S2
b + S2

a)/3− I2l ),
b12 = (S2

o + S2
b − I2l ),

b21 = (S2
o + S2

a − I2s ),
b22 = (S2

o − I2s ).

We obtain payo� matri
es in the view:

A =

(
(S1

o + (S1
b + S2

b )/2− I1l ) (S
1
o + S1

b − I1l )
(S1

o + S1
a − I1s ) (S1

o − I1s )

)
,

B =

(
(S2

o + (S1
b + S2

b + S2
a)/3− I2l ) (S

2
o + S2

b − I2l )
(S2

o + S2
a − I2s ) (S2

o − I2s )

)
.

Here S1
o = 220 billion dollars is the ordinary sales of Samsung 
orp.;

S1
b = 22 billion dollars is the bonus sales of Samsung 
orp. due to investments in

new te
hnologies;

S1
a = 8 billion dollars is the sales of Samsung 
orp. due to absorption of new

te
hnologies from Apple 
orp. without own investments;

I1l = 15 billion dollars is the long-term investments of Samsung 
orp.;

I1s = 0 billion dollars is the short-term investments of Samsung 
orp.;

S2
o = 215 billion dollars is the ordinary sales of Apple 
orp.;

S2
b = 14 billion dollars is the bonus sales of Apple 
orp. due to investments in new
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te
hnologies;

S2
a = 4 billion dollars is the sales of Apple 
orp. due to absorption of new te
hnolo-

gies from Samsung 
orp. without own investments;

I2l = 11.5 billion dollars is the long-term investments of Apple 
orp.;

I2s = 0 billion dollars is the short-term investments of Apple 
orp.;

The resulting payo� matri
es have the following form:

A =

(
223 227
228 220

)
, B =

(
216.83 217.5
219 215

)
.

The main game parameters are determined as follows:

CA = a11 − a12 − a21 + a22 = −12,
α1 = a22 − a12 = −7, α2 = a22 − a21 = −8,

xA =
α2

CA
= 0.67, yA =

α1

CA
= 0.58.

CB = b11 − b12 − b21 + b22 = −4.67,
β1 = b22 − b12 = −2.5, β2 = b22 − b21 = −4,

xB =
β2
CB

= 0.86, yB =
β1
CB

= 0.54.

On Fig. 3 we present the saddle point SA of the stati
 game with the matrix A,
the swit
hing line KA, and the ve
tor �eld of motions for the �rst player.

On Fig. 4 we present the saddle point SB of the stati
 game with the matrix B,
the swit
hing line KB, and the ve
tor �eld of motions for the se
ond player.

On Fig. 5 we present three situations of the Nash equilibrium N1, N2 and N3

in the stati
 game; the swit
hing lines KA and KB; the equilibrium traje
tories T1,
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Fig. 3. Swit
hing lines for the 
ontrol feedba
k of the �rst player.
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Fig. 4. Swit
hing lines for the 
ontrol feedba
k of the se
ond player.

T2 and T3 starting from the initial points IP1, IP2 and IP3 and 
onverging to the

point F1 of the Pareto maximum.

Values of the fun
tionals gA and gB at the �nal point F1 of the equilibrium

traje
tories are better than at the points of the Nash equilibrium N1 and N2. Values

of the fun
tionals gA and gB at the point N3 are better than at the point F1, whi
h


an be explained as follows. Both players are aimed to approa
h this point, but the

�rst player insures against big payo� losses and stays in the favorable domain. So,

at the limit point of the Nash equilibrium traje
tory the �rst player prefers to share

investments between own te
hnologies and absorption of the opponent te
hnologies,

and the se
ond player makes the de
ision to rely fully on own te
hnologies.

8. Con
lusion

The paper deals with development of the generalized method of 
hara
teristi
s

for 
onstru
tion of the generalized minimax (vis
osity) solutions of Hamilton-Ja
obi

equations in dynami
 bimatrix games. These solutions play the key role in the stru
-

ture of the dynami
 Nash equilibrium sin
e they synthesize optimal feedba
ks of

players and generate equilibrium traje
tories with the guaranteeing properties. We

obtain the analyti
al formulas for the value fun
tions as the generalized minimax

(vis
osity) solutions of the Hamilton-Ja
obi equations in the 
ases of di�erent ori-

entations for the �zigzags� (broken lines) of a

eptable situations in the stati
 game.

It is proved that the equilibrium traje
tories generated by the generalized minimax

solutions shift the system in the dire
tion of 
ooperative Pareto points. The pro-

posed approa
h provides better results of payo�s for both players at the limit points
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Fig. 5. Equilibrium traje
tories of the dynami
 bimatrix game.

of the equilibrium traje
tories in the dynami
 bimatrix games than the stati
 Nash

equilibrium or traje
tories of the repli
ator dynami
s in the evolutionary games.

We 
onsider an example of two 
ompetitive players on the market of innovative

ele
troni
 devi
es and 
onstru
t the Nash equilibrium traje
tories in the dynami


bimatrix games whi
h shift unfavorable Nash equilibria to the set of Pareto maxi-

mum points.
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