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Abstract In the paper, constructions of the generalized method of char-
acteristics are applied for calculating the generalized minimax (viscosity)
solutions of Hamilton-Jacobi equations in dynamic bimatrix games. The
structure of the game presumes interactions of two players in the framework
of the evolutionary game model. Stochastic contacts between players occur
according to the dynamic process, which can be interpreted as a system
of Kolmogorov’s differential equations with controls instead of probability
parameters. It is assumed that control parameters are not fixed and can be
constructed by the feedback principle. Two types of payoff functions are con-
sidered: short-term payoffs are determined in the current moments of time,
and long-term payoffs are determined as limit functionals on the infinite
time horizon. The notion of dynamic Nash equilibrium in the class of con-
trolled feedbacks is considered for the long-term payoffs. In the framework
of constructions of dynamic equilibrium, the solutions are designed on the
basis of maximization of guaranteed payoffs. Such guaranteeing strategies
are built in the framework of the theory of minimax (viscosity) solutions
of Hamilton-Jacobi equations. The analytical formulas are obtained for the
value functions in the cases of different orientations for the “zigzags” (broken
lines) of acceptable situations in the static game. The equilibrium trajecto-
ries generated by the minimax solutions shift the system in the direction of
cooperative Pareto points. The proposed approach provides new qualitative
properties of the equilibrium trajectories in the dynamic bimatrix games
which guarantee better results of payoffs for both players than static Nash
equilibria. As an example, interactions of two firms on the market of in-
novative electronic devices are examined within the proposed approach for
treating dynamic bimatrix games.

Keywords: optimal control, dynamic bimatrix games, value functions, min-
imax solutions of Hamilton-Jacobi equations, dynamic Nash equilibrium tra-
jectories, shift to Pareto maximum.

1. Introduction

In the paper, a model of evolutionary non-zero sum game between two players
(coalitions of players) is considered in the framework of differential games the-
ory (Krasovskii and Krasovskii, 1995; Krasovskii, 1985; Krasovskii and Subbotin,
1988). We use some ideas and approaches proposed in (Kleimenov, 1993) for non-
antagonistic differential games. The methods for analysis of evolutionary games
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suggested in the paper (Kryazhimskii and Osipov, 1995) are applied for derivation
of the game dynamics . The main attention is paid to the construction of the dy-
namic Nash equilibrium with guaranteeing strategies of players, which maximize
corresponding payoff functions (Pontryagin et al., 1961; Krasovskii and Subbotin,
1988). Solution trajectories are generated, which provide better result comparing
to classic models, for example, models with the replicator dynamics.

The dynamics of game interactions corresponds to the differential games the-
ory (Kleimenov, 1993; Krasovskii, 1985; Krasovskii and Subbotin, 1988; Kryazhim-
skii and Osipov, 1995; Kurzhanskii, 1977) and evolutionary game models (Basar
and Olsder, 1982; Friedman, 1991; Hofbauer and Sigmund, 1988; Intriligator, 1971;
Tarasyev, 1994).

The main idea of the paper is to apply the theory of generalized minimax (viscos-
ity) solutions for Hamilton-Jacobi equations (Crandall and Lions, 1983; Subbotin,
1991) to analysis of the dynamic bimatrix games.

It is assumed that random interactions between players are presented by the
controlled dynamic process, in which corresponding probabilities form a phase vec-
tor. Information signals for participants play the role of control parameters. Such
dynamics can be interpreted as a generalization of the well-known Kolmogorov’s
equations, which are used in some stochastic models of mathematical economics and
queue theory. The generalization is based on introduction of controls instead the
probability parameters which describe incoming and outgoing flows inside groups
of players. The dynamic process evolves on an infinite time interval. Participants’
payoffs at each round are specified by the payoff matrices. Groups’ payoffs are deter-
mined as the average value of participants’ payoffs. Various types of these averages
are considered: terminal (short run) — for a fixed terminal time, and multi-terminal
(long run) — for the limit on the infinite time interval. Let us note that the non-zero
sum game was analyzed in (Tarasyev, 1994) with the discounted integral payoff
functionals. Multi-terminal functionals are associated with the concept which takes
into the account not only local terminal interests of groups, but also are oriented
on changes in the future.

The definition of the dynamic Nash equilibrium is introduced in the class of
feedback control strategies. Let us note that feedbacks generated by the classic
“punishing” strategy in static bimatrix games are a natural example of the Nash
equilibrium in dynamic terms. The nature of such reactions are antagonistic: they
minimize the payoff of the opponent, not maximizing their own.

A different approach is proposed on the basis of the concept of the “guarantee”
providing better results than classic solutions. These new solutions are generated
in the framework of the positional differential games theory and involve the guar-
anteeing feedbacks in the auxiliary zero-sum games (Kleimenov, 1993; Krasovskii
and Subbotin, 1988; Petrosjan and Zenkevich, 2015). So, the non-zero sum games
are considered in the framework of the theory for minimax solutions of Hamilton-
Jacobi equations (Crandall and Lions, 1983; Subbotin, 1991; Subbotin and Tarasyev,
1985; Tarasyev, 1994). For the analytical construction of the value function and
optimal guaranteeing feedbacks we use methods of the differential games theory
(Kleimenov, 1993; Krasovskii and Subbotin, 1988), the generalized characteristics
of the Hamilton-Jacobi equations (Subbotin, 1991), and constructions of the via-
bility theory (Aubin, 1990). The corresponding necessary and sufficient conditions
are verified for the value functions, particularly, in terms of conjugate derivatives
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(Subbotin and Tarasyev, 1985). The structure of the value functions is such that the
synthesis of guaranteeing feedbacks for controls is determined by switching curves
from one characteristic of the Hamilton-Jacobi equation to another one. Let us note,
that similar ideas for the numerical construction of the solution are used in papers
(Klaassen et al., 2004; Tarasyev and Watanabe, 2001; Krasovskii and Tarasyev,
2008; Krasovskii and Tarasyev, 2011; Krasovskii and Tarasyev, 2015; Krasovskii
and Tarasyev, 2018).

The qualitative behavior of the proposed equilibrium solutions, generated by
the guarantee synthesis, significantly differs from trajectories of evolutionary games
presented in classic models with the dynamic replicator. Let us note that such tra-
jectories usually converge to the static Nash equilibrium or circulate in its surround-
ings (Hofbauer and Sigmund, 1988). New equilibrium solutions are not smooth and
have the switching regimes within characteristics of the Hamilton-Jacobi equations.
Unlike classical trajectories, they are located at the intersection of areas, for which
the values of players’ payoffs are better than the corresponding payoffs calculated in
the static Nash equilibrium. The proposed equilibrium solutions do not converge to
the static Nash equilibrium, and their marginal payoffs are better than at the point
of the Nash equilibrium. In this sense, one can say about shift of Nash equilibrium
trajectories to the set of Pareto maximum points.

We provide analytic formulas for the value functions in the cases of different
orientations for the “zigzags” (broken lines) of acceptable situations in the static
game (Vorobyev, 1985). The equilibrium trajectories generated by the minimax
solutions converge either to the intersection points of the synthesized switching
lines, or to Pareto maximum points on the boundary of the square of acceptable
situations, i.e. to “new” equilibrium points with better payoff indices. Thus, it is
demonstrated that the proposed approach provides new qualitative properties of
the equilibrium trajectories in the dynamic bimatrix games. As an example, we
consider interactions of two firms on the market of innovative electronic devices,
which give the dynamic bimatrix game with the left orientation of “zigzag” (broken
line) of acceptable situations. We construct control synthesis for both players basing
on the value functions as the generalized minimax solutions of the Hamilton-Jacobi
equations, and generate the Nash equilibrium trajectories which shift the game
solution in the direction of the Pareto maximum set.

2. Evolutionary Game. Dynamic Nash Equilibrium

2.1. Model Dynamics, Payoff Functions

Let us consider the system of differential equations, which describes the behavior
dynamics of two players:

) a(t) = o,
i) = vo. @

Here the parameter © = x(t), 0 < z < 1 means the probability that the first
player holds to the first strategy (respectively, (1 — ) is the probability that he
holds to the second strategy). Parameter y = y(t), 0 < y < 1 stands for the
probability of choosing the first strategy by the second player (respectively, (1 — y)
is the probability that he holds to the second strategy). Control parameters u = u(t)
and v = v(t) satisfy conditions 0 < u < 1, 0 < v < 1, and can be interpreted as
signals that recommend changing strategies by players.
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For example, the value u = 0 (v = 0) corresponds to the signal: “change the first
strategy to the second”. The value u = 1 (v = 1) corresponds to the signal: “change
the second strategy to the first”. The value u = z (v = y) corresponds to the signal:
“keep the previous strategy”.

Let us note, that the basis for the dynamics (1) and its properties were considered
in (Kryazhimskii and Osipov, 1995; Tarasyev, 1994). In this dynamics, Kolmogorov’s
differential equations are generalized under the assumption that the coefficients
of incoming and outgoing flows between players are not set a priori and can be
constructed in the control process on the feedback principle.

As an interpretation of the dynamics (1), we consider the game interaction of two
players (or their investments) on two markets. Let = be a part of the funds, which the
first player (it may be a financial or industrial group) invest in the first market (this
may be a financial market, a market of goods or innovative technologies (Vorobyev,
1985)). Respectively, 1 —x is the investment of the first player in the second market.
Let y be the part of the funds that the second player invest in the first market.
Respectively, 1 —y is the investment of the second player in the second market. Let
us assume that activity of players is regulated by a governing body. Using control
parameters v and v, a governing body can influence on the distribution of funds =
and y. The dynamics of this influence is described by the system (1) and provides
some inertia of players in relation to control signals u, v, while the velocities z, 3 of
changing of capital proportions x, y are not right proportional to the signals, and
depend on the size of these proportions. For example, the first equation in (1) means
that according to the signal u = 0 the proportion = decreases to zero according to
the dynamics z(t) = —z(t).

An important property of dynamics (1) is that the square, (x,y) € [0, 1] x [0, 1],
is its strongly invariant set. That is, any trajectory of dynamics (1), which starts in
the square, survives in it on the infinite time horizon.

Let us assume, that payoffs of the first (second) player are described by the
matrix A = [£27] (B = b”)

A <(111 (112) . B- (511 b12> .
az1 azo ba1 bao

Let us consider, for example, for the game of two players on two markets the
following situation, which we will call almost antagonistic. Let us assume that the
first market is more profitable for investments than the second one. The first player is
stronger than the the second one. He is trying to capture both markets. The second
player is trying to avoid interactions with the first player on the same market.

The terminal payoff functions of players are determined as a mathematical expec-

tation of payoffs generated by corresponding matrices A, B, and can be interpreted
as “local” interests of players

9a(z(T),y(T)) =
anz(T)y(T) + arz(T)(1 = y(T)) + ag1 (1 = (T))y(T) + a2 (1 — z(T))(1 — y(T)) =
Caz(T)y(T) — a12(T) — aoy(T) + age.
(2)
The function gp for the matrix B is determined analogously. Here the coefficients
Ca, a1, ag are determined according to the classical theory of bimatrix games
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(Vorobyev, 1985)
Ca=ai1 —aiz —ag + a2, Q1 = a22 — G122, Q2 =022 — 421.

The coefficients Cp, 81, B2 for the matrix B are determined analogously.
The “global” interests J3° of the first player are determined as multivalued (two-
digit) functions formed by lower and upper limits of average values

Ja = Ja(a(),y()) = liminf ga(z(t), y(t)), (3)
Ji = I3 (@(),y() = limsup ga(z(t), (1)),

calculated for the trajectories (z(-),y(:)) of the system (1). For the second player
the “global” interests J2° are determined symmetrically.

Let us consider an evolutionary non-zero sum game with the dynamics (1) and
global payoffs, given by the scheme (3). In the differential games theory (Kleimenov,
1993; Krasovskii and Subbotin, 1988) there exists an approach for construction of
the equilibrium solutions from the class of strategies, defined on the feedback prin-
ciple U = u(t,z,y,¢e), V = v(t, x,y, ), for the non-zero sum games. Such approach
is based on the solution of auxiliary zero sum games. According to our statement
of the problem, we consider zero sum games for the functionals J, Ji, Jg, J3.
It is known, that problems with zero sum can be solved in the framework of differ-
ential games theory, and the solution for guaranteeing strategies can be obtained
in the framework of the dynamic programming principle. Such principle requires
finding the value functions, which are generalized minimax solutions of Hamilton-
Jacobi equations, namely, the problem is reduced to solving the equations in partial
derivatives of the first order.

2.2. Dynamic Nash Equilibrium

Following (Kleimenov, 1993; Kryazhimskii and Osipov, 1995), we present the
definition of the dynamic Nash equilibrium in the class of positional strategies (feed-
backs) U = u(t,x,y,¢), V = v(t,x,y,¢€) for the non-zero sum game with the given
dynamics and the multivalued payoff functionals.

Definition 1. Let ¢ > 0 and (xo,y0) € [0,1] x [0,1]. The pair of feedbacks U® =
ul(t,x,y,e), VO = v0(t,x,y,¢) is called the Nash equilibrium at the initial point
(0,Yo0), if for any other feedbacks U = u(t,x,y,¢), V = v(t, x,y,e) the following
conditions take place: for any trajectories

(@°(-),5°()) € X (20,50, U", V"),
(@1(),31() € X (20,90, U, VO), (22(), 92()) € X (0,90, U°, V)

the inequalities are true:
J,Z (xo(')v yO()) > JX(xl()a yl()) -5 J]; (xo(')v yO()) 2 J§($2()a y2()) — &

Here the symbol X stands for the set of trajectories, which start from the initial
point (xg,y0) and are generated by the corresponded strategies (U°, V?), (U, V?),
(U°, V) (see (Krasovskii and Subbotin, 1988)).
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2.3. Auxiliary Zero-Sum Games

For construction of the desired equilibrium feedbacks U°, V° we use the results
(Kleimenov, 1993). According to this approach, we construct the equilibrium us-
ing optimal feedbacks for differential games I'y = Iy, UI'{ and I'p = I'y U I}
with payoffs J5° and JZ°. In the game I'4 the first player maximizes the functional
J 4 (x(-),y(-)) with the guarantee, using the feedback U = u(t, z,y, ), and the sec-
ond player, on the contrary, tries to minimize the functional JJ (z(-),y(-)), using the
feedback V = v(t, x,y,e). Vice versa, in the game I's the second player maximizes
the functional J; (x(-),y(-)) with the guarantee, and the first player minimizes the
functional J5 (z(-), y(-))-

Let us introduce the following notations. The feedbacks solving, respectively,
the problem of guaranteeing maximization of the payoff functionals J,, J5 are
denoted by symbols u% = u%(t,2,y,¢) and v} = v4(¢,z,y,¢). Let us note, that
such feedbacks present the guaranteeing maximization of players’ payoffs in the
long run, and can be called “positive” feedbacks. By symbols u% = u% (¢, z,y,€) and
v =04 (¢, 2, y,e) we denote feedbacks which are most unfavorable to the opposing
players; namely, those feedbacks, which minimizes the payoff functional Jg, J;{ of
opposing players, respectively. Let us call these feedbacks “punishing”.

Let us note, that inflexible solutions to these problems can be obtained in the
framework of the classical theory of bimatrix games. In fact, let us suppose for
definiteness (although this is not essential for constructing solutions in the general
case) that the following conditions are satisfied:

Cx >0, O<$A=2<17 O<yA:ﬂ<1’

CA CA
B2 B1
CB<O, O<zp CB< s O<yB CB<

Proposition 1. The differential games I'y , I’ (I'g,I's) have equal values

_ b22Cp — B1Po
-

a22C4 — 1o

= +
Wr =WhH = WA
CA ’ B B

— +

for arbitrary initial position (xo,yo) € [0,1] x [1,0]. These values can be guaranteed

by “positive” feedbacks uSl, vy corresponding to the classic solutions T4, yp

0, za<z<l1 0, yp<y<l1
uﬂ(x,y): 1, 0<z<uza, vCBI(a:,y): 1, 0<y<uyp.
[0’1]? T =TA [011]7 Yy=1YB

The “punishing” feedbacks are determined by formulas

0, zp<z<1 0, ya<y<l1
U%((E,y) = 1? 0<z<uzp ) U%((E,y): 1, 0§?/<?/A
[07 1]v L =2IB [07 1]7 Yy="YA

and correspond to the classic static solutions xp,ya, which generate the static Nash
equilibrium NE = (zp,yAa).

Proof. The proof of this proposition is justified by the direct substitution of strate-

gies u9, v% and strategies u$, v in the dynamics (1). O
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Note 1. The values of payoff functions g4 (z,y), gg(z, y) coincide at points (x4, yp),
(IBa yA)

9a(za,yB) = ga(zp,ya) = wa, 9B(za,yB) = gB(TB,YA) = WB.

The point NE = (zp,ya) is the “mutually punishing” Nash equilibrium, and the
point x 4, yp does not possess the equilibrium properties in the corresponding static
game.

2.4. Construction of the Nash Equilibrium

Let us construct the pair of feedbacks, which form the dynamic Nash equilibrium.

For that, we connect the “positive” feedbacks u%,v% and the “punishing” feedbacks
u%, Y.

Let us choose the initial position (zo,y0) € [0,1] x [0,1] and the accuracy pa-
rameter € > 0. Let us choose the trajectory (z°(-),y°(-)) € X(xo,y0,US(-),v%(")),
generated by the “positive” feedbacks u% = U (¢, z,y, ) and v} = v%(t, z,y,¢). Let
us take the time moment 7. > 0 such that

gA(xO(t)vyO(t)) > J,X (xo()vyo()) - & gB(xO(t)vyO(t)) > J§ (xo()vyo()) - &
t e [T, +o0).

Let us denote by u%(¢): [0,T:) — [0,1], v5(¢): [0,7z) — [0,1] the step-by-
step realization of the strategies v9,v% such that the corresponding step-by-step

mechanism (x.(+),y-(:)) satisfies the condition

max. 1(2°(8),9° (1) = (ze(t), y(1))]| < e

From the results of the paper (Kleimenov, 1993) the next proposition follows.

Proposition 2. The pair of feedbacks U° = u°(t,x,y,¢), VO = v°(t,z,y,¢), con-
necting together the “positive” feedbacks u%, v% and the “punishing” feedbacks u%,
v according to the relations

Uo — {U‘Z(t), if 1(z,y) — (ze(t), (D)l <e,

u (2, y), otherwise,

Vo _ {v%(t), if 1z, y) — (ze(t), ye (D)) <&,

W9 (2,y), otherwise,

s the dynamic e-Nash equilibrium.

Note 2. Let us note that the number € can be interpreted as the parameter of
“trust” of players to each other or as the level of “risk”, which players allow in the
game. This parameter determines the risk barrier that surrounds the equilibrium
trajectory (z<(-), ¥ (+)). The players either follow the equilibrium trajectory, without
leaving the prescribed risk barrier, getting the more profitable index of values, or
stepping over it and the “punishing” strategy gives worse results.

Below we construct the flexible “positive” feedbacks, which generate trajectories
(z(-), y(+)) reducing to “better” positions, than the inflexible dynamic equilibrium
(x5.ya), (za,y5) by both criteria J3° (2" (), y" () = wa, JF ("(-),y"(-)) = wp.
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3. Differential Game with Terminal Functional

3.1. Value Functions and Generalized Solutions of Hamilton-Jacobi
Equations

In this section, we consider an auxiliary terminal differential zero-sum game with
the dynamics (1) and payoff functionals (2). Further, solutions of terminal differ-
ential games are used for the construction of anticipating feedbacks by calculating
the lower envelope of multi-terminal functionals. The value functions w;(T,t, x,y),
i = 1,2 of terminal games are determined as values of corresponding maximins
(minimaxs)

’LU1(T, th o, ,1/0) =

max min z1(T),y1(T)) = min max xo(T),y2(T)),
B @B 4 D) = pin, | ey 94(e2(T),12(T))

w2(T7 th Zo, ,1/0) =

max min zo(T),y2(T)) = min max
S el 98(E(T),92(T)) = min,  max g5

(501 (T)a Y1 (T))

for each initial position (o, xo,yo). Here trajectories (x1(-),y1(-)) are generated by
feedbacks u(t, x,y, ) and random behaviors v(t). Trajectories (z2(-),y=2(-)) are gen-
erated by feedbacks v(t, z,y, ) and random behaviors u(t) from the initial position
(to, o, Yo)-

The value functions w;(T,t,z,y),i = 1,2 satisfy the principle of the dynamic
programming, which implies the existence of non-increasing and non-decreasing
directions achievable for the dynamic system at each current position (the so called
properties u and v of stability of the value function). At the points, where the
value functions are differentiable, these properties pass into the first-order partial
differential Hamilton-Jacobi equations

8’[1}1 8w1 8w1 w 1
Bt oty VTR o VTR gy, 0 )
811)2 8w2 8w2 . 8w2 811)2 -
ot oz Ay +or§521 Ox u+01£3%<1 Ay v=0 (5)

The value functions w;(T,¢,z,y),i = 1,2 also satisfy the boundary condition,
when t =T

wl(TaTa:an) :EIA(%KJ), ’U}Q(T,T,l’,y) :gB(x7y) (6>

Let us consider the terminal boundary problems (4)—-(6) for the value functions
wy (T, t,z,y), wa(T,t,2,y). It is known (Crandall and Lions, 1983; Subbotin, 1991),
that value function wy (7', ¢, z, y) coincides with the generalized solution of this prob-
lem, which is unique and is determined by the terminal boundary value (6), and
the pair of differential inequalities for conjugate derivatives D*w; and D,w;, cor-
responding to the Hamilton-Jacobi equation (4)

D*wl(Tvtvxvy”(S) 2 H(Iayvs)v D*wl(TvtvIvy)KS) < H(I,y, S)v (7)

(t,x,y) € [to,T] x (0,1) x (0,1), s= (s1,52) € R%
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The conjugate derivatives D*w; and D,w; and the Hamiltonian H are given by
the formulas (Subbotin and Tarasyev, 1985)

D*wy (T, t,z,y)|(s) = sup ({s, h) — d_w1 (T, t,z,y)|(1,h)),

heR2
Dwi (T, t,x,y)|(s) = hiélu£2(<s’h> — 0ywy (T, t,x,y)|(1, h)),
H(z,y,s) = —s1x — s2y + 0213%(1 s+ orgnvugll Sov.

Expressions 0_w1 (T, t, z,y)|(1, h), 0w (T, t,x,y)|(1, h) stand for directional deriva-
tives of the value function wy at the point (¢,2,y) in the direction (1,h),h =
(hl, hg) S RQ

T,t+ 8,2+ 6hy,y + 6ha) — w1 (T, t,z,y)
5 b

O_wi (T, t,z,y)|(1,h)) = 111(%/10nf wi

wy (T, t+ 6,2+ dhq, ohs) — w1 (T, t, x,
841 (T, t,2,9)|(1, b)) = limsup LT L H 02+ 0h,y & hg) —wn (Tt 2,9)
510 0
For the piecewise smooth value function w; the directional derivatives and the
conjugate derivatives can be calculated in the framework of non-smooth and convex
analysis. Let us assume that in the vicinity (¢,z,y) € Og(t«, T, y«) the function w;
is given by the formulas

T,t = mi (Tt = in;; (T,t .
wi (T, t,z,y) Ipel}l{?g}sozg( 1,1, y) I?Eajcriré}ls%( b, y)

Here symbols I, J stand for the finite sets of indices i, j respectively.
The directional derivatives in this case are determined by the relations

Owy (T, tw, T, yu )| (R) = min f;lea}((aij + (bij, h)) = I?E%flglei}l(aij + (bij, h)),

_ Oy

_ 0pi; Opij
aij = _

ot '’ i'j_(azc’(?y)'

Let us introduce the notations

C=()Bi, Bi=cofbij:jeJ}, D=[)B;, Bj=co{by:icl}
iel jeJ

The conjugate derivatives are determined by the relations

max min{— Z Aj(s)aij}, s €C,

D*wl(Ta t*v'r*vy*”(s) = . jeJ

+oo, s¢C,

min max{— Xi(s)ai;}, se€D,
Diwr (T, tu, e, yi)|(s) = 4 77 ; ’

—oc0, s¢D.

Here the coefficients A;(s) satisfy the conditions

D ONi(s)bis =5, A(s) =0, > A(s) =1

Jje€J JjeJ
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3.2. Description of Analytical Solution for Boundary Problem

The boundary problem (4), (6) has an analytical solution. The corresponding
value function wi (T, ¢, x,y) is piecewise smooth and consists of five smooth func-
tions i (T,t,x,y), k = 1,...,5. The analytical formulas for smooth components
or(T,t,z,y), k =1,...,5 can be obtained using the method of characteristics for
the linear Hamilton-Jacobi equations, which arise from nonlinear (4) by the substi-
tuting different combinations of the extremal values 0 and 1 in the expressions max
and min. Let us provide the formulas for these functions:

(T t,x,y) = CAeQ(th):cy — et e — age Ty + ago, (8)

o (T, t,3,y) = Cac®Day — aret~Ta

— (C’Aez(t’T) + (g — C’A)e(th))y +a1e®T) 4 ay,,

9)

e3(T,t,2,y) = Cae®t"Day — (Cae2=D) + (g — Ca)et1))z—

(Cae2t=T) 4 (ag — C )"y 4+ Cxe2tT) 4 (a1 + az — 2C4)e* 1) 4+ a1,
(10)

wa(T)t,z,y) = C’Aez(t’T):zry - (C’AGQ(FT) + (aq — C’A)e(t’T))x—

aget_Ty + aget_T + a1,

(11)

o5(T't, 7, y) = a22Ca —onay _ andgy —aizaz1 _ Da _ s
5 3 Uy oy CA CA CA .
The functions @i, k = 1,...,5 are pasting together on the four lines L,,, = L,,,(T,t),

m=1,...,4

le{(:c,y): 1 (T,t) <z <1, y:yg(T,t)},
Lg:{(:c,y): x=x1(T,t), yl(T,t)gygl},
Ly ={(z,y): 0<a<ux(T,t), y=u(T.t)},
L4={(x,y): x = ax9(T,t), Ogygyg(T,t)}.

Here

a:l(T,t)—max{O,l— <1— ) (T—t) max{l,&e@t)},
Cx

yl(T’ t) = Inax{(), 1- <1 _) (7= t)} 1]2 T t = Inax{l Cl e(T_t)}.
A

Proposition 3. The value function wy (T, t,z,y) is determined by the relation

wl(Tataxay):Sok(Tataxay)7 (l',y) EDk(T,t), k:17’5 (12>
Here domains Dy, = Dy(T,t),k =1,...,5 are given by inequalities
Dl(Tat)_{(Iay)e [031] X [071] IQ(Tat)SISL OSySyQ(Tvt)}a
Dy(T,t) = {(x,y) € [0,1] x [0,1]: x1(T,t) <z <1, y2(T,¢t) <y<1},
D4(T,t):{(17,y)€ [031] X [07 1] OSISIQ(Tat)v Oéygyl(Tvt)}a
Ds(T,t) = {(z,y) € [0,1] x [0,1] x1(T,t) <z < xo(T, 1),
yl(T’ t) <y< y2(T’ t)}
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One can check the validity of differential inequalities in the necessary and suffi-
cient conditions (6), (7) for the function ws (T, ¢, z,y), determined by the formulas
(12), (13).

4. Value Function of the Game with Multi-Terminal Payoff Functional

4.1. Differential Game with Multi-terminal Functional

In the previous section we obtained the solution for the auxiliary terminal bound-
ary problem (4), (6). The solution of this problem (the value function) wi (T, ¢, x,y)
depends on the terminal time moment 7. Definitely, such solution is not a proper
one in the evolutionary sense, because we obtain a “good” result only at the time
moment, 7', but not in other time moments, including infinity. Thus, here we con-
struct the value function for the differential game with the multi-terminal payoff
functional

Ga(z(-),y()) = _inf ga(a(t),y(t)). (14)

to<t<+oo

The functional (14) determines the foreseeing principle, since it takes into the ac-
count future positions g4 (x(t), y(t)), starting at the initial time ¢, and ending at
infinity +oo.

Using results obtained in the differential games theory (Krasovskii and Subbotin,
1988) and the viability theory (Aubin, 1990), one can prove that the differential
zero-sum game with the dynamics (1) and the functional (14) has the value. More
precisely, the next statement is true.

Theorem 1. There exists the saddle point that determines the stationary value
function

sup inf inf ga (£U1 (s)’yl(s)) —
u(t:2.9.€) (21(-) 91()) *Eltotocl

inf sup inf ga (:Eg (8),y2 (s)) =
v(t,z,y,e) (Iz()7y2()) s€E[to,+o0]

lim min max min  ga(za2(s),y2(s)) =
T—+o0 v(t,z,y,e) (12()@2()) SG[tO,T]g ( 2( ) yQ( ))

; . . s B |
P T i 94 (2150 (5) = a7, 0) = w0, 00

Here the trajectories (z1(-),y1(-)), (z2(-),y2(-)) are generated from the initial po-
sition (to, xo,yo) by feedbacks u(t,xz,y,€), v(t,x,y,e) of the mazimizing and mini-
mizing players, respectively, and arbitrary controls of their opponents.

Proof. The proof follows from the theorem on the alternative (Krasovskii and Sub-
botin, 1988), the stationary property of the dynamics (1), the finiteness of values
of the functional G4 (14), and can be deduced through the concept of the core
viability (Aubin, 1990). The scheme of the proof is the following.
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In the general case the next conditions take place:

sup inf inf  ga (xl(s),yl(s)) <
u(t,z,y,e) (wl()fljl()) s€[to,+o0]

inf sup inf ga(wa(s),2(s)) <
v(t,x,y,€) (Iz(%yz(')) s€[to,+o0]

lim  min max min  ga(z2(s),y2(s)) =
Tt v ) (as() o)) o€l 7] (72(5).2(5))

lim max min min ga(z1(s),y1(s)) = wal(t, z,y).
Toreeultbrnd) (ay()u()) *<loT] (#1(5) 31 (5) (t,z,y)

One can verify the next properties of the function wa(t, z,y).

Property 1. The function w, is a stationary one
wal(t,z,y) =wa(s,z,y) = wa(z,y), (x;,y:) €[0,1] x[0,1], t € R, s € R.
Property 2. The function wy satisfies the Lipschitz condition
lwa(z1,y1) —wa(zz, y2)| < K(|z1 — x2|+ |y1 —y2|), (@i,9:) € [0,1] x [0,1], 1 =1,2.
Property 3. The function w, is majorized by the payoff ga
wa(z,y) < ga(z,y), (z,y)€[0,1] x[0,1]. (16)

Property 4. The function w4 is the maximal function that satisfies the condition
(16) and the principle of the dynamic programming. Namely, the properties of u-
stability and v-stability can be presented as follows

i - - >
Qi max drwa(z,y)l(—z+u,—y+v) 20, (z,y) € (0,1) x (0,1),  (17)

gpax min d_wa(@,y)|(—z +u,—y+v) 20, (z,y) €(0,1) x (0,1).  (18)
Property 5. The properties of u-stability (17) and v-stability (18) can be rewritten
in terms of the conjugate derivatives (Subbotin and Tarasyev, 1985)

Dowa(z,y)|(s) < H(z,y,s), (z,y) € (0,1) x (0,1), s = (s1,52) € R?, (19)

D*wA(,T,y)KS) > H(:v,y,s),

(z,y) € (0,1) x (0,1), wa(x,y) < ga(x,y), s = (s1,82) € R% (20)

Taking into account the stability properties and using the concept of strategy of
“extremal shift” (Krasovskii, 1985), one can prove that the corresponding trajec-
tories provide that the value of the functional G4 (14) in [tg, +00) is equal to the
value of the function w,4. Hence, all inequalities in (15) turn into the equalities, and
this fact proves the Theorem.

4.2. Description of Solution for Game with Multi-Terminal Functional
For description of the analytic solution of the game let us introduce smooth

components ¢1 (8), @3 (10) of the value function w; (12) in terms of the backward
time parameter s = ¢ — 1. Let us construct the lower envelopes of these smooth
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components, which present the multi-terminal interests of players. In constructing
the envelope ¢} for the component ¢ it is necessary to calculate the derivative by
the parameter s, to equate it to zero, to find the root of the resulting equation, and
to substitute the root in the component ¢;. Finally, we obtain

(1 + asy)?

1 _ _ _
wA(xay) - cpl(s,x,y) a22 4OACC,1/

Analogously, for the component (3 we obtain its lower envelope 1/% by the parameter
s

YA 9) = psls,m,) = any — (A= al)ilc;<f)_+x()ff__y‘§‘2)(l —u)?*

In a similar way, we determine the lower envelopes ¢%, ¢4 of the components @2

V3 (z,y) = Cary — anx — azy + ass,

a22C4 — a0

¢?4($ay) = T = wA-

The smooth functions 1%, i = 1,...,4, are pasting on the lines Ki, j=1,...,5,

Q2
_10< <1 )
Ca =Y= }

2

|

—N

8
<
~—

8

I

K2 — :%< <1 ﬂ< <1 :%
A {(Iay) CA_I_ 7CA_y_ y Y CYQI )
K:”a—{(x,y): Oéxs—o‘z,Ogys—o‘l,y——i(c/*_o‘”(l—x)“},
Ca Ca (Ca —a2)
4 Q2 (e%1 o1
KA {(‘Tay) A_x_LO_y_CA’y 20,417—0[2}
as o (Ca—a1)(1—x) }
Ki=3(my): 0<a< =, —~<y<l,y=— +13,
A {( v) Ca' Ca == Y7 70000 —2) — (Ca —an)

where (z,y) € [0,1] x [0,1].
Let us introduce the analytic description of the value function wy4.

Statement 1. When C'4 > 0 the value function (z,y) — wa(x,y) is determined
as

walz,y) = va(ey), if (zy) € By i=1,...4 (21)

Here domains EY, i = 1,...,4, are given as follows



Mechanism for Shifting Nash Equilibrium Trajectories to Cooperative Solutions 231

a9 a1
E :{ s — < <17 < < — }7
A (z,9) A_I_ QCA:C—ag_y_agx
EA:{('rvy): OSIS%a
Ca
(Ca—aq) (Ca—an)(1—x)
- 1 +1<y<-— +1},
(CA — OZQ) ) y 20,4(1 — I) — (CA — 042)
Ej = E}' UEY,
E31:{ 22 <1 0< <L}
A (x,y) A =T 1, SYS 20,456—042 3

B2 ={@y: 0<a< oo

(Ca—a1)(1—x) +1Sy§1}

B = By UER,

Ej‘al:{(x,y): o, STl %‘Tgygl}’
A a2

where (z,y) € [0,1] x [0, 1].
Let us consider, as an example, the following payoff matrix for the first player

in the case when Cy4 > 0:

A= (g;) (23)

The game parameters for this matrix have the following values:

Ca=5 a1=2, ae=3, x4=06, ya=04.

The structure of the value function wa for the matrix A (23) in the case when

C4 > 0 is presented on Fig. 1.
Let us consider the case when C'y4 < 0.
The lower envelopes in this case are determined as follows:

((Ca — o)z + az(1 —y))°

1 _
1/}A(Iay) = a21 + 4CA:E(1 _y) )
2 _ (11— ) +(Ca — a2)y)?
1/}14(:175 y) = ai12 + 4CA(1 — :E)y )

V4 (2,y) = Cazy — a1 — oy + asa,

Va(z,y) = wa.
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Smooth functions 9%, i = 1,...,4, are pasting on the lines Kf;‘, j=1,...,5,

where (z,y) € [0,1] x [0,

1].
The domains EY, i = 1,...,4, are determined as follows:

0.8

0.6

0.4

0.2

Fig. 1. The structure of the value function wa in the case when C's4 > 0.
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By ={@y): Z-<a<l,
A
Cy— Cy —
_(Ca 1)x+1§y< (Ca al)x+1},
Qg 2C 22 — g
B (et 0cec g
A
ar(l—x) o1
+1<y< 1—17},
2CA(1—$)—(CA—042) (CA—OCQ)( )
By = BY U,
E31:{($) @ g, Cazagr <1}
A Y T = 4 20,417—0[2 Sy )
B2 ={@y: 0<e<
A
ar(l —x)

E% =Ey UEY,

Ca—
Ejlz{(x7y): ﬂgxgl, Ogyg_wx+1}7
A Q2
B2 = {(2.) O<x<%, _ M q_n< <1}, 24
{ew: 0sesZ o s-nsysty @y

where (z,y) € [0,1] x [0, 1].
Let us consider, as an example, the following payoff matrix for the first player

in the case when C4 < 0:
-3 -2
The game parameters for this matrix have the following values:

Ca=-5, a1=-2, az=-4, x24=028, ya=0.4.

The structure of the value function wy4 for the matrix A (25) in the case when
Cs < 0 is presented on Fig. 2.

Let us note that both cases of positive and negative signs of the basic parameter
Ca, which generate different orientations, “left” and “right”, for “zigzags” (broken
lines) of acceptable situations in the static game (Vorobyev, 1985) is important for
construction the Nash equilibrium trajectories in the considered below example of
interactions of two players on the market of innovative electronic devices.

4.3. Verification of u— and v— Stability in the Multi-Terminal Game

In this section, we prove that the necessary and sufficient conditions for the
function w4 are satisfied for it coincidence with the value of a multi-terminal game.

Proposition 4. For the function wa in the case when C4 > 0 the boundary con-
dition (16) and differential inequalities (19), (20) are fulfilled.

Proof. The boundary condition obviously holds, because functions 1%,i =1,...,4
are the lower envelopes of the terminal solutions wq (T, ¢, z,y) and, hence,

Vi(z,y) < @ilt,z,y) < galz,y), i=1,....4, (z,y)€[0,1] x [0,1].
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0.8

0.6

04

0.2

S

Fig. 2. The structure of the value function w4 in the case when C4 < 0.

Let us check, that the differential inequalities (19), (20) are fulfilled for the
function w,4. One can prove that functions 1%,i = 1,2,4, satisfy the Hamilton-
Jacobi equation at the interior points of domains E%,i = 1,2, 4. Also one can check,
that the function ¢ (21) coincides with the boundary function g4 and satisfies the

inequality
o3 o3, o3 . o3,
. S . § A Al S
- T » Yy + max< 0, - + min < 0, » 0

at the interior points of the domain E3.

It remains to verify the differential inequalities (19), (20) on the pasting lines
K’,j=1,...,5. Let us do this, for example, on the lines K3, K3. At the points of
the line K3, the functions ¥} and ¢% are continuously pasted. Let us calculate the
partial derivatives of these functions

81[1114 B ozng — a%xQ 81[1114 B oz%xQ — ozng &zjj
or  4AC,x?y oy  4Cazy? Ox

Ovh

2y =0.

:()7

One can note that these derivatives are equal to zero on the line K2

My _ W My _
Wa WA _g  Wa_Na_,
Or ox dy dy
In other words, the functions 1} and 1% are smoothly pasted together. Hence,
the inequalities (19), (20) on the line K% turn into the equality. Analogously, one
can prove smooth pasting of the functions ¥%, % on the line K3.
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Let us consider the line K4, where the functions ¢! and 1% are pasted together.
One can check that this pasting is smooth, since for the partial derivatives on the
line K4 we obtain the relations

oY _ o3 _ ai(ag — Caz) O _ o3  Cat—a
Ox Ox 204z —0y = Oy Oy A .

Similarly, one can check the smoothness of the function w4 on the line K3.
Along the line K} the functions 1% and ¢% are pasted together. Their derivatives
on the line K} are determined as

Ovi

0 — —
ox

= C — Y y _— = ) = =

AY 1 Ay Ay
Let us note that there is no need to check the inequality (20) on the line K}, since
the following relations are fulfilled wy = 9% = 1% = ga. It is necessary only to
verify the condition (19). One can check that in the vicinity of points of the line
K7 the function wy is determined by the operation of minimum

wA(x,y) = mln{wi\(xa y)vwi(xa y)}

Hence, for points (z,y) € K} we obtain
Owa(z,y)|(h1, he) = min{0, (Cay — a1)h1},

0, s1=XMNCay—a1), s2 =0,
Diwa(z,y)|(s1,52) = {—oo o‘therw(ise.y o

(26)
Here the parameter ) satisfies the inequalities 0 < A\ < 1. For points (z,y) € K}
and vectors s = ($1,82), s1 = AM(Cay — a1), s2 = 0, the Hamiltonian H(x,y,s) is
determined by the relation

—517, S1 S 01

s1(1 — z), otherwise. (27)

H(z,y,s) = —s1x + max{0,s1} = {
It is obvious that for these values the Hamiltonian (27) is larger or equal to the
lower conjugate derivative (26). Hence, the inequality (19) is proved on the line
K.
Thus, we have proved that the function wa (21), (22) is the value function in
the game with the multi-terminal functional.

The proof of the proposition (4) for the case when C'4 < 0 is carried out analo-
gously.

Note 3. In the domain E%, the next relations are valid
ga(@,y) > wa(z,y) = wa.

Note 4. The positional strategy UQ = u% (z,y) corresponding to the value function
w4 (see relations (28)) provides the viability property for trajectories (z(-),y(-)) of
the system (1) in the domain E%.

Note 5. For the matrix B the value function wg and domains E'g can be constructed
analogously.
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5. Flexible “Positive” Feedbacks
5.1. Optimal Feedback Controls

Let us give the description of the flexible “positive” feedback controls uf =
ul = vl (z,y), which solve the problem of guaranteeing maximization for the multi-
terminal functional G 4(x1(-),y1(+)) (14) on trajectories (x1(-),y1(+)) of the system
(1). This control is constructed by the principle of the “extremal shift” in the direc-
tion of the gradient (generalized gradient) of the value function wy.

Let us note that the partial derivative w4 /0x of the value function w, changes
its sign on the lines K% and K3%. Thus, the optimal feedback control u% has the
following structure (see, for example, (Krasovskii and Subbotin, 1988)). The con-
trol parameter ug = ug(x,y) is equal to zero, if the current position (z,y) =
(z1(t),y1(t)) lies on the right to the line K4 = K% U K3, equals to one, if the
current position lies to the left of this line, and can take arbitrary values at points

of the line K 4. Namely, if C'4 > 0, then
0, (z,y) € DY,

uy =ufy = uh(z,y) =4 1, (z,y) € D3, (28)
[07 1]3 (I,U) € KA-

zw—{mMemuxnu:y<ﬂ%,y>ﬂ},
2
Dﬁz&amemuxmu:y<—
D% = D% u D%,

zﬁ—{mMemuxnu:y>ﬂ%,y>ﬂ},
2

Ca— o) oy
D22:{x, €10,1] x [0,1]: >—( 1—2)+1, <—},
2= {ewenyxpy v - Ma gy
Kia=KiUK3,
K% = 0,1 x [0,1]: y=g y>2L
i={enebuxoi y=2a gz 2L}

(Ca — )

Ki:{(x,y)e[o,l]x[o,l]: y=— (1—2)+1, ygal}.

Ca

If C4 < 0, then the flexible “positive” feedback control ug has the analogous
structure.

The guaranteeing problem for optimization of the multi-terminal functional
Gp(x2(-), y2(+)) for the second player is solved analogously.

5.2. Multi-Terminal Optimal Control

Optimal controls ufj(z,y) (28) guarantee that the current payoff of the first
player becomes in the long term not worse than the value wqa = D4/C4 of the
matrix zero-sum game for the matrix A. The next statement is true.
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Statement 2. For any initial position (29, o) € [0,1] x [0,1] and for any tra-
jectory

(21(), 11 () € X (w0, y0,uy), z1(to) =z0, w1(to) =v0, to=0,

generated by the optimal control uff = uf}(x,y), there exists a finite time ¢, €

[OvTA]v
Ty=In (max{%, i}) )
a9 CA — g

at which the trajectory (x1(),v1(-)) enters the domain E% (see (22)),

(1’1 (ts)vyl(ts)) € Eﬁh

where the value function w4 is equal to the value wy of the matrix game,

wa(z1(ts), y1(ts)) = wa,

and stays in the domain E% on the time interval [ts, +00) (and, hence, on the time
interval [T'4, 4+00)). Thus, according to the definition of the value function wy, the
next inequality takes place

gA(fEI (t)a Y1 (t)) > wa, t >t

and, in particular,

lim inf ga(z1(t),y1(t)) > wa.

t—+oo

Proof. Let us note that the domain E% (see (22)) has non-empty intersections with
all lines Ly, 0 < A <1,

Ly ={(z,y) € (0,1) x (0,1): y=A}.

Hence, any trajectory (z1(-),y1(+)), generated by the feedback optimal control uf
(the value of which is equal to zero or one) intersects this domain E%. Thus, the
projection of the velocity on the lines L for such trajectories is not equal to zero
and keeps the sign till the moment of the intersection of the trajectory with the
domain E4.

The analogous statement can be formulated for the game with the matrix B.

Statement 3. Intersection E° of the sets E4 and E} is non-empty, i.e. E® =
E% N EL # 0, and, hence, the optimal strategies uff‘, v% generate the trajectory
(z(-),y"(:)), which enters the intersection E° and stays in it on the time interval
[T9 +00), TV = max{Ta,Tg}. In the set E°, the following inequalities are fulfilled

ga(@(t),y"(t) 2 wa, gp(="(t),y("t) > wp, te[I7,+00).

Thus, the set E° can be called the favorable domain for both players.
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6. Nash Equilibrium with Flexible “Positive” Controls

6.1. Structure of the Nash Equilibrium

Let us construct the pair of controls for the Nash equilibrium, pasting to-

gether the flexible “positive” controls v% = uf}, v% = of and the “punishing”

controls u% = u$, v4 = v4. Let us choose the initial position (z,y0) € [0,1] x
[0,1] and the accuracy parameter ¢ > 0. Let us fix the trajectory (z(-),y"()) €
X (20, y0,u}(-),v% (")), generated by the flexible “positive” controls uf} and vf,. Let

us choose the moment of time 7. > 0 such that

Let us denote by the symbol w/"*(¢): [0,7%) — [0,1], v5"*(t): [0,T2) — [0,1], the
step-by-step realization of the strategies uff‘, v%, such that the corresponding step-by
step motion (2f(-),y(-)) satisfies the condition

hax, I1("(2), 5™ (1) = (@2 (), yE D)l < e.

Applying the construction of the Nash equilibrium from (Kleimenov, 1993), we
obtain the following result.

Statement 4. The pair of controls U? = u%(t, z,y,¢), V® = v°(t, x,y,¢) pasted

together by the flexible “positive” controls ui, vl and the “punishing” controls u$,

cl
UA,

00 = it = {40 New) OO <=

uSh(z,y), otherwise

fle _ (A il
VO — vo(t,x,y,a) — vg (t)v ||(I31/) (Ia (t)ayg (t))” <kg, (30)
v5(x,y), otherwise

is the dynamic e-Nash equilibrium.

Let us note that the trajectory (z2(-),4%(-)) is the core of the dynamic Nash
equilibrium. Thus, it can be called the equilibrium trajectory. It is generated by the
guaranteeing controls ug and v%, and provides values for both payoff functionals
better than the static Nash equilibrium.

6.2. Trajectories for Felxible “Positive” Controls

The question of interest is the qualitative behavior of the trajectories generated
by the flexible “positive” controls which form the basis for the dynamic Nash equi-
librium (29), (30). To classify the possible behavior of these trajectories, we can
formulate the following statement.

Statement 5. The values of the payoff functionals J,, Jz on the arbitrary
trajectory (z(:),y"(:)) generated by the flexible “positive” feedback controls uf},
vl are not worse than values of these functionals on any trajectory converging
to the static Nash equilibrium (zg,y4) = (82/Cp,a1/Ca4), on which the compo-
nents of players’ distributions are unfavorable for opposite players. Moreover, the
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trajectories (xf(-),4®(-)) enter the favorable domain E° and stay there on the infi-
nite time interval. The next variants of the qualitative behavior of the trajectories
(z%(-),y"(:)) in the domain E° are possible:

- it can converge to the intersection of lines K4, Kp;

- it can approach the points located on the border of the square (in the case when
the intersection of lines K4, Kp is empty);

- it can approach the non-antagonistic static Nash equilibrium with Pareto proper-
ties (in the case when such equilibrium exists);

- it can circulate in the domain EY.

7. Examples of Equilibrium Trajectories in Evolutionary Bimatrix
Games

Let us consider, as an example, the payoff matrices of two players on the market
of electronics: Samsung Corporation (matrix A) and Apple Corporation (matrix

B):
A= a11 a12 . B= b11 b12 _
a21 a22 b21 b22

We consider annual sales of players and their investments in 2018 according to the
data from the internet. Resources that we used are the following:
https://news.samsung.com/

http://www.annualreports.com/Company /apple-inc

Let us present the elements of matrices A and B:

air = (Sg + (S, +53)/2 - 1}),
a2 = (Sg + Sl} - Ill),

as = (S, +S; — I),

a9 = (Sg —Isl)

bin = (S; + (Sy + 87 + 87)/3 — I}),
bia = (S; + S — I}),

bar = (S; + 53 — I7),

boo = (S2 — I2).

We obtain payoff matrices in the view:

(834 (Sh+5p)/2— 1) (SL+5E— 1)
(SL4 8L 1) (st-1) )

o (98 + (S + 8 +82)/3—17) (2 + S} — I})
a (S5 + 5% —1I?) (S3-13) )°

Here S! = 220 billion dollars is the ordinary sales of Samsung corp.;

S} = 22 billion dollars is the bonus sales of Samsung corp. due to investments in
new technologies;

Sl = 8 billion dollars is the sales of Samsung corp. due to absorption of new
technologies from Apple corp. without own investments;

I} = 15 billion dollars is the long-term investments of Samsung corp.;

I! = 0 billion dollars is the short-term investments of Samsung corp.;

S2 = 215 billion dollars is the ordinary sales of Apple corp.;
Sf = 14 billion dollars is the bonus sales of Apple corp. due to investments in new
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technologies;
S2 = 4 billion dollars is the sales of Apple corp. due to absorption of new technolo-
gies from Samsung corp. without own investments;
I? = 11.5 billion dollars is the long-term investments of Apple corp.;
1% = 0 billion dollars is the short-term investments of Apple corp.;
The resulting payoff matrices have the following form:

A= 223 227 B 216.83 217.5
228220 ) a 219 215 )

The main game parameters are determined as follows:

Cp = a1 — arz — az + agx = —12,
a1 =age — a2 = —7, Q2= az —az = —8,
a9 a1
= — =0.67 = — =0.58.
TA CA 5 YA CA

Cp = b11 — b1a — bay + bag = —4.67,
B1 =0ba —bia =—2.5, B2 =0ba —ba =—4,
P B 5.

= — =0.86, = —
TB Ch YB Cn

On Fig. 3 we present the saddle point S4 of the static game with the matrix A,
the switching line K 4, and the vector field of motions for the first player.

On Fig. 4 we present the saddle point Sp of the static game with the matrix B,
the switching line Kp, and the vector field of motions for the second player.

On Fig. 5 we present three situations of the Nash equilibrium N;, Ny and Nj
in the static game; the switching lines K4 and Kp; the equilibrium trajectories 77,

y

0.8

0.6

04

0.2

Fig. 3. Switching lines for the control feedback of the first player.
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0.4

-0.2 0 0.2 0.4 0.6

1.2 1.4

Fig. 4. Switching lines for the control feedback of the second player.

Ty and T3 starting from the initial points I P, I P, and IP; and converging to the
point F; of the Pareto maximum.

Values of the functionals g4 and gp at the final point F; of the equilibrium
trajectories are better than at the points of the Nash equilibrium N7 and Ns. Values
of the functionals g4 and gp at the point N3 are better than at the point F;, which
can be explained as follows. Both players are aimed to approach this point, but the
first player insures against big payoff losses and stays in the favorable domain. So,
at the limit point of the Nash equilibrium trajectory the first player prefers to share
investments between own technologies and absorption of the opponent technologies,
and the second player makes the decision to rely fully on own technologies.

8. Conclusion

The paper deals with development of the generalized method of characteristics
for construction of the generalized minimax (viscosity) solutions of Hamilton-Jacobi
equations in dynamic bimatrix games. These solutions play the key role in the struc-
ture of the dynamic Nash equilibrium since they synthesize optimal feedbacks of
players and generate equilibrium trajectories with the guaranteeing properties. We
obtain the analytical formulas for the value functions as the generalized minimax
(viscosity) solutions of the Hamilton-Jacobi equations in the cases of different ori-
entations for the “zigzags” (broken lines) of acceptable situations in the static game.
It is proved that the equilibrium trajectories generated by the generalized minimax
solutions shift the system in the direction of cooperative Pareto points. The pro-
posed approach provides better results of payoffs for both players at the limit points
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Fig. 5. Equilibrium trajectories of the dynamic bimatrix game.

of the equilibrium trajectories in the dynamic bimatrix games than the static Nash
equilibrium or trajectories of the replicator dynamics in the evolutionary games.
We consider an example of two competitive players on the market of innovative
electronic devices and construct the Nash equilibrium trajectories in the dynamic
bimatrix games which shift unfavorable Nash equilibria to the set of Pareto maxi-
mum points.
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