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Abstract Motivated by research works on Zeuthen-Hicks bargaining, which
leads to the Nash bargaining solution (Vetschera, 2018), we analyze data ob-
tained during experimental resource allocation gaming with Yang-Hajek’s
mechanism from the class of proportional allocation mechanisms. Games
were designed in the form of negotiation to allow players to reach consen-
sus. Behavior models based on best response, constant behavior, and Nash
bargaining solution are defined. Analysis conducted over decisions made by
participants shows that a significant share of all decisions leads to an increase
of Nash bargaining value. It is even higher than the share of decisions that
are in agreement with the best-response concept. Consensus-ended games
show more but subtle attraction to Nash bargaining solution behavior. We
discuss how these decisions correspond with other types of behavior actively
exhibited by participants of this experiments — so-called constant behavior
and with the end of negotiation process in games.

Keywords: resource allocation mechanisms, Nash implementation, Nash
bargaining solution.

1. Introduction

Motivated by research works on Zeuthen-Hicks bargaining, which leads to the
Nash bargaining solution (Harsanyi, 1956); Vetschera, 2018), we analyze data ob-
tained during experimental gaming comparison of resource allocation rules in case of
transferable utilities described in (Korgin and Korepanov, 2017). In that research,
several mechanisms were compared in setting with quasi-linear utilities: a mecha-
nism (YH) from the class of proportional allocation mechanisms (Yang and Hajek,
2005; Bagar and Maheswaran, 2003), a mechanism (GL) with balanced payments
using the Groves-Ledyard rule (Groves and Ledyard, 1977) that gives the efficient
solution of the problem as a Nash equilibrium in the players’ game introduced in
(Korgin, 2016), as well as its modification (GLR) reducing the dimension of the
action space of the players (Korgin, 2016) and a mechanism based on distributed
optimization algorithm (ADMM) problem (Boyd and Vandenberghe, 2004).

We analyze decisions made by participants in games with YH mechanism. We
show that a significant share of all decisions leads to an increase of Nash bargaining
value, and it is even higher than the share of decisions that are in agreement with
the best-response concept.

We discuss how these decisions correspond with other types of behavior actively
exhibited by participants of these experiments — so-called constant behavior and
with the end of negotiation process in games.

* This work is partially supported by the RFBR, project no. 19-29-07525 and by the RSF,
project no. 16-19-10609.
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2. Resource Allocation Problem

An organizational system consists of a single Principal and a set N = {1,...,n}
of players. Principal disposes of some infinitely divisible good in a limited amount
R € R! and allots it among the players in any proportion.

The utility of each player ¢ € N in terms of the good z; € [0, R] allotted to
him is described by a function wu;(e) : R! — R! belonging to a certain set U; of
admissible utility functions.

The set of admissible allocations is

A:{x:(ﬂcl,.--,xn)iZI»L'SR,SCGRZ_}, (1)
i€EN

the set of possible utility profiles is
U={u= (ui(e),...,un(e)) : u;(e) € U;,i € N}. (2)

The problem is to find such an allocation mapping g(e) : U — A that is efficient
in the sense that it maximizes the total utility of all players for any utility profile
uelU,ie.,

g(u) € Arg max Z wi(x;). (3)

€A N

3. Model

We consider model N = {1, 2,3} with utility functions u;(z;) = \/r; + x;, where
r = (1,9,25) - profile of "initial endowment" of players or, generally, types of utility
functions. Type r; of a player i is private information and generally not known to
the Principal. Amount of disposable resource is R = 115.

An efficient allocation accordingly to the right part of (3) is allocation when sum
of utilities attain maximum value. For our model, efficient allocation and profit of
each player:

7 = (49,41, 25) (4)
! = u(o77) = ug(@§') = us(a§'") ~ 7.07 (5)

3.1. Incentive Incompatibility

For common case of types r the efficient allocation is determined according to:

zi=(R+ Y _m)/n—mryi€N. (6)
ieEN

Obviously, being answered about r; any player strives for underrating the value
of this parameter (to increase his utility) instead of truth-telling . Thus, each player
i answer r; = 1, Vefficient allocation” will be z* ~ (38.3, 38.3, 38.3), but total utility
with real players’ types will be less than optimal since a* # z¢f7.

So we have the incentive incompatibility problem.

3.2. Game Process Model and Experimental Data

The Game process is implemented in the form of an iterative process as follows.
At each iteration (step), n bids (one bid from each player) are acquired and pro-
cessed according to the rules of the Yang-Hajek resource allocation mechanism (see
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appendix 1). The result of its operation is reported to all players. At the next step,
any player may vary his bid, possibly affecting the result. The game process stops if
none of the players varies his bid ("stop rule”), or the process reaches a maximum
admissible step 7" known to all players. Parameter 7' was different in some game
sessions: 60, 20, or 15. The payoff of each player is defined as the profit at the last
step.

The last step is crucial because players receive payoffs according to the YH
mechanism on the last step. At the same time, the "stop rule" (none of the players
varies his bid) allows players to reach an agreement.

The participants of experiments were Russian students of several State Univer-
sities of Moscow, Perm, Samara cities from faculties of Technology or Economics.
Participants of one session studied the game rules and play in learning games, and
then they were randomly allocated in groups of three and play final (test) games.
We treat the results of each group as one separate game.

Notations: at each step t players make bids s1(t), s2(t), s3(¢) - bids of the first,
second and third player accordingly. The situation at step t is the tuple s(t) =
(s1(t), s2(t), s3(t)). Then, in accordance with the YH mechanism, they receive re-
sources z(s(t)), give transfers 7(s(t)) and their profits are ¢(s(t)) = u(z(s(t)) —
7(s(t)).

As experiments results, we have data of 13 games, 13 sets of start-to-end sit-
uations {(s1(1),s2(1),s3(1)), ..., (s1(t5), s2(t5), s3(t))}, where ¢ is the end step of
game g € {1,...,13}. Of course, in addition to situations, we also have derived data:
given resources, transfers, and profits in accordance with the YH mechanism.

4. The Main Approach: Nash Bargaining Solution

We can treat the game process as a negotiation process among players: they
bargain their profits. If they have reached a satisfactory result, they do not have
a desire to change anything and therefore, will not change bids, and the game will
stop by the "stop rule".

4.1. The Zeuthen-Hicks Bargaining Model

Initial Zeuthen-Hicks bargaining model considers the interaction between two
parties - seller and buyer (Harsanyi, 1956; Vetschera, 2018).

The model considers negotiations between two parties 1 and 2. Denote an arbi-
trary party as ¢ € N = {1,2}, and i’s opponent by (—%). The current offer of party
1 is €Zy.

The utility function of party ¢ is u;(x). At each step, party ¢ has to decide
whether to accept the offer z_; of the opponent or insist on its own offer x;, which
can be accepted or rejected by the opponent. Rejection by the opponent leads to
termination of the negotiation. In that case, each party receives a disagreement
utility of d;.

The probability that opponent will reject offer x; is denoted by p_;. Party ¢ will
accept the opponent’s offer if

ui(z—i) > p—ui(ds) + (1 — p—i)ui(zs). (7)
It’s supposed that hold
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From (7), one can determine a critical probability p* ; at which party ¢ is indif-
ferent between accepting and making a counteroffer:

o ui(@i) —ui(w—y)
P ™ @) —wlda) )

If p_; > p*,, it is better for ¢ to accept the opponent’s offer rather than insist
on z;. Therefore, p* , can be considered as a measure of the strength of party ¢ in
the current state (x;,z_;) of the negotiation. The weaker party will then make a
concession. Thus party ¢ makes a concession if p*, < p; which after substitution
(9) is equivalent to

(wi(@i)—ui(di)) (u—i(ws) —u—i(d—i)) < (wi(z—i)—ui(di))(u—i(¥—i)—u—i(d—;)). (10)

Therefore, the currently weaker party will make a concession to revert the in-
equality sign in (10) and thus has an incentive to increase the value of the Nash
bargaining objective function

Uz) = (ui(z) — ui(ds)) - (u—i(x) —u—i(d—s)) (11)
the maximum of which is the Nash bargaining solution (Nash, 1950).
4.2. The Nash Bargaining Solution (NBS)

In case of three players it is not possible to treat negotiation as Zeuthen-Hicks
Bargaining, but we can look at the Nash Bargaining objective function:

)~ wi(di)) ven T (12)

::]w

UNash S d
z:l

where d = (0,0,0) with u(d) = (1,3,5), i.e. disagreement utility is base utility
without transfers p; = 0 and resources x; = 0.
Due to YH mechanism, we use a profit ¢ of players instead of their utilities.
Value of UN%"(s,d) in a concrete situation we will call "NBS value" for simplicity.
Another way to check significance of NBS to players is "local NBS" version:

3
h
UNeM(s,t) =[] (¢ s(t = 1)) — maz. (13)
i=1
In our concrete case, UN®" (s, d) and moreover UN"(s,t) can be positive if
two of three multipliers in (12) and (13) are negative. Therefore we use “shifted”
objective functions:

U(s,d) = miin sz’gn(qﬁi(s) us( Z)) |UNaSh(s d)| (14)
Uloe(s,t) = miin sz’gn(qﬁi(s) — ¢i(s(t—1)) ) ZJXC“Sh( t)]. (15)

The (14) and (15) functions are positive only if all multipliers (12) and (13) are
positive. Additionally, for local NBS it means that player’s profits have increased
at step t.

Now let us proceed to the description of our approach to behavior analysis.
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5. Behavior Models

We estimate the shares of decisions made by players that correspond to some
behavior models and the shares of situations when some or all players made decisions
that correspond to some behavior models.

Let’s denote ¢ — the count of all individual bids in our data, C' — the count of
all situations. For our 3-player games considered ¢ = 3C. Then the share of some
behavior "B’ is #{s;(t)|si(t) € B}/c and the share of some set of situations "P’ is

#{s(t)|s(t) € P}/C.
Now let us proceed to the description of the behavior models under considera-
tion.

Nash bargaining behavior

— Firstly we consider decisions that go into direction of NBS increase, indepen-
dently of whether the move is sufficiently large. We treat s;(t) to be Nash-
increasing (NI) decision if:

U(s'(t),d) > U(s(t —1),d),i € N, (16)
where s(t) = (s;(t),s_i(t — 1)) and d = (0,0,0):

— Further we can define Real Nash increasing (Real NI) situations. We treat s(t)
to be Real Nash-increasing situation if it did increase the NBS value at step ¢ :

U(s(t),d) > U(s(t — 1), d). (17)

— Similarly instead of NBS we can use local NBS. We treat s;(t) to be local Nash-
increasing (LNI) decision if:

Uloc(si(t)a t) > Oa (18)
— and we treat s(t) to be Real local Nash-increasing (Real LNI) situation if:
Uloc(s(t),t) > 0. (19)

Rational behavior All rational behavior models are based on the best response
(BR) of a player to a situation on the previous step:

bri(s(t—1)) = argeglfx &i(yi, s—i(t —1)). (20)

Let’s consider two rational behavior models.
— We treat s;(t) to be near best response with accuracy € (BR(e)) if:
[s;(t) —bri(s(t — 1)) < e

— We treat s;(t) to be Toward BR (TBR) if:

si(t) = st = 1), if bri(s(t — 1)) = s;(t — 1),
(s5:(t) = ss(t — 1))/ (brs(s(t — 1)) — s5(t — 1)) > 0, otherwise.
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Constant behavior We treat some sequence of bids of one player ¢ from step ¢
to step t. > ts with accuracy € to be constant behavior CB(i, ts, t., ) if:

1. |si(ts,te)| < e
2. Va < ts,b > te i |si(a,te)] > e Alsi(ts, )] > €
3. Not exists another CB(i,t),t.,€) such that t| < ¢s; and t; < t, < t..

y sy les

The above items describe mathematically results of the “algorithm” of the se-
quential search for unchanged bids (with some accuracy ¢): starting from the first
step, we are looking for the bids sequence of players whose maximum and minimum
differ by no more than e.

The set of all CB with accuracy ¢ is denoted as C'B(¢).

— We treat s;(t) to be Agree CB (ACB) if a player doesn’t change his decision at
all - signal that he is agree with allocation:

Sl(t) = Si(t — 1)

— We treat s;(t) to be Waiting CB (WCB) if a player slightly changes his decision
in order not to stop negotiation process:

WCB(e)=CB(e) \ ACB

— We treat s;(t) to be Rational WCB(RWCB) if a player perform WCB toward
his BR:
RWCB(e) = WOB(e) N TBR

6. Results

6.1. Individual Decisions in YH Games

In the table below (see figure 1), the numbers and shares of individual decisions
that correspond to behavior models described above are presented. In the left and
right parts of the table are depicted results about all games, and games ended
with consensus. We have only three consensus-ended games, but they contain 56
situations (31, 19, and 6) with 168 individual decisions. Rows with couple behavior
models, separated by \(for example - LNI\NI), correspond to decisions that suit a
first behavior model but not to a second one.

The most observed models in all games are TBR, Agree CB, and Nash increasing.
The data of games with consensus is similar to all games, but there is an exceptions:

1. Local Nash increasing models are found twice more often, and all such decisions
are rational,

2. Nash increasing models without CB have grown,

. less Waiting and Rational Waiting CB decisions,

4. BR(1) is doubled from 5% to 10%, but TBR does not change.

w

So most observed models in all games and consensus-ended games are almost
equivalent, but other models are changed. In consensus-ended games, players exhibit
more intention to act accordingly to local NBS, i.e., to increase utility of all players.
It seems that non-Agree CBs occur significantly rare. Item 4 maybe shows that
TBR decisions in consensus games are more concentrated near BR with accuracy 1
than in all games.
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All games Games with consensus
num % num %
games 13 3
total iterations 326 56
total decisions 978 100% 168§ 100%|
Rational behavior
BR(1) 47| 5% 16[ 10%
Toward BR ey 44% i 44%

Constant Behavior

Agree CB 205l | 30% ss R 33%
Waiting CB(1)\ACB 120 L__\ 12% 5| 3%
Rational WCB(1) 74[] 8% 4| 2%

Nash Bargaining Solution Behavior

NI sl 32% xl 32%

NI\WCB(1) 253l | 26% 2 31%
Rational NI\WCB(1) 161 16% ol ] 24%
Local NI 110[ | 11% 37 22%
LNI\WCB(1) 109 11% 37| 22%
Rational LNI\WCB(1) 109] 11% 37 22%
LNI\NI 16| 2% 3] 2%

Fig. 1. Individual decisions in all YH games and in consensus-ended YH games.

6.2. Decision Situations

In the previous section, we see at bids of players and their intention toward
BR and NI, but to see at dynamic of negotiation process we can see at situations
- behavior of player’s group altogether s = (s1, 2, s3). We consider two types of
situations: when all players act according to the same behavior model and when at
least one player acts according to it.

In figure 2 Rational and Constant behavior models are presented. Games with
consensus have most differences again with less Waiting CB behaviors. Most ob-
served "at least one TBR" and "at least one Agree CB" again do not have signif-
icant changes. "At least One BR(1)" again has more percent in consensus games
(almost three times), but TBR situations do not change.

In figure 3 NBS models in situations are considered. Real increase of Nash func-
tion relates to "All ...” models and has the most observable cases in the class. It
turns out that about half of situations did increase Nash value! Count of real Nash
increasing situations with at least one player toward Nash increasing equal to 155,
with at least two players equal to 67.

So real Nash increasing also occur in 88 (155-67) situations when only one of
players makes decision toward Nash increasing. Maybe other players do not change
their bids (remember Agree CB is 30% of individual decisions), but it is an inter-
esting question about what other situations can real increase Nash function.

Concerning differences with consensus games, again (as with individual deci-
sions), we see doubled count of situations with observed Local NI models. So when
considering situations, we see that players who demonstrate wish to increase local
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All games Games with consensus
num % num %

games 13 3

total iterations 326 56
Rational behavior

All BR(1) 0 0% 0 0%

at least One BR(1) a4 | 13% 7F 30%

All TBR 29[ 9% 6 11%

at least One TBR 230 84% i 8h%
Constant Behavior

All Agree CB 3| 1% 3] 5%

at least One ACB 250 |e6% ol 1%

All Waiting CB(1) 1| 0% 0 0%

at least One WCB(1) m 34% 5[] 9%

All Rational WCB 0 0% 0 0%

at least One RWCB 700 | 21% afl 7%

Fig. 2. Decision situations in all YH games and in consensus-ended YH games.

Nash function (i.e., utilities) came to an agreement. Alternatively, consensus-ended
games have more players who demonstrate wish to increase utilities.

In figure 4 count of steps until the end of games from the last observed model
are presented.

In games with consensus, we see fewer values on average compared to timeout-
ended games. "All ...” decisions rare belongs to the second half of game length, but
’One ..., Real NI, and Real LNI situations are near the end of game, especially to
consensus games. This data tells us that in consensus games last of NBS behavior
observed close to end. It can be treated as NBS triggers the end of negotiation
process. Interestingly, some short games with 7" < 20 do not have situations ’All
NI’ and ’All LNTI’, unlike games with 7" = 60 or consensus.

An example of negotiation process for one game ended with consensus is pre-
sented in figure 5. At steps 2 and 5 individual decisions and situations are NBS

All games Games with consensus
num % num %
games 13 3
total iterations 326 100%) 56 100%
Nash Bargaining Solution Behavior
AllNI 11 3% a 7%
at least One NI 224 ! \69% 35 “ | 63%
Real NI 156 | 48% 25 | 45%
Real NI & One NI 155 | 48% sl 45%
Real NI & Two NI 670 | 21% 13 23%
All Local NI 71 2% 3] 5%
at least One LNI 75 23% 240 | 43%
Real LNI a9 15% 17 ] 30%

Fig. 3. Decision situations in YH games, NBS models.
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Type of event

Descisions Situation
end of Real | Real

Game length game All NI One NI All LNI One LNI NI LNI
40 60 | timeout 11 2 45 6 2 2
41 19 | consensus 8 1 17 4 1 4
42 6 | consensus 4 1 4 1 1 1
43 60 | timeout 36 0 18 36 1 40
56 31 | consensus 16 2 15 2 2 2
57 60 | timeout 19 1 57 4 3 4
60 15 | timeout none 0 | none 1 1| none
61 15 | timeout none 1| none 4 2 4
92 20 | timeout 6 1| none 15 1 6
93 20 | timeout 14 0 14 9 2 14
94 20 | timeout none 0 | none 5 1 4

steps till end of game

Fig. 4. NBS and end of games.

agree, or as at step 5, two players make LNI bids, and one does not change bid
at this step and further, signaling about satisfaction. May be players act coopera-
tively, and these characteristics of situations at steps 2 and 5 may be indicators of
cooperative behavior.

7. Conclusion

The research conducted allows us to conclude that indicators based on Nash
bargaining value do allow us to predict possibilities for negotiation parties to reach
a Cconsensus.

The initial design of experiments under consideration was not intended to iden-
tify if some participants behave toward Nash Bargaining Solution. Analysis of data
shows us some evidence that a significant part of decisions and situations suit be-
havior that leads to an increase of NBS value as opposed to best response behavior.
Nevertheless, there was no evidence found that increase of some "global" NBS value
may be somehow connected with the possibility to reach the consensus. However,
switching attention to a local increase of NBS in the style of (Vetschera, 2018) turns
out to be fruitful.

In cases when parties reached an agreement, all participants of such games took
more decisions to increase local Nash Bargaining value. Furthermore, the last sit-
uations of real Nash function increasing were encountered almost at the end of
gares.

Iteration | Player 1 Player 2 Player 3 NI LNI
6 | ACB ACB ACB 0 0 | game ended
LNI1& LNI&
5 | NI&TBR ACB NI&TBR 1 1 | cooperation?
~+ [ rvics TeR 0 0
3 | TBR NI&TBR ACB 1 0
LNI& LNI& LNI&
2 | NI&TBR NI&TBR NI&TBR 1 1 | cooperation?

Fig. 5. Negotiation example.
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At the same time, it should be pointed out that such local increment of Nash
Bargaining function while achieving some consensus may be quite far from Nash
Bargaining Solution. However, taking in to account the fact that particular NBS
depends on selection of disagreement solution, while local increase of Nash Bargain-
ing function as it is defined here and in (Vetschera, 2018) depends only on situation
at previous iteration of bargaining process.

The perspectives of the further directions of research following the approach
described in this paper may be suggested. The first obvious direction is to extend
the analysis conducted on data from experimental games with other mechanisms
described in (Korgin and Korepanov, 2017). The main difficulty is to define NBS
behavior with multidimensional signals, like in GL mechanism. The next direction
is connected with the concept of reflexion or strategic thinking (Chkartishvili and
Korepanov, 2016) - if the knowledge about Nash function and NBS will affect the
decision-making process of parties during negotiation or not. Finally, redesign of
experiment to identify if participants think about something in common with Nash
Bargaining value should be conducted to verify all the hypotheses developed through
previous stages.

Appendix

1. Yang-Hajek’s proportional mechanism

The Yang-Hajek’s class of mechanisms (Yang and Hajek, 2005) is one of the
classes of resource allocation mechanisms developed to deal with the incentive in-
compatibility. In our research we used a mechanism from this class with the following
parameters.

Action of each player - amount of resource she would like to receive - bid s; € R...

All players gives their bids s = (s1, 2, s3). Denote S = Zj 5.

Resource that will be given to player i is equal to x; = R * s;/S. Transfer of
player 7; = 8's; (S — s;), where 8 = 0.0005 - penalty strictness.

And player’s profit is ¢; = u;(z;) — 7.
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