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Abstrat The paper onstruts and investigates the models of the optimal

ontrol in the Tullok rent-seeking game. There are two types of ontrol in

the paper: an unlimited, but expensive resoure, and a heap, but an in-

�nitely small resoure. Before the game starts, players disuss parameters

of the game, and then hoose their strategies simultaneously and indepen-

dently, ompeting for better rent. We onsider two types of players and two

types of ommuniation and analyze ombinations.

Keywords: optimal ontrol, Tullok rent-seeking game, parametrized equi-

librium, beliefs

1. Introdution

Players disuss ompetition parameters for a prize and ompete by making ostly

investments and hoosing their strategies simultaneously and independently. Tul-

lok introdued his model to desribe how suh players make deisions, but only if

there were no negotiations and that the game parameters were ommon knowledge

(Tullok, 1980).

Previous results and this paper (Fedyanin, 2020) inorporates utility funtions

from the Tullok rent-seeking game but pay attention to unertainty and optimal

ontrol of players' beliefs. It provides tools to enrih investigations when players

might have di�erent initial beliefs, types, and protools of preliminary negotiations

before the game start (Aumann, 1999). Previous investigations (Fedyanin, 2019)

introdued a model for the ommuniation and results of belief interations among

players. We onsidered two types of players and two types of ommuniation, and

we analyzed all possible ombinations. It leads us to the four unique ombinations

of types and ommuniations for analysis. We have suggested epistemi models for

all of them and alulated equilibriums for the �rst three of them.

� Game 1 is a lassi Tullok rent-seeking game with ommon knowledge about

the parameters. The optimal ontrol is to ontrol the true values of parameters.

We onsider this ase as the simplest for omparison with other ontrols.

� Every player in Game 2 believes that all other players' beliefs and her beliefs

about the values of the parameters oinide, and it is ommon knowledge.

� Game 3 assumes a onsensus among players. Though players have initial beliefs,

they hange their beliefs to ome to a single belief in a onsensus. Though some

expressions are very similar to those in Game 1, the ontrol di�ers sine we have

to onsider the in�uenes.
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� Every player in Game 4 knows all others' beliefs but believes that only his belief

is the true one. We do not investigate the optimal problem for this game sine

we ould not �nd an equilibrium.

In the paper, we present the orresponding formal models for eah game with the

formal desription of the equilibriums onditions. These onditions are the systems

of equations.

This system is in�nite and might require ompliated analysis, but it has om-

patness for the Games 1-4. It means that there is only a �nite number of equivalent

strategies.

The sizes of the orresponding systems are the following.

� The system is the same as the equation for the Nash equilibrium. Thus, n
equations for Game 1.

� The system inludes one system of n variables for eah player, thus n systems

of n equations for the Game 2.

� Though initial beliefs of players might be di�erent - the onsensus redues the

system to a modi�ation of the Game 1. If there is no onsensus and the players

do not hange their beliefs than the system beomes the same as for Game 4.

Thus Game 1 and Game 3 might be examples of Game 3 if we do not assume

onsensus and require beliefs oinide with the real values of parameters. So, it

is n equations for Game 3.

� It is n equations for the Game 4.

Given these results, the paper fous on optimal ontrol of beliefs about param-

eters. The optimal ontrol problem in this paper is an optimization problem, where

� riteria of optimization is a funtion of strategies of players at the equilibria

� ontrol is a parameter of the game, whih is the parameter of the players'

strategies at the equilibria.

We analyze the best way of spending a tiny amount of a resoure to hange the

given beliefs and parameters of the game. Researh plans to �nd an equilibrium

for a given informational struture and alulate the partial derivatives. The most

substantial partial derivative shows a belief or a parameter of the game, whih is the

�rst to apply ontrol. We start from the straightforward models to show how the

ontrol algorithm works and proeed with the more sophistiated. We also provide

examples.

The paper uses the following known results:

1. the formulation of the Tullok ompetition and expression for equilibria (Tul-

lok, 1980),

2. the onept of beliefs (Harsanyi, 1967),

3. the onept of re�etion game (Novikov et al. 2014),

4. the idea and formal model of weakening ommon knowledge required for the

game by lassifying the interation of players into four ombinations (Fedyanin,

2019),

5. the method to apply suh weakening to a game and appliation to the Tullok

ompetition (Fedyanin, 2020),

6. the idea and method of the linearization to �nd a maximum of the riteria and

solve of ontrol problem (Neudeker et al., 1988),
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7. the methods to �nd global optimum with restritions (Beavis et al. 1990; Curtis,

2015).

Previous results over a full hain of steps from 1 to 5, and the literature desribes

6 and 7. This paper applies methods from 6 and 7 to step 5. These results are new.

This paper fouses on ontrol problems that are a reasonable step forward from

previous investigations. We introdue two lasses of optimization:

� an in�nitely large amount of ontrol resoure, but there are quadrati expenses

for using it. We suggest the Laplae method to �nd a global maximum.

� an in�nitely small amount of ontrol resoure; thus, we an linearize and apply

all ontrol to the ontrol parameter, whih derivative is greater than others.

2. Game

We onsider Tullok rent-seeking game with unertainty. There are appliations:

ompetition for monopoly rents, investments in R&D, ompetition for a promo-

tion/bonus, politial ontests. A formal model is as the following.

Re�etive version of Tullok rent-seeking game ΓI is a game desribed

by the following tuple:

ΓI = {N, (Xi)i∈N , fi(·)i∈N , I}

where

� N = {1, . . . , n > 2} is a set of players,

� X = {X1, . . . , Xn} is a set of strategies of players, where Xi = {xi ≥ 0} is a set
of avalable strategies for the player i,

� F = {f1, . . . , fn}- is a set of the utility funtions suh that

fi(x1, . . . , xn, α,M, n) =
xαi∑

j∈N

xαj
M − xi,

where the restritions on the parameters are 0 < α < 1 ≤M.

An informational struture is a way to model unertainty by a tree where a

belief of an player is a node in the tree. This tree is in�nite in a general ase.

Information struture is represented by a tree. We denote

� (M,α, n)a1,...,ak
beliefs of an player a1 about the belief of player a2 ... about

player ak about the values of (M,α, n). I = {(M,α, n)a1,...,ak
∀a1, ..., ak ∈ N}.

We denote (Ma, αa, na) = (M,α, n)a. See Fig. 1.
� xa1,...,ak

a strategy hosen by an image of player ak in a beliefs of an player

ak−1 ... in beliefs of an player a1. We assume that xa1,...,ak,j ∈ Xj

The equilibrium is a set of strategies of all images of players i�

xa1,...,ak,i =

BRi((M,α, n)a1,...,ak
, xa1,...,ak,1, ..., xa1,...,ak,i−1, ..., xa1,...,ak,i+1, ..., xa1,...,ak,n),

where BRi is the best response of the player i to the �xed strategies of other players
with values of parameter aording to player's beliefs.
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Fig. 1. An example of an informational struture. It is similar to Harsanyie types approah

(Harsanyi, 1967/68)

We introdued four Games and have investigated the �rst three of them.

In Game 1, there is a ommon knowledge, and we have to �nd a solution for the

system of the best responses (BR) of the players.

x∗1 = BR1(x
∗
−1,M, n, α); ...;x∗n = BRn(x

∗
−n,M, n, α).

This solution gives us equilibrium.

In Game 2, players annot ommuniate. A brief example of this model is the

following. Let there are Ann and Bob. Ann wathes the TV hannel, and there is a

laim that there is a storm nearby. She ould think that it is suh important news

that everyone should know it. Bob does not know anything about the storm and

thinks that nobody thinks that there is a storm know. Both of them are wrong in

detail but make ations as they are right. We have to �nd a solution for the system

of the best responses (BR) of the players.

x∗1 = BR(x∗−1,M, n, α); ...;x∗n = BR(x∗−n,M, n, α);

x∗11 = BR(x∗1−1,M1, n1, α1); ...;x
∗1
n = BR(x∗1−n,M1, n1, α1);

x∗j1 = BR(x∗j−1,Mj, nj , αj); ...;x
∗j
n = BR(x∗j−n,Mj, nj , αj);

x∗n1 = BR(x∗n−1,Mn, nn, αn); ...;x
∗n
n = BR(x∗n−n,Mn, nn, αn);

x∗1 = x∗11 ; ...;x∗n = x∗nn .

This solution gives us equilibrium.

In Game 3, players are allowed to ommuniate and reah onsensus. There

ould be ommuniation between players, and they an ommuniate aording to

the de Groot model (DeGroot, 1974; Gubanov et al., 2009). There is no di�erene if

the existene of suh ommuniation to the ommon knowledge among all players,

or it is not.

M∗ =
∑

i∈N

wM
i Mi;α

∗ =
∑

i∈N

wα
i αi;n

∗ =
∑

i∈N

wn
i ni,

where wM
i , wα

i , w
n
i are the �nal in�uenes (Gubanov et al., 2009) of the player i on

a soial network onsensus opinion about M,α, n
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We have to �nd a solution for the system of the best responses (BR) of the

players.

x∗1 = BR(x∗−1,
∑

i

wM
i Mi,

∑

i

wn
i n,

∑

i

wα
i α);

...

x∗n = BR(x∗−n,
∑

i

wM
i Mi,

∑

i

wn
i n,

∑

i

wα
i α).

This solution gives us equilibrium.

3. Optimal Control

We onsider two types of optimal ontrol: loal and global, and the restritions

on ontrol.

3.1. Unlimited, but Expensive Control Resoure

We look for optimal ontrol in the form of the maximum number of strategies of

players redued by the ontrol's quadrati expenses. The riteria for the optimiza-

tion are the following.

Game 1 The riteria for Game 1 is

F =
∑

j

xj − ((M −M0)
2 + (α − α0)

2 + (n− n0)
2),

F =
n− 1

n
αM − ((M −M0)

2 + (α− α0)
2 + (n− n0)

2).

F =
n− 1

n
αM − ((M −M0)

2 + (α− α0)
2 + (n− n0)

2).

∂

∂M
F =

n− 1

n
α− 2(M −M0) = 0

∂

∂α
F =

n− 1

n
M − 2(α− α0) = 0;

∂

∂n
F =

2− n

n2
αM − 2(n− n0) = 0,

Hessian is

H(F ) =




∂2

∂M2F = −2; ∂2

∂M∂αF = −n−1
n ; ∂2

∂M∂nF = 2−n
n2 α

∂2

∂α∂M F = −n−1
n ; ∂2

∂α2F = −2; ∂2

∂α∂nF = 2−n
n2 M

∂2

∂n∂MF = 2−n
n2 α;

∂2

∂n∂αF = 2−n
n2 M ; ∂2

∂n2F = −2;



;

detH(F ) =
2
(
M2n(n− 2)2 − αM(n− 1)(n− 2)2

)
+

n5

2n
(
4α2 +

(
α2 + 1

)
n2 − 3n4 − 2n3 − 4α2n

)

n5
.

For large enough n Hessian is negative de�nite and thus for large enough n there is

a maximum of F if the gradient is zero.
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The zero points of the gradient are ompliated, but there is a simple ondition

on M and α at the maximum.

α

M
=
M −M0

α− α0
.

Game 2 The riteria for Game 2 is

F =
∑

j

xj −
∑

j

(
(Mj −Mj0)

2 + (αj − αj0)
2 + (nj − nj0)

2
)
,

F =

m∑

k=1

Mk(nk − 1)αk

n2
k

−
∑

j

(
(Mj −Mj0)

2 + (αj − αj0)
2 + (nj − nj0)

2
)
.

If the Hessian is negative de�nite then the zeros of the gradient are loal maxi-

mums as in the Game 1. In this ase there are similar onditions on some parameters

in a maximum for any k ∈ N :

αk

Mk
=
Mk −Mk0

αk − αk0
.

We suggest that for large enough nk Hessian is negative de�nite sine the deter-

minant of a blok diagonal matrix is a produt of the determinants of its bloks. It

matters sine the Hessian here is a blok diagonal one.

Game 3 The riteria for Game 3 is

F =
∑

j

xj −
∑

j

(
(Mj −Mj0)

2 + (αj − αj0)
2 + (nj − nj0)

2
)
−

∑

j

(
(wM

j − wM
j0 )

2 + (wα
j − wα

j0)
2 + (wn

j − wn
j0)

2
)
.

F =

∑m
j=1 njw

n
j − 1

∑m
j=1 njwn

j

m∑

j=1

wα
j αj

m∑

j=1

Mjw
M
j −

1

r

∑

j

(
(Mj −Mj0)

2 + (αj − αj0)
2 + (nj − nj0)

2
)
−

1

r

∑

j

(
(wM

j − wM
j0 )

2 + (wα
j − wα

j0)
2 + (wn

j − wn
j0)

2
)
,

where

M∗ =

m∑

j=1

Mjw
M
j α∗ =

m∑

j=1

αjw
α
j ;n

∗ =

m∑

j=1

njw
n
j .

The gradient will be zero if

n∗ − 1

n∗
α∗wM

k = 2(Mk −Mk0);
n∗ − 1

n∗
M∗wα

k = 2(αk − αk0);

2− n∗

(n∗)2
α∗M∗wn

k = 2(nk − nk0);
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n∗ − 1

n∗
α∗Mk = 2(wM

k − wM
k0);

n∗ − 1

n∗
αkM

∗ = 2(wα
k − wα

k0);

2− n∗

(n∗)2
α∗M∗ = 2(wn

k − wn
k0).

There are restritions: 0 < αk < 1, 1 < M, 0 < wM
i < 1, 0 < wα

i < 1, 0 < wn
i <

1,
∑

j w
M
j = 1,

∑
j w

α
j = 1,

∑
j w

n
j = 1. Restritions assumes that we should use

Lagrange multiplier in general ase or Boarded Hessian. These methods are well

known, though ompliated for our ase.

The Hessian an also be applied in the next setion if we use not linear but

quadrati approximation sine the orresponding Taylor series inlude Hessian.

3.2. Cheap, but In�nitely Small Control Resoure

The riteria F onsists of ontinuous and disrete variables beause usually,

the number of players is disrete. However, if the number is large enough, we an

approximate it by a onstant value.

If there is only a small amount of a resoure, we annot apply the approah that

we use for unlimited resoures. In this ase, we rewrite the riteria as F =
∑

j xj
with the following restritions: M2 + α2 + n2 ≤ R for Game 1,

∑

j

(
(Mj −Mj0)

2 + (αj − αj0)
2 + (nj − nj0)

2
)
≤ R

for Game 2, ∑

j

(
(Mj −Mj0)

2 + (αj − αj0)
2 + (nj − nj0)

2
)
−

∑

j

(
(wM

j − wM
j0 )

2 + (wα
j − wα

j0)
2 + (wn

j − wn
j0)

2
)
≤ R

for Game 3.

When R is small enough we an alulate an opimal solution having derivatives

by hoing the maximum of derivatives like

max


 ∂

∂M

∑

j

xj ,
∂

∂α

∑

j

xj ,
∂

∂n

∑

j

xj




and apply all ontrol to an argmax.

Game 1 Linearization leads to the following expression for the linear approximation

of the maximum riteria, whih an be reahed by an amount of the resoure R.

Rmax

(
n0 − 1

n0
α0,

n0 − 1

n0
M0,

n0 − 2

n2
0

α0M0

)
.

Given 0 < α < 1 ≤ M the expressions leads to a simple optimal ontrol rule that

is always spend all resoure to inrease α up to α = α0 + R if α0 < 1 − R. The
inrease of the riteria F will be approximately

n0 − 1

n0
RM0,
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sine the largest derivative is

∂

∂α

∑

j

xj =
n− 1

n
M,

beause

Rmax

(
n0 − 1

n0
α0,

n0 − 1

n0
M0,

n0 − 2

n2
0

α0M0

)
=

R
n0 − 1

n0
max

(
α0,M0,

n0 − 2

n0 − 1
α0M0

)
= R

n0 − 1

n0
max (α0,M0) =

n0 − 1

n0
RM0,

if α0 > 1−R. The optimal ontrol is to spend resoure 1− α0 to inrease α up

to 1, and spend the rest to the inreasing M up to M = M0 + R − 1 + α0. The

inrease of the riteria F will be approximately

n0 − 1

n0
((1− α0)M0 + (R − 1 + α0)α0) .

Game 2 We an use the following expression for the linear approximation of the

maximum of riteria, whih an be reahed by an amount of the resoure R.

Rmax
k∈N

(
(nk0−1)αk0

n2
k0

,
Mk0(nk0 − 1)

n2
k0

,
Mk0(nk0 − 2)αk0

nk0
3

)
=

Rmax
k∈N

(
(nk0 − 1)αk0

n2
k0

,
Mk0(nk0 − 1)

n2
k0

)
= Rmax

k∈N

Mk0(nk0 − 1)

n2
k0

≈ Rmax
k∈N

Mk0

nk0
.

if n−∑j αj0 > R then the algorithm of the optimal ontrol is the following.

1. Assign M := N .

2. Choose an player from M with maximum Mk0(nk0 − 1)/n2
k0 among all players

in M . Denote suh player by j
3. If 1−αj0 is larger then R then spend R to inrease αj up to αj = αj0 +R and

exit.

4. If 1−αj0 is smaller than R or equals it then spend 1−αj0 to inrease αj up to

αj = 1,
5. Assign R := R− 1 + αj0

6. Exlude j from M , and if M is not empty and R > 0 go to step b.

Game 3 We an use the following expression for the linear approximation of the

maximum of riteria, whih an be reahed by an amount of the resoure R.

R
n∗ − 1

n∗
max
k∈N

(
α∗wM

k ,Mwα
k ,
n∗ − 2

n∗ − 1
α∗M∗wn

k , α
∗Mk, αkM

∗,
n∗ − 2

n∗ − 1
α∗M∗

)
,

where

M∗ =

m∑

j=1

Mjw
M
j α∗ =

m∑

j=1

αjw
α
j ;n

∗ =

m∑

j=1

njw
n
j .
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4. Conlusion

The paper provides the solutions for speial ases of the optimal problems for

Tullok rent-seeking game with preliminary negotiations when there are unlimited

large or in�nitely small amounts of ontrol resoures. The solution for the stubborn

players with ommuniation (Game 4) is unknown sine there is no known expres-

sion for equilibrium. There are known straight, but ompliated ways to solve the

optimization problem in general, but the investigation obtained simple expressions

for some ritial ases. This paper makes an essential step at the transition from the

previously obtained expressions for parametrized equilibrium to the solved ontrol

problems.
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Appendix. Parametrized equilibriums

1. Game 1. Players with ommon knowledge

Ations of players are

x∗i =
n− 1

n2
αM ; ∀i ∈ N.

Furthermore, the following derivatives will be monotoniity ould be found by an

analysis of For short, we will use xi = x∗i .

∑

j

x∗j =
n− 1

n
αM

∂

∂M

∑

j

xj =
n− 1

n
α;

∂

∂α

∑

j

xj =
n− 1

n
M ;

∂

∂n

∑

j

xj =
2− n

n2
αM

2. Game 2. Players without ommuniation

Ations of players are

x∗i =
ni − 1

n2
i

αiMi.

Moreover, monotoniity abe found by an analysis of the following derivatives.

∑

i

x∗i =

m∑

k=1

Mk(nk − 1)αk

n2
k

∂

∂Mk

∑

i

x∗i =
(nk − 1)αk

n2
k

;
∂

∂αk

∑

i

x∗i =
Mk(nk − 1)

nk
2

;

∂

∂nk

∑

i

x∗i =
Mk(2− nk)αk

nk
3
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3. Game 3. Players with ommuniation and onsensus

Ations of players are

x∗i =
n∗ − 1

(n∗)2
α∗M∗.

Moreover, the following derivatives are useful for the analysis of the monotoniity.

∂

∂Mk

∑

j

xj =
n∗ − 1

n∗
α∗wM

k ;
∂

∂αk

∑

j

xj =
n∗ − 1

n∗
M∗wα

k ;

∂

∂nk

∑

j

xj =
2− n∗

(n∗)2
α∗M∗wn

k

∂

∂wM
k

∑

j

xj =
n∗ − 1

n∗
α∗Mk;

∂

∂wα
k

∑

j

xj =
n∗ − 1

n∗
αkM∗;

∂

∂wn
k

∑

j

xj =
2− n∗

(n∗)2
α∗M∗
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