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Abstract This article is an overview of results obtained in the field of dy-
namic network games with pairwise interaction. The paper provides a sum-
mary and analysis of works related to two-stage and multistage nonzero-sum
games based on pairwise interaction. The meaning of pairwise interaction is
to consider the game as a family of games occurring on a network between
pairs of players (vertices of a graph) connected to each other by an edge.
The network can be set or formed in the first stage. In the paper, solutions
of cooperative pairwise interaction games are also considered.
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1. Introduction

Cooperative network games is an important part of modern game theory. Net-
works illustrate connections between players and their ability to communicate in
coalitions. For the first time in the game theory literature, a non-cooperative form
of pairwise interaction in a network was considered in (Dyer and Mohanaraj, 2011)
meaning direct interactions between network neighbors. But cooperative approach
is quite natural and moreover beneficial for players as it provides them with a
better outcome rather than noncooperative behavior. First cooperative interpre-
tation of pairwise interaction games was in (Bulgakova and Petrosyan, 2015). So-
lutions of network games with pairwise interactions were examined in detail in
(Bulgakova, 2019).

Also of interest are solutions for games with pairwise interaction on specific net-
works. The geometric structure of the network and symmetry make it possible to
simplify some complex formulas and get their simple explicit form
(Petrosyan, Sedakov and Bulgakova, 2018; Bulgakova and Petrosyan, 2019a).

When cooperative behavior is investigated, it is important that players follow
a cooperative agreement during the whole course of the game. If a solution of the
cooperative game is time consistent, players have no reason to deviate from the
accepted agreement. Conditions for strongly time-consistence of core in 3-person
games with pairwise interactions was studied in (Bulgakova and Petrosyan, 2016).
Also, time consistent cooperative solutions for multistage games with special payoffs
wad considered in (Kuzyutin and Nikitina, 2017).

Sometimes it is difficult to determine the explicit form of the core and decide on
its stability, in this case, subsets of the core are used, which can be found in various
ways. For example, as in (Petrosyan and Pankratova, 2018). Also, a special subset of
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the core, the IDP-core, was considered in (Petrosian, Gromova and Pogozhev, 2018;
Wolf, Zakharov and Petrosian, 2017). The adaptation of the IDP-core to games
with pairwise interaction was carried out in (Bulgakova and Petrosyan, 2019b).

In this paper, we analyse and compare the results in the field of cooperative
network games with pairwise interaction.

2. Two-Stage Network Games with Pairwise Interactions

Consider a model of two stage cooperative network games with pairwise inter-
actions (Dyer and Mohanaraj, 2011), when network is not given. So, players should
form a network on the first stage. These game was studied in (Bulgakova and Pet-
rosyan, 2015). Let us explain the model.

Let N be a finite set of players, which can make decisions in two stages, |[N| =
n > 2. Denote as z stage of game. The game started in stage z;, where every player
i € N choose his behavior b} = (b}, ...,bl ) — n-dimensional vector with offers for
connections to other players (Petrosyan, Sedakov and Bochkarev, 2013).

We will use following notations: M; C N \ {i} — those players, whom player
i € N can offer a connection, wherein a; € {0,...,n — 1} is maximal number of
connections for player ¢, which he can maintain simultaneously. If M; = N \ {i},
it means, that player ¢ can offer connections for all players. In case, if a; = n — 1,
player ¢ can maintain any number of connections.

For every behavior b} there exists such subset of realized offers Q; C M;, which

satisfy following restrictions

0, other,

with additional condition
> bl <ai (2)
JEN

Condition (2) means, that number of possible connections is restricted for every
player. Also, obviously, |Q;| < a;.

Connection ij is formed if and only if, bj; = bj; = 1. Formed connections ij
create edges of network g, where vertex are players, i.e., if b}j = b}i =1, then there
is an edge between ¢ and j in network g.

Denote by N;(g) or simply N; neighbours of player ¢ in network g, i.e. N;(g) =
{j € N\ {i} :ij € g}. As result of the first stage we have network g(bi,...,bl).
After network is formed players move to stage 2z2(g), which depend on network. On
second stage z2(g), neighbours on network play pairwise in simultaneous bimatrix
games, after that players get their payoffs and the game ends. In other words, we
have two stage game I, (¢), which is special case of multistage nonzero-sum games.
In considered case strategy of player is a rule, which for every player determine his
set of neighbours on the first stage, namely vector b}, and his behavior in every
bimatrix game on second stage corresponding to network, which is formed on the
first stage — b?. Denote by u; = (b},b?), i € N, strategy of player i in two-stage
game I, (g). Calculate payoff of player ¢ as h;(z2), where (z1, 22) is a path, realized
by strategy profile u = (u1(+),...,un()) in game I, (g). Because on the first stage
players do not get their payoffs, payoff function in game I',, (¢) with starting position
z1 is determined by following expression:

Ki(z1;5u) = Ki(z15u(0), -« o un () = hi(22).
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2.1. Characteristic Function

On second stage game represents a set of pairwise simultaneous bimatrix games
{7ij} between neighbours in network. Namely, let ¢ € NV, j € N;. Then player i (the
first player) play with player j (the second player)in bimatrix game ~;; with payoff
matrices A;; and Cj; of players ¢ and j respectively.

aZ1J1 az1j2 aﬁc
Y

Az] = G?I a.22 a?k (3>
a:il a%z T afik
R

e @
Ciil ng T C;j@k

apr >0, ¢ >0, p=1,....m, I=1,...k.

Constants m and k coincide for all ¢ and j. When we have game +;;, i.e. player
i is the second player, he has payoff matrix Cj; = Au? and player j has matrix
Aji = C’g Denote by Z2( ) subgame of game I', which takes place on second stage
zo. Consider this game in cooperative form. Find characteristic function for every
subset (coalition) S C N as lower (maxmin) value for two person zero-sum game
of coalition S and coalition N \ S, based on game FZS2 (g9). Payoff of coalition S is
sum payoffs of players from coalition S. Super-additivity of characteristic function
follows from its definition. Note, that

ng:mgxmgin ag, p=1,...,m; L=1,...k, (5)
J _ : Jji _ . _
wi; = maxmin cy, p=1,....m; £=1,... k. (6)

and v(22;5),S C N, is lower value of zero-sum game I'; (g).

Theorem 1 (Bulgakova, 2019). Function v(z2;5) is determined by following
eTPressions:

v(z2;{0}) =0, (7)
227 {Z Z wlja (8>
JEN;
v(z9; S Z Z maxa —|—c;jé)—|—z Z wh, S C N, (9)
20 jenins ¥ i€S kEN;\S

v(z9; N Z Z max a ”). (10)

ZGNJGN Pt
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Consider a cooperative form of two-stage game I, (g). Suppose, that players
chose strategies @;,7 € N, that maximize their total payoff in game I, (g), i. e.

ZKi(Zl;’ﬁl,...,’ﬁn) = mngKi(zl;ul,...7un).

iEN i€EN

Strategy profile @ = (41, ..., 4,) we will call cooperative behavior, and correspond-
ing path (z1, Z2) — cooperative path.

As previously, for coalition S C N define characteristic function v(z1;S) as
maxmin value in two person zero-sum game between coalition S (maximizing player)
and coalition N \ S (minimizing player). For minimazing player the best way of
behavor is to not create all the connections with maximizing player (because of
positive payoffs for each connection). Payoff of coalition S is sum of payoffs of its
members.

Denote by v(z1;5),S C N, lower value of zero-sum game I, (g)-

Theorem 2. Function v(z1;5) is defined in following way:

v(zi;{i}) =0,  wv(z:;0) =0, (11)
1 G, 45
v(z1;S) = 3 Z Z mazx(apjg +cp), SCN, (12)
i€S jeNi(g)ns
v(z1; N) = v(Z2; N) = 52 Z max(ay + ) (13)
iEN jEN; Pt

2.2. Convex Game

Definition 1. Characteristic function is called supermodular and corresponding
game called convex (Shapley, 1971), if for any coalition X C N and Y C N holds
inequality:

v(XUY) > o(X)+ o) —v(XNY). (14)

Theorem 3 (Bulgakova, 2019). In subgame I'S (g) characteristic function (8)-
(10) is supermodular.

This property guarantees non-emptiness of the core and that the Shapley value
belongs to the core.

2.3. Star-Network

Consider a specific structure of network, and solution of cooperative game on
this network. We will study network, which contains n players, where player 1 is
central player with n — 1 connections, and all other n — 1 players are connected by
edge only with a central player.

The Shapley Value. Denote the set of imputations by

n

Mz ={x = (21,...,25) : in =v(Zy; N), 2 > v(z; {i}),i € N}.

i=1
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Consider as a solution of star-network the Shapley value (Shapley, 1953) and

denote it as p[v(z)] = (p1[v(Z)],- .-, enlv(Z)]), t = 1,2, where for every player
1€N
o) = 3 B0 26 vy gip) as)
SCN,
i€s

We say that the cooperative solution M[v(Z1)] in the two-stage game is time
consistent if for any imputation £[v(z1)] € M[v(Z1)] there exists an imputation
&lv(z2)] € Mv(z2)] such that

Elv(z1)] = €[v(22)], (16)
Thus the Shapley value ¢[v(Z1)] is a time consistent cooperative solution if
plo(z1)] = plo(z2)], (17)

otherwise the Shapley value is time inconsistent.

One has to mention that the cooperative version of the game has been devel-
oped for a general case of pairwise interactions when any (feasible) network can be
formed at the first stage of the game. For this general case, we have found analytical
expressions for the characteristic functions (8), (11) which are used to calculate the
Shapley value by (15) and verify the corresponding time consistency condition 17.
Since the calculation of the Shapley value is a challenging task for a large number
of players and an arbitrary network, in the following we will show how to simplify
formula 15 for a network of a special type — a star. This type of the network will
provide us with an analytical expression for the Shapley value which is much easier
to interpret and analyze. Nevertheless, expressions (8), (11), (15) can help us to
find the Shapley value for any network at least numerically. From (15) we note that
to compute a component of the Shapley value, we need to list all 2" subsets of
the player set IV; moreover for large networks we may be limited in computational
capabilities to calculate n! as this number can be extremely large. In contrast, for a
star network we will need only O(n) calculations and will not need to list all subsets
of N.

Because the Shapley value belongs to the core in subgame Fzsz (9), then its sig-
nificance in this class of problems increases.

Now formalize construction of star-network on the first stage of game. Suppose
following, let M7 = N\{1},a1 =n—1and M; = {1}, a; = 1 for ¢ # 1. To maximize
total payoff, players should chose on the first stage following behaviors:

1 _ (0,1,...71),i:1’
bi_{(l,o,...,o),mﬂ (18)

Behavior (18) formed a star network on the first stage with central player 1, (fig.
1), where |[N1| = n —1 and |N;| = 1, i # 1. For star-network calculate the char-
acteristic function in view of specific structure of network. Transform expressions
(8-10) corresponding to a star-network:

v(z2;{0}) = 0, (19)
> w}j, 1=1,

(2 {i}) = {j# _ (20)
wi;, i# 1.
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Fig. 1. Star-network

1o, 15 ,
. - . Z maxpyf(ap% + Cp-z) + Z w%k’ S C N7 ¢ 6 S7

v(22; §) = { JENINS kEN1\S (21)
0, i¢s.

Similarly, we transform the expressions (11)-(13)

v(z1;{i}) =0, v(z1;0) =0, (22)
S max, (el +c),SC N ieS,

v(z1;5) = {.jezvms e (23)
0, ig¢s.

The network has central symmetry and formula (15) can be simplified.

Proposition 1 (Petrosyan, Sedakov and Bulgakova, 2018). For star-network
with central player 1, components of the Shapley value plv(Z:)], t = 1,2, has the
form:

1 _ _ . .
. 5 [0 (1) + D (my —o(z (7)) =1,
eilv(z)] = i1 (24)
1 . .
B [U(Et; {i}) +mu; — wm ; i# 1.
where § N
, :Irll,a.).(.,m (ayy +by), if i and j are neighbors,
Mij = 9§ ¢=1,....k (25)
0, otherwise.

Time-Consistency of the Shapley Value in a Star-Network Consider time-
consistency of Shapley value in a star-network. Remind that the Shapley value
wlv(z1)] is time-consistent cooperative solution, if

plo(z1)] = plv(z2)]- (26)

Proposition 2 (Petrosyan, Sedakov and Bulgakova, 2018). For star-network
with central player 1, the Shapley value is time-consistent, when wi' = wit for any

player i # 1.

Conditions for time-consistency wi® = wi', i # 1, from (2) for star-network can
be interpreted in following way: central player 1 and any other player i # 1 should
have similar minimal guaranteed payoff (maxmin value) in bimatrix game ~; which
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they play as neighbours. If at least for one player j wij #* wjjl, then the Shapley
value will be time-inconsistent. However, in the latter case, a cooperative agreement
may be reached at the expense of IDP — imputation distribution procedure. Re-
mind the definition:

Definition 2. Function 8¢, i € N called imputation distribution procedure (IDP)
x € M (see Petrosyan and Danilov, 1979), if
z; =B +pB;, i€N. (27)

Proposition 3. For star-network with central player 1, time-consistent IDP § =
{B}, B2}ien for the Shapley value has the form:

1 ; .
§Z[w§1—w}i},2:1,

pl=1 2z (28)

% [wi; —wir], i #1,
and ) _
P B ; [wi; +ma; —wp |, i =1, )
i e '
3 [wiy +my —wy], i L

From an economic perspective, it is preferable for players to have a nonnegative
IDP, such that decomposing the Shapley value over two game stages, each player
receives her nonnegative payments at either of the two game stages. However the
IDP of the Shapley value mentioned in the latter proposition can be nonnegative
only in case when wi’ = wi' for each i # 1. This equality results in the time
consistency of the Shapley value which has already been discussed.

Three examples below demonstrate that the Shapley value being an imputation
in a cooperative two-stage game with pairwise interactions can be both time consis-
tent and time inconsistent despite players’ asymmetry in their neighbors. The first
example show the time consistency of the Shapley value in an important class of
bimatrix games.

Prisoner’s Dilemma Consider the case, when n players play the same bimatrix
game 7y with their neighbors, i.e., A;; = A, C;; = C for all i € N, j € N; where

A:CT:(aibg), 0<a<b.

Here b is the payoff to each connected player if they both “cooperate”’, while if
the both “defect” each of them gets a. As an example, one can consider a data
transmission problem in a network whose nodes have to “coordinate” their actions
trying to achieve certain performance (for example, the number of packets sent, a
profit from sending packets). § N

For the given game using (5), (6), (25) we obtain: w;’ = w} = a and

S {2b, if i and j are neighbors,
710, otherwise,
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for any two players i,j € N.
To find the Shapley value @[v(Z2)], we first determine characteristic function
v(Z2; S) for all S C N. Following (8), we obtain

2(n — 1), S—N,
— o ) 26(|S|-1)+(n—1S])a, SCN, 1€S,
v(2:5) = 3 |§]a, SCN,1¢05, (31)
0, S =0.

Using the formula for the Shapley value (24) adapted to the star network, we obtain
n—1
2

%[a—i—?b—a)]:b, P

p1lv(z2)] = [a+2b—a] =b(n—1),

pilv(Z2)] =

Similarly, to find the Shapley value ¢[v(Z1)], we determine characteristic function
v(z1;S) for all S C N. Following (11), we have

2b(n—1), S =N,
v(z1;5) =< 2b(|S]—-1), SCN, 1€5, (32)
0, SCN, 1¢S5 or S=0.

Again, using the formula for the Shapley value (24) adapted to the star network,
we get p[v(z1)]:

o)) = 20 ),
wilv(z1)] = %b =b, i#1

Comparing ¢[v(z1)] and ¢[v(Z2)], we note that they coincide and hence the Shapley
value is time consistent. What is interesting, this result does not depend upon
specific values of a and b. The only restriction which has to be imposed is 0 < a < b,
and it is natural for this class of games.
The time consistency of the Shapley value can also be shown with the use of
Proposition 2 instead of applying direct calculations. Indeed, we see that wil =
wi® = a for each i # 1 what implies its time consistency.

Example In the next example we demonstrate the time inconsistency of the Shap-
ley value. Consider a 4-person game with N = {1,2,3,4} in which players form a
star network under a cooperative agreement (see Fig. 2). Let simultaneous bimatrix
games Y12, v13 and 14 be defined by means of the following payoff matrices:

, (A13,C13) = (3:1)(4,2)

(A127012) = (6, ) (2 3)

(A14,Chq) =

To compute the Shapley values ¢[v(z1)] and ¢[v(Z2)], we use the corresponding
formulas (9), (11) for characteristic functions v(Z2;-) and v(Z1; ), respectively, and
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Fig. 2. A star with four players

the simplified formula (24). Hence we get:

1 1 1 _
w§2 =2, w§3 =3, w}l4 =4,
w3 =1, w3 =2, wi =3, (33)
mi2 = 6, miz =8, myy = 12,

and therefore
(2 ) =0, v(Z2;{1}) =9,
v(z1;{2}) = 0, v(Z2;{2}) = 17
(217 {3}) = 01 ’U(ZQ, {3}) 7 (34)
v(z1;{4}) =0, v(z2;{4}) = 3,
v(zZ1; N) = 26, v(Z; N) = 26.

Thus the Shapley values are given by

90[1}(21)] = (137 3,4, 6)a
(p[’l}(ig)] = (29/2, 5/2, 7/2, 11/2).

We observe that the Shapley value ¢[v(Z1)] in the two-stage game differs from the
Shapley value ¢[v(Z2)] in the one-stage game starting at the second stage. This
means time inconsistency of the Shapley value. Since p2[v(Z2)] = 5/2 < pa[v(z1)] =
3, player 2 can break the cooperative agreement as she can get less (here we recall
that players do not receive payoffs at the network formation stage). Similarly, it is
also true for player 3: ps[v(Z2)] = 7/2 < p3[v(z1)] = 4 and player 4: @4[v(Z2)] =
11/2 < p4[v(z1)] = 6. However introducing a time-consistent IDP of the Shapley
value ¢[v(Z1)] over two stages determined with the use of Proposition 3 for the star
network, we obtain

Bt =-3/2, BA=1/2, g =1/2, Bt =1/2,
[31729/2 B3 =5/2, B3 =1/2, Bf =11/2,

and therefore implementing it, the cooperation of players will be sustainable. Thus
receiving 3} at the first stage and 3? at the second stage, player i € N will get
wi[v(z1)] in two stages which is exactly her cooperative payoff prescribed by the
Shapley value ¢[v(z1)].
2.4. The Core in Two-Stage Three-Person Game

Consider three-person-game with pairwise interactions on any network and take
as solution the core. Find conditions for strongly time-consistency (Petrosyan, 1995)

of core in this game.
Define the core C(z) C M, in game I' and suppose, that for every zi, za,

C(z) #0.
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Definition 3. The core in game I is set of imputations « = (z1,...,2,), which
satisfied following conditions:

Z.’L‘i Z’U(El;S) (35)

€S

for all S C N, and

N
in =v(z1; N). (36)
i=1
For subgame I, we have following values of characteristic function:
v(Z2;0) = 0,v(22; {1}) = wiz + wip, v(Z2; {2}) = Wiy + w3, v(Z2; {3}) = wiy + wis,
v(z2:{12}) = max(a,] + ;i) + wig + wis,
v(Z2;{13}) = H}ﬁlx(a}lﬂg + 011713) + wyy + wis,
v(z2:{23}) = max(ap/ + ) + wia + wis,
v(zZg; N) = rrﬁx(aﬁ + bzll) + H}ﬁx(aﬁ + bgll) + H}ﬁx(ai? + bg%).
Imputation z belongs to the core C(Z2), when following inequalities holds:

x1 + 22 > v(Z2;{12}),
x1 + 23 > v(Z2;{13}),
To + 3 > v(Z2;{23}),
z1 > v(Z2;{1}), (37)
xo > v(Z2;{2}),
x3 > v(Z2; {3}),
T+ 2o+ a3 = ’U(EQ;N).

In view of (37) and values of characteristic function, we have:

T+ Tg 2 mz}x(aﬁ + i) + wis + wis,
p
13 4 13 1 3
T+ 3 2> mz}x(apl + cpr) + wig + wig,
D (23 L 23 2 3 (38)
T2+ 23 2 mﬁ}x(%l + cpr) + Wiy + wis,
P
xr1 + 2o+ a3 = ’U(EQ;N).
To simplify the above expressions, use following notations:
12 4 .12 2 1
Erp = H};}X(apl +¢py), D1 = wig + wis,
_ 13 4 .13 _ 1 3
Bz = Hﬁx(%l +¢pi)y Do = wiy + whs,
_ 23 | .23 2 3
B = Hﬁx(%l +¢p0), D3 = wiy + wis.

Then system of inequalities (38), which defines the structure of the core C(22)
can be rewritten in following way:

1+ x2 > E1o + Dy,

1 + 23 > F13 + Da,

T2 + 73 > Fa3 + D3,
r1 + 2o+ a3 = ’U(EQ;N).

(39)
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Counsider the core C'(1) of two-stage game I’

) + x5 > v(z1;{12}),
7+ > o(a:{1}) w0
zy + a5 > v(21;{23}),
ah 4 ah + af = v(z1; N).
Corresponding to (40) and characteristic function, we have:
@) + @y 2 max(ay + ¢f),
o + o > max(aff +cif)
o > mas(a + ),
x) + xh + xh = v(z1; N)).
Using above notations, we will have followings:

x) + xbh > E1g,
x) + x4 > En3,
xh + x> Eas,
) +ah + ah = v(z; N).

(42)

Strongly Time-Consistency

Definition 4. The core C(z1) 1is strongly time-consistent in game I’
(Petrosyan, 1995), if

1. C(El) #0, C(Eg) #0
2. For every imputation z € C(z1) there exists such IDP 3 = (81, 82), that = =
f1 + P2 and
C(z1) D p1 @ C(z2).

Here symbol & defines as a € R", B C R", thena® B ={a+b:b € B},

In accordance to (42) we get:

Bi + B3 + B3 + B3 > Ena,
Bi+ B3 + B + B3 > Es, (43)
B2+ B3+ B3 + B3 > Eos.

For strongly time-consistency these inequalities must satisfies with following addi-
tional restrictions:

By + B85 > Ei2 + Dy,

By + B3 > E13 + Do, (44)

B3 + B3 > Ea3 + Ds.
Fix (1, then for strongly time-consistency we should fulfil conditions (44) for Ss.
And 3> must satisfy (43). Also, from v(Z9; N) = v(z1; N), follows 8} + 87 + 32 = 0.
If conditions (43) satisfy under minimal values (33, 33, 35 from conditions (44), then
they satisfy for all other values. We have:

—B3 + E12 + Dy > Eso,
—fB7 + E13+ Dy > Ehs, (45)
—Bi 4+ Ea3 + D3 > Ess.

Thus, we have conditions for strongly time-consistency of the core C(z1) in game
I.
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Theorem 4 (Bulgakova and Petrosyan, 2016). Suppose, that following inequal-
ities are fulfilled:
P <Dy
B} < Dy (46)
Bi < Ds

(i.e there exists 51 which satisfied (4)), then the core C(Z1) is strongly time-consistent.

3. Multistage Games with Pairwise Interactions

In (Bulgakova and Petrosyan, 2019a), the results obtained for the two-stage
games are generalized to the case of multistage games.

Let abstract space Z is given and called space of states. In every state z € Z
n-person nonzero-sum game I'(z) is determined. This is network game with net-
work g(z), where players are vertexes and edges are connections (as in two-stage
case). Game I'(z) is a set of simultaneous pairwise bimatrix games {~;;(2)} between
neighbours by network, i € N,j € N,i # j.

Let i € N,j € N,i # j. Then i plays with j in bimatrix game ~;;(z) with payoff
matrices A;;(z) and C;;(z), for players ¢ and j, respectively.

Ay () apy(2) -+ ap (2)

po— | BE @ e -
081 (2) 0 (2) -+ all (2)
SIOK: IORREAC)

Cii(2) = 0271'(2) 022'(2) 027,'(2) (18)

1 (2) €a(2) - € (2)

a%(z)zo,c%(z)zo, p=1,....,m, q=1,...,r, 1i,5€ N.

Constants m and k coincide for all ¢ and j. When we have game v;;(2), i.e.

player 7 is the second player, he has payoff matrix Cj;(z) = AZ—Tj(z), and player j has
matrix A;;(z) = Cg(z) To simplify the following expressions we suppose, that m
and r coincide for all ¢ and j and all z.
Consider the strategy of player 4 in game [I'(z). It is a vector
ui(z) = (u}(z),...,ul(2),...u?(z)), where u! is strategy of player i in bimatrix
game 7;;(z). So, we have, that strategy of player ¢ is a vector consisting from rows
(pure strategies), chosen by him in bimatrix games ~;;(2). Denote by
u(z) = (u1(2),...,un(2)) strategy profile in game I'(z). Strategy of player j is
a vector consisting from columns in corresponding bimatrix games ;;(z). Define
payoff of player i in game I'(z) in following way:

Ki(z)= Y a7 () (2)-
j=14#i =’

Consider game I'(z) in cooperative form. As in two-stage case, introduce charac-
teristic function v(S;z), S C N as lower (maxmin) value in two-person zero-sum
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game between S and N \ S, based on game I'(z)

wfj(z) max min apq(z) p=1,....m; q=1,...,r,
P 4
wfj(z):mqaxngn p(2), p=1,....m; q=1,...m

Lemma 1. Characteristic function v(S;z) is defined in the following way
v({0};2) =0, (49)
v({i2)= ) wile), (50)

JEN,j#i

Z Z max o —i—c” —I—Z Z ;(2), SCN, (51)

zGS]ES,J;ﬁz i€S jEN\S

Z Z max ” —|—c”( ).

ZEN JEN, ];éz

Suppose, that in state z € Z in game I'(z) players choose the strategy profile:
ui(2) = (ul(2),...,u?(2)). Then the game moves to the state 2’, where game I"(z’)
takes place, with simultaneous bimatrix games with matrices, depended from strate-
gies chosen on previous state z. Thus the state 2z’ depends on state z and strategies

in this state. We can introduce function 7" : Z x [[!_, U; — Z by formula:
Z/ = T(Z7ul(z)7 UQ(Z), s ,un(Z))

Multistage game G(z) develops in following way. Game G(z1) starts in state z;. In
state 21 game I'(z7) is take place, players choose their strategies ui(21),u2(21),. ..,
un(21), then they pass to the state zo = T'(21;u1(21),u2(21),-..,un(21)). In state
2z, players play game I'(zy), choose strategies u1(zx), u2(2), - - ., un(2x) and pass to
the state zp41 = T(zk;u1(2k), u2(2k), ..., un(z;)). Game ends on stage ¢ in state
z¢. Then, after choosing strategies on every stage of game path 21, 29,..., 2k, ..., 2¢
is realized. Strategy in this multistage game u(-) = w{(2)}, is a set of players’
strategies, defined in every state z € Z. It follows from above, that any strategy
profile u(-) = {u1(-),...,un(-)} defines only one path, and, therefore a payoff for
every player, as sum of his payoffs in games, along the realized path.

Note, that set of all paths in multistage game G(2) is finite. Hence, the set of states
is also finite. Denote this set by Z C Z Consider special case, when v(N;z) is the
same for all z € Z. Introduce function w(S), S C N:

w(S) = maxv(S; 2).

z
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Define also characteristic function V'(S; zx) for multistage game G(zy), which starts
in state zi. Function V(S;z) can be calculated using the following analogue of
Bellman equation:

V(S:-1) = max, min (O KT ua) +VIS;a1)] =
iyt uj,

= K (uny . cup) + V(S5 T(2p—1; _ ;
urf,lflexs uj,grélﬁ\s Z (ug,...up)+V( (zr—1;u(zk 1))))]

V(S; z¢) = v(S; zp).

Define
W(S;z) =1 —k+1w(S)

where ¢ is number of stages in game G(z1).
The following inequality takes place (see Petrosyan and Pankratova, 2018):

W(S,z) > V(S,2z), S CN.

Remind that one-stage game I'(z) is convex and characteristic function v(S; z),
S C N is supermodular. So, we have:

v(XUY;2) > 0(X;2)+0(Y;52) —o(XNY;2).
Take the maximum by z € Z in the left and right sides of the inequality

maxv(X UY;2) > maxov(X;z) + maxo(Y;z) —maxo(X NY;z2).

Since max, v(S;z) = w(S), we have:

wXUY) > wX)+wl)—-wXnNY).
The function w(S) is supermodular.
Lemma 2. Function w(S) in game I'(z) is supermodular.

3.1. Optimality Principle
Define the set of all imputations My, in game G(z1) as

n
My ={z=(z1,...,2,) : in =W(N;z), z; >W(\{i};#z1), i€ N}
i=1
And by optimality principle any subset of this set My .
Choose in one-stage game I (z) as optimality principle an analogue of the core
— the set C(w(S)), containing all imputations x = (z1,...,2,), which satisfy con-
ditions:

€S

N
Z x; = w(N)
i=1



Dynamic Cooperative Network Games with Pairwise interactions 109

In similar way define set C(W(S;z)) in multistage game G(z) as set of imputa-
tions, which satisfy following conditions:

> a2 >W(S;2), SCN, (52)
i€s
N
> @i =W(N;2) (53)
=1
Theorem 5. For any © € C(W(S;2k)),2 = (21,...,%,) and any k = 1,1, the

following equality holds:
;= —k+1)2), where z; € C(w(S)), i=T1,n.

3.2. Strongly Time-Consistency

Suppose, that players chose strategies @(-) = (41(-), ..., un(+)), which maximize
the total payoff in G(z1):

Z Ki(z1511,...,0n) = m;mxz Ki(zi5u, ... up).

iEN i€EN

The path (Z1, Zo, .. ., Z¢), corresponding to this strategies is called cooperative path
(21 = z1). Rewrite definition of IDP (2) for the game under consideration.

Definition 5. Vector 8%, i € N is called imputation distribution procedure (IDP)
if for x € My (see Petrosyan and Danilov, 1979),

4
zi=>» B, i€N. (54)
k=1

Definition 6. Optimality principle C (W (S; z1)) is strongly time-consistent in game
G(z1) (see Petrosyan, 1995), if

1. COW(S;z) #0, k=17
2. For every imputation z € C’(W(S; z1)) there exists such IDP 8 = (1, B2, . . -, Be),
such that

k
> B @ C(W(S;2k41)) C C(W(S;21)), k=T10-1.

J=1

Here symbol @ means, that if a € R", BC R", then a® B ={a+b:b € B}.

Proposition 4. Optimality principle C’(W(S;El)), k = 1,0 in game G(z1) is
strongly time-consistent.
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3.3. General Case

Now consider general case, when values of v(N;z) do not coincide for different
z. Introduce function L(Zy) is joint payoff of maximal coalition N in state zy € Z,
where Z is cooperative path in game G(z1).

Lz) =5 > (a9(z) +d"(&)). (55)

i€EN,jEN,i#]

Suppose, that w(S) < ming, L(Z;), S # N. And consider function w(S;Zz),
w(S; zr) = w(S), w(N,Zzr) = L(Z). Let = be any imputation in game G(z1).
Consider as optimality principle an analogue of the core in game G(Zj) called

C(W(S; z)); the following set

owmiz(—k+DwS)=W(S;z), SCN, S#N, (56)
€S
N 4 R
> @i = L(z) = W(N; %) (57)
1=1 t=k

Suppose, that all C(W (S; zi)) # 0.

Definition 7. Optimality principle C’(W(S; Z1)) is strongly time-consistent in game
G(z), if

1. CW(S55)) #0, k=T
2). For every imputation x € C(W(S; z1)) there exists such IDP 8 = (f4,..., B¢),

x =30, B that
k

Y B@®C(W(Sizk) C C(W(S;21)), k=

Jj=1

1,7

Proposition 5. Optimality principle C(W (S;71)) is strongly time-consistence.

Example Consider an example with N = 3, k = 3, i.e. 3-person three-stage game
starting from state z;. In state z; we have 6 matrices, 3 matrices of the first type,
and 3 of second type. In state z; all bimatrix games take place with matrices of
the first type. In state z; every player i € N choose his strategy wu;(z1). If all
ul(z1) = 1,4 € N,j € N\ {i}, then players pass to the state z2, where they
play bimatrix games with same payoff matrices of first type. If at least one of the
components u)(z1) = 2,i € N,j € N\ {i}, then in state zo players play bimatrix
games with the second type of matrices. Similarly, the transition to the state z3: if
all ul(z2) = 1,4 € N,j € N\ {i}, then players in state z3 use first type of matrices.
If at least one of the components u/(z2) = 2,i € N,j € N\ {i}, then in state 23
players use matrices of the second type. Matrices of the first type are:

)= (19). cuer=(51) aue=(33).
Cus(z) = ((8)2) Aog(2) = (116%), Coa(z) = (110(1)>.
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Matrices of the second type are:
= 8 5 ~ 10 13 = 812
Ara(2) = <10 16) Ol = < 6 6 > Ais(2) = <9 10) ’
~ 10 12 = 8 8 ~ 125
Crs(2) = (11 5 > Azl(2) = <13 9)’ Cas(2) = < 6 9)'

In state z; network with complete graph is given To maximize the joint payoff

Fig. 3. Network on the first stage

players should to be in touch with all neighbours throughout the game. Strategies
of players:

ul(zl) = (O, 2, 1), UQ(Zl) = (1,0, 2), U3(Zl) = (2, 2,0),

ul(ZQ) = (O, 2, 1), UQ(ZQ) = (2, O, 1), U3(22) = (2, 1, O),
ul(z?,) = (O, 2, 1), UQ(Zg) = (2, O, 1), U3(23) = (2, 1, O)

Calculate the values w;;(2):
W%Q(zl) =1, W%Q(zl) =1, W}S(zl) =1, w%3(21) =0,
W%B(Zl) =2, w§’3(z1) =1,
W%Q(ZQ) =10, W%Q(ZQ) =0, W%B(ZQ) =9, W%B(ZQ) =10,
wiz(22) =9, . w3s(22) = 6. ‘ ‘
Values wj;(23) will coincide with wj;(22) or with wi;(z1), since there are only
two types of matrices in the game.
Calculate the values of characteristic functions v(S; z), w(S; zx):

s {1p[{2}{3}{12}[{13}/{23}){123}
o(S;z)| 2 3|1 [21 2027 62
v(S;%,) 19|15 |16 | 40 | 40 | 36 | 66
v(S;%5) 19|15 |16 | 40 | 40 | 36 | 66
w(5;7)|[ 19|15 |16 | 40 | 40 | 36 | 58
w(S;2,)[ 1915 |16 | 40 | 40 | 36 | 66
w(S;%5)|[ 19|15 |16 | 40 | 40 | 36 | 66

Game starting from state z;, where players choose their strategies and pass to
the new state, which depends from this choice. In every state players have only two
alternatives: after choosing strategies, pass to the game with first type of payoff
matrices, or pass to the second type of payoff matrices.

Numbers 1 and 2 above the arrows on Fig. 4 indicate what type of matrices the
players will play in the next state. Calculate the values of function L in nodes z:

L(2}) =58 L(23) = 58 L(z3) = 62 L(23) = 66 L(22) = 66
L(23) = 62 L(23) = 66
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z;
1 2
1 / \ =2
1 22\2 172
1 / 2 { \ =4
z3 z2 7z Z3

Fig. 4. Tree of all possible states of game.

2

Cooperative path in game G(z1) is Z = (21,23, 23) = (%1, 22, 23). Calculate the

values of characteristic function in multistage game G(z1):

S {U[IB 2B [{23)]{123)
V(S;z3)[19|15[16| 40 | 40 | 36 66
V(S; 22) 38130132 8 | 80 | 72 | 132
V(S;z1)|40(33|33|101|100| 99 | 190
W(S; 23) 19115|16| 40 | 40 | 36 66
W(S;z2)| 383032 8 | 80 | 72 | 132
W(S; 21) 57145148 (120|120 | 108 | 190

Condition w(S, z;) < ming, L(zx), S # N holds:

mé}xw(S, zi) =40 < min L(zy) = 58.
Zk

Consider an imputation z € C(W(S; 7))

1 > 97,
T > 45,
T3 > 48,
xr1 + o Z 120,
xr1 + T3 Z 120,
To + x3 > 108,
1 + x9 + x3 = 190.

And any imputation £ € C’(W(S; Z2))

51 Z 387
52 Z 301
53 Z 321
51 + 52 Z 807
&1+ &3 > 80,
&+ 83 > 72,
&1+ & + & = 132.

Take as fBj in IDP 8 = (B, B2, B3) an imputation o € C(w(S;z1)), (Br

1,2,3).

:Oé,k:
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ap > 19,
ag 2> 15,
ag > 16,
a1+ az > 40, (60)
o1 + a§40,
as + az > 36,
o 4+ ag + ag = 58.

Construct the imputation £ = a+ ¢

21 > 57,
2o > 45,
T3 > 48,
By + g > 120, (61)
21 + &5 > 120,
Zo + &3 > 108,
1 + 2o + 23 = 190.

It follows from last inequality, that & € C(W(S;z1)), which proves strongly time-
consistency of C(W(S;z1)).

4. Nonzero-Sum Games with Pairwise Interactions

In this part we will consider general nonzero-sum game with pairwise interac-
tions. Previously we considered only bimatrix games.

Consider (Bulgakova and Petrosyan, 2019b) multistage nonzero-sum game with
finite number of stages. As before, on the first stage players chose their behaviors
and formed a network. On next stages simultaneous non-zero sum games will be
played. Payoffs depend on controls, chosen on each current stage. Players can change
the network on every stage except the first, deleting some connections.

4.1. The Model

In every state zp € Z,k > 0 players can change the network by deleting some
connections, so we denote the network as g(z), to show the network dependency
on state.

Denote as N;(g(z0)) neighbours of player ¢ in network g(z9), i- €. N;(g(z0)) =
e N\{i}:ij € gzo)}.

When network g(zo) is formed, the game passed to the state z1(g(z0)), which is
determined by network g(zp). In state z1(g(z0)) players can delete some connections,
which were formed early. So, network g(zg) in general will change to g(z1) and
we may have new set of neighbours N;(g(z1)). On network g(z1) players play the
simultaneous nonzero-sum game I"(z1).

On the second stage 21 player ¢, i = 1,n, chose control y;(z1) = (bi(21), zi(21))
from set of controls Y;, which, unlike the first stage 2o, contains an additional com-
ponent x;(z1) — behavior in game I'(z1). Where b;(21) is vector with components
0 or 1, defined in following way:

1, save connection %j,
by(en) = { J (62

0, delete connection 7,
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i. e. player on second stage can delete some connections but has no abilities to create
new connections. Component z;(z1) of control y;(z1) = (b;i(21),zi(21)) is behavior
of player ¢ in game I'(z1) chosen from set X;(z1), in state z;.

Let y(z1) = (y1(#1),.-.,Yn(21)) be a strategy profile in game I'(z1). Player’s
payoff ¢ in game I'(z7) is:

Hi(z) = Z hi(yi(21),y;(21)),

JEN;(g(21))

where ¢(z1) is network, corresponding to strategy profile y(z1). Functions
hi(zi(z1),2j(z1)) > 0 are given for all i € N and all pairs ij, i. e. all edges of
network ¢g(z1) and all possible states z € Z.

Players ¢ € N chose controls (y1(zkx—-1),--.,Yn(2k—1)) in state zx—1 € Z in game
I'(25—1). Result of this choice is transition to state zx, where I'(z;) is played, with
payofls h;(z;(zx), zi(2x)), depended on controls, chosen in state z,. We may defined
a transition T : Z x Y7 x Y3 X ... x Y, — Z by formula

2k = T(zk-1;01(26-1), ¥2(2h-1); - - Un(20-1)), k=10, (63)
The, function T uniquely defines state zp, which follows after state zp_q, if
players chose controls y1(zx—1), y2(2k—1), - - -, Yn(2k—1)-

Consider multistage game G(z), which develops in following way. Game G(z)
starts in state zo. In state zo network g(zo) is formed, after that players pass to state
z1. In state zx—1 players chose controls y1 (zk—1),y2(2k-1), - - -, Yn(2k—1), play game
I'(zx—1) and pass to state zp = T(zg—1;¥1(2k-1),¥2(2k—-1)s -+ -, Yn(2k—1)). Game
ends on stage ¢ + 1 in state z,. Thus, after choosing controls on every state of the
game the path zg, z1,..., 2k, ..., 2¢ is realized.

State z; is called acceptable, if there exists the sequence of controls and the
sequence of states zg, 21, . . . 2k, k < £ generated by it, defined by formula (63), such
that z; = z.

Strategy in multistage game: y;(-), ¢ € N, is a rule, which for every acceptable
state z associates components b;(z),x;(z) of control in this state, i. e. the choice of
connections for deleting, and choice of behavior z;(z) in game I'(z). It the follows
from above that any strategy profile y(-) = {y1(*), ..., yn(-)} defines only one path
in game, and, hence payoff of every player as sum of his payoffs in games, realized
along the path.

‘
Hiy() =Y > hawilz)y5(21).
k=1jeN;(g(z))
The set of all paths in game G(z) is finite. So, the set of all acceptable states
also is finite. Denote it as Z C Z.
Suppose, that players choose controls 7;(z), ¢ € N, that maximize their joint
payoff in game G(z), i. e.

4 4
DD Hil(zw)se - Gnlz)) = mgxz D Hi(yi(zx)s - yn(zn)- (64)

k=14ieN " k=1lieN

Strategy profile § = (71, . - ., Un) is called cooperative behavior in game G(z), and
path, corresponding to controls 3;(z), i« € N, (2o, Z1,. ., Z¢) is called cooperative
path (Z() = 20).
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Counsider one-stage game I'(z) in any state z € Z in cooperative form and
defined characteristic function v(S;z), S C N, for every subset (coalition) S C N
in following way:

v(0;2) =0,
v({i};2) =0,
1.y = hi(@i(2):35(2) + hy(25(2); 74(2)), 1 5 € Ni(g(2)),
oltisiz) = { y s (65)

v(Siz) =Y Y hi(@i(2);7(2),

i€S jeN;(g9(2))NS
o(N;2) = Z Z hi(zi(2);75(2)),
iEN jEN;(g(2))

where Z;(2),Z;(z) calculated corresponding to (64).

We see that to calculate values of characteristic function, we should find cooper-
ative behavior in game G(zg) and after that calculate v(S;2;), k = 1, as payoffs,
under assumption, that players choose cooperative behavior as components of their
controls.

Defind the characteristic function V(S;z2;) in multistage game G(zp), which
starts in state zp, as sum of coalition S payoffs along the cooperative path
(§(20),9(21),-..,7(z1)) in £ — k + 1 stages, starting from k:

14

¢
V(S;2,) = Z’U(S;ZT) = ZZ Z hi(zi(zr), T;(2r)),

=k r=k i€S jEN:(g(2r))NS
V(S;z0) = v(S; 2¢).
The following theorem holds:
Theorem 6. Characteristic function v(S;z) in game I'(z) is supermodular.

4.2. The Shapley Value

Counsider as a solution of game I'(z) the Shapley value p[v] = (¢1[v], ..., ¢n[v]),
(15).
Calculate the difference [v(S; z) — v(S\ {i}; 2)]:

(S;2) —o(S\{i})izl = D (hi(@i(2), T5(2)) + by (T5(2), 7a(2)))-

JeNi(g(2))NS

Substitute calculated above values in the formula of the Shapley value (15)

S| —1)l(n—|S|)!

o) = 3 BIZD 2B S~ 302,200 4 (20 2:2), i€ N
SCN,ieS JEN;(g(2))NS

(66)

This formula does not require the calculating the values of characteristic function

for all S C N. To calculate the components of the Shapley value we need to know

only the structure of network g(z).
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4.3. IDP-Core and Strongly Time-Consistency

As previously My is set of all imputations G(zp).
Introduce IDP 3; = (37,...,8¢), i € N, for imputation ¢ € I(V), which satisfy

14
=> B/, i€N. (67)
r=0

Consider as optimality principle subset of the core for game G(z;) — IDP-core
(Wolf, Zakharov and Petrosian, 2017;  Petrosian, Gromova and Pogozhev, 2018)
C(V(S;zk)), 1. e. set of IDP, which satisfied following conditions:

4
Sa2visia) =33 Y h(@i(a),3(2), SCN, S#N,

€S r=ki€S jEN;(g(z-))NS
(68)
N
Z Bi = N Zk Z Z Z h; (fi(zr)a Z; (Zr))a (69)
i=1 r=ki€N jEN;(g(z,))NN

where 3; = (81,...,BL,...,B}) satisfy following:

Zﬂf > U(Sa 2/@) = Z Z hi(i'i(zk)v‘i'j(zk))v ScC N, (70)

i€S 1€S jEN;(g9(zx))NS
N
DoBF=uNm) =D Y ha(@iak), 7). (71)
i=1 1€N jEN;(g(zr))NN

Suppose, that all C(V(S;zx)) # 0.

Definition 8. Optimality principle C(V(S;Zo)) # 0 is strongly time-consistent in
game G(Zp), if

1) C(V(S;2) #0, k=04
2) For every imputation x € C(V(S;Zp)) there exists such IDP 8 = (B, ..., Be),
&= Zﬁ:o Bj, such that

k
> B ® C(V(S;2k41)) C C(V(S; %)), k=0,0.

Here symbol & means, that if a € R", B C R", thena® B={a+b:b € B}.
Proposition 6. Optimality principle C(V (S Zp)) is strongly time-consistent.

4.4. Example

This example is similar to one from the previous section. Consider the case with
N =3, { =3, i. e. game consist four stages and starts in state zy. In this state sets
M; of players, whom player ¢ can offer a connection, are given.

M, ={2,3}, M,={1,3}, Ms={1,2}.
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Restrictions for number of connections for every player are also given.

In state zo players choose vectors b;(zg), formed the network g(zp) and pass to the
state z1. In every state zx, k > 1 players choose controls y;(zx) = (bi(zk), zi(2k)),
where b;(z) — player’s regulation connections vector (with components 1 and 0),
and x;(zx) is equal to

v1(z) = 21(2) € X1 = {21(2), 77 (2)},

wa(zk) = w2(2) € Xo = {23(2),23(2)},  ws(zk) = w3(2) € Xa{wy(2),23(2)}

i. e. every player ¢ has the same set of control components X; in every state z.

For all acceptable states zp, k& > 1, and all possible strategies payoffs
hi(Zi(zr), Z;(2r)) are given in following way: h;(Z;(z), Z; (2r)) and ki (Zi(2,), T;(2r))-

In state z; game takes place with payoffs h(Z;(z1),Z;(21)). In state z1 ev-
ery player i € N choose his component of control z;(z1), and if all z;(z1) =
x}(21),4 € N, then players pass to the state 2o, in game, where payoffs are sim-
ilar h;(Z;(22),%;(22)). If at least one of components x;(21) = z7(z1),i € N, then
in state zp players play game with payoffs hf(Z;(22),Z;(22)). Similarly, the pass
to the state z3: if all @;(21) = x}(21),i € N, then in state z3 players use payoffs
hi(Z;(23),%;(23)), if at least one of the components x;(21) = 2?(21),i € N, then
payoffs are h}(Z;(z3), Z;(23)).

Payofls hi(Z;(2,), % (2)):

hi(z1,23) = 4, hi (2}, 23) = 5, hao(Z3,23) =5,
hi(z2,78) =3, hi(z2,28) = 3, ha(T3,73) =1,
higfi,f%% =9, higii,f%% =1, hzgj;jg% =4,
hl(f%aj%) =9, hl(f%ajg) =2, hQ(jgng) =1,
ho(Zd,21) = 4, ha(z3,21) = 5, hs(z3,23) = 5,
ho(z3,73) = 3, ha(Z,23) = 3, hy(@},73) =1,
ho(Z2,%1) = 5, ha(z3,2)) = 1, ha (T2, T3) = 4,

2(25, 71) = 5, hy(35, £1) = 1, hy(af, £) = 4,
hQ(‘T2a‘T1) - 57 h3((E3,(E1) - 27 h3(1’3,1’2) - 17

payoffs hj(Z;(zr), Z;(2r)):

(2}, ab) = 8, i (2}, ak) = 6, (o}, 2}) = 12,
h:zgj%j%g =3, h:1 Ef%,/f%g =5, h’zl((:le, 5732)): 10,
h’l jlva = 77 hl 1_7151_73 :47 h2 j27j3 = 57
hll(i'%vi'%) =4, hll(j%ajg) =3, hé(.’f%,i‘%) =4,
ho(T3,71) = 8, (73, 71) = 6, hy(73,75) = 12,
hy(z3,7%) = 3, hiy(23,77) = 5, hy(z3,23) = 10,
hé(jgvj}) =T, hé(ig’j%) =4, hg(f%,f%) =9,
hy (73, 77) = 4, hy(23,27) = 3, hy(73,73) = 4.

In state zp players choose their behavior to maximize the joint payoff of all
players:

bl (Zo) = (0, O, 1), bg(ZQ) = (O, 0, 1), bg(Zo) = (1, 1, 0)

As result we have the following network:
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Fig. 5. Network on the first stage

Players have an ability to delete connections on all stages, except the first, but
to maximize the joint payoff it is beneficial for players to be in touch with all
neighbors throughout the game, i. e. b;(20) = b;(21) = bi(22) = b;(z3), for all i € N.
Components of controls g;(z) for players:

fl (23) =Ty, 1_72(23) = I%, 1_73(23) = Izl))
Calculate the values of characteristic function v(S; z) in all states on cooperative
path, except zg, because on the first stage players only form the network and do
not get any payoffs.

S ({1 {23{3}{12}{13}]{23}|{123}
v(S;2)[ 000 6 | 6 |10 16
v(S;Z)[ 0 [0 | 0| 1412 |20 | 32
v(S;Z5)[ 0 |0 | 0| 14 | 12 | 20 | 32

In state z1 players choose their controls and pass to the next state, which de-
pends from this choice. In every state every player has only two alternatives: choose
controls and pass in state where play game I'(z) with payoffs h;(Z;(zx), Z;(2x)), or
pass to the state with game, where payoffs are h}(Z;(zx), Z;(2x))-

=1
1 “1 2
1 ’/ \‘ =2
i ) . 1 Z2
1 ‘/ 2 ’3/ \‘ _4
#3 Z3 Z3 Z3

Fig. 6. Tree of all possible states in game

Numbers 1 and 2 above arrows (fig. 6) indicate which payoffs will be used by
players in the next state: 1 means h;(Z;(zx), Z;(21)), 2 — hi(Zi(2k), Tj(2x))-

Cooperative path in game G(2¢): Z = (20, 21, 23, 23) = (%0, 21, Z2, 23). Calculate
the values of characteristic function in multistage game G(zo):

S {1p{2}{3} {12} {13} {23} {123}
V(S;z5)| 0| 0] 0|14 |12 20| 32
V(S;Z2) 0|00 28|24 | 40| 64
V(S;z)] 0] 0] 0343050 80




Dynamic Cooperative Network Games with Pairwise interactions 119
Consider an imputation ¢ € C(V(S; z1)):

z1 >0,
x2 > 0,
x3 > 0,
1 + 20 > 34, (72)
1+ x3 Z 30,
T2 + X3 Z 50,
1 + x2 + x3 = 80.

As B, in IDP 8 = (Bo, B1, B2, 33) we will take imputations o € C(v(S;2x)),
which satisfy (70), (71), Bx = a, k =1,2,3; By set equal to zero, and f3; satisfies
the system

aj >0,
a3 >0,
agz >0,
oz% + oz% > 6, (73)
al +af > 6,
al +ai > 10,
al +ad + ol =16,

B2 and B3 satisfy the inequalities, where k = 2, 3:

ay >0,
af >0,
a3 > 0,
af +ak > 14, (74)
ol +ak > 12,
0/2“ + a’?f > 20,
b +ak +aof = 32.

B
\%

Summing the left and right sides of the inequalities of the last two systems and we
get

g1 > 0,
g2 > 0,
qA3 Z 01
41+ G2 = 34, (75)
q1 + gz > 30,
G2 + gz > 50,
41+ G2 + gz = 80.

From last inequality follows, that ¢ € C(V(S;Zp)). In other words, imputation
from set C(V(S;Zzy)), can be decomposed on the sum of imputations from the
sets C'(v(S;2k)),k = 1,2,3,. This proves strongly time consistency of optimality
principle C(V (S; zo)).

5. Conclusion

The paper discusses the results in the field of cooperative network games with
pairwise interaction. Two-stage and multistage games and various approaches to
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the determination of the characteristic function in each of them are considered. The
cooperative solutions, such as the Shapley value and the core, are examined and the
properties of their time-consistency as well as strongly time-consistency are investi-
gated and the conditions for it are found. Special types of networks are considered,
such as a complete network, a star-network, and the possibilities for solutions that
give such geometric structures are investigated. All results are illustrated by exam-
ples.
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