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Abstrat This artile is an overview of results obtained in the �eld of dy-

nami network games with pairwise interation. The paper provides a sum-

mary and analysis of works related to two-stage and multistage nonzero-sum

games based on pairwise interation. The meaning of pairwise interation is

to onsider the game as a family of games ourring on a network between

pairs of players (verties of a graph) onneted to eah other by an edge.

The network an be set or formed in the �rst stage. In the paper, solutions

of ooperative pairwise interation games are also onsidered.
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1. Introdution

Cooperative network games is an important part of modern game theory. Net-

works illustrate onnetions between players and their ability to ommuniate in

oalitions. For the �rst time in the game theory literature, a non-ooperative form

of pairwise interation in a network was onsidered in (Dyer and Mohanaraj, 2011)

meaning diret interations between network neighbors. But ooperative approah

is quite natural and moreover bene�ial for players as it provides them with a

better outome rather than nonooperative behavior. First ooperative interpre-

tation of pairwise interation games was in (Bulgakova and Petrosyan, 2015). So-

lutions of network games with pairwise interations were examined in detail in

(Bulgakova, 2019).

Also of interest are solutions for games with pairwise interation on spei� net-

works. The geometri struture of the network and symmetry make it possible to

simplify some omplex formulas and get their simple expliit form

(Petrosyan, Sedakov and Bulgakova, 2018; Bulgakova and Petrosyan, 2019a).

When ooperative behavior is investigated, it is important that players follow

a ooperative agreement during the whole ourse of the game. If a solution of the

ooperative game is time onsistent, players have no reason to deviate from the

aepted agreement. Conditions for strongly time-onsistene of ore in 3-person

games with pairwise interations was studied in (Bulgakova and Petrosyan, 2016).

Also, time onsistent ooperative solutions for multistage games with speial payo�s

wad onsidered in (Kuzyutin and Nikitina, 2017).

Sometimes it is di�ult to determine the expliit form of the ore and deide on

its stability, in this ase, subsets of the ore are used, whih an be found in various

ways. For example, as in (Petrosyan and Pankratova, 2018). Also, a speial subset of
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the ore, the IDP-ore, was onsidered in (Petrosian, Gromova and Pogozhev, 2018;

Wolf, Zakharov and Petrosian, 2017). The adaptation of the IDP-ore to games

with pairwise interation was arried out in (Bulgakova and Petrosyan, 2019b).

In this paper, we analyse and ompare the results in the �eld of ooperative

network games with pairwise interation.

2. Two-Stage Network Games with Pairwise Interations

Consider a model of two stage ooperative network games with pairwise inter-

ations (Dyer and Mohanaraj, 2011), when network is not given. So, players should

form a network on the �rst stage. These game was studied in (Bulgakova and Pet-

rosyan, 2015). Let us explain the model.

Let N be a �nite set of players, whih an make deisions in two stages, |N | =
n ≥ 2. Denote as z stage of game. The game started in stage z1, where every player
i ∈ N hoose his behavior b1i = (b1i1, . . . , b

1
in) � n-dimensional vetor with o�ers for

onnetions to other players (Petrosyan, Sedakov and Bohkarev, 2013).

We will use following notations: Mi ⊆ N \ {i} � those players, whom player

i ∈ N an o�er a onnetion, wherein ai ∈ {0, . . . , n − 1} is maximal number of

onnetions for player i, whih he an maintain simultaneously. If Mi = N \ {i},
it means, that player i an o�er onnetions for all players. In ase, if ai = n − 1,
player i an maintain any number of onnetions.

For every behavior b1i there exists suh subset of realized o�ers Qi ⊂Mi, whih

satisfy following restritions

b1ij =

{
1, if j ∈ Qi,
0, other,

(1)

with additional ondition ∑

j∈N

b1ij ≤ ai. (2)

Condition (2) means, that number of possible onnetions is restrited for every

player. Also, obviously, |Qi| ≤ ai.
Connetion ij is formed if and only if, b1ij = b1ji = 1. Formed onnetions ij

reate edges of network g, where vertex are players, i.e., if b1ij = b1ji = 1, then there

is an edge between i and j in network g.
Denote by Ni(g) or simply Ni neighbours of player i in network g, i.e. Ni(g) =

{j ∈ N \ {i} : ij ∈ g}. As result of the �rst stage we have network g(b11, . . . , b
1
n).

After network is formed players move to stage z2(g), whih depend on network. On

seond stage z2(g), neighbours on network play pairwise in simultaneous bimatrix

games, after that players get their payo�s and the game ends. In other words, we

have two stage game Γz1(g), whih is speial ase of multistage nonzero-sum games.

In onsidered ase strategy of player is a rule, whih for every player determine his

set of neighbours on the �rst stage, namely vetor b1i , and his behavior in every

bimatrix game on seond stage orresponding to network, whih is formed on the

�rst stage � b2i . Denote by ui = (b1i , b
2
i ), i ∈ N , strategy of player i in two-stage

game Γz1(g). Calulate payo� of player i as hi(z2), where (z1, z2) is a path, realized
by strategy pro�le u = (u1(·), . . . , un(·)) in game Γz1(g). Beause on the �rst stage

players do not get their payo�s, payo� funtion in game Γz1(g) with starting position
z1 is determined by following expression:

Ki(z1;u) = Ki(z1;ui(·), . . . , un(·)) = hi(z2).
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2.1. Charateristi Funtion

On seond stage game represents a set of pairwise simultaneous bimatrix games

{γij} between neighbours in network. Namely, let i ∈ N, j ∈ Ni. Then player i (the
�rst player) play with player j (the seond player)in bimatrix game γij with payo�

matries Aij and Cij of players i and j respetively.

Aij =




aij11 aij12 · · · aij1k
aij21 aij22 · · · aij2k
.

.

.

.

.

.

.

.

.

.

.

.

aijm1 a
ij
m2 · · · aijmk


 (3)

Cij =




cij11 cij12 · · · cij1k
cij21 cij22 · · · cij2k
.

.

.

.

.

.

.

.

.

.

.

.

cijm1 c
ij
m2 · · · cijmk


 (4)

apl ≥ 0, cpl ≥ 0, p = 1, . . . ,m, l = 1, . . . , k.

Constants m and k oinide for all i and j. When we have game γji, i.e. player
i is the seond player, he has payo� matrix Cji = AT

ij , and player j has matrix

Aji = CT
ij . Denote by Γ

S
z2(g) subgame of game Γ , whih takes plae on seond stage

z2. Consider this game in ooperative form. Find harateristi funtion for every

subset (oalition) S ⊂ N as lower (maxmin) value for two person zero-sum game

of oalition S and oalition N \ S, based on game ΓS
z2(g). Payo� of oalition S is

sum payo�s of players from oalition S. Super-additivity of harateristi funtion

follows from its de�nition. Note, that

wi
ij = max

p
min
ℓ

aijpℓ, p = 1, . . . ,m; ℓ = 1, . . . , k, (5)

wj
ij = max

ℓ
min
p

cjipℓ, p = 1, . . . ,m; ℓ = 1, . . . , k. (6)

and v(z2;S), S ⊂ N , is lower value of zero-sum game ΓS
z2(g).

Theorem 1 (Bulgakova, 2019). Funtion v(z2;S) is determined by following

expressions:

v(z2; {∅}) = 0, (7)

v(z2; {i}) =
∑

j∈Ni

wi
ij , (8)

v(z2;S)=
1

2

∑

i∈S

∑

j∈Ni∩S

max
p,ℓ

(aijpℓ + cijpℓ) +
∑

i∈S

∑

k∈Ni\S

wi
ik, S ⊂ N, (9)

v(z2;N) =
1

2

∑

i∈N

∑

j∈Ni

max
p,ℓ

(aijpℓ + cijpℓ). (10)
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Consider a ooperative form of two-stage game Γz1(g). Suppose, that players
hose strategies ūi, i ∈ N , that maximize their total payo� in game Γz1(g), i. e.

∑

i∈N

Ki(z1; ū1, . . . , ūn) = max
u

∑

i∈N

Ki(z1;u1, . . . , un).

Strategy pro�le ū = (ū1, . . . , ūn) we will all ooperative behavior, and orrespond-

ing path (z̄1, z̄2) � ooperative path.

As previously, for oalition S ⊆ N de�ne harateristi funtion v(z̄1;S) as

maxmin value in two person zero-sum game between oalition S (maximizing player)

and oalition N \ S (minimizing player). For minimazing player the best way of

behavor is to not reate all the onnetions with maximizing player (beause of

positive payo�s for eah onnetion). Payo� of oalition S is sum of payo�s of its

members.

Denote by v(z1;S), S ⊂ N , lower value of zero-sum game Γz1(g).

Theorem 2. Funtion v(z1;S) is de�ned in following way:

v(z̄1; {i}) = 0, v(z̄1; ∅) = 0, (11)

v(z̄1;S) =
1

2

∑

i∈S

∑

j∈Ni(g)∩S

max
p,ℓ

(aijpℓ + cijpℓ), S ⊂ N, (12)

v(z̄1;N) = v(z̄2;N) =
1

2

∑

i∈N

∑

j∈Ni

max
p,ℓ

(aijpℓ + cijpℓ). (13)

2.2. Convex Game

De�nition 1. Charateristi funtion is alled supermodular and orresponding

game alled onvex (Shapley, 1971), if for any oalition X ⊂ N and Y ⊂ N holds

inequality:

v(X ∪ Y ) ≥ v(X) + v(Y )− v(X ∩ Y ). (14)

Theorem 3 (Bulgakova, 2019). In subgame ΓS
z2(g) harateristi funtion (8)-

(10) is supermodular.

This property guarantees non-emptiness of the ore and that the Shapley value

belongs to the ore.

2.3. Star-Network

Consider a spei� struture of network, and solution of ooperative game on

this network. We will study network, whih ontains n players, where player 1 is

entral player with n− 1 onnetions, and all other n− 1 players are onneted by

edge only with a entral player.

The Shapley Value. Denote the set of imputations by

M[v(z̄t)] = {x = (x1, . . . , xn) :

n∑

i=1

xi = v(z̄t;N), xi ≥ v(z̄t; {i}), i ∈ N}.
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Consider as a solution of star-network the Shapley value (Shapley, 1953) and

denote it as ϕ[v(z̄t)] = (ϕ1[v(z̄t)], . . . , ϕn[v(z̄t)]), t = 1, 2, where for every player

i ∈ N

ϕi[v(z̄t)] =
∑

S ⊆ N,
i ∈ S

(|S| − 1)!(n− |S|)!
n!

[v(z̄t;S)− v(z̄t;S \ {i})]. (15)

We say that the ooperative solution M[v(z̄1)] in the two-stage game is time

onsistent if for any imputation ξ[v(z̄1)] ∈ M[v(z̄1)] there exists an imputation

ξ[v(z̄2)] ∈ M[v(z̄2)] suh that

ξ[v(z̄1)] = ξ[v(z̄2)], (16)

Thus the Shapley value ϕ[v(z̄1)] is a time onsistent ooperative solution if

ϕ[v(z̄1)] = ϕ[v(z̄2)], (17)

otherwise the Shapley value is time inonsistent.

One has to mention that the ooperative version of the game has been devel-

oped for a general ase of pairwise interations when any (feasible) network an be

formed at the �rst stage of the game. For this general ase, we have found analytial

expressions for the harateristi funtions (8), (11) whih are used to alulate the

Shapley value by (15) and verify the orresponding time onsisteny ondition 17.

Sine the alulation of the Shapley value is a hallenging task for a large number

of players and an arbitrary network, in the following we will show how to simplify

formula 15 for a network of a speial type � a star. This type of the network will

provide us with an analytial expression for the Shapley value whih is muh easier

to interpret and analyze. Nevertheless, expressions (8), (11), (15) an help us to

�nd the Shapley value for any network at least numerially. From (15) we note that

to ompute a omponent of the Shapley value, we need to list all 2n subsets of

the player set N ; moreover for large networks we may be limited in omputational

apabilities to alulate n! as this number an be extremely large. In ontrast, for a

star network we will need only O(n) alulations and will not need to list all subsets

of N .

Beause the Shapley value belongs to the ore in subgame ΓS
z2(g), then its sig-

ni�ane in this lass of problems inreases.

Now formalize onstrution of star-network on the �rst stage of game. Suppose

following, letM1 = N \{1}, a1 = n−1 andMi = {1}, ai = 1 for i 6= 1. To maximize

total payo�, players should hose on the �rst stage following behaviors:

b1i =

{
(0, 1, . . . , 1), i = 1,
(1, 0, . . . , 0), i 6= 1.

(18)

Behavior (18) formed a star network on the �rst stage with entral player 1, (�g.

1), where |N1| = n − 1 and |Ni| = 1, i 6= 1. For star-network alulate the har-

ateristi funtion in view of spei� struture of network. Transform expressions

(8-10) orresponding to a star-network:

v(z2; {∅}) = 0, (19)

v(z2; {i}) =
{∑

j 6=i

w1
1j , i = 1,

wi
1i, i 6= 1.

(20)
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Fig. 1. Star-network

v(z2;S) =





∑
j∈N1∩S

maxp,ℓ(a
1j
pℓ + c1jpℓ) +

∑
k∈N1\S

w1
1k, S ⊂ N, i ∈ S,

0, i /∈ S.
(21)

Similarly, we transform the expressions (11)-(13)

v(z̄1; {i}) = 0, v(z̄1; ∅) = 0, (22)

v(z̄1;S) =

{ ∑
j∈N1∩S

maxp,ℓ(a
1j
pℓ + c1jpℓ), S ⊂ N, i ∈ S,

0, i /∈ S.
(23)

The network has entral symmetry and formula (15) an be simpli�ed.

Proposition 1 (Petrosyan, Sedakov and Bulgakova, 2018). For star-network

with entral player 1, omponents of the Shapley value ϕ[v(z̄t)], t = 1, 2, has the

form:

ϕi[v(z̄t)] =





1

2


v(z̄t; {1}) +

∑

j 6=1

(m1j − v(z̄t; {j}))


 , i = 1,

1

2

[
v(z̄t; {i}) +m1i − w1

1i

]
, i 6= 1.

(24)

where

mij =





max
p = 1, . . . ,m
ℓ = 1, . . . , k

(aijpℓ + bijpℓ), if i and j are neighbors,

0, otherwise.

(25)

Time-Consisteny of the Shapley Value in a Star-Network Consider time-

onsisteny of Shapley value in a star-network. Remind that the Shapley value

ϕ[v(z̄1)] is time-onsistent ooperative solution, if

ϕ[v(z̄1)] = ϕ[v(z̄2)]. (26)

Proposition 2 (Petrosyan, Sedakov and Bulgakova, 2018). For star-network

with entral player 1, the Shapley value is time-onsistent, when w1i
1 = wi1

i for any

player i 6= 1.

Conditions for time-onsisteny w1i
1 = wi1

i , i 6= 1, from (2) for star-network an

be interpreted in following way: entral player 1 and any other player i 6= 1 should

have similar minimal guaranteed payo� (maxmin value) in bimatrix game γ1i whih
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they play as neighbours. If at least for one player j w1j
1 6= wj1

j , then the Shapley

value will be time-inonsistent. However, in the latter ase, a ooperative agreement

may be reahed at the expense of IDP � imputation distribution proedure. Re-

mind the de�nition:

De�nition 2. Funtion βi
, i ∈ N alled imputation distribution proedure (IDP)

x ∈ M (see Petrosyan and Danilov, 1979), if

xi = β1
i + β2

i , i ∈ N. (27)

Proposition 3. For star-network with entral player 1, time-onsistent IDP β =
{β1

i , β
2
i }i∈N for the Shapley value has the form:

β1
i =





1

2

∑

i6=1

[
wi

i1 − w1
1i

]
, i = 1,

1

2

[
w1

1i − wi
i1

]
, i 6= 1,

(28)

and

β2
i =





1

2

∑

i6=1

[
w1

1i +m1i − wi
i1

]
, i = 1,

1

2

[
wi

i1 +m1i − w1
1i

]
, i 6= 1.

(29)

From an eonomi perspetive, it is preferable for players to have a nonnegative

IDP, suh that deomposing the Shapley value over two game stages, eah player

reeives her nonnegative payments at either of the two game stages. However the

IDP of the Shapley value mentioned in the latter proposition an be nonnegative

only in ase when w1i
1 = wi1

i for eah i 6= 1. This equality results in the time

onsisteny of the Shapley value whih has already been disussed.

Three examples below demonstrate that the Shapley value being an imputation

in a ooperative two-stage game with pairwise interations an be both time onsis-

tent and time inonsistent despite players' asymmetry in their neighbors. The �rst

example show the time onsisteny of the Shapley value in an important lass of

bimatrix games.

Prisoner's Dilemma Consider the ase, when n players play the same bimatrix

game γ with their neighbors, i.e., Aij = A, Cij = C for all i ∈ N , j ∈ Ni where

A = CT =

(
b 0

a+ b a

)
, 0 < a < b.

Here b is the payo� to eah onneted player if they both �ooperate�, while if

the both �defet� eah of them gets a. As an example, one an onsider a data

transmission problem in a network whose nodes have to �oordinate� their ations

trying to ahieve ertain performane (for example, the number of pakets sent, a

pro�t from sending pakets).

For the given game using (5), (6), (25) we obtain: wij
i = wij

j = a and

mij =

{
2b, if i and j are neighbors,
0, otherwise,

(30)
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for any two players i, j ∈ N .

To �nd the Shapley value ϕ[v(z̄2)], we �rst determine harateristi funtion

v(z̄2;S) for all S ⊆ N . Following (8), we obtain

v(z̄2;S) =





2b(n− 1), S = N,
2b(|S| − 1) + (n− |S|)a, S ⊂ N, 1 ∈ S,
|S|a, S ⊂ N, 1 /∈ S,
0, S = ∅.

(31)

Using the formula for the Shapley value (24) adapted to the star network, we obtain

ϕ1[v(z̄2)] =
n− 1

2
[a+ 2b− a] = b(n− 1),

ϕi[v(z̄2)] =
1

2
[a+ 2b− a)] = b, i 6= 1.

Similarly, to �nd the Shapley value ϕ[v(z̄1)], we determine harateristi funtion

v(z̄1;S) for all S ⊆ N . Following (11), we have

v(z̄1;S) =





2b(n− 1), S = N,
2b(|S| − 1), S ⊂ N, 1 ∈ S,
0, S ⊂ N, 1 /∈ S or S = ∅.

(32)

Again, using the formula for the Shapley value (24) adapted to the star network,

we get ϕ[v(z̄1)]:

ϕ1[v(z̄1)] =
2b(n− 1)

2
= b(n− 1),

ϕi[v(z̄1)] =
2b

2
= b, i 6= 1.

Comparing ϕ[v(z̄1)] and ϕ[v(z̄2)], we note that they oinide and hene the Shapley

value is time onsistent. What is interesting, this result does not depend upon

spei� values of a and b. The only restrition whih has to be imposed is 0 < a < b,
and it is natural for this lass of games.

The time onsisteny of the Shapley value an also be shown with the use of

Proposition 2 instead of applying diret alulations. Indeed, we see that wi1
i =

w1i
1 = a for eah i 6= 1 what implies its time onsisteny.

Example In the next example we demonstrate the time inonsisteny of the Shap-

ley value. Consider a 4-person game with N = {1, 2, 3, 4} in whih players form a

star network under a ooperative agreement (see Fig. 2). Let simultaneous bimatrix

games γ12, γ13 and γ14 be de�ned by means of the following payo� matries:

(A12, C12) =
(2, 2) (3, 0)
(5, 1) (1, 2)

, (A13, C13) =
(3, 1) (4, 2)
(6, 2) (2, 3)

,

(A14, C14) =
(1, 3) (3, 2)
(6, 6) (4, 1)

.

To ompute the Shapley values ϕ[v(z̄1)] and ϕ[v(z̄2)], we use the orresponding
formulas (9), (11) for harateristi funtions v(z̄2; ·) and v(z̄1; ·), respetively, and
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Fig. 2. A star with four players

the simpli�ed formula (24). Hene we get:

w1
12 = 2, w1

13 = 3, w1
14 = 4,

w2
21 = 1, w3

31 = 2, w4
41 = 3,

m12 = 6, m13 = 8, m14 = 12,
(33)

and therefore

v(z̄1; {1}) = 0, v(z̄2; {1}) = 9,
v(z̄1; {2}) = 0, v(z̄2; {2}) = 1,
v(z̄1; {3}) = 0, v(z̄2; {3}) = 2,
v(z̄1; {4}) = 0, v(z̄2; {4}) = 3,
v(z̄1;N) = 26, v(z̄2;N) = 26.

(34)

Thus the Shapley values are given by

ϕ[v(z̄1)] = (13, 3, 4, 6),

ϕ[v(z̄2)] = (29/2, 5/2, 7/2, 11/2).

We observe that the Shapley value ϕ[v(z̄1)] in the two-stage game di�ers from the

Shapley value ϕ[v(z̄2)] in the one-stage game starting at the seond stage. This

means time inonsisteny of the Shapley value. Sine ϕ2[v(z̄2)] = 5/2 < ϕ2[v(z̄1)] =
3, player 2 an break the ooperative agreement as she an get less (here we reall

that players do not reeive payo�s at the network formation stage). Similarly, it is

also true for player 3: ϕ3[v(z̄2)] = 7/2 < ϕ3[v(z̄1)] = 4 and player 4: ϕ4[v(z̄2)] =
11/2 < ϕ4[v(z̄1)] = 6. However introduing a time-onsistent IDP of the Shapley

value ϕ[v(z̄1)] over two stages determined with the use of Proposition 3 for the star

network, we obtain

β1
1 = −3/2, β1

2 = 1/2, β1
3 = 1/2, β1

4 = 1/2,
β2
1 = 29/2, β2

2 = 5/2, β2
3 = 7/2, β2

4 = 11/2,

and therefore implementing it, the ooperation of players will be sustainable. Thus

reeiving β1
i at the �rst stage and β2

i at the seond stage, player i ∈ N will get

ϕi[v(z̄1)] in two stages whih is exatly her ooperative payo� presribed by the

Shapley value ϕ[v(z̄1)].

2.4. The Core in Two-Stage Three-Person Game

Consider three-person-game with pairwise interations on any network and take

as solution the ore. Find onditions for strongly time-onsisteny (Petrosyan, 1995)

of ore in this game.

De�ne the ore C(z̄) ⊂ Mv in game Γ and suppose, that for every z1, z2,
C(z̄) 6= ∅.
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De�nition 3. The ore in game Γ is set of imputations x = (x1, . . . , xn), whih
satis�ed following onditions:

∑

i∈S

xi ≥ v(z̄1;S) (35)

for all S ⊂ N , and

N∑

i=1

xi = v(z̄1;N). (36)

For subgame Γz2 we have following values of harateristi funtion:

v(z̄2; ∅) = 0, v(z̄2; {1}) = w1
13 + w1

12, v(z̄2; {2}) = w2
12 + w2

23, v(z̄2; {3}) = w3
13 + w3

23,

v(z̄2; {12}) = max
p,l

(a12pl + c12pl ) + w1
13 + w2

23,

v(z̄2; {13}) = max
p,l

(a13pl + c13pl ) + w1
12 + w3

23,

v(z̄2; {23}) = max
p,l

(a23pl + c23pl ) + w2
12 + w3

13,

v(z̄2;N) = max
p,l

(a12pl + b21pl ) + max
p,l

(a13pl + b31pl ) + max
p,l

(a23pl + b32pl ).

Imputation x belongs to the ore C(z̄2), when following inequalities holds:





x1 + x2 ≥ v(z̄2; {12}),
x1 + x3 ≥ v(z̄2; {13}),
x2 + x3 ≥ v(z̄2; {23}),

x1 ≥ v(z̄2; {1}),
x2 ≥ v(z̄2; {2}),
x3 ≥ v(z̄2; {3}),

x1 + x2 + x3 = v(z̄2;N).

(37)

In view of (37) and values of harateristi funtion, we have:





x1 + x2 ≥ max
pl

(a12pl + c12pl ) + w2
23 + w1

13,

x1 + x3 ≥ max
pl

(a13pl + c13pl ) + w1
12 + w3

23,

x2 + x3 ≥ max
pl

(a23pl + c23pl ) + w2
12 + w3

13,

x1 + x2 + x3 = v(z̄2;N).

(38)

To simplify the above expressions, use following notations:

E12 = max
pl

(a12pl + c12pl ), D1 = w2
23 + w1

13,

E13 = max
pl

(a13pl + c13pl ), D2 = w1
12 + w3

23,

E23 = max
pl

(a23pl + c23pl ), D3 = w2
12 + w3

13.

Then system of inequalities (38), whih de�nes the struture of the ore C(z̄2)
an be rewritten in following way:





x1 + x2 ≥ E12 +D1,
x1 + x3 ≥ E13 +D2,
x2 + x3 ≥ E23 +D3,

x1 + x2 + x3 = v(z̄2;N).

(39)



Dynami Cooperative Network Games with Pairwise interations 105

Consider the ore C(z̄1) of two-stage game Γ





x′1 + x′2 ≥ v(z̄1; {12}),
x′1 + x′3 ≥ v(z̄1; {13}),
x′2 + x′3 ≥ v(z̄1; {23}),
x′1 + x′2 + x′3 = v(z̄1;N).

(40)

Corresponding to (40) and harateristi funtion, we have:





x′1 + x′2 ≥ max
pl

(a12pl + c12pl ),

x′1 + x′3 ≥ max
pl

(a13pl + c13pl ),

x′2 + x′3 ≥ max
pl

(a23pl + c23pl ),

x′1 + x′2 + x′3 = v(z̄1;N)).

(41)

Using above notations, we will have followings:





x′1 + x′2 ≥ E12,
x′1 + x′3 ≥ E13,
x′2 + x′3 ≥ E23,

x′1 + x′2 + x′3 = v(z̄1;N).

(42)

Strongly Time-Consisteny

De�nition 4. The ore C(z1) is strongly time-onsistent in game Γ
(Petrosyan, 1995), if

1. C(z̄1) 6= ∅, C(z̄2) 6= ∅
2. For every imputation x ∈ C(z1) there exists suh IDP β = (β1, β2), that x =
β1 + β2 and

C(z̄1) ⊃ β1 ⊕ C(z̄2).

Here symbol ⊕ de�nes as a ∈ Rn
, B ⊂ Rn

, then a⊕B = {a+ b : b ∈ B}.
In aordane to (42) we get:




β1
1 + β1

2 + β2
1 + β2

2 ≥ E12,
β1
1 + β1

2 + β3
1 + β3

2 ≥ E13,
β2
1 + β2

2 + β3
1 + β3

2 ≥ E23.
(43)

For strongly time-onsisteny these inequalities must satis�es with following addi-

tional restritions: 


β1
2 + β2

2 ≥ E12 +D1,
β1
2 + β3

2 ≥ E13 +D2,
β2
2 + β3

2 ≥ E23 +D3.
(44)

Fix β1, then for strongly time-onsisteny we should ful�l onditions (44) for β2.
And β2 must satisfy (43). Also, from v(z̄2;N) = v(z̄1;N), follows β1

1 + β2
1 + β3

1 = 0.
If onditions (43) satisfy under minimal values β1

2 , β
2
2 , β

3
2 from onditions (44), then

they satisfy for all other values. We have:





−β3
1 + E12 +D1 ≥ E12,

−β2
1 + E13 +D2 ≥ E13,

−β1
1 + E23 +D3 ≥ E23.

(45)

Thus, we have onditions for strongly time-onsisteny of the ore C(z̄1) in game

Γ .
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Theorem 4 (Bulgakova and Petrosyan, 2016). Suppose, that following inequal-

ities are ful�lled: 


β3
1 ≤ D1

β2
1 ≤ D2

β1
1 ≤ D3

(46)

(i.e there exists β1 whih satis�ed (4)), then the ore C(z̄1) is strongly time-onsistent.

3. Multistage Games with Pairwise Interations

In (Bulgakova and Petrosyan, 2019a), the results obtained for the two-stage

games are generalized to the ase of multistage games.

Let abstrat spae Z is given and alled spae of states. In every state z ∈ Z

n-person nonzero-sum game Γ (z) is determined. This is network game with net-

work g(z), where players are vertexes and edges are onnetions (as in two-stage

ase). Game Γ (z) is a set of simultaneous pairwise bimatrix games {γij(z)} between
neighbours by network, i ∈ N, j ∈ N, i 6= j.

Let i ∈ N, j ∈ N, i 6= j. Then i plays with j in bimatrix game γij(z) with payo�

matries Aij(z) and Cij(z), for players i and j, respetively.

Aij(z) =




aij11(z) aij12(z) · · · aij1r(z)
aij21(z) aij22(z) · · · aij2r(z)

.

.

.

.

.

.

.

.

.

.

.

.

aijm1(z) a
ij
m2(z) · · · aijmr(z)


 (47)

Cij(z) =




cij11(z) cij12(z) · · · cij1r(z)
cij21(z) cij22(z) · · · cij2r(z)

.

.

.

.

.

.

.

.

.

.

.

.

cijm1(z) c
ij
m2(z) · · · cijmr(z)


 (48)

aijpq(z) ≥ 0, cijpq(z) ≥ 0, p = 1, . . . ,m, q = 1, . . . , r, i, j ∈ N.

Constants m and k oinide for all i and j. When we have game γji(z), i.e.
player i is the seond player, he has payo� matrix Cji(z) = AT

ij(z), and player j has

matrix Aji(z) = CT
ij(z). To simplify the following expressions we suppose, that m

and r oinide for all i and j and all z.
Consider the strategy of player i in game Γ (z). It is a vetor

ui(z) = (u1i (z), . . . , u
j
i (z), . . . u

n
i (z)), where u

j
i is strategy of player i in bimatrix

game γij(z). So, we have, that strategy of player i is a vetor onsisting from rows

(pure strategies), hosen by him in bimatrix games γij(z). Denote by

u(z) = (u1(z), . . . , un(z)) strategy pro�le in game Γ (z). Strategy of player j is

a vetor onsisting from olumns in orresponding bimatrix games γij(z). De�ne
payo� of player i in game Γ (z) in following way:

Ki(z) =

n∑

j=1,j 6=i

aij
uj
i (z)u

i
j(z)

(z).

Consider game Γ (z) in ooperative form. As in two-stage ase, introdue hara-

teristi funtion v(S; z), S ⊂ N as lower (maxmin) value in two-person zero-sum
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game between S and N \ S, based on game Γ (z)

ωi
ij(z) = max

p
min
q

aijpq(z), p = 1, . . . ,m; q = 1, . . . , r,

ωj
ij(z) = max

q
min
p

cijpq(z), p = 1, . . . ,m; q = 1, . . . , r.

Lemma 1. Charateristi funtion v(S; z) is de�ned in the following way

v({∅}; z) = 0, (49)

v({i}; z) =
∑

j∈N,j 6=i

ωi
ij(z), (50)

v(S; z) =
1

2

∑

i∈S

∑

j∈S,j 6=i

max
p,q

(aijpq(z) + cijpq(z)) +
∑

i∈S

∑

j∈N\S

ωi
ij(z), S ⊂ N, (51)

v(N ; z) =
1

2

∑

i∈N

∑

j∈N,j 6=i

max
p,q

(aijpq(z) + cijpq(z)).

Suppose, that in state z ∈ Z in game Γ (z) players hoose the strategy pro�le:

ui(z) = (u1i (z), . . . , u
n
i (z)). Then the game moves to the state z′, where game Γ (z′)

takes plae, with simultaneous bimatrix games with matries, depended from strate-

gies hosen on previous state z. Thus the state z′ depends on state z and strategies

in this state. We an introdue funtion T : Z×∏n
i=1 Ui → Z by formula:

z′ = T (z;u1(z), u2(z), . . . , un(z)).

Multistage game G(z) develops in following way. Game G(z1) starts in state z1. In
state z1 game Γ (z1) is take plae, players hoose their strategies u1(z1), u2(z1), . . . ,
un(z1), then they pass to the state z2 = T (z1;u1(z1), u2(z1), . . . , un(z1)). In state

zk players play game Γ (zk), hoose strategies u1(zk), u2(zk), . . . , un(zk) and pass to

the state zk+1 = T (zk;u1(zk), u2(zk), . . . , un(zk)). Game ends on stage ℓ in state

zℓ. Then, after hoosing strategies on every stage of game path z1, z2, . . . , zk, . . . , zℓ
is realized. Strategy in this multistage game u(·) = u{(z)}, is a set of players'

strategies, de�ned in every state z ∈ Z. It follows from above, that any strategy

pro�le u(·) = {u1(·), . . . , un(·)} de�nes only one path, and, therefore a payo� for

every player, as sum of his payo�s in games, along the realized path.

Ki(u(·)) =
ℓ∑

k=1

n∑

j=1,j 6=i

aij
uj
i (zk)u

i
j(zk)

(zk).

Note, that set of all paths in multistage game G(z) is �nite. Hene, the set of states
is also �nite. Denote this set by Z ⊂ Z Consider speial ase, when v(N ; z) is the
same for all z ∈ Z. Introdue funtion w(S), S ⊂ N :

w(S) = max
z

v(S; z).
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De�ne also harateristi funtion V (S; zk) for multistage game G(zk), whih starts

in state zk. Funtion V (S; zk) an be alulated using the following analogue of

Bellman equation:

V (S; zk−1) = max
ui,i∈S

[ min
uj ,j∈N\S

(
∑

i∈S

K
zk−1

i (u1, . . . un) + V (S; zk))] =

= max
ui,i∈S

[ min
uj ,j∈N\S

(∑

i∈S

K
zk−1

i (u1, . . . un) + V (S;T (zk−1;u(zk−1)))
)
];

V (S; zℓ) = v(S; zℓ).

De�ne

W (S; zk) = (l − k + 1)w(S)

where ℓ is number of stages in game G(z1).
The following inequality takes plae (see Petrosyan and Pankratova, 2018):

W (S, zk) ≥ V (S, zk), S ⊂ N.

Remind that one-stage game Γ (z) is onvex and harateristi funtion v(S; z),
S ⊂ N is supermodular. So, we have:

v(X ∪ Y ; z) ≥ v(X ; z) + v(Y ; z)− v(X ∩ Y ; z).

Take the maximum by z ∈ Z in the left and right sides of the inequality

max
z
v(X ∪ Y ; z) ≥ max

z
v(X ; z) + max

z
v(Y ; z)−max

z
v(X ∩ Y ; z).

Sine maxz v(S; z) = w(S), we have:

w(X ∪ Y ) ≥ w(X) + w(Y )− w(X ∩ Y ).

The funtion w(S) is supermodular.

Lemma 2. Funtion w(S) in game Γ (z) is supermodular.

3.1. Optimality Priniple

De�ne the set of all imputations MW in game G(z1) as

MW = {x = (x1, . . . , xn) :

n∑

i=1

xi =W (N ; z1), xi ≥W ({i}; z1), i ∈ N}.

And by optimality priniple any subset of this set MW .

Choose in one-stage game Γ (z) as optimality priniple an analogue of the ore

� the set Ĉ(w(S)), ontaining all imputations x = (x1, . . . , xn), whih satisfy on-

ditions:

∑

i∈S

xi ≥ w(S), S ⊂ N,

N∑

i=1

xi = w(N).
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In similar way de�ne set Ĉ(W (S; z)) in multistage game G(z) as set of imputa-

tions, whih satisfy following onditions:

∑

i∈S

xi ≥W (S; z), S ⊂ N, (52)

N∑

i=1

xi =W (N ; z). (53)

Theorem 5. For any x ∈ Ĉ(W (S; zk)), x = (x1, . . . , xn) and any k = 1, l, the
following equality holds:

xi = (ℓ − k + 1)x′i, where x′i ∈ Ĉ(w(S)), i = 1, n.

3.2. Strongly Time-Consisteny

Suppose, that players hose strategies ū(·) = (ū1(·), . . . , ūn(·)), whih maximize

the total payo� in G(z1):

∑

i∈N

Ki(z1; ū1, . . . , ūn) = max
u

∑

i∈N

Ki(z1;u1, . . . , un).

The path (z̄1, z̄2, . . . , z̄ℓ), orresponding to this strategies is alled ooperative path

(z1 = z̄1). Rewrite de�nition of IDP (2) for the game under onsideration.

De�nition 5. Vetor βi
, i ∈ N is alled imputation distribution proedure (IDP)

if for x ∈MW (see Petrosyan and Danilov, 1979),

xi =

ℓ∑

k=1

βi
k, i ∈ N. (54)

De�nition 6. Optimality priniple Ĉ(W (S; z̄1)) is strongly time-onsistent in game

G(z̄1) (see Petrosyan, 1995), if

1. Ĉ(W (S; z̄k)) 6= ∅, k = 1, ℓ

2. For every imputation x ∈ Ĉ(W (S; z̄1)) there exists suh IDP β = (β1, β2, . . . , βℓ),
suh that

k∑

j=1

βj ⊕ Ĉ(W (S; z̄k+1)) ⊂ Ĉ(W (S; z̄1)), k = 1, ℓ− 1.

Here symbol ⊕ means, that if a ∈ Rn
, B ⊂ Rn

, then a⊕B = {a+ b : b ∈ B}.

Proposition 4. Optimality priniple Ĉ(W (S; z̄1)), k = 1, ℓ in game G(z̄1) is

strongly time-onsistent.
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3.3. General Case

Now onsider general ase, when values of v(N ; z) do not oinide for di�erent

z. Introdue funtion L(z̄k) is joint payo� of maximal oalition N in state z̄k ∈ z̄,
where z̄ is ooperative path in game G(z̄1).

L(z̄k) =
1

2

∑

i∈N,j∈N,i6=j

(aij(z̄k) + aji(z̄k)). (55)

Suppose, that w(S) < minz̄k L(z̄k), S 6= N . And onsider funtion w(S; z̄k),
w(S; z̄k) = w(S), w(N, z̄k) = L(z̄k). Let x be any imputation in game G(z̄1).
Consider as optimality priniple an analogue of the ore in game G(z̄k) alled

Ĉ(W (S; z̄k)); the following set

∑

i∈S

xi ≥ (ℓ− k + 1)w(S) =W (S; z̄k), S ⊂ N, S 6= N, (56)

N∑

i=1

xi =
ℓ∑

t=k

L(z̄k) = Ŵ (N ; z̄k). (57)

Suppose, that all Ĉ(W (S; z̄k)) 6= ∅.

De�nition 7. Optimality priniple Ĉ(W (S; z̄1)) is strongly time-onsistent in game

G(z̄1), if

1). Ĉ(W (S; z̄k)) 6= ∅, k = 1, ℓ
2). For every imputation x ∈ Ĉ(W (S; z̄1)) there exists suh IDP β = (β1, . . . , βℓ),

x =
∑ℓ

j=1 βj that

k∑

j=1

βt ⊕ Ĉ(W (S; z̄k+1)) ⊂ Ĉ(W (S; z̄1)), k = 1, ℓ.

Proposition 5. Optimality priniple Ĉ(W (S; z̄1)) is strongly time-onsistene.

Example Consider an example with N = 3, k = 3, i.e. 3-person three-stage game

starting from state z1. In state z1 we have 6 matries, 3 matries of the �rst type,

and 3 of seond type. In state z1 all bimatrix games take plae with matries of

the �rst type. In state z1 every player i ∈ N hoose his strategy ui(z1). If all
uji (z1) = 1, i ∈ N, j ∈ N \ {i}, then players pass to the state z2, where they

play bimatrix games with same payo� matries of �rst type. If at least one of the

omponents uji (z1) = 2, i ∈ N, j ∈ N \ {i}, then in state z2 players play bimatrix

games with the seond type of matries. Similarly, the transition to the state z3: if
all uji (z2) = 1, i ∈ N, j ∈ N \ {i}, then players in state z3 use �rst type of matries.

If at least one of the omponents uji (z2) = 2, i ∈ N, j ∈ N \ {i}, then in state z3
players use matries of the seond type. Matries of the �rst type are:

A12(z) =

(
9 0
1 1

)
, C12(z) =

(
9 1
0 1

)
, A13(z) =

(
10 1
2 7

)
,

C13(z) =

(
8 0
0 7

)
, A23(z) =

(
16 2
1 1

)
, C23(z) =

(
10 1
1 0

)
.
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Matries of the seond type are:

Ã12(z) =

(
8 5
10 16

)
, C̃12(z) =

(
10 13
6 6

)
, Ã13(z) =

(
8 12
9 10

)
,

C̃13(z) =

(
10 12
11 5

)
, Ã23(z) =

(
8 8
13 9

)
, C̃23(z) =

(
12 5
6 9

)
.

In state z1 network with omplete graph is given To maximize the joint payo�

✍✌
✎☞
1

❅
❅

✍✌
✎☞
2

�
�
✍✌
✎☞
3

Fig. 3. Network on the �rst stage

players should to be in touh with all neighbours throughout the game. Strategies

of players:

u1(z1) = (0, 2, 1), u2(z1) = (1, 0, 2), u3(z1) = (2, 2, 0),

u1(z2) = (0, 2, 1), u2(z2) = (2, 0, 1), u3(z2) = (2, 1, 0),

u1(z3) = (0, 2, 1), u2(z3) = (2, 0, 1), u3(z3) = (2, 1, 0).

Calulate the values ωij(z):
ω1
12(z1) = 1, ω2

12(z1) = 1, ω1
13(z1) = 1, ω3

13(z1) = 0,
ω2
23(z1) = 2, ω3

23(z1) = 1,
ω1
12(z2) = 10, ω2

12(z2) = 6, ω1
13(z2) = 9, ω3

13(z2) = 10,
ω2
23(z2) = 9, ω3

23(z2) = 6.
Values ωi

ij(z3) will oinide with ωi
ij(z2) or with ωi

ij(z1), sine there are only

two types of matries in the game.

Calulate the values of harateristi funtions v(S; z), w(S; zk):

S {1} {2} {3} {12} {13} {23} {123}
v(S; z̄1) 2 3 1 21 20 27 62

v(S; z̄2) 19 15 16 40 40 36 66

v(S; z̄3) 19 15 16 40 40 36 66

w(S; z̄1) 19 15 16 40 40 36 58

w(S; z̄2) 19 15 16 40 40 36 66

w(S; z̄3) 19 15 16 40 40 36 66

Game starting from state z1, where players hoose their strategies and pass to

the new state, whih depends from this hoie. In every state players have only two

alternatives: after hoosing strategies, pass to the game with �rst type of payo�

matries, or pass to the seond type of payo� matries.

Numbers 1 and 2 above the arrows on Fig. 4 indiate what type of matries the

players will play in the next state. Calulate the values of funtion L in nodes zk:

L(z11) = 58 L(z12) = 58 L(z13) = 62 L(z22) = 66 L(z23) = 66
L(z33) = 62 L(z43) = 66
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Fig. 4. Tree of all possible states of game.

Cooperative path in game G(z1) is z̄ = (z11 , z
2
2 , z

4
3) = (z̄1, z̄2, z̄3). Calulate the

values of harateristi funtion in multistage game G(z1):

S {1} {2} {3} {12} {13} {23} {123}
V (S; z̄3) 19 15 16 40 40 36 66

V (S; z̄2) 38 30 32 80 80 72 132

V (S; z̄1) 40 33 33 101 100 99 190

W (S; z̄3) 19 15 16 40 40 36 66

W (S; z̄2) 38 30 32 80 80 72 132

W (S; z̄1) 57 45 48 120 120 108 190

Condition w(S, zk) < minz̄k L(zk), S 6= N holds:

max
S

w(S, zk) = 40 < min
z̄k

L(zk) = 58.

Consider an imputation x ∈ Ĉ(W (S; z̄1))





x1 ≥ 57,
x2 ≥ 45,
x3 ≥ 48,

x1 + x2 ≥ 120,
x1 + x3 ≥ 120,
x2 + x3 ≥ 108,

x1 + x2 + x3 = 190.

(58)

And any imputation ξ ∈ Ĉ(W (S; z̄2))





ξ1 ≥ 38,
ξ2 ≥ 30,
ξ3 ≥ 32,

ξ1 + ξ2 ≥ 80,
ξ1 + ξ3 ≥ 80,
ξ2 + ξ3 ≥ 72,

ξ1 + ξ2 + ξ3 = 132.

(59)

Take as βk in IDP β = (β1, β2, β3) an imputation α ∈ Ĉ(w(S; z̄1)), (βk = α, k =
1, 2, 3).
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α1 ≥ 19,
α2 ≥ 15,
α3 ≥ 16,

α1 + α2 ≥ 40,

α1 + α≥
3 40,

α2 + α3 ≥ 36,
α1 + α2 + α3 = 58.

(60)

Construt the imputation x̂ = α+ ξ





x̂1 ≥ 57,
x̂2 ≥ 45,
x̂3 ≥ 48,

x̂1 + x̂2 ≥ 120,
x̂1 + x̂3 ≥ 120,
x̂2 + x̂3 ≥ 108,

x̂1 + x̂2 + x̂3 = 190.

(61)

It follows from last inequality, that x̂ ∈ Ĉ(W (S; z̄1)), whih proves strongly time-

onsisteny of Ĉ(W (S; z̄1)).

4. Nonzero-Sum Games with Pairwise Interations

In this part we will onsider general nonzero-sum game with pairwise intera-

tions. Previously we onsidered only bimatrix games.

Consider (Bulgakova and Petrosyan, 2019b) multistage nonzero-sum game with

�nite number of stages. As before, on the �rst stage players hose their behaviors

and formed a network. On next stages simultaneous non-zero sum games will be

played. Payo�s depend on ontrols, hosen on eah urrent stage. Players an hange

the network on every stage exept the �rst, deleting some onnetions.

4.1. The Model

In every state zk ∈ Z, k > 0 players an hange the network by deleting some

onnetions, so we denote the network as g(zk), to show the network dependeny

on state.

Denote as Ni(g(z0)) neighbours of player i in network g(z0), i. e. Ni(g(z0)) =
{j ∈ N \ {i} : ij ∈ g(z0)}.

When network g(z0) is formed, the game passed to the state z1(g(z0)), whih is

determined by network g(z0). In state z1(g(z0)) players an delete some onnetions,

whih were formed early. So, network g(z0) in general will hange to g(z1) and

we may have new set of neighbours Ni(g(z1)). On network g(z1) players play the

simultaneous nonzero-sum game Γ (z1).
On the seond stage z1 player i, i = 1, n, hose ontrol yi(z1) = (bi(z1), xi(z1))

from set of ontrols Yi, whih, unlike the �rst stage z0, ontains an additional om-

ponent xi(z1) � behavior in game Γ (z1). Where bi(z1) is vetor with omponents

0 or 1, de�ned in following way:

bij(z1) =

{
1, save onnetion ij,
0, delete onnetion ij,

(62)
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i. e. player on seond stage an delete some onnetions but has no abilities to reate

new onnetions. Component xi(z1) of ontrol yi(z1) = (bi(z1), xi(z1)) is behavior
of player i in game Γ (z1) hosen from set Xi(z1), in state z1.

Let y(z1) = (y1(z1), . . . , yn(z1)) be a strategy pro�le in game Γ (z1). Player's
payo� i in game Γ (z1) is:

Hi(z1) =
∑

j∈Ni(g(z1))

hi(yi(z1), yj(z1)),

where g(z1) is network, orresponding to strategy pro�le y(z1). Funtions

hi(xi(z1), xj(z1)) ≥ 0 are given for all i ∈ N and all pairs ij, i. e. all edges of

network g(z1) and all possible states z ∈ Z.

Players i ∈ N hose ontrols (y1(zk−1), . . . , yn(zk−1)) in state zk−1 ∈ Z in game

Γ (zk−1). Result of this hoie is transition to state zk, where Γ (zk) is played, with
payo�s hi(xj(zk), xi(zk)), depended on ontrols, hosen in state zk. We may de�ned

a transition T : Z× Y1 × Y2 × . . .× Yn → Z by formula

zk = T (zk−1; y1(zk−1), y2(zk−1), . . . , yn(zk−1)), k = 1, ℓ. (63)

The, funtion T uniquely de�nes state zk, whih follows after state zk−1, if

players hose ontrols y1(zk−1), y2(zk−1), . . . , yn(zk−1).
Consider multistage game G(z), whih develops in following way. Game G(z0)

starts in state z0. In state z0 network g(z0) is formed, after that players pass to state

z1. In state zk−1 players hose ontrols y1(zk−1), y2(zk−1), . . . , yn(zk−1), play game

Γ (zk−1) and pass to state zk = T (zk−1; y1(zk−1), y2(zk−1), . . . , yn(zk−1)). Game

ends on stage ℓ + 1 in state zℓ. Thus, after hoosing ontrols on every state of the

game the path z0, z1, . . . , zk, . . . , zℓ is realized.
State zk is alled aeptable, if there exists the sequene of ontrols and the

sequene of states z0, z1, . . . zk, k ≤ ℓ generated by it, de�ned by formula (63), suh

that zk = z.
Strategy in multistage game: yi(·), i ∈ N , is a rule, whih for every aeptable

state z assoiates omponents bi(z), xi(z) of ontrol in this state, i. e. the hoie of

onnetions for deleting, and hoie of behavior xi(z) in game Γ (z). It the follows
from above that any strategy pro�le y(·) = {y1(·), . . . , yn(·)} de�nes only one path

in game, and, hene payo� of every player as sum of his payo�s in games, realized

along the path.

Hi(y(·)) =
ℓ∑

k=1

∑

j∈Ni(g(z))

hi(yi(zk), yj(zk)).

The set of all paths in game G(z) is �nite. So, the set of all aeptable states

also is �nite. Denote it as Z ⊂ Z.

Suppose, that players hoose ontrols ȳi(z), i ∈ N , that maximize their joint

payo� in game G(z), i. e.

ℓ∑

k=1

∑

i∈N

Hi(ȳ1(zk), . . . , ȳn(zk)) = max
y

ℓ∑

k=1

∑

i∈N

Hi(y1(zk), . . . , yn(zk)). (64)

Strategy pro�le ȳ = (ȳ1, . . . , ȳn) is alled ooperative behavior in gameG(z), and
path, orresponding to ontrols ȳi(z), i ∈ N , (z̄0, z̄1, . . . , z̄ℓ) is alled ooperative

path (z0 = z̄0).
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Consider one-stage game Γ (z) in any state z ∈ Z in ooperative form and

de�ned harateristi funtion v(S; z), S ⊂ N , for every subset (oalition) S ⊂ N
in following way:

v(∅; z) = 0,

v({i}; z) = 0,

v({ij}; z) =
{
hi(x̄i(z); x̄j(z)) + hj(x̄j(z); x̄i(z)), if j ∈ Ni(g(z)),

0, other,

(65)

v(S; z) =
∑

i∈S

∑

j∈Ni(g(z))∩S

hi(x̄i(z); x̄j(z)),

v(N ; z) =
∑

i∈N

∑

j∈Ni(g(z))

hi(x̄i(z); x̄j(z)),

where x̄i(z), x̄j(z) alulated orresponding to (64).

We see that to alulate values of harateristi funtion, we should �nd ooper-

ative behavior in game G(z0) and after that alulate v(S; zk), k = 1, ℓ as payo�s,
under assumption, that players hoose ooperative behavior as omponents of their

ontrols.

De�nd the harateristi funtion V (S; zk) in multistage game G(zk), whih
starts in state zk, as sum of oalition S payo�s along the ooperative path

(ȳ(z0), ȳ(z1), . . . , ȳ(zl)) in ℓ− k + 1 stages, starting from k:

V (S; zk) =

ℓ∑

r=k

v(S; zr) =

ℓ∑

r=k

∑

i∈S

∑

j∈Ni(g(zr))∩S

hi(x̄i(zr), x̄j(zr)),

V (S; zℓ) = v(S; zℓ).

The following theorem holds:

Theorem 6. Charateristi funtion v(S; z) in game Γ (z) is supermodular.

4.2. The Shapley Value

Consider as a solution of game Γ (z) the Shapley value ϕ[v] = (ϕ1[v], . . . , ϕn[v]),
(15).

Calulate the di�erene [v(S; z)− v(S \ {i}; z)]:

[v(S; z)− v(S \ {i}); z] =
∑

j∈Ni(g(z))∩S

(hi(x̄i(z), x̄j(z)) + hj(x̄j(z), x̄i(z))).

Substitute alulated above values in the formula of the Shapley value (15)

ϕi[v] =
∑

S⊆N,i∈S

(|S| − 1)!(n− |S|)!
n!

∑

j∈Ni(g(z))∩S

(hi(x̄i(z), x̄j(z)) + hj(x̄j(z), x̄i(z))), i ∈ N.

(66)

This formula does not require the alulating the values of harateristi funtion

for all S ⊂ N . To alulate the omponents of the Shapley value we need to know

only the struture of network g(z).
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4.3. IDP-Core and Strongly Time-Consisteny

As previously MV is set of all imputations G(z0).
Introdue IDP βi = (β0

i , . . . , β
ℓ
i ), i ∈ N , for imputation ξ ∈ I(V ), whih satisfy

ξi =
ℓ∑

r=0

βr
i , i ∈ N. (67)

Consider as optimality priniple subset of the ore for game G(z̄k) � IDP-ore

(Wolf, Zakharov and Petrosian, 2017; Petrosian, Gromova and Pogozhev, 2018)

C(V (S; z̄k)), i. e. set of IDP, whih satis�ed following onditions:

∑

i∈S

βi ≥ V (S; z̄k) =

ℓ∑

r=k

∑

i∈S

∑

j∈Ni(g(zr))∩S

hi(x̄i(zr), x̄j(zr)), S ⊂ N, S 6= N,

(68)

N∑

i=1

βi = V (N ; z̄k) =

ℓ∑

r=k

∑

i∈N

∑

j∈Ni(g(zr))∩N

hi(x̄i(zr), x̄j(zr)), (69)

where βi = (βi
1, . . . , β

i
k, . . . , β

i
ℓ) satisfy following:

∑

i∈S

βk
i ≥ v(S, z̄k) =

∑

i∈S

∑

j∈Ni(g(zk))∩S

hi(x̄i(zk), x̄j(zk)), S ⊂ N, (70)

N∑

i=1

βk
i = v(N, z̄k) =

∑

i∈N

∑

j∈Ni(g(zk))∩N

hi(x̄i(zk), x̄j(zk)). (71)

Suppose, that all C(V (S; z̄k)) 6= ∅.

De�nition 8. Optimality priniple C(V (S; z̄0)) 6= ∅ is strongly time-onsistent in

game G(z̄0), if

1) C(V (S; z̄k)) 6= ∅, k = 0, ℓ;
2) For every imputation x ∈ C(V (S; z̄0)) there exists suh IDP β = (β0, . . . , βℓ),

ξ =
∑ℓ

r=0 βj , suh that

k∑

r=0

βr ⊕ C(V (S; z̄k+1)) ⊂ C(V (S; z̄0)), k = 0, ℓ.

Here symbol ⊕ means, that if a ∈ Rn
, B ⊂ Rn

, then a⊕B = {a+ b : b ∈ B}.

Proposition 6. Optimality priniple C(V (S; z̄0)) is strongly time-onsistent.

4.4. Example

This example is similar to one from the previous setion. Consider the ase with

N = 3, ℓ = 3, i. e. game onsist four stages and starts in state z0. In this state sets

Mi of players, whom player i an o�er a onnetion, are given.

M1 = {2, 3}, M2 = {1, 3}, M3 = {1, 2}.
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Restritions for number of onnetions for every player are also given.

a1 = 1, a2 = 1, a3 = 2.

In state z0 players hoose vetors bi(z0), formed the network g(z0) and pass to the

state z1. In every state zk, k ≥ 1 players hoose ontrols yi(zk) = (bi(zk), xi(zk)),
where bi(zk) � player's regulation onnetions vetor (with omponents 1 and 0),

and xi(zk) is equal to

x1(zk) = x1(z) ∈ X1 = {x11(z), x21(z)},

x2(zk) = x2(z) ∈ X2 = {x12(z), x22(z)}, x3(zk) = x3(z) ∈ X3{x13(z), x23(z)}
i. e. every player i has the same set of ontrol omponents Xi in every state zk.

For all aeptable states zk, k ≥ 1, and all possible strategies payo�s

hi(x̄i(zr), x̄j(zr)) are given in following way: hi(x̄i(zr), x̄j(zr)) and h
′
i(x̄i(zr), x̄j(zr)).

In state z1 game takes plae with payo�s h(x̄i(z1), x̄j(z1)). In state z1 ev-

ery player i ∈ N hoose his omponent of ontrol xi(z1), and if all xi(z1) =
x1i (z1), i ∈ N , then players pass to the state z2, in game, where payo�s are sim-

ilar hi(x̄i(z2), x̄j(z2)). If at least one of omponents xi(z1) = x2i (z1), i ∈ N , then

in state z2 players play game with payo�s h′i(x̄i(z2), x̄j(z2)). Similarly, the pass

to the state z3: if all xi(z1) = x1i (z1), i ∈ N , then in state z3 players use payo�s

hi(x̄i(z3), x̄j(z3)), if at least one of the omponents xi(z1) = x2i (z1), i ∈ N , then

payo�s are h′i(x̄i(z3), x̄j(z3)).
Payo�s hi(x̄i(zr), x̄j(zr)):
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1
1, x̄

1
2) = 4, h1(x̄

1
1, x̄

1
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1
3) = 5,

h1(x̄
2
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1
2) = 3, h1(x̄

2
1, x̄

1
3) = 3, h2(x̄

2
2, x̄

1
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1
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2
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1
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2
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1
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2
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2
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2
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2
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1
2, x̄

1
1) = 4, h3(x̄

1
3, x̄

1
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2) = 5,

h2(x̄
1
2, x̄

2
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1
3, x̄

2
1) = 3, h3(x̄

1
3, x̄

2
2) = 1,

h2(x̄
2
2, x̄

1
1) = 5, h3(x̄

2
3, x̄

1
1) = 1, h3(x̄

2
3, x̄

1
2) = 4,

h2(x̄
2
2, x̄

2
1) = 5, h3(x̄

2
3, x̄

2
1) = 2, h3(x̄

2
3, x̄

2
2) = 1;

payo�s h′i(x̄i(zr), x̄j(zr)):

h′1(x̄
1
1, x̄

1
2) = 8, h′1(x̄

1
1, x̄

1
3) = 6, h′2(x̄

1
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1
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1
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2
3, x̄

2
2) = 4.

In state z0 players hoose their behavior to maximize the joint payo� of all

players:

b1(z0) = (0, 0, 1), b2(z0) = (0, 0, 1), b3(z0) = (1, 1, 0).

As result we have the following network:
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❦
1

❦
2

�
�

❦
3

Fig. 5. Network on the �rst stage

Players have an ability to delete onnetions on all stages, exept the �rst, but

to maximize the joint payo� it is bene�ial for players to be in touh with all

neighbors throughout the game, i. e. bi(z0) = bi(z1) = bi(z2) = bi(z3), for all i ∈ N .

Components of ontrols ȳi(z) for players:

x̄1(z1) = x21, x̄2(z1) = x12, x̄3(z1) = x13,

x̄1(z2) = x11, x̄2(z2) = x22, x̄3(z2) = x13,

x̄1(z3) = x11, x̄2(z3) = x22, x̄3(z3) = x13.

Calulate the values of harateristi funtion v(S; z) in all states on ooperative
path, exept z0, beause on the �rst stage players only form the network and do

not get any payo�s.

S {1} {2} {3} {12} {13} {23} {123}
v(S; z̄1) 0 0 0 6 6 10 16

v(S; z̄2) 0 0 0 14 12 20 32

v(S; z̄3) 0 0 0 14 12 20 32

In state z1 players hoose their ontrols and pass to the next state, whih de-

pends from this hoie. In every state every player has only two alternatives: hoose

ontrols and pass in state where play game Γ (zk) with payo�s hi(x̄i(zk), x̄j(zk)), or
pass to the state with game, where payo�s are h′i(x̄i(zk), x̄j(zk)).

Fig. 6. Tree of all possible states in game

Numbers 1 and 2 above arrows (�g. 6) indiate whih payo�s will be used by

players in the next state: 1 means hi(x̄i(zk), x̄j(zk)), 2 � h′i(x̄i(zk), x̄j(zk)).
Cooperative path in game G(z0): z̄ = (z0, z

1
1 , z

2
2 , z

4
3) = (z̄0, z̄1, z̄2, z̄3). Calulate

the values of harateristi funtion in multistage game G(z0):

S {1} {2} {3} {12} {13} {23} {123}
V (S; z̄3) 0 0 0 14 12 20 32

V (S; z̄2) 0 0 0 28 24 40 64

V (S; z̄1) 0 0 0 34 30 50 80
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Consider an imputation q ∈ C(V (S; z̄1)):





x1 ≥ 0,
x2 ≥ 0,
x3 ≥ 0,

x1 + x2 ≥ 34,
x1 + x3 ≥ 30,
x2 + x3 ≥ 50,

x1 + x2 + x3 = 80.

(72)

As βk in IDP β = (β0, β1, β2, β3) we will take imputations αk ∈ C(v(S; z̄k)),
whih satisfy (70), (71), βk = α, k = 1, 2, 3; β0 set equal to zero, and β1 satis�es

the system 



α1
1 ≥ 0,
α1
2 ≥ 0,
α3 ≥ 0,

α1
1 + α1

2 ≥ 6,
α1
1 + α1

3 ≥ 6,
α1
2 + α1

3 ≥ 10,
α1
1 + α1

2 + α1
3 = 16,

(73)

β2 and β3 satisfy the inequalities, where k = 2, 3:





αk
1 ≥ 0,
αk
2 ≥ 0,
αk
3 ≥ 0,

αk
1 + αk

2 ≥ 14,
αk
1 + αk

3 ≥ 12,
αk
2 + αk

3 ≥ 20,
αk
1 + αk

2 + αk
3 = 32.

(74)

Summing the left and right sides of the inequalities of the last two systems and we

get





q̂1 ≥ 0,
q̂2 ≥ 0,
q̂3 ≥ 0,

q̂1 + q̂2 ≥ 34,
q̂1 + q̂3 ≥ 30,
q̂2 + q̂3 ≥ 50,

q̂1 + q̂2 + q̂3 = 80.

(75)

From last inequality follows, that q̂ ∈ C(V (S; z̄0)). In other words, imputation

from set C(V (S; z̄0)), an be deomposed on the sum of imputations from the

sets C(v(S; z̄k)), k = 1, 2, 3,. This proves strongly time onsisteny of optimality

priniple C(V (S; z̄0)).

5. Conlusion

The paper disusses the results in the �eld of ooperative network games with

pairwise interation. Two-stage and multistage games and various approahes to
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the determination of the harateristi funtion in eah of them are onsidered. The

ooperative solutions, suh as the Shapley value and the ore, are examined and the

properties of their time-onsisteny as well as strongly time-onsisteny are investi-

gated and the onditions for it are found. Speial types of networks are onsidered,

suh as a omplete network, a star-network, and the possibilities for solutions that

give suh geometri strutures are investigated. All results are illustrated by exam-

ples.
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