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Abstra
t This arti
le is an overview of results obtained in the �eld of dy-

nami
 network games with pairwise intera
tion. The paper provides a sum-

mary and analysis of works related to two-stage and multistage nonzero-sum

games based on pairwise intera
tion. The meaning of pairwise intera
tion is

to 
onsider the game as a family of games o

urring on a network between

pairs of players (verti
es of a graph) 
onne
ted to ea
h other by an edge.

The network 
an be set or formed in the �rst stage. In the paper, solutions

of 
ooperative pairwise intera
tion games are also 
onsidered.
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1. Introdu
tion

Cooperative network games is an important part of modern game theory. Net-

works illustrate 
onne
tions between players and their ability to 
ommuni
ate in


oalitions. For the �rst time in the game theory literature, a non-
ooperative form

of pairwise intera
tion in a network was 
onsidered in (Dyer and Mohanaraj, 2011)

meaning dire
t intera
tions between network neighbors. But 
ooperative approa
h

is quite natural and moreover bene�
ial for players as it provides them with a

better out
ome rather than non
ooperative behavior. First 
ooperative interpre-

tation of pairwise intera
tion games was in (Bulgakova and Petrosyan, 2015). So-

lutions of network games with pairwise intera
tions were examined in detail in

(Bulgakova, 2019).

Also of interest are solutions for games with pairwise intera
tion on spe
i�
 net-

works. The geometri
 stru
ture of the network and symmetry make it possible to

simplify some 
omplex formulas and get their simple expli
it form

(Petrosyan, Sedakov and Bulgakova, 2018; Bulgakova and Petrosyan, 2019a).

When 
ooperative behavior is investigated, it is important that players follow

a 
ooperative agreement during the whole 
ourse of the game. If a solution of the


ooperative game is time 
onsistent, players have no reason to deviate from the

a

epted agreement. Conditions for strongly time-
onsisten
e of 
ore in 3-person

games with pairwise intera
tions was studied in (Bulgakova and Petrosyan, 2016).

Also, time 
onsistent 
ooperative solutions for multistage games with spe
ial payo�s

wad 
onsidered in (Kuzyutin and Nikitina, 2017).

Sometimes it is di�
ult to determine the expli
it form of the 
ore and de
ide on

its stability, in this 
ase, subsets of the 
ore are used, whi
h 
an be found in various

ways. For example, as in (Petrosyan and Pankratova, 2018). Also, a spe
ial subset of

⋆
This work was supported by the Russian S
ien
e Foundation (proje
t No.17-11-01079).



96 Mariia A. Bulgakova

the 
ore, the IDP-
ore, was 
onsidered in (Petrosian, Gromova and Pogozhev, 2018;

Wolf, Zakharov and Petrosian, 2017). The adaptation of the IDP-
ore to games

with pairwise intera
tion was 
arried out in (Bulgakova and Petrosyan, 2019b).

In this paper, we analyse and 
ompare the results in the �eld of 
ooperative

network games with pairwise intera
tion.

2. Two-Stage Network Games with Pairwise Intera
tions

Consider a model of two stage 
ooperative network games with pairwise inter-

a
tions (Dyer and Mohanaraj, 2011), when network is not given. So, players should

form a network on the �rst stage. These game was studied in (Bulgakova and Pet-

rosyan, 2015). Let us explain the model.

Let N be a �nite set of players, whi
h 
an make de
isions in two stages, |N | =
n ≥ 2. Denote as z stage of game. The game started in stage z1, where every player
i ∈ N 
hoose his behavior b1i = (b1i1, . . . , b

1
in) � n-dimensional ve
tor with o�ers for


onne
tions to other players (Petrosyan, Sedakov and Bo
hkarev, 2013).

We will use following notations: Mi ⊆ N \ {i} � those players, whom player

i ∈ N 
an o�er a 
onne
tion, wherein ai ∈ {0, . . . , n − 1} is maximal number of


onne
tions for player i, whi
h he 
an maintain simultaneously. If Mi = N \ {i},
it means, that player i 
an o�er 
onne
tions for all players. In 
ase, if ai = n − 1,
player i 
an maintain any number of 
onne
tions.

For every behavior b1i there exists su
h subset of realized o�ers Qi ⊂Mi, whi
h

satisfy following restri
tions

b1ij =

{
1, if j ∈ Qi,
0, other,

(1)

with additional 
ondition ∑

j∈N

b1ij ≤ ai. (2)

Condition (2) means, that number of possible 
onne
tions is restri
ted for every

player. Also, obviously, |Qi| ≤ ai.
Conne
tion ij is formed if and only if, b1ij = b1ji = 1. Formed 
onne
tions ij


reate edges of network g, where vertex are players, i.e., if b1ij = b1ji = 1, then there

is an edge between i and j in network g.
Denote by Ni(g) or simply Ni neighbours of player i in network g, i.e. Ni(g) =

{j ∈ N \ {i} : ij ∈ g}. As result of the �rst stage we have network g(b11, . . . , b
1
n).

After network is formed players move to stage z2(g), whi
h depend on network. On

se
ond stage z2(g), neighbours on network play pairwise in simultaneous bimatrix

games, after that players get their payo�s and the game ends. In other words, we

have two stage game Γz1(g), whi
h is spe
ial 
ase of multistage nonzero-sum games.

In 
onsidered 
ase strategy of player is a rule, whi
h for every player determine his

set of neighbours on the �rst stage, namely ve
tor b1i , and his behavior in every

bimatrix game on se
ond stage 
orresponding to network, whi
h is formed on the

�rst stage � b2i . Denote by ui = (b1i , b
2
i ), i ∈ N , strategy of player i in two-stage

game Γz1(g). Cal
ulate payo� of player i as hi(z2), where (z1, z2) is a path, realized
by strategy pro�le u = (u1(·), . . . , un(·)) in game Γz1(g). Be
ause on the �rst stage

players do not get their payo�s, payo� fun
tion in game Γz1(g) with starting position
z1 is determined by following expression:

Ki(z1;u) = Ki(z1;ui(·), . . . , un(·)) = hi(z2).
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2.1. Chara
teristi
 Fun
tion

On se
ond stage game represents a set of pairwise simultaneous bimatrix games

{γij} between neighbours in network. Namely, let i ∈ N, j ∈ Ni. Then player i (the
�rst player) play with player j (the se
ond player)in bimatrix game γij with payo�

matri
es Aij and Cij of players i and j respe
tively.

Aij =




aij11 aij12 · · · aij1k
aij21 aij22 · · · aij2k
.

.

.

.

.

.

.

.

.

.

.

.

aijm1 a
ij
m2 · · · aijmk


 (3)

Cij =




cij11 cij12 · · · cij1k
cij21 cij22 · · · cij2k
.

.

.

.

.

.

.

.

.

.

.

.

cijm1 c
ij
m2 · · · cijmk


 (4)

apl ≥ 0, cpl ≥ 0, p = 1, . . . ,m, l = 1, . . . , k.

Constants m and k 
oin
ide for all i and j. When we have game γji, i.e. player
i is the se
ond player, he has payo� matrix Cji = AT

ij , and player j has matrix

Aji = CT
ij . Denote by Γ

S
z2(g) subgame of game Γ , whi
h takes pla
e on se
ond stage

z2. Consider this game in 
ooperative form. Find 
hara
teristi
 fun
tion for every

subset (
oalition) S ⊂ N as lower (maxmin) value for two person zero-sum game

of 
oalition S and 
oalition N \ S, based on game ΓS
z2(g). Payo� of 
oalition S is

sum payo�s of players from 
oalition S. Super-additivity of 
hara
teristi
 fun
tion

follows from its de�nition. Note, that

wi
ij = max

p
min
ℓ

aijpℓ, p = 1, . . . ,m; ℓ = 1, . . . , k, (5)

wj
ij = max

ℓ
min
p

cjipℓ, p = 1, . . . ,m; ℓ = 1, . . . , k. (6)

and v(z2;S), S ⊂ N , is lower value of zero-sum game ΓS
z2(g).

Theorem 1 (Bulgakova, 2019). Fun
tion v(z2;S) is determined by following

expressions:

v(z2; {∅}) = 0, (7)

v(z2; {i}) =
∑

j∈Ni

wi
ij , (8)

v(z2;S)=
1

2

∑

i∈S

∑

j∈Ni∩S

max
p,ℓ

(aijpℓ + cijpℓ) +
∑

i∈S

∑

k∈Ni\S

wi
ik, S ⊂ N, (9)

v(z2;N) =
1

2

∑

i∈N

∑

j∈Ni

max
p,ℓ

(aijpℓ + cijpℓ). (10)



98 Mariia A. Bulgakova

Consider a 
ooperative form of two-stage game Γz1(g). Suppose, that players

hose strategies ūi, i ∈ N , that maximize their total payo� in game Γz1(g), i. e.

∑

i∈N

Ki(z1; ū1, . . . , ūn) = max
u

∑

i∈N

Ki(z1;u1, . . . , un).

Strategy pro�le ū = (ū1, . . . , ūn) we will 
all 
ooperative behavior, and 
orrespond-

ing path (z̄1, z̄2) � 
ooperative path.

As previously, for 
oalition S ⊆ N de�ne 
hara
teristi
 fun
tion v(z̄1;S) as

maxmin value in two person zero-sum game between 
oalition S (maximizing player)

and 
oalition N \ S (minimizing player). For minimazing player the best way of

behavor is to not 
reate all the 
onne
tions with maximizing player (be
ause of

positive payo�s for ea
h 
onne
tion). Payo� of 
oalition S is sum of payo�s of its

members.

Denote by v(z1;S), S ⊂ N , lower value of zero-sum game Γz1(g).

Theorem 2. Fun
tion v(z1;S) is de�ned in following way:

v(z̄1; {i}) = 0, v(z̄1; ∅) = 0, (11)

v(z̄1;S) =
1

2

∑

i∈S

∑

j∈Ni(g)∩S

max
p,ℓ

(aijpℓ + cijpℓ), S ⊂ N, (12)

v(z̄1;N) = v(z̄2;N) =
1

2

∑

i∈N

∑

j∈Ni

max
p,ℓ

(aijpℓ + cijpℓ). (13)

2.2. Convex Game

De�nition 1. Chara
teristi
 fun
tion is 
alled supermodular and 
orresponding

game 
alled 
onvex (Shapley, 1971), if for any 
oalition X ⊂ N and Y ⊂ N holds

inequality:

v(X ∪ Y ) ≥ v(X) + v(Y )− v(X ∩ Y ). (14)

Theorem 3 (Bulgakova, 2019). In subgame ΓS
z2(g) 
hara
teristi
 fun
tion (8)-

(10) is supermodular.

This property guarantees non-emptiness of the 
ore and that the Shapley value

belongs to the 
ore.

2.3. Star-Network

Consider a spe
i�
 stru
ture of network, and solution of 
ooperative game on

this network. We will study network, whi
h 
ontains n players, where player 1 is


entral player with n− 1 
onne
tions, and all other n− 1 players are 
onne
ted by

edge only with a 
entral player.

The Shapley Value. Denote the set of imputations by

M[v(z̄t)] = {x = (x1, . . . , xn) :

n∑

i=1

xi = v(z̄t;N), xi ≥ v(z̄t; {i}), i ∈ N}.



Dynami
 Cooperative Network Games with Pairwise intera
tions 99

Consider as a solution of star-network the Shapley value (Shapley, 1953) and

denote it as ϕ[v(z̄t)] = (ϕ1[v(z̄t)], . . . , ϕn[v(z̄t)]), t = 1, 2, where for every player

i ∈ N

ϕi[v(z̄t)] =
∑

S ⊆ N,
i ∈ S

(|S| − 1)!(n− |S|)!
n!

[v(z̄t;S)− v(z̄t;S \ {i})]. (15)

We say that the 
ooperative solution M[v(z̄1)] in the two-stage game is time


onsistent if for any imputation ξ[v(z̄1)] ∈ M[v(z̄1)] there exists an imputation

ξ[v(z̄2)] ∈ M[v(z̄2)] su
h that

ξ[v(z̄1)] = ξ[v(z̄2)], (16)

Thus the Shapley value ϕ[v(z̄1)] is a time 
onsistent 
ooperative solution if

ϕ[v(z̄1)] = ϕ[v(z̄2)], (17)

otherwise the Shapley value is time in
onsistent.

One has to mention that the 
ooperative version of the game has been devel-

oped for a general 
ase of pairwise intera
tions when any (feasible) network 
an be

formed at the �rst stage of the game. For this general 
ase, we have found analyti
al

expressions for the 
hara
teristi
 fun
tions (8), (11) whi
h are used to 
al
ulate the

Shapley value by (15) and verify the 
orresponding time 
onsisten
y 
ondition 17.

Sin
e the 
al
ulation of the Shapley value is a 
hallenging task for a large number

of players and an arbitrary network, in the following we will show how to simplify

formula 15 for a network of a spe
ial type � a star. This type of the network will

provide us with an analyti
al expression for the Shapley value whi
h is mu
h easier

to interpret and analyze. Nevertheless, expressions (8), (11), (15) 
an help us to

�nd the Shapley value for any network at least numeri
ally. From (15) we note that

to 
ompute a 
omponent of the Shapley value, we need to list all 2n subsets of

the player set N ; moreover for large networks we may be limited in 
omputational


apabilities to 
al
ulate n! as this number 
an be extremely large. In 
ontrast, for a

star network we will need only O(n) 
al
ulations and will not need to list all subsets

of N .

Be
ause the Shapley value belongs to the 
ore in subgame ΓS
z2(g), then its sig-

ni�
an
e in this 
lass of problems in
reases.

Now formalize 
onstru
tion of star-network on the �rst stage of game. Suppose

following, letM1 = N \{1}, a1 = n−1 andMi = {1}, ai = 1 for i 6= 1. To maximize

total payo�, players should 
hose on the �rst stage following behaviors:

b1i =

{
(0, 1, . . . , 1), i = 1,
(1, 0, . . . , 0), i 6= 1.

(18)

Behavior (18) formed a star network on the �rst stage with 
entral player 1, (�g.

1), where |N1| = n − 1 and |Ni| = 1, i 6= 1. For star-network 
al
ulate the 
har-

a
teristi
 fun
tion in view of spe
i�
 stru
ture of network. Transform expressions

(8-10) 
orresponding to a star-network:

v(z2; {∅}) = 0, (19)

v(z2; {i}) =
{∑

j 6=i

w1
1j , i = 1,

wi
1i, i 6= 1.

(20)
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Fig. 1. Star-network

v(z2;S) =





∑
j∈N1∩S

maxp,ℓ(a
1j
pℓ + c1jpℓ) +

∑
k∈N1\S

w1
1k, S ⊂ N, i ∈ S,

0, i /∈ S.
(21)

Similarly, we transform the expressions (11)-(13)

v(z̄1; {i}) = 0, v(z̄1; ∅) = 0, (22)

v(z̄1;S) =

{ ∑
j∈N1∩S

maxp,ℓ(a
1j
pℓ + c1jpℓ), S ⊂ N, i ∈ S,

0, i /∈ S.
(23)

The network has 
entral symmetry and formula (15) 
an be simpli�ed.

Proposition 1 (Petrosyan, Sedakov and Bulgakova, 2018). For star-network

with 
entral player 1, 
omponents of the Shapley value ϕ[v(z̄t)], t = 1, 2, has the

form:

ϕi[v(z̄t)] =





1

2


v(z̄t; {1}) +

∑

j 6=1

(m1j − v(z̄t; {j}))


 , i = 1,

1

2

[
v(z̄t; {i}) +m1i − w1

1i

]
, i 6= 1.

(24)

where

mij =





max
p = 1, . . . ,m
ℓ = 1, . . . , k

(aijpℓ + bijpℓ), if i and j are neighbors,

0, otherwise.

(25)

Time-Consisten
y of the Shapley Value in a Star-Network Consider time-


onsisten
y of Shapley value in a star-network. Remind that the Shapley value

ϕ[v(z̄1)] is time-
onsistent 
ooperative solution, if

ϕ[v(z̄1)] = ϕ[v(z̄2)]. (26)

Proposition 2 (Petrosyan, Sedakov and Bulgakova, 2018). For star-network

with 
entral player 1, the Shapley value is time-
onsistent, when w1i
1 = wi1

i for any

player i 6= 1.

Conditions for time-
onsisten
y w1i
1 = wi1

i , i 6= 1, from (2) for star-network 
an

be interpreted in following way: 
entral player 1 and any other player i 6= 1 should

have similar minimal guaranteed payo� (maxmin value) in bimatrix game γ1i whi
h
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they play as neighbours. If at least for one player j w1j
1 6= wj1

j , then the Shapley

value will be time-in
onsistent. However, in the latter 
ase, a 
ooperative agreement

may be rea
hed at the expense of IDP � imputation distribution pro
edure. Re-

mind the de�nition:

De�nition 2. Fun
tion βi
, i ∈ N 
alled imputation distribution pro
edure (IDP)

x ∈ M (see Petrosyan and Danilov, 1979), if

xi = β1
i + β2

i , i ∈ N. (27)

Proposition 3. For star-network with 
entral player 1, time-
onsistent IDP β =
{β1

i , β
2
i }i∈N for the Shapley value has the form:

β1
i =





1

2

∑

i6=1

[
wi

i1 − w1
1i

]
, i = 1,

1

2

[
w1

1i − wi
i1

]
, i 6= 1,

(28)

and

β2
i =





1

2

∑

i6=1

[
w1

1i +m1i − wi
i1

]
, i = 1,

1

2

[
wi

i1 +m1i − w1
1i

]
, i 6= 1.

(29)

From an e
onomi
 perspe
tive, it is preferable for players to have a nonnegative

IDP, su
h that de
omposing the Shapley value over two game stages, ea
h player

re
eives her nonnegative payments at either of the two game stages. However the

IDP of the Shapley value mentioned in the latter proposition 
an be nonnegative

only in 
ase when w1i
1 = wi1

i for ea
h i 6= 1. This equality results in the time


onsisten
y of the Shapley value whi
h has already been dis
ussed.

Three examples below demonstrate that the Shapley value being an imputation

in a 
ooperative two-stage game with pairwise intera
tions 
an be both time 
onsis-

tent and time in
onsistent despite players' asymmetry in their neighbors. The �rst

example show the time 
onsisten
y of the Shapley value in an important 
lass of

bimatrix games.

Prisoner's Dilemma Consider the 
ase, when n players play the same bimatrix

game γ with their neighbors, i.e., Aij = A, Cij = C for all i ∈ N , j ∈ Ni where

A = CT =

(
b 0

a+ b a

)
, 0 < a < b.

Here b is the payo� to ea
h 
onne
ted player if they both �
ooperate�, while if

the both �defe
t� ea
h of them gets a. As an example, one 
an 
onsider a data

transmission problem in a network whose nodes have to �
oordinate� their a
tions

trying to a
hieve 
ertain performan
e (for example, the number of pa
kets sent, a

pro�t from sending pa
kets).

For the given game using (5), (6), (25) we obtain: wij
i = wij

j = a and

mij =

{
2b, if i and j are neighbors,
0, otherwise,

(30)
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for any two players i, j ∈ N .

To �nd the Shapley value ϕ[v(z̄2)], we �rst determine 
hara
teristi
 fun
tion

v(z̄2;S) for all S ⊆ N . Following (8), we obtain

v(z̄2;S) =





2b(n− 1), S = N,
2b(|S| − 1) + (n− |S|)a, S ⊂ N, 1 ∈ S,
|S|a, S ⊂ N, 1 /∈ S,
0, S = ∅.

(31)

Using the formula for the Shapley value (24) adapted to the star network, we obtain

ϕ1[v(z̄2)] =
n− 1

2
[a+ 2b− a] = b(n− 1),

ϕi[v(z̄2)] =
1

2
[a+ 2b− a)] = b, i 6= 1.

Similarly, to �nd the Shapley value ϕ[v(z̄1)], we determine 
hara
teristi
 fun
tion

v(z̄1;S) for all S ⊆ N . Following (11), we have

v(z̄1;S) =





2b(n− 1), S = N,
2b(|S| − 1), S ⊂ N, 1 ∈ S,
0, S ⊂ N, 1 /∈ S or S = ∅.

(32)

Again, using the formula for the Shapley value (24) adapted to the star network,

we get ϕ[v(z̄1)]:

ϕ1[v(z̄1)] =
2b(n− 1)

2
= b(n− 1),

ϕi[v(z̄1)] =
2b

2
= b, i 6= 1.

Comparing ϕ[v(z̄1)] and ϕ[v(z̄2)], we note that they 
oin
ide and hen
e the Shapley

value is time 
onsistent. What is interesting, this result does not depend upon

spe
i�
 values of a and b. The only restri
tion whi
h has to be imposed is 0 < a < b,
and it is natural for this 
lass of games.

The time 
onsisten
y of the Shapley value 
an also be shown with the use of

Proposition 2 instead of applying dire
t 
al
ulations. Indeed, we see that wi1
i =

w1i
1 = a for ea
h i 6= 1 what implies its time 
onsisten
y.

Example In the next example we demonstrate the time in
onsisten
y of the Shap-

ley value. Consider a 4-person game with N = {1, 2, 3, 4} in whi
h players form a

star network under a 
ooperative agreement (see Fig. 2). Let simultaneous bimatrix

games γ12, γ13 and γ14 be de�ned by means of the following payo� matri
es:

(A12, C12) =
(2, 2) (3, 0)
(5, 1) (1, 2)

, (A13, C13) =
(3, 1) (4, 2)
(6, 2) (2, 3)

,

(A14, C14) =
(1, 3) (3, 2)
(6, 6) (4, 1)

.

To 
ompute the Shapley values ϕ[v(z̄1)] and ϕ[v(z̄2)], we use the 
orresponding
formulas (9), (11) for 
hara
teristi
 fun
tions v(z̄2; ·) and v(z̄1; ·), respe
tively, and



Dynami
 Cooperative Network Games with Pairwise intera
tions 103

Fig. 2. A star with four players

the simpli�ed formula (24). Hen
e we get:

w1
12 = 2, w1

13 = 3, w1
14 = 4,

w2
21 = 1, w3

31 = 2, w4
41 = 3,

m12 = 6, m13 = 8, m14 = 12,
(33)

and therefore

v(z̄1; {1}) = 0, v(z̄2; {1}) = 9,
v(z̄1; {2}) = 0, v(z̄2; {2}) = 1,
v(z̄1; {3}) = 0, v(z̄2; {3}) = 2,
v(z̄1; {4}) = 0, v(z̄2; {4}) = 3,
v(z̄1;N) = 26, v(z̄2;N) = 26.

(34)

Thus the Shapley values are given by

ϕ[v(z̄1)] = (13, 3, 4, 6),

ϕ[v(z̄2)] = (29/2, 5/2, 7/2, 11/2).

We observe that the Shapley value ϕ[v(z̄1)] in the two-stage game di�ers from the

Shapley value ϕ[v(z̄2)] in the one-stage game starting at the se
ond stage. This

means time in
onsisten
y of the Shapley value. Sin
e ϕ2[v(z̄2)] = 5/2 < ϕ2[v(z̄1)] =
3, player 2 
an break the 
ooperative agreement as she 
an get less (here we re
all

that players do not re
eive payo�s at the network formation stage). Similarly, it is

also true for player 3: ϕ3[v(z̄2)] = 7/2 < ϕ3[v(z̄1)] = 4 and player 4: ϕ4[v(z̄2)] =
11/2 < ϕ4[v(z̄1)] = 6. However introdu
ing a time-
onsistent IDP of the Shapley

value ϕ[v(z̄1)] over two stages determined with the use of Proposition 3 for the star

network, we obtain

β1
1 = −3/2, β1

2 = 1/2, β1
3 = 1/2, β1

4 = 1/2,
β2
1 = 29/2, β2

2 = 5/2, β2
3 = 7/2, β2

4 = 11/2,

and therefore implementing it, the 
ooperation of players will be sustainable. Thus

re
eiving β1
i at the �rst stage and β2

i at the se
ond stage, player i ∈ N will get

ϕi[v(z̄1)] in two stages whi
h is exa
tly her 
ooperative payo� pres
ribed by the

Shapley value ϕ[v(z̄1)].

2.4. The Core in Two-Stage Three-Person Game

Consider three-person-game with pairwise intera
tions on any network and take

as solution the 
ore. Find 
onditions for strongly time-
onsisten
y (Petrosyan, 1995)

of 
ore in this game.

De�ne the 
ore C(z̄) ⊂ Mv in game Γ and suppose, that for every z1, z2,
C(z̄) 6= ∅.
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De�nition 3. The 
ore in game Γ is set of imputations x = (x1, . . . , xn), whi
h
satis�ed following 
onditions:

∑

i∈S

xi ≥ v(z̄1;S) (35)

for all S ⊂ N , and

N∑

i=1

xi = v(z̄1;N). (36)

For subgame Γz2 we have following values of 
hara
teristi
 fun
tion:

v(z̄2; ∅) = 0, v(z̄2; {1}) = w1
13 + w1

12, v(z̄2; {2}) = w2
12 + w2

23, v(z̄2; {3}) = w3
13 + w3

23,

v(z̄2; {12}) = max
p,l

(a12pl + c12pl ) + w1
13 + w2

23,

v(z̄2; {13}) = max
p,l

(a13pl + c13pl ) + w1
12 + w3

23,

v(z̄2; {23}) = max
p,l

(a23pl + c23pl ) + w2
12 + w3

13,

v(z̄2;N) = max
p,l

(a12pl + b21pl ) + max
p,l

(a13pl + b31pl ) + max
p,l

(a23pl + b32pl ).

Imputation x belongs to the 
ore C(z̄2), when following inequalities holds:





x1 + x2 ≥ v(z̄2; {12}),
x1 + x3 ≥ v(z̄2; {13}),
x2 + x3 ≥ v(z̄2; {23}),

x1 ≥ v(z̄2; {1}),
x2 ≥ v(z̄2; {2}),
x3 ≥ v(z̄2; {3}),

x1 + x2 + x3 = v(z̄2;N).

(37)

In view of (37) and values of 
hara
teristi
 fun
tion, we have:





x1 + x2 ≥ max
pl

(a12pl + c12pl ) + w2
23 + w1

13,

x1 + x3 ≥ max
pl

(a13pl + c13pl ) + w1
12 + w3

23,

x2 + x3 ≥ max
pl

(a23pl + c23pl ) + w2
12 + w3

13,

x1 + x2 + x3 = v(z̄2;N).

(38)

To simplify the above expressions, use following notations:

E12 = max
pl

(a12pl + c12pl ), D1 = w2
23 + w1

13,

E13 = max
pl

(a13pl + c13pl ), D2 = w1
12 + w3

23,

E23 = max
pl

(a23pl + c23pl ), D3 = w2
12 + w3

13.

Then system of inequalities (38), whi
h de�nes the stru
ture of the 
ore C(z̄2)

an be rewritten in following way:





x1 + x2 ≥ E12 +D1,
x1 + x3 ≥ E13 +D2,
x2 + x3 ≥ E23 +D3,

x1 + x2 + x3 = v(z̄2;N).

(39)
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Consider the 
ore C(z̄1) of two-stage game Γ





x′1 + x′2 ≥ v(z̄1; {12}),
x′1 + x′3 ≥ v(z̄1; {13}),
x′2 + x′3 ≥ v(z̄1; {23}),
x′1 + x′2 + x′3 = v(z̄1;N).

(40)

Corresponding to (40) and 
hara
teristi
 fun
tion, we have:





x′1 + x′2 ≥ max
pl

(a12pl + c12pl ),

x′1 + x′3 ≥ max
pl

(a13pl + c13pl ),

x′2 + x′3 ≥ max
pl

(a23pl + c23pl ),

x′1 + x′2 + x′3 = v(z̄1;N)).

(41)

Using above notations, we will have followings:





x′1 + x′2 ≥ E12,
x′1 + x′3 ≥ E13,
x′2 + x′3 ≥ E23,

x′1 + x′2 + x′3 = v(z̄1;N).

(42)

Strongly Time-Consisten
y

De�nition 4. The 
ore C(z1) is strongly time-
onsistent in game Γ
(Petrosyan, 1995), if

1. C(z̄1) 6= ∅, C(z̄2) 6= ∅
2. For every imputation x ∈ C(z1) there exists su
h IDP β = (β1, β2), that x =
β1 + β2 and

C(z̄1) ⊃ β1 ⊕ C(z̄2).

Here symbol ⊕ de�nes as a ∈ Rn
, B ⊂ Rn

, then a⊕B = {a+ b : b ∈ B}.
In a

ordan
e to (42) we get:




β1
1 + β1

2 + β2
1 + β2

2 ≥ E12,
β1
1 + β1

2 + β3
1 + β3

2 ≥ E13,
β2
1 + β2

2 + β3
1 + β3

2 ≥ E23.
(43)

For strongly time-
onsisten
y these inequalities must satis�es with following addi-

tional restri
tions: 


β1
2 + β2

2 ≥ E12 +D1,
β1
2 + β3

2 ≥ E13 +D2,
β2
2 + β3

2 ≥ E23 +D3.
(44)

Fix β1, then for strongly time-
onsisten
y we should ful�l 
onditions (44) for β2.
And β2 must satisfy (43). Also, from v(z̄2;N) = v(z̄1;N), follows β1

1 + β2
1 + β3

1 = 0.
If 
onditions (43) satisfy under minimal values β1

2 , β
2
2 , β

3
2 from 
onditions (44), then

they satisfy for all other values. We have:





−β3
1 + E12 +D1 ≥ E12,

−β2
1 + E13 +D2 ≥ E13,

−β1
1 + E23 +D3 ≥ E23.

(45)

Thus, we have 
onditions for strongly time-
onsisten
y of the 
ore C(z̄1) in game

Γ .
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Theorem 4 (Bulgakova and Petrosyan, 2016). Suppose, that following inequal-

ities are ful�lled: 


β3
1 ≤ D1

β2
1 ≤ D2

β1
1 ≤ D3

(46)

(i.e there exists β1 whi
h satis�ed (4)), then the 
ore C(z̄1) is strongly time-
onsistent.

3. Multistage Games with Pairwise Intera
tions

In (Bulgakova and Petrosyan, 2019a), the results obtained for the two-stage

games are generalized to the 
ase of multistage games.

Let abstra
t spa
e Z is given and 
alled spa
e of states. In every state z ∈ Z

n-person nonzero-sum game Γ (z) is determined. This is network game with net-

work g(z), where players are vertexes and edges are 
onne
tions (as in two-stage


ase). Game Γ (z) is a set of simultaneous pairwise bimatrix games {γij(z)} between
neighbours by network, i ∈ N, j ∈ N, i 6= j.

Let i ∈ N, j ∈ N, i 6= j. Then i plays with j in bimatrix game γij(z) with payo�

matri
es Aij(z) and Cij(z), for players i and j, respe
tively.

Aij(z) =




aij11(z) aij12(z) · · · aij1r(z)
aij21(z) aij22(z) · · · aij2r(z)

.

.

.

.

.

.

.

.

.

.

.

.

aijm1(z) a
ij
m2(z) · · · aijmr(z)


 (47)

Cij(z) =




cij11(z) cij12(z) · · · cij1r(z)
cij21(z) cij22(z) · · · cij2r(z)

.

.

.

.

.

.

.

.

.

.

.

.

cijm1(z) c
ij
m2(z) · · · cijmr(z)


 (48)

aijpq(z) ≥ 0, cijpq(z) ≥ 0, p = 1, . . . ,m, q = 1, . . . , r, i, j ∈ N.

Constants m and k 
oin
ide for all i and j. When we have game γji(z), i.e.
player i is the se
ond player, he has payo� matrix Cji(z) = AT

ij(z), and player j has

matrix Aji(z) = CT
ij(z). To simplify the following expressions we suppose, that m

and r 
oin
ide for all i and j and all z.
Consider the strategy of player i in game Γ (z). It is a ve
tor

ui(z) = (u1i (z), . . . , u
j
i (z), . . . u

n
i (z)), where u

j
i is strategy of player i in bimatrix

game γij(z). So, we have, that strategy of player i is a ve
tor 
onsisting from rows

(pure strategies), 
hosen by him in bimatrix games γij(z). Denote by

u(z) = (u1(z), . . . , un(z)) strategy pro�le in game Γ (z). Strategy of player j is

a ve
tor 
onsisting from 
olumns in 
orresponding bimatrix games γij(z). De�ne
payo� of player i in game Γ (z) in following way:

Ki(z) =

n∑

j=1,j 6=i

aij
uj
i (z)u

i
j(z)

(z).

Consider game Γ (z) in 
ooperative form. As in two-stage 
ase, introdu
e 
hara
-

teristi
 fun
tion v(S; z), S ⊂ N as lower (maxmin) value in two-person zero-sum
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game between S and N \ S, based on game Γ (z)

ωi
ij(z) = max

p
min
q

aijpq(z), p = 1, . . . ,m; q = 1, . . . , r,

ωj
ij(z) = max

q
min
p

cijpq(z), p = 1, . . . ,m; q = 1, . . . , r.

Lemma 1. Chara
teristi
 fun
tion v(S; z) is de�ned in the following way

v({∅}; z) = 0, (49)

v({i}; z) =
∑

j∈N,j 6=i

ωi
ij(z), (50)

v(S; z) =
1

2

∑

i∈S

∑

j∈S,j 6=i

max
p,q

(aijpq(z) + cijpq(z)) +
∑

i∈S

∑

j∈N\S

ωi
ij(z), S ⊂ N, (51)

v(N ; z) =
1

2

∑

i∈N

∑

j∈N,j 6=i

max
p,q

(aijpq(z) + cijpq(z)).

Suppose, that in state z ∈ Z in game Γ (z) players 
hoose the strategy pro�le:

ui(z) = (u1i (z), . . . , u
n
i (z)). Then the game moves to the state z′, where game Γ (z′)

takes pla
e, with simultaneous bimatrix games with matri
es, depended from strate-

gies 
hosen on previous state z. Thus the state z′ depends on state z and strategies

in this state. We 
an introdu
e fun
tion T : Z×∏n
i=1 Ui → Z by formula:

z′ = T (z;u1(z), u2(z), . . . , un(z)).

Multistage game G(z) develops in following way. Game G(z1) starts in state z1. In
state z1 game Γ (z1) is take pla
e, players 
hoose their strategies u1(z1), u2(z1), . . . ,
un(z1), then they pass to the state z2 = T (z1;u1(z1), u2(z1), . . . , un(z1)). In state

zk players play game Γ (zk), 
hoose strategies u1(zk), u2(zk), . . . , un(zk) and pass to

the state zk+1 = T (zk;u1(zk), u2(zk), . . . , un(zk)). Game ends on stage ℓ in state

zℓ. Then, after 
hoosing strategies on every stage of game path z1, z2, . . . , zk, . . . , zℓ
is realized. Strategy in this multistage game u(·) = u{(z)}, is a set of players'

strategies, de�ned in every state z ∈ Z. It follows from above, that any strategy

pro�le u(·) = {u1(·), . . . , un(·)} de�nes only one path, and, therefore a payo� for

every player, as sum of his payo�s in games, along the realized path.

Ki(u(·)) =
ℓ∑

k=1

n∑

j=1,j 6=i

aij
uj
i (zk)u

i
j(zk)

(zk).

Note, that set of all paths in multistage game G(z) is �nite. Hen
e, the set of states
is also �nite. Denote this set by Z ⊂ Z Consider spe
ial 
ase, when v(N ; z) is the
same for all z ∈ Z. Introdu
e fun
tion w(S), S ⊂ N :

w(S) = max
z

v(S; z).
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De�ne also 
hara
teristi
 fun
tion V (S; zk) for multistage game G(zk), whi
h starts

in state zk. Fun
tion V (S; zk) 
an be 
al
ulated using the following analogue of

Bellman equation:

V (S; zk−1) = max
ui,i∈S

[ min
uj ,j∈N\S

(
∑

i∈S

K
zk−1

i (u1, . . . un) + V (S; zk))] =

= max
ui,i∈S

[ min
uj ,j∈N\S

(∑

i∈S

K
zk−1

i (u1, . . . un) + V (S;T (zk−1;u(zk−1)))
)
];

V (S; zℓ) = v(S; zℓ).

De�ne

W (S; zk) = (l − k + 1)w(S)

where ℓ is number of stages in game G(z1).
The following inequality takes pla
e (see Petrosyan and Pankratova, 2018):

W (S, zk) ≥ V (S, zk), S ⊂ N.

Remind that one-stage game Γ (z) is 
onvex and 
hara
teristi
 fun
tion v(S; z),
S ⊂ N is supermodular. So, we have:

v(X ∪ Y ; z) ≥ v(X ; z) + v(Y ; z)− v(X ∩ Y ; z).

Take the maximum by z ∈ Z in the left and right sides of the inequality

max
z
v(X ∪ Y ; z) ≥ max

z
v(X ; z) + max

z
v(Y ; z)−max

z
v(X ∩ Y ; z).

Sin
e maxz v(S; z) = w(S), we have:

w(X ∪ Y ) ≥ w(X) + w(Y )− w(X ∩ Y ).

The fun
tion w(S) is supermodular.

Lemma 2. Fun
tion w(S) in game Γ (z) is supermodular.

3.1. Optimality Prin
iple

De�ne the set of all imputations MW in game G(z1) as

MW = {x = (x1, . . . , xn) :

n∑

i=1

xi =W (N ; z1), xi ≥W ({i}; z1), i ∈ N}.

And by optimality prin
iple any subset of this set MW .

Choose in one-stage game Γ (z) as optimality prin
iple an analogue of the 
ore

� the set Ĉ(w(S)), 
ontaining all imputations x = (x1, . . . , xn), whi
h satisfy 
on-

ditions:

∑

i∈S

xi ≥ w(S), S ⊂ N,

N∑

i=1

xi = w(N).
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In similar way de�ne set Ĉ(W (S; z)) in multistage game G(z) as set of imputa-

tions, whi
h satisfy following 
onditions:

∑

i∈S

xi ≥W (S; z), S ⊂ N, (52)

N∑

i=1

xi =W (N ; z). (53)

Theorem 5. For any x ∈ Ĉ(W (S; zk)), x = (x1, . . . , xn) and any k = 1, l, the
following equality holds:

xi = (ℓ − k + 1)x′i, where x′i ∈ Ĉ(w(S)), i = 1, n.

3.2. Strongly Time-Consisten
y

Suppose, that players 
hose strategies ū(·) = (ū1(·), . . . , ūn(·)), whi
h maximize

the total payo� in G(z1):

∑

i∈N

Ki(z1; ū1, . . . , ūn) = max
u

∑

i∈N

Ki(z1;u1, . . . , un).

The path (z̄1, z̄2, . . . , z̄ℓ), 
orresponding to this strategies is 
alled 
ooperative path

(z1 = z̄1). Rewrite de�nition of IDP (2) for the game under 
onsideration.

De�nition 5. Ve
tor βi
, i ∈ N is 
alled imputation distribution pro
edure (IDP)

if for x ∈MW (see Petrosyan and Danilov, 1979),

xi =

ℓ∑

k=1

βi
k, i ∈ N. (54)

De�nition 6. Optimality prin
iple Ĉ(W (S; z̄1)) is strongly time-
onsistent in game

G(z̄1) (see Petrosyan, 1995), if

1. Ĉ(W (S; z̄k)) 6= ∅, k = 1, ℓ

2. For every imputation x ∈ Ĉ(W (S; z̄1)) there exists su
h IDP β = (β1, β2, . . . , βℓ),
su
h that

k∑

j=1

βj ⊕ Ĉ(W (S; z̄k+1)) ⊂ Ĉ(W (S; z̄1)), k = 1, ℓ− 1.

Here symbol ⊕ means, that if a ∈ Rn
, B ⊂ Rn

, then a⊕B = {a+ b : b ∈ B}.

Proposition 4. Optimality prin
iple Ĉ(W (S; z̄1)), k = 1, ℓ in game G(z̄1) is

strongly time-
onsistent.
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3.3. General Case

Now 
onsider general 
ase, when values of v(N ; z) do not 
oin
ide for di�erent

z. Introdu
e fun
tion L(z̄k) is joint payo� of maximal 
oalition N in state z̄k ∈ z̄,
where z̄ is 
ooperative path in game G(z̄1).

L(z̄k) =
1

2

∑

i∈N,j∈N,i6=j

(aij(z̄k) + aji(z̄k)). (55)

Suppose, that w(S) < minz̄k L(z̄k), S 6= N . And 
onsider fun
tion w(S; z̄k),
w(S; z̄k) = w(S), w(N, z̄k) = L(z̄k). Let x be any imputation in game G(z̄1).
Consider as optimality prin
iple an analogue of the 
ore in game G(z̄k) 
alled

Ĉ(W (S; z̄k)); the following set

∑

i∈S

xi ≥ (ℓ− k + 1)w(S) =W (S; z̄k), S ⊂ N, S 6= N, (56)

N∑

i=1

xi =
ℓ∑

t=k

L(z̄k) = Ŵ (N ; z̄k). (57)

Suppose, that all Ĉ(W (S; z̄k)) 6= ∅.

De�nition 7. Optimality prin
iple Ĉ(W (S; z̄1)) is strongly time-
onsistent in game

G(z̄1), if

1). Ĉ(W (S; z̄k)) 6= ∅, k = 1, ℓ
2). For every imputation x ∈ Ĉ(W (S; z̄1)) there exists su
h IDP β = (β1, . . . , βℓ),

x =
∑ℓ

j=1 βj that

k∑

j=1

βt ⊕ Ĉ(W (S; z̄k+1)) ⊂ Ĉ(W (S; z̄1)), k = 1, ℓ.

Proposition 5. Optimality prin
iple Ĉ(W (S; z̄1)) is strongly time-
onsisten
e.

Example Consider an example with N = 3, k = 3, i.e. 3-person three-stage game

starting from state z1. In state z1 we have 6 matri
es, 3 matri
es of the �rst type,

and 3 of se
ond type. In state z1 all bimatrix games take pla
e with matri
es of

the �rst type. In state z1 every player i ∈ N 
hoose his strategy ui(z1). If all
uji (z1) = 1, i ∈ N, j ∈ N \ {i}, then players pass to the state z2, where they

play bimatrix games with same payo� matri
es of �rst type. If at least one of the


omponents uji (z1) = 2, i ∈ N, j ∈ N \ {i}, then in state z2 players play bimatrix

games with the se
ond type of matri
es. Similarly, the transition to the state z3: if
all uji (z2) = 1, i ∈ N, j ∈ N \ {i}, then players in state z3 use �rst type of matri
es.

If at least one of the 
omponents uji (z2) = 2, i ∈ N, j ∈ N \ {i}, then in state z3
players use matri
es of the se
ond type. Matri
es of the �rst type are:

A12(z) =

(
9 0
1 1

)
, C12(z) =

(
9 1
0 1

)
, A13(z) =

(
10 1
2 7

)
,

C13(z) =

(
8 0
0 7

)
, A23(z) =

(
16 2
1 1

)
, C23(z) =

(
10 1
1 0

)
.
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Matri
es of the se
ond type are:

Ã12(z) =

(
8 5
10 16

)
, C̃12(z) =

(
10 13
6 6

)
, Ã13(z) =

(
8 12
9 10

)
,

C̃13(z) =

(
10 12
11 5

)
, Ã23(z) =

(
8 8
13 9

)
, C̃23(z) =

(
12 5
6 9

)
.

In state z1 network with 
omplete graph is given To maximize the joint payo�

✍✌
✎☞
1

❅
❅

✍✌
✎☞
2

�
�
✍✌
✎☞
3

Fig. 3. Network on the �rst stage

players should to be in tou
h with all neighbours throughout the game. Strategies

of players:

u1(z1) = (0, 2, 1), u2(z1) = (1, 0, 2), u3(z1) = (2, 2, 0),

u1(z2) = (0, 2, 1), u2(z2) = (2, 0, 1), u3(z2) = (2, 1, 0),

u1(z3) = (0, 2, 1), u2(z3) = (2, 0, 1), u3(z3) = (2, 1, 0).

Cal
ulate the values ωij(z):
ω1
12(z1) = 1, ω2

12(z1) = 1, ω1
13(z1) = 1, ω3

13(z1) = 0,
ω2
23(z1) = 2, ω3

23(z1) = 1,
ω1
12(z2) = 10, ω2

12(z2) = 6, ω1
13(z2) = 9, ω3

13(z2) = 10,
ω2
23(z2) = 9, ω3

23(z2) = 6.
Values ωi

ij(z3) will 
oin
ide with ωi
ij(z2) or with ωi

ij(z1), sin
e there are only

two types of matri
es in the game.

Cal
ulate the values of 
hara
teristi
 fun
tions v(S; z), w(S; zk):

S {1} {2} {3} {12} {13} {23} {123}
v(S; z̄1) 2 3 1 21 20 27 62

v(S; z̄2) 19 15 16 40 40 36 66

v(S; z̄3) 19 15 16 40 40 36 66

w(S; z̄1) 19 15 16 40 40 36 58

w(S; z̄2) 19 15 16 40 40 36 66

w(S; z̄3) 19 15 16 40 40 36 66

Game starting from state z1, where players 
hoose their strategies and pass to

the new state, whi
h depends from this 
hoi
e. In every state players have only two

alternatives: after 
hoosing strategies, pass to the game with �rst type of payo�

matri
es, or pass to the se
ond type of payo� matri
es.

Numbers 1 and 2 above the arrows on Fig. 4 indi
ate what type of matri
es the

players will play in the next state. Cal
ulate the values of fun
tion L in nodes zk:

L(z11) = 58 L(z12) = 58 L(z13) = 62 L(z22) = 66 L(z23) = 66
L(z33) = 62 L(z43) = 66
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Fig. 4. Tree of all possible states of game.

Cooperative path in game G(z1) is z̄ = (z11 , z
2
2 , z

4
3) = (z̄1, z̄2, z̄3). Cal
ulate the

values of 
hara
teristi
 fun
tion in multistage game G(z1):

S {1} {2} {3} {12} {13} {23} {123}
V (S; z̄3) 19 15 16 40 40 36 66

V (S; z̄2) 38 30 32 80 80 72 132

V (S; z̄1) 40 33 33 101 100 99 190

W (S; z̄3) 19 15 16 40 40 36 66

W (S; z̄2) 38 30 32 80 80 72 132

W (S; z̄1) 57 45 48 120 120 108 190

Condition w(S, zk) < minz̄k L(zk), S 6= N holds:

max
S

w(S, zk) = 40 < min
z̄k

L(zk) = 58.

Consider an imputation x ∈ Ĉ(W (S; z̄1))





x1 ≥ 57,
x2 ≥ 45,
x3 ≥ 48,

x1 + x2 ≥ 120,
x1 + x3 ≥ 120,
x2 + x3 ≥ 108,

x1 + x2 + x3 = 190.

(58)

And any imputation ξ ∈ Ĉ(W (S; z̄2))





ξ1 ≥ 38,
ξ2 ≥ 30,
ξ3 ≥ 32,

ξ1 + ξ2 ≥ 80,
ξ1 + ξ3 ≥ 80,
ξ2 + ξ3 ≥ 72,

ξ1 + ξ2 + ξ3 = 132.

(59)

Take as βk in IDP β = (β1, β2, β3) an imputation α ∈ Ĉ(w(S; z̄1)), (βk = α, k =
1, 2, 3).
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



α1 ≥ 19,
α2 ≥ 15,
α3 ≥ 16,

α1 + α2 ≥ 40,

α1 + α≥
3 40,

α2 + α3 ≥ 36,
α1 + α2 + α3 = 58.

(60)

Constru
t the imputation x̂ = α+ ξ





x̂1 ≥ 57,
x̂2 ≥ 45,
x̂3 ≥ 48,

x̂1 + x̂2 ≥ 120,
x̂1 + x̂3 ≥ 120,
x̂2 + x̂3 ≥ 108,

x̂1 + x̂2 + x̂3 = 190.

(61)

It follows from last inequality, that x̂ ∈ Ĉ(W (S; z̄1)), whi
h proves strongly time-


onsisten
y of Ĉ(W (S; z̄1)).

4. Nonzero-Sum Games with Pairwise Intera
tions

In this part we will 
onsider general nonzero-sum game with pairwise intera
-

tions. Previously we 
onsidered only bimatrix games.

Consider (Bulgakova and Petrosyan, 2019b) multistage nonzero-sum game with

�nite number of stages. As before, on the �rst stage players 
hose their behaviors

and formed a network. On next stages simultaneous non-zero sum games will be

played. Payo�s depend on 
ontrols, 
hosen on ea
h 
urrent stage. Players 
an 
hange

the network on every stage ex
ept the �rst, deleting some 
onne
tions.

4.1. The Model

In every state zk ∈ Z, k > 0 players 
an 
hange the network by deleting some


onne
tions, so we denote the network as g(zk), to show the network dependen
y

on state.

Denote as Ni(g(z0)) neighbours of player i in network g(z0), i. e. Ni(g(z0)) =
{j ∈ N \ {i} : ij ∈ g(z0)}.

When network g(z0) is formed, the game passed to the state z1(g(z0)), whi
h is

determined by network g(z0). In state z1(g(z0)) players 
an delete some 
onne
tions,

whi
h were formed early. So, network g(z0) in general will 
hange to g(z1) and

we may have new set of neighbours Ni(g(z1)). On network g(z1) players play the

simultaneous nonzero-sum game Γ (z1).
On the se
ond stage z1 player i, i = 1, n, 
hose 
ontrol yi(z1) = (bi(z1), xi(z1))

from set of 
ontrols Yi, whi
h, unlike the �rst stage z0, 
ontains an additional 
om-

ponent xi(z1) � behavior in game Γ (z1). Where bi(z1) is ve
tor with 
omponents

0 or 1, de�ned in following way:

bij(z1) =

{
1, save 
onne
tion ij,
0, delete 
onne
tion ij,

(62)
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i. e. player on se
ond stage 
an delete some 
onne
tions but has no abilities to 
reate

new 
onne
tions. Component xi(z1) of 
ontrol yi(z1) = (bi(z1), xi(z1)) is behavior
of player i in game Γ (z1) 
hosen from set Xi(z1), in state z1.

Let y(z1) = (y1(z1), . . . , yn(z1)) be a strategy pro�le in game Γ (z1). Player's
payo� i in game Γ (z1) is:

Hi(z1) =
∑

j∈Ni(g(z1))

hi(yi(z1), yj(z1)),

where g(z1) is network, 
orresponding to strategy pro�le y(z1). Fun
tions

hi(xi(z1), xj(z1)) ≥ 0 are given for all i ∈ N and all pairs ij, i. e. all edges of

network g(z1) and all possible states z ∈ Z.

Players i ∈ N 
hose 
ontrols (y1(zk−1), . . . , yn(zk−1)) in state zk−1 ∈ Z in game

Γ (zk−1). Result of this 
hoi
e is transition to state zk, where Γ (zk) is played, with
payo�s hi(xj(zk), xi(zk)), depended on 
ontrols, 
hosen in state zk. We may de�ned

a transition T : Z× Y1 × Y2 × . . .× Yn → Z by formula

zk = T (zk−1; y1(zk−1), y2(zk−1), . . . , yn(zk−1)), k = 1, ℓ. (63)

The, fun
tion T uniquely de�nes state zk, whi
h follows after state zk−1, if

players 
hose 
ontrols y1(zk−1), y2(zk−1), . . . , yn(zk−1).
Consider multistage game G(z), whi
h develops in following way. Game G(z0)

starts in state z0. In state z0 network g(z0) is formed, after that players pass to state

z1. In state zk−1 players 
hose 
ontrols y1(zk−1), y2(zk−1), . . . , yn(zk−1), play game

Γ (zk−1) and pass to state zk = T (zk−1; y1(zk−1), y2(zk−1), . . . , yn(zk−1)). Game

ends on stage ℓ + 1 in state zℓ. Thus, after 
hoosing 
ontrols on every state of the

game the path z0, z1, . . . , zk, . . . , zℓ is realized.
State zk is 
alled a

eptable, if there exists the sequen
e of 
ontrols and the

sequen
e of states z0, z1, . . . zk, k ≤ ℓ generated by it, de�ned by formula (63), su
h

that zk = z.
Strategy in multistage game: yi(·), i ∈ N , is a rule, whi
h for every a

eptable

state z asso
iates 
omponents bi(z), xi(z) of 
ontrol in this state, i. e. the 
hoi
e of


onne
tions for deleting, and 
hoi
e of behavior xi(z) in game Γ (z). It the follows
from above that any strategy pro�le y(·) = {y1(·), . . . , yn(·)} de�nes only one path

in game, and, hen
e payo� of every player as sum of his payo�s in games, realized

along the path.

Hi(y(·)) =
ℓ∑

k=1

∑

j∈Ni(g(z))

hi(yi(zk), yj(zk)).

The set of all paths in game G(z) is �nite. So, the set of all a

eptable states

also is �nite. Denote it as Z ⊂ Z.

Suppose, that players 
hoose 
ontrols ȳi(z), i ∈ N , that maximize their joint

payo� in game G(z), i. e.

ℓ∑

k=1

∑

i∈N

Hi(ȳ1(zk), . . . , ȳn(zk)) = max
y

ℓ∑

k=1

∑

i∈N

Hi(y1(zk), . . . , yn(zk)). (64)

Strategy pro�le ȳ = (ȳ1, . . . , ȳn) is 
alled 
ooperative behavior in gameG(z), and
path, 
orresponding to 
ontrols ȳi(z), i ∈ N , (z̄0, z̄1, . . . , z̄ℓ) is 
alled 
ooperative

path (z0 = z̄0).
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Consider one-stage game Γ (z) in any state z ∈ Z in 
ooperative form and

de�ned 
hara
teristi
 fun
tion v(S; z), S ⊂ N , for every subset (
oalition) S ⊂ N
in following way:

v(∅; z) = 0,

v({i}; z) = 0,

v({ij}; z) =
{
hi(x̄i(z); x̄j(z)) + hj(x̄j(z); x̄i(z)), if j ∈ Ni(g(z)),

0, other,

(65)

v(S; z) =
∑

i∈S

∑

j∈Ni(g(z))∩S

hi(x̄i(z); x̄j(z)),

v(N ; z) =
∑

i∈N

∑

j∈Ni(g(z))

hi(x̄i(z); x̄j(z)),

where x̄i(z), x̄j(z) 
al
ulated 
orresponding to (64).

We see that to 
al
ulate values of 
hara
teristi
 fun
tion, we should �nd 
ooper-

ative behavior in game G(z0) and after that 
al
ulate v(S; zk), k = 1, ℓ as payo�s,
under assumption, that players 
hoose 
ooperative behavior as 
omponents of their


ontrols.

De�nd the 
hara
teristi
 fun
tion V (S; zk) in multistage game G(zk), whi
h
starts in state zk, as sum of 
oalition S payo�s along the 
ooperative path

(ȳ(z0), ȳ(z1), . . . , ȳ(zl)) in ℓ− k + 1 stages, starting from k:

V (S; zk) =

ℓ∑

r=k

v(S; zr) =

ℓ∑

r=k

∑

i∈S

∑

j∈Ni(g(zr))∩S

hi(x̄i(zr), x̄j(zr)),

V (S; zℓ) = v(S; zℓ).

The following theorem holds:

Theorem 6. Chara
teristi
 fun
tion v(S; z) in game Γ (z) is supermodular.

4.2. The Shapley Value

Consider as a solution of game Γ (z) the Shapley value ϕ[v] = (ϕ1[v], . . . , ϕn[v]),
(15).

Cal
ulate the di�eren
e [v(S; z)− v(S \ {i}; z)]:

[v(S; z)− v(S \ {i}); z] =
∑

j∈Ni(g(z))∩S

(hi(x̄i(z), x̄j(z)) + hj(x̄j(z), x̄i(z))).

Substitute 
al
ulated above values in the formula of the Shapley value (15)

ϕi[v] =
∑

S⊆N,i∈S

(|S| − 1)!(n− |S|)!
n!

∑

j∈Ni(g(z))∩S

(hi(x̄i(z), x̄j(z)) + hj(x̄j(z), x̄i(z))), i ∈ N.

(66)

This formula does not require the 
al
ulating the values of 
hara
teristi
 fun
tion

for all S ⊂ N . To 
al
ulate the 
omponents of the Shapley value we need to know

only the stru
ture of network g(z).
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4.3. IDP-Core and Strongly Time-Consisten
y

As previously MV is set of all imputations G(z0).
Introdu
e IDP βi = (β0

i , . . . , β
ℓ
i ), i ∈ N , for imputation ξ ∈ I(V ), whi
h satisfy

ξi =
ℓ∑

r=0

βr
i , i ∈ N. (67)

Consider as optimality prin
iple subset of the 
ore for game G(z̄k) � IDP-
ore

(Wolf, Zakharov and Petrosian, 2017; Petrosian, Gromova and Pogozhev, 2018)

C(V (S; z̄k)), i. e. set of IDP, whi
h satis�ed following 
onditions:

∑

i∈S

βi ≥ V (S; z̄k) =

ℓ∑

r=k

∑

i∈S

∑

j∈Ni(g(zr))∩S

hi(x̄i(zr), x̄j(zr)), S ⊂ N, S 6= N,

(68)

N∑

i=1

βi = V (N ; z̄k) =

ℓ∑

r=k

∑

i∈N

∑

j∈Ni(g(zr))∩N

hi(x̄i(zr), x̄j(zr)), (69)

where βi = (βi
1, . . . , β

i
k, . . . , β

i
ℓ) satisfy following:

∑

i∈S

βk
i ≥ v(S, z̄k) =

∑

i∈S

∑

j∈Ni(g(zk))∩S

hi(x̄i(zk), x̄j(zk)), S ⊂ N, (70)

N∑

i=1

βk
i = v(N, z̄k) =

∑

i∈N

∑

j∈Ni(g(zk))∩N

hi(x̄i(zk), x̄j(zk)). (71)

Suppose, that all C(V (S; z̄k)) 6= ∅.

De�nition 8. Optimality prin
iple C(V (S; z̄0)) 6= ∅ is strongly time-
onsistent in

game G(z̄0), if

1) C(V (S; z̄k)) 6= ∅, k = 0, ℓ;
2) For every imputation x ∈ C(V (S; z̄0)) there exists su
h IDP β = (β0, . . . , βℓ),

ξ =
∑ℓ

r=0 βj , su
h that

k∑

r=0

βr ⊕ C(V (S; z̄k+1)) ⊂ C(V (S; z̄0)), k = 0, ℓ.

Here symbol ⊕ means, that if a ∈ Rn
, B ⊂ Rn

, then a⊕B = {a+ b : b ∈ B}.

Proposition 6. Optimality prin
iple C(V (S; z̄0)) is strongly time-
onsistent.

4.4. Example

This example is similar to one from the previous se
tion. Consider the 
ase with

N = 3, ℓ = 3, i. e. game 
onsist four stages and starts in state z0. In this state sets

Mi of players, whom player i 
an o�er a 
onne
tion, are given.

M1 = {2, 3}, M2 = {1, 3}, M3 = {1, 2}.



Dynami
 Cooperative Network Games with Pairwise intera
tions 117

Restri
tions for number of 
onne
tions for every player are also given.

a1 = 1, a2 = 1, a3 = 2.

In state z0 players 
hoose ve
tors bi(z0), formed the network g(z0) and pass to the

state z1. In every state zk, k ≥ 1 players 
hoose 
ontrols yi(zk) = (bi(zk), xi(zk)),
where bi(zk) � player's regulation 
onne
tions ve
tor (with 
omponents 1 and 0),

and xi(zk) is equal to

x1(zk) = x1(z) ∈ X1 = {x11(z), x21(z)},

x2(zk) = x2(z) ∈ X2 = {x12(z), x22(z)}, x3(zk) = x3(z) ∈ X3{x13(z), x23(z)}
i. e. every player i has the same set of 
ontrol 
omponents Xi in every state zk.

For all a

eptable states zk, k ≥ 1, and all possible strategies payo�s

hi(x̄i(zr), x̄j(zr)) are given in following way: hi(x̄i(zr), x̄j(zr)) and h
′
i(x̄i(zr), x̄j(zr)).

In state z1 game takes pla
e with payo�s h(x̄i(z1), x̄j(z1)). In state z1 ev-

ery player i ∈ N 
hoose his 
omponent of 
ontrol xi(z1), and if all xi(z1) =
x1i (z1), i ∈ N , then players pass to the state z2, in game, where payo�s are sim-

ilar hi(x̄i(z2), x̄j(z2)). If at least one of 
omponents xi(z1) = x2i (z1), i ∈ N , then

in state z2 players play game with payo�s h′i(x̄i(z2), x̄j(z2)). Similarly, the pass

to the state z3: if all xi(z1) = x1i (z1), i ∈ N , then in state z3 players use payo�s

hi(x̄i(z3), x̄j(z3)), if at least one of the 
omponents xi(z1) = x2i (z1), i ∈ N , then

payo�s are h′i(x̄i(z3), x̄j(z3)).
Payo�s hi(x̄i(zr), x̄j(zr)):

h1(x̄
1
1, x̄

1
2) = 4, h1(x̄

1
1, x̄

1
3) = 5, h2(x̄

1
2, x̄

1
3) = 5,

h1(x̄
2
1, x̄

1
2) = 3, h1(x̄

2
1, x̄

1
3) = 3, h2(x̄

2
2, x̄

1
3) = 1,

h1(x̄
1
1, x̄

2
2) = 5, h1(x̄

1
1, x̄

2
3) = 1, h2(x̄

1
2, x̄

2
3) = 4,

h1(x̄
2
1, x̄

2
2) = 5, h1(x̄

2
1, x̄

2
3) = 2, h2(x̄

2
2, x̄

2
3) = 1,

h2(x̄
1
2, x̄

1
1) = 4, h3(x̄

1
3, x̄

1
1) = 5, h3(x̄

1
3, x̄

1
2) = 5,

h2(x̄
1
2, x̄

2
1) = 3, h3(x̄

1
3, x̄

2
1) = 3, h3(x̄

1
3, x̄

2
2) = 1,

h2(x̄
2
2, x̄

1
1) = 5, h3(x̄

2
3, x̄

1
1) = 1, h3(x̄

2
3, x̄

1
2) = 4,

h2(x̄
2
2, x̄

2
1) = 5, h3(x̄

2
3, x̄

2
1) = 2, h3(x̄

2
3, x̄

2
2) = 1;

payo�s h′i(x̄i(zr), x̄j(zr)):

h′1(x̄
1
1, x̄

1
2) = 8, h′1(x̄

1
1, x̄

1
3) = 6, h′2(x̄

1
2, x̄

1
3) = 12,

h′2(x̄
2
1, x̄

1
2) = 3, h′1(x̄

2
1, x̄

1
3) = 5, h′2(x̄

2
2, x̄

1
3) = 10,

h′1(x̄
1
1, x̄

2
2) = 7, h′1(x̄

1
1, x̄

2
3) = 4, h′2(x̄

1
2, x̄

2
3) = 5,

h′1(x̄
2
1, x̄

2
2) = 4, h′1(x̄

2
1, x̄

2
3) = 3, h′2(x̄

2
2, x̄

2
3) = 4,

h′2(x̄
1
2, x̄

1
1) = 8, h′3(x̄

1
3, x̄

1
1) = 6, h′3(x̄

1
3, x̄

1
2) = 12,

h′2(x̄
1
2, x̄

2
1) = 3, h′3(x̄

1
3, x̄

2
1) = 5, h′3(x̄

1
3, x̄

2
2) = 10,

h′2(x̄
2
2, x̄

1
1) = 7, h′3(x̄

2
3, x̄

1
1) = 4, h′3(x̄

2
3, x̄

1
2) = 5,

h′2(x̄
2
2, x̄

2
1) = 4, h′3(x̄

2
3, x̄

2
1) = 3, h′3(x̄

2
3, x̄

2
2) = 4.

In state z0 players 
hoose their behavior to maximize the joint payo� of all

players:

b1(z0) = (0, 0, 1), b2(z0) = (0, 0, 1), b3(z0) = (1, 1, 0).

As result we have the following network:



118 Mariia A. Bulgakova

❦
1

❦
2

�
�

❦
3

Fig. 5. Network on the �rst stage

Players have an ability to delete 
onne
tions on all stages, ex
ept the �rst, but

to maximize the joint payo� it is bene�
ial for players to be in tou
h with all

neighbors throughout the game, i. e. bi(z0) = bi(z1) = bi(z2) = bi(z3), for all i ∈ N .

Components of 
ontrols ȳi(z) for players:

x̄1(z1) = x21, x̄2(z1) = x12, x̄3(z1) = x13,

x̄1(z2) = x11, x̄2(z2) = x22, x̄3(z2) = x13,

x̄1(z3) = x11, x̄2(z3) = x22, x̄3(z3) = x13.

Cal
ulate the values of 
hara
teristi
 fun
tion v(S; z) in all states on 
ooperative
path, ex
ept z0, be
ause on the �rst stage players only form the network and do

not get any payo�s.

S {1} {2} {3} {12} {13} {23} {123}
v(S; z̄1) 0 0 0 6 6 10 16

v(S; z̄2) 0 0 0 14 12 20 32

v(S; z̄3) 0 0 0 14 12 20 32

In state z1 players 
hoose their 
ontrols and pass to the next state, whi
h de-

pends from this 
hoi
e. In every state every player has only two alternatives: 
hoose


ontrols and pass in state where play game Γ (zk) with payo�s hi(x̄i(zk), x̄j(zk)), or
pass to the state with game, where payo�s are h′i(x̄i(zk), x̄j(zk)).

Fig. 6. Tree of all possible states in game

Numbers 1 and 2 above arrows (�g. 6) indi
ate whi
h payo�s will be used by

players in the next state: 1 means hi(x̄i(zk), x̄j(zk)), 2 � h′i(x̄i(zk), x̄j(zk)).
Cooperative path in game G(z0): z̄ = (z0, z

1
1 , z

2
2 , z

4
3) = (z̄0, z̄1, z̄2, z̄3). Cal
ulate

the values of 
hara
teristi
 fun
tion in multistage game G(z0):

S {1} {2} {3} {12} {13} {23} {123}
V (S; z̄3) 0 0 0 14 12 20 32

V (S; z̄2) 0 0 0 28 24 40 64

V (S; z̄1) 0 0 0 34 30 50 80
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Consider an imputation q ∈ C(V (S; z̄1)):





x1 ≥ 0,
x2 ≥ 0,
x3 ≥ 0,

x1 + x2 ≥ 34,
x1 + x3 ≥ 30,
x2 + x3 ≥ 50,

x1 + x2 + x3 = 80.

(72)

As βk in IDP β = (β0, β1, β2, β3) we will take imputations αk ∈ C(v(S; z̄k)),
whi
h satisfy (70), (71), βk = α, k = 1, 2, 3; β0 set equal to zero, and β1 satis�es

the system 



α1
1 ≥ 0,
α1
2 ≥ 0,
α3 ≥ 0,

α1
1 + α1

2 ≥ 6,
α1
1 + α1

3 ≥ 6,
α1
2 + α1

3 ≥ 10,
α1
1 + α1

2 + α1
3 = 16,

(73)

β2 and β3 satisfy the inequalities, where k = 2, 3:





αk
1 ≥ 0,
αk
2 ≥ 0,
αk
3 ≥ 0,

αk
1 + αk

2 ≥ 14,
αk
1 + αk

3 ≥ 12,
αk
2 + αk

3 ≥ 20,
αk
1 + αk

2 + αk
3 = 32.

(74)

Summing the left and right sides of the inequalities of the last two systems and we

get





q̂1 ≥ 0,
q̂2 ≥ 0,
q̂3 ≥ 0,

q̂1 + q̂2 ≥ 34,
q̂1 + q̂3 ≥ 30,
q̂2 + q̂3 ≥ 50,

q̂1 + q̂2 + q̂3 = 80.

(75)

From last inequality follows, that q̂ ∈ C(V (S; z̄0)). In other words, imputation

from set C(V (S; z̄0)), 
an be de
omposed on the sum of imputations from the

sets C(v(S; z̄k)), k = 1, 2, 3,. This proves strongly time 
onsisten
y of optimality

prin
iple C(V (S; z̄0)).

5. Con
lusion

The paper dis
usses the results in the �eld of 
ooperative network games with

pairwise intera
tion. Two-stage and multistage games and various approa
hes to
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the determination of the 
hara
teristi
 fun
tion in ea
h of them are 
onsidered. The


ooperative solutions, su
h as the Shapley value and the 
ore, are examined and the

properties of their time-
onsisten
y as well as strongly time-
onsisten
y are investi-

gated and the 
onditions for it are found. Spe
ial types of networks are 
onsidered,

su
h as a 
omplete network, a star-network, and the possibilities for solutions that

give su
h geometri
 stru
tures are investigated. All results are illustrated by exam-

ples.
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