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Abstra
t Di�eren
e and di�erential Sta
kelberg games of opinion 
ontrol

on marketing networks are 
onsidered. The prin
ipal allo
ates �nan
ial re-

sour
es to the �rms for marketing purposes. It is supposed that the stru
ture

of a target audien
e des
ribed by a weighted dire
ted graph is already de-

termined in the stage of network analysis, and marketing 
ontrol a
tions are

applied only to the members of strong subgroups (opinion leaders). Condi-

tions of homeostasis (phase 
onstraints) whi
h re�e
t the requirements of

sustainable management are introdu
ed additionally. The Sta
kelberg equi-

libria are found analyti
ally. It is shown that the interests of the prin
ipal

and the �rms are 
ompletely 
ompatible.
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1. Introdu
tion

The basi
 model of in�uen
e in a so
ial network is a weighted dire
ted graph

where verti
es represent the members of the network (basi
 agents), and ar
s de-

s
ribe their mutual in�uen
e. Ea
h vertex is as
ribed a real value (an opinion

of this agent) whi
h is a fun
tion of time, and ea
h ar
 is as
ribed a 
onstant

real value (weight) whi
h 
hara
terizes a degree of in�uen
e of an agent to an-

other (or trust of the latter to the former). Besides, there are one or several in-

�uen
e agents (�rms) whi
h exert impa
t to the basi
 agents in their (in�uen
e

agents) interests (Chkhartishvili et al., 2019). An approa
h 
lose to ours is used in

(Sedakov and Zhen, 2019; Zhen, 2019).

This paper represents formulations and solutions of the game theoreti
 models

of opinion 
ontrol in so
ial groups with a given network stru
ture of the intera
-

tions. The models are interpreted in (not unique) marketing terms. It is supposed

that there is a 
oordinating body whi
h determines the �rms' marketing budgets.

Thus, the Sta
kelberg games of the type "one prin
ipal - several agents" are 
on-

sidered. It is also supposed that in the stage of network analysis the target au-

dien
e is already segmented into strong subgroups (opinion leaders) and satellites

⋆
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(Agieva et al., 2019). Then the 
ontrol a
tions are restri
ted by the set of members

of the strong subgroups that redu
es the marketing expenditures essentially.

The obje
tive of the 
ontrol impa
t is maximization of the sum of opinions

of all agents at the whole period from t=1 till t=T. The impa
t in 
losed-loop

strategies is exerted to the 
urrent opinions of the members of strong subgroups.

A

ordingly to the requirements of sustainable management, the state ve
tor of the


ontrolled dynami
al system must belong to a 
ertain domain of the spa
e of states

(homeostasis 
onditions) (Ougolnitsky, 2011).

The dynami
s of the 
ontrolled system (opinions of the agents) is des
ribed

by di�eren
e of di�erential equations. Respe
tively, the payo� fun
tionals of the

prin
ipal and the agents are or sum, or integral of their 
urrent payo� fun
tions.

An introdu
tion of the dis
rete or 
ontinuous time are 
omplementary approa
hes

whi
h permit to re�e
t di�erent e�e
ts in real systems, and it is rational to use

both types of the models. Thus, both di�eren
e and di�erential Sta
kelberg games

with several agents are studied. The best response of the agents is de�ned as a Nash

equilibrium in their game in strategi
 form. The di�eren
e models are analyzed by

indu
tion on the number of game periods, and the di�erential models are studied by

means of the Hamilton-Ja
obi-Bellman equations. For the 
onsideration of budget


onstraints the Lagrange multipliers method is used.

The key problem in hierar
hi
al systems is the 
oordination of interests of di�er-

ent 
ontrol levels. The most widespread formulation of this problem is a 
omparison

of the so
ially optimal out
ome of the game with out
omes of the egoisti
 behav-

ior of the players (the problem of ine�
ien
y of equilibria) (Nisan et al., 2007). In

this paper the index of system 
ompatibility is used for the 
hara
teristi
 of the


oordination of interests. It is a fra
tion in whi
h the numerator is a value of the

prin
ipal's payo� in the worst Nash equilibrium in the game of the agents, and the

denominator is the value of her globally maximal payo� (Sukhinov et al., 2020).

For the solution of the problems with the homeostasis 
ondition we use the fol-

lowing approa
h. First, we solve a basi
 optimization problem without this 
ondition

and �nd the optimal strategies of the players. In the basi
 model both prin
ipal and

agents maximize the summary opinions of the target audien
e, and the prin
ipal

determines the marketing budgets of the agents. Given the optimal strategies and

the homeostasis 
ondition (the sum of the state variables should not ex
eed a given

value x∗), we suppose that the in�uen
e matrix A is sto
hasti
 (from the right).

This assumption permits to abstra
t from the intera
tion of the basi
 agents. In this


ase the multipli
ation by the matrix A from the left does not 
hange the sum of


omponents of the state ve
tor. Then the algorithm 
onsists in optimal in
reasing

of the sum of the state variables up to the level x∗, and then to do nothing unless

the period of 
onsideration �nishes.

However, this assumption is too strong. The standard assumption in the 
ontrol

problems on networks is that the matrix A is sto
hasti
 from the left. The matrix

sto
hasti
 from the left has also a Frobenius eigenvalue equal to one, and a positive

Frobenius eigenve
tor 
orresponding to this value. By means of the diagonal matrix

Ξ with the 
omponents of this Frobenius eigenve
tor on the main diagonal, we 
an

perform the 
onjun
tion operation and move from the initial in�uen
e matrix A
to the similar matrix P whi
h is sto
hasti
 from the right. Making a substitution

of the state variables by the transform matrix Ξ, we redu
e the initial problem

with the in�uen
e matrix A to the problem with the sto
hasti
 matrix P in the new
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oordinates. Solving this problem and making the inverse transform of the variables,

we re
eive the solution of the initial problem.

The payment for this transform 
onsists in a small 
hange of the problem formu-

lation. The initial homeostasis 
ondition

∑n
j=1 xj ≤ x∗ takes the form

∑n
j=1 zjxj ≤

x∗, where zj are 
omponents of the Frobenius eigenve
tor of the matrix A. Though
these two formulations are not equivalent, they do not di�er essentially. In fa
t, in

the initial formulation we 
ould take instead of x∗ the value x/
∑n

j=1 zj, and the

degree of the resulting values of the state variables remains the same. Besides, now

we have to maximize not simply the sum

∑n
j=1 xj of the values of state variables but

the proje
tion of the demand ve
tor to the Frobenius eigenve
tor of the matrix A.
In other words, we maximize only the summary demand

∑n
j=1 zjxj along a general

dire
tion of the mutual in�uen
es of the agents as it is done with a standard good

in the Leontief-Sra�a model (Leontief, 1987; Sra�a, 1960; Sra�a, 1962).

We use this approa
h both in the dis
rete and 
ontinuous time. Respe
tively, the

paper 
onsists of four parts. In the Se
tions 2 and 3 we study di�eren
e Sta
kelberg

game theoreti
 models of opinion 
ontrol in whi
h the prin
ipal should provide that

a given limit value of the summary opinion not be ex
eeded. In the Se
tion 2 the

problem is solved for the sto
hasti
 in�uen
e matrix A, and in the Se
tion 3 this

strong assumption is substituted by a weaker standard assumption that the matrix

A is sto
hasti
 from the left. The values of the system 
ompatibility index are


al
ulated. They are equal to one that witnesses about an ideal 
oordination of the

modeled system. It appears that for the prin
ipal it is not advantageous to allo
ate

to the agents more resour
es than they need from the point of view of their rational

behavior. In the Se
tions 4 and 5 we analyze di�erential Sta
kelberg game theoreti


models of opinion 
ontrol with the homeostasis 
ondition by the 
ompletely similar

s
heme. The Se
tion 6 
on
ludes.

2. Di�eren
e Sta
kelberg Game with a Constraint on the Sum of State

Variables. Case of the Sto
hasti
 (from the Right) Matrix A

2.1. The Problem Statement

The model has the form

J0 =

T∑

t=0

δt




n∑

j=1

xtj −
m∑

i=1

rti


→ max, (1)

rti ≥ 0,
m∑

i=1

rti ≤ R, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (2)

x∗ ≤
n∑

j=1

xtj ≤ R, t = 0, 1, 2, . . . , T − 1, T, (3)

Ji =

T∑

t=0

δt




n∑

j=1

(xtj − siju
i,t
j )


→ max, (4)

n∑

j=1

ui,tj ≤ rti , ui,tj ≥ 0, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (5)
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xt+1
j =

m∑

i=1

bij

√
ui,tj +

n∑

l=1

aljx
t
l , x0j = xj0, j = 1, 2, . . . , n, (6)

sij =

{
1, if bij > 0,
0, if bij = 0.

(7)

Here n � a number of basi
 agents (a number of target audien
e), m � a number

of 
ontrol agents (
ompeting �rms), R � a total marketing budget of the leader, T �

a length of the game, J0, Ji � the payo� fun
tionals of the leader and the followers

(
ontrol agents) respe
tively, rti � a marketing budget allo
ated to the i-th follower

by the leader in the moment (dis
rete period) of time t, xtj � an opinion of the j-th
basi
 agent in the moment t, rti � expenditures of the i-th 
ontrol agent for the

marketing impa
t (advertizing and so on) to the j-th basi
 agent in the moment t,
aij � a 
oe�
ient of in�uen
e of the i-th basi
 agent to the j-th basi
 agent, bij �

a 
oe�
ient of in�uen
e of the i-th 
ontrol agent to the j-th basi
 agent, δ denotes
a dis
ount fa
tor, i.e. δ = e−ρ

. As di�erent �rms 
an exert in�uen
e to di�erent

members of the strong subgroups, we simply assume that if the i-th �rm (
ontrol

agent) does not in�uen
e to the j-th basi
 agent then bij = 0. Denote by A a matrix

of the 
oe�
ients of in�uen
e among basi
 agents, i.e. A = {aij}i=1,2,...,n,j=1,2,...,n,

Aτ
� a transposed matrix of in�uen
es, Xt

� a 
olumn ve
tor of the values of state

variables (opinions) in the moment t, ε � a row ve
tor of the dimension n formed

by units, I � the unit n× n-matrix.

Assume that matrix of in�uen
es of the basi
 agents A is sto
hasti
 (from the

right), i.e.

n∑

j=1

aij = 1, i = 1, 2, . . . , n.

In this 
ase an a
tion of the matrix Aτ
from the left on any ve
tor does not 
hange

the sum of its 
omponents. Thus,

ε(Aτ )TX0 = ε(Aτ )T−1X0 = · · · = εAτX0 = εX0,

Aj = A2
j = · · · = AT

j = 1, j = 1, 2, . . . , n,

where ε is a row ve
tor of n units.

2.2. Solving the i-th Firm's Problem

Consider the problem of the i-th �rm (4) � (7). In the one-period (without


onsideration of the zero period) game ea
h i-th �rm solves the problem

n∑

j=1

x0j −
n∑

j=1

siju
i,0
j + δ

n∑

j=1

xi,1j =

=

n∑

j=1

x0j −
n∑

j=1

siju
i,0
j + δ

n∑

j=1

m∑

i=1

bij

√
ui,0j + δ

n∑

j=1

n∑

l=1

aljx
0
l −→
ui,0
j , j=1,2,...,n

max (8)

with 
onstraint

n∑

j=1

ui,0j ≤ r0i .
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Optimizing by the Lagrange multipliers method, we re
eive the relations:

bij1
bij2

=

√√√√ui,0j1

ui,0j2

for any agents j1 and j2 impa
ted by the i-th �rm, therefore

ui,0j2 = ui,0j1

(
bij2
bij1

)2

.

Denote

∑n
j=1 u

i,0
j by R0

i , then we have:

n∑

j=1

ui,0j =
ui,0j1(
bij1
)2

n∑

j=1

(
bij
)2

= R0
i ,

and, therefore,

ui,0j =

(
bij
)2
R0

i∑n
j=1

(
bij
)2 . (9)

The substitution of (9) into (8) gives

n∑

j=1

x0j −R0
i + δ

m∑

i=1

√√√√R0
i

n∑

j=1

(
bij
)2

+ δ

n∑

j=1

n∑

l=1

aljx
0
l −→
ui,0
j , j=1,2,...,n

max . (10)

A non-
onditional optimization by R0
i implies

(
R0

i

)
max

=
δ2

4

n∑

j=1

(
bij
)2
.

Thus, the optimal strategy of the i-th �rm is

ui,0j =

(
bij
)2

∑n
j=1

(
bij
)2 min




δ2

4

n∑

j=1

(
bij
)2
, r0i



 .

Consider a two-period game. Ea
h �rm i solves the problem

n∑

j=1

(
x0j − siju

i,0
j

)
+ δ

n∑

j=1

(
x1j − siju

i,1
j

)
+ δ2

n∑

j=1

x2j −→
ui,0
j , j=1,2,...,n

max (11)

with 
onstraint

n∑

j=1

ui,0j ≤ r0i ,

where ui,1j , j = 1, 2, . . . , n, is the solution of the one-period game. We have

x1j =

m∑

i=1

bij

√
ui,0j +

n∑

l=1

aljx
0
l , (12)
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x2j =

m∑

i=1

bij

√
ui,1j +

n∑

l=1

aljx
1
l =

m∑

i=1

bij

√
ui,1j +

n∑

l=1

alj

(
m∑

i=1

bij

√
ui,0j +

n∑

p=1

aplx
0
p

)
=

=
m∑

i=1

bij

√
ui,1j +

n∑

l=1

alj

m∑

i=1

bil

√
ui,0l +

[
(Aτ )2X0

]
j
. (13)

Substituting (12) and (13) into (11) we re
eive

n∑

j=1

(
x0j − siju

i,0
j

)
+ δ

n∑

j=1

(
m∑

i=1

bij

√
ui,0j +

n∑

l=1

aljx
0
l − siju

i,1
j

)
+

+δ2
n∑

j=1

m∑

i=1

bij

√
ui,1j + δ2

n∑

j=1

n∑

l=1

alj

m∑

i=1

bil

√
ui,0l + δ2ε (Aτ )2X0 −→

ui,0
j , j=1,2,...,n

max,

or, denote by Aj the sum of the elements of the j-th row of the in�uen
e matrix A,

n∑

j=1

(
x0j − siju

i,0
j

)
+ δ

n∑

j=1

(
m∑

i=1

bij

√
ui,0j +

n∑

l=1

aljx
0
l − siju

i,1
j

)
+

+δ2
n∑

j=1

m∑

i=1

bij

√
ui,1j + δ2

n∑

j=1

m∑

i=1

Ajb
i
j

√
ui,0j + δ2ε (Aτ )

2
X0 −→

ui,0
j , j=1,2,...,n

max, (14)

Maximizing (14) with 
onstraint

n∑

j=1

ui,0j ≤ r0i ,

by the Lagrange multipliers method, we re
eive the relations

(1 + δAj2 ) b
i
j2

(1 + δAj1 ) b
i
j1

=

√√√√ui,0j2

ui,0j1

for any agents j1 and j2 impa
ted by the i-th �rm, therefore

ui,0j2 = ui,0j1

(
(1 + δAj2) b

i
j2

(1 + δAj1) b
i
j1

)2

.

Denote

∑n
j=1 u

i,0
j by R0

i , then re
eive:

n∑

j=1

ui,0j =
ui,0j1[

(1 + δAj1 ) b
i
j1

]2
n∑

j=1

[
(1 + δAj) b

i
j

]2
= R0

i ,

and, therefore,

ui,0j =

[
(1 + δAj) b

i
j

]2
R0

i∑n
j=1

[
(1 + δAj) bij

]2 . (15)
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Substituting (15) into (14) and 
hoosing only the terms with ui,0j , we re
eive

−R0
i + δ

∑n
j=1

∑m
i=1 b

i
j

√
ui,0j
√
R0

i√∑n
j=1

[
bij (1 + δAj)

]2 + δ2

∑n
j=1

∑m
i=1 b

i
jAj

√
ui,0j
√
R0

i√∑n
j=1

[
bij (1 + δAj)

]2 =

= −R0
i + δ

m∑

i=1

√√√√R0
i

n∑

j=1

[
bij (1 + δAj)

]2
. (16)

A non-
onditional maximization of (16) by R0
i gives:

(
R0

i

)
max

=
δ2

4

n∑

j=1

[
bij (1 + δAj)

]2
.

Thus, the optimal strategy of the i-th �rm is

ui,0j =

[
bij (1 + δAj)

]2
∑n

j=1

[
bij (1 + δAj)

]2 min




δ2

4

n∑

j=1

[
bij (1 + δAj)

]2
, r0i



 .

Now 
onsider the T -period game. Denote

(
m∑

i=1

bij

√
ui,tj

)n

j=1

= βt, t = 0, 1, 2, . . . T. (17)

Then we have

X1 = AτX0 + β0,

X2 = (Aτ )2 +Aτβ0 + β1,

and iterations by t give

Xt = (Aτ )tX0 + (Aτ )t−1β0 + (Aτ )t−2β1 + · · ·+Aτβt−2 + βt−1. (18)

Ea
h i-th �rm solves the problem

T∑

t=0

δt
n∑

j=1

(
xtj − siju

i,t
j

)
=

T∑

t=0

δt


εXt −

n∑

j=1

siju
i,t
j


 −→

ui,0
j , j=1,2,...,n

max, (19)

with 
onstraint

n∑

j=1

ui,0j ≤ r0i ,

where ui,1j , ui,2j , . . . , ui,T−1
j (j = 1, 2, . . . , n) are the respe
tive solutions of the (T−1)-

period, (T − 2)-period, ..., one-period problems.

Choosing in (19) only the terms whith variables ui,0j ,j = 1, 2, . . . , n, we re
eive
the expression

−
n∑

j=1

siju
i,0
j + ε

[
δI + δ2Aτ + · · ·+ δT (Aτ )T−1

]
β0. (20)
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Maximizing (20) with the 
onstraint

n∑

j=1

ui,0j ≤ r0i , (21)

by the Lagrange multipliers method, we re
eive the relations

(1 + δAj2 + · · ·+ δT−1AT−1
j2

)bij2
(1 + δAj1 + · · ·+ δT−1AT−1

j1
)bij1

=

√√√√ui,0j2

ui,0j1

for any agents j1 and j2 in�uen
ed by the i-th �rm, where At
j denotes the sum of

elements of the j-th row of the t-th power of the in�uen
e matrix, t = 1, 2, . . . , T−1.
Denote as earlier the sum

∑n
j=1 u

i,0
j by R0

i , we re
eive

ui,0j =

(
bij
∑T−1

t=0 δtAt
j

)2
R0

i

∑n
j=1

(
bij
∑T−1

t=0 δtAt
j

)2 . (22)

A substitution of (22) into (20) with 
onsideration of (17) gives

−
n∑

j=1

siju
i,0
j +

m∑

i=1

n∑

j=1

δbij

T−1∑

t=0

δtAt
j

bij
∑T−1

t=0 δtAt
j

√
R0

i√
∑n

j=1

(
bij
∑T−1

t=0 δtAt
j

)2 =

= −R0
i + δ

m∑

i=1

√√√√√R0
i

n∑

j=1

(
bij

T−1∑

t=0

δtAt
j

)2

. (23)

Maximizing (23) by R0
i without restri
tions, we re
eive

1 =
δ

√
∑n

j=1

(
bij
∑T−1

t=0 δtAt
j

)2

2
√
R0

i

.

Therefore,

(R0
i )max =

δ2

4

n∑

j=1

(
bij

T−1∑

t=0

δtAt
j

)2

.

Thus, with 
onsideration of the 
onstraint (21),

ui,0j =

(
bij
∑T−1

t=0 δtAt
j

)2

∑n
j=1

(
bij
∑T−1

t=0 δtAt
j

)2 min




δ2

4

n∑

j=1

(
bij

T−1∑

t=0

δtAt
j

)2

, r0i



 .

Respe
tively, in the period t (t = 1, 2, . . . , T − 1) we have

ui,tj =

(
bij
∑T−1−t

s=0 δsAs
j

)2

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2 min




δ2

4

n∑

j=1

(
bij

T−1−t∑

s=0

δsAs
j

)2

, rti



 , (24)
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where rti are the resour
es allo
ated to the i-th �rm by the prin
ipal in the t-
th period. As the prin
ipal in the period t never 
hooses a value rti greater than

δ2

4

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2
, the expression (24) may be substituted by

ui,tj =

(
bij
∑T−1−t

s=0 δsAs
j

)2
rti

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2 . (25)

Considering the sto
hasti
ity of the matrix A, the expression (25) takes the form

ui,tj =

(
bij
∑T−1−t

s=0 δsAs
j

)2
rti

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2 =

(
bij
∑T−1−t

s=0 δs
)2
rti

∑n
j=1

(
bij
∑T−1−t

s=0 δs
)2 =

(
bij
)2
rti∑n

j=1

(
bij
)2 (26)

and does not depend on the length of period T . Thus we have proved the statement.

Proposition 1. The optimal strategy of the i-th �rm in problem (4)�(7) is

ui,tj =

(
bij
)2
rti∑n

j=1

(
bij
)2 .

2.3. Solving the Prin
ipal's Problem

The prin
ipal 
annot de
rease the value

∑n
j=1 xj , and only in
reases it by al-

lo
ation the resour
es between the �rms. It follows from the problem formulation

that x∗ ≤∑n
j=1 x

0
j < x∗, and the value

∑n
j=1 xj 
annot be
ome less than x∗. Then

the prin
ipal's optimal strategy is evident. The prin
ipal solves the problem (1)�(3),

(5)�(6).

It is 
lear that for the maximization of her obje
tive fun
tion the prin
ipal must

optimally in
rease the value

∑n
j=1 x

t
j only up to the value x∗, after what she must


ease the allo
ation of resour
es to the �rms. Then the value

∑n
j=1 x

t
j remains

equal to x∗ until the end of the period of 
onsideration. For the implementation

of this strategy the prin
ipal already in the instant of time t = 0 must determine

the instant t = H , when the value

∑n
j=1 x

H
j be
omes greater than x∗ due to the

respe
tive strategy. At the instant t = H− 1 the value of allo
ated resour
es should

be redu
ed so that starting from the instant t = H the value

∑n
j=1 x

t
j be stri
tly

equal to x∗.
Consider the H-period game. The prin
ipal solves the problem

H∑

t=0

δt




n∑

j=1

xtj −
m∑

i=1

rti


 =

H∑

t=0

δt

(
εXt −

m∑

i=1

rti

)
−→

r0i , i=1,2,...,m

max, (27)

with 
onstraint

m∑

i=1

r0i ≤ R,

where r1i , r
2
i , . . . , r

H−1
i (i = 1, 2, . . . ,m) are the respe
tive solutions of the (H − 1)-

period, (H − 2)-period, ..., one-period problems, and

ui,tj =

(
bij
)2
rti∑n

j=1

(
bij
)2 , t = 1, 2, . . . , H − 1
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a

ording to (26). Using the denotation (17) and de
omposition (18), 
hoosing in

(27) only the terms that in
lude r0i , and 
onsidering that At
j = 1, we re
eive the

expression

−
m∑

i=1

r0i +
(
δ + δ2 + · · ·+ δH

)
εβ0, (28)

where

β0 =

(
m∑

i=1

bij

√
ui,0j

)n

j=1

=




m∑

i=1

√
r0i (b

i
j)

2

√∑n
j=1

(
bij
)2




n

j=1

. (29)

Substituting (29) into (28), we re
eive

−
m∑

i=1

r0i +
(
δ + δ2 + · · ·+ δH

) n∑

j=1

m∑

i=1

√
r0i (b

i
j)

2

√∑n
j=1

(
bij
)2 =

= −
m∑

i=1

r0i +

m∑

i=1

√
r0i

√√√√
n∑

j=1

(
bij
)2 H∑

t=1

δt. (30)

Maximizing (30) with 
onstraint

m∑

i=1

r0i ≤ R,

by the Lagrange multipliers method, we re
eive the relations

∑n
j=1

(
bi2j
)2

∑n
j=1

(
bi1j
)2 =

r0i2
r0i1

for any in�uen
e agents i1 and i2. Denote as earlier the sum

∑m
i=1 r

0
i by R0

, we

re
eive

m∑

i=1

r0i =

∑m
i=1

∑n
j=1

(
bij
)2
r0i1∑n

j=1

(
bi1j
)2 = R0,

therefore

r0i =

∑n
j=1

(
bij
)2
R0

∑m
i=1

∑n
j=1

(
bij
)2 . (31)

Substituting the expression (31) into (30) we re
eive

−R0 +
√
R0

H∑

t=1

δt

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
. (32)

Maximizing the expression (32) by R0
without 
onstraints, we re
eive

1 =
δ
√∑m

i=1

∑n
j=1

(
bij
)2

2
√
R0

H−1∑

t=0

δt,
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and

(R0)max =
δ2

4

m∑

i=1

n∑

j=1

(
bij

H−1∑

t=0

δt

)2

.

Therefore, with 
onsideration of the 
onstraint R0 ≤ R the prin
ipal's optimal

strategy is

r0i =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

t=0

δt

)2

, R



 . (33)

Completely similar to (33) we re
eive for t = 1, 2, . . . , H − 1:

rti =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)2

, R



 , i = 1, 2, . . . ,m.

(34)

Using the denotation (17), de
omposition (18) and the formula (26), we 
an write

the value

∑n
j=1 x

H
j in the H-period game, t = 0, 1, 2, . . . , H , where H is exa
tly the

instant when the value

∑n
j=1 x

t
j �rst be
omes equal to x∗, in the form

εXH = εX0 + εβ0 + εβ1 + · · ·+ εβH−2 + εβH−1 =

=

n∑

j=1

x0j +

m∑

i=1

√√√√r0i

n∑

j=1

(
bij
)2

+ · · ·+
m∑

i=1

√√√√rti

n∑

j=1

(
bij
)2

+ · · ·+
m∑

i=1

√√√√rH−1
i

n∑

j=1

(
bij
)2
.

(35)

Substituting (34) into (35), we re
eive

εXH =

n∑

j=1

x0j +

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

s=0

δs

)
,
√
R



+

+ · · ·+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)
,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

(1 + δ) ,
√
R



+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
,
√
R



 . (36)

So, t = H is the time instant when the value

∆ =

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
,
√
R



+
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+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

(1 + δ) ,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)
,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

s=0

δs

)
,
√
R





�rst be
omes greater or equal than x∗ −∑n
j=1 x

0
j (if it is possible for a t ≤ T ). In

this 
ase denote

∆1 = x∗ −
n∑

j=1

x0j −


∆−

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
,
√
R






 .

It is 
lear that the summary amount of resour
es allo
ated by the prin
ipal between

the �rms in the instant H − 1 so that in the instant H the sum of the values of

state variables be stri
tly equal to x∗, must be equal to

R̃ =
(∆1)

2

∑m
i=1

∑n
j=1

(
bij
)2 . (37)

We obtain the statement.

Proposition 2. The prin
ipal has in the problem (1)�(3), (5)�(6) the following

optimal strategy. When 0 ≤ t ≤ H − 2

rti =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)2

, R



 ;

when t = H − 1

rH−1
i =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 R̃;

and when H ≤ t ≤ T

rti = 0, i = 1, 2, . . . ,m.

Corollary 1. The maximal guaranteed payo� of the prin
ipal is equal to

(
H−1∑

s=0

δs

)
n∑

j=1

x0j +

(
H−1∑

s=1

δs

)√√√√R0

m∑

i=1

n∑

j=1

(
bij
)2 −R0+

+

(
H−1∑

s=2

δs

)√√√√R1

m∑

i=1

n∑

j=1

(
bij
)2 − δR1 + · · ·+
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+

(
H−1∑

s=t+1

δs

)√√√√Rt

m∑

i=1

n∑

j=1

(
bij
)2 − δtRt + · · ·+

+δH−1

√√√√RH−2

m∑

i=1

n∑

j=1

(
bij
)2 − δH−2RH−2 − δH−1R̃+ x∗

T∑

h=H

δh, (38)

where

R0 = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

s=0

δs

)2

, R



 , (39)

R1 = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−2∑

s=0

δs

)2

, R



 , . . . , (40)

Rt = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)2

, R



 , . . . , (41)

RH−2 = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2

(1 + δ)2, R



 , (42)

by Rt
is denoted the sum

∑m
i=1 r

t
i , t = 0, 1, 2, . . . , H − 2, and the value R̃ is deter-

mined by the expression (37).

Proof. It 
an be seen from (34). ⊓⊔

2.4. System Compatability Index

Denote the set of 
olle
tions of equilibrium strategies of �rms provided that

prin
ipal's strategy is {ri}mi=1 by NE({ri}mi=1). Cal
ulate the system 
ompatibility

index for the 
onsidered problem:

SCI =
max{ri}m

i=1
min{ui

j}
m; n
i=1;j=1∈NE({ri}m

i=1)
J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

)

max{ri}m
i=1

max{ui
j}

m; n
i=1;j=1

J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

) . (43)

This index shows the measure of 
ompatability of system. The numerator of (43)

is the payo� of the prin
ipal in the 
ase if the �rms 
hoose the most unfavorable

for prin
ipal equilibrium strategies. The denumerator of (43) is the payo� of the

prin
ipal in the 
ase if the �rms 
hoose the most favorable for prin
ipal strategies.

Given the prin
ipal's strategy the set of equilibrium strategies of ea
h agent is

one-element in our 
ase, so the numerator of the expression (43) is equal to (38).

For 
al
ulation of the denominator in the expression (43) let us assume that ea
h

agent maximizes not his payo� but the prin
ipal's payo� given her strategy, i.e. the

agent solves the problem

J̃i =
T∑

t=0

δt
n∑

j=1

xtj → max,

with 
onstraint (3) and (5) � (6).
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If

∑n
j=1 x

0
j ≥ x∗ then the optimal strategy of ea
h �rm is evident: it does not

invest to the advertisement. Moreover, it is impossible be
ause in this 
ase the

prin
ipal does not allo
ate any �nan
ial resour
es to the �rms, i.e. then ui,tj = 0.

Let

∑n
j=1 x

0
j < x∗. Unlike the prin
ipal, any agent is unable to estimate a priori

the number of time periods H whi
h is required for the sum of values of the state

variables be
omes equal to x∗, but it is redundant be
ause the optimal strategies

of the �rms do not depend on the game's length.

Consider the H-period game. Denote as earlier

(
m∑

i=1

bij

√
ui,tj

)n

j=1

= βt, t = 0, 1, 2, . . .H − 1. (44)

Then

X1 = X0 + β0,

X2 = X0 + β0 + β1,

and so on, the iterations by t give

Xt = X0 + β0 + β1 + · · ·+ βt−2 + βt−1. (45)

Ea
h i-th �rm solves the problem

T∑

t=0

δt
n∑

j=1

xtj =

T∑

t=0

δtεXt −→
ui,0
j , j=1,2,...,n

max, (46)

with 
onstraint

n∑

j=1

ui,0j ≤ r0i , (47)

where ui,1j , ui,2j , . . . , ui,H−1
j (j = 1, 2, . . . , n) are the respe
tive solutions of the (H −

1)-period, (H − 2)-period, ..., one-period problems.

Choosing in (46) only the terms whith variables ui,0j ,j = 1, 2, . . . , n, we re
eive
the expression

(
δ + δ2 + · · ·+ δH

)
εβ0 = δ

H−1∑

t=0

δt
n∑

j=1

m∑

i=1

bij

√
ui,0j . (48)

Maximizing (48) with the 
onstraint (47) by the Lagrange multipliers method, we

re
eive the relations

bij2
bij1

=

√√√√ui,0j2

ui,0j1

for any agents j1 and j2 impa
ted by the i-th �rm. Denote as earlier the sum∑n
j=1 u

i,0
j by R0

i , we re
eive

ui,0j =

(
bij
)2
R0

i∑n
j=1

(
bij
)2 . (49)
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Substitution of (49) into (48) gives

δ

(
H−1∑

t=0

δt

)
m∑

i=1

√√√√R0
i

n∑

j=1

(
bij
)2
. (50)

Maximizing (50) by R0
i with 
onstraint (47), we re
eive

(
R0

i

)
max

= r0i .

Thus we have

ui,0j =

(
bij
)2

∑n
j=1

(
bij
)2 r

0
i .

Let us write the strategy of the i-th �rm in theH-period game. For t = 0, 1, . . . , H−1
the optimal strategy of the i-th �rm is

ui,tj =

(
bij
)2

∑n
j=1

(
bij
)2 r

t
i .

If t = H then ui,Hj = 0, j = 1, 2, . . . , n.
Then the prin
ipal's problem is the same as the previous problem already solved

in sear
hing the numerator on (43), and the denominator of (43) is also expressed

by the formula (38). Therefore, in this problem the players' interests are ideally


ompatible, and SCI = 1.

Proposition 3. In the model de�ned in subse
tion 2.1.

SCI = 1.

Remark 1. A non-trivial situation arises. In the t-th period the �rm should 
hoose

the advertisement 
ost equal to

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2

if this value does not

ex
eed rti , and 
hoose r
t
i if the value

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2

is greater than rti .

But the �rms do not know the index H , and therefore, the value

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
. However, they know that the prin
ipal never allo
ates

them more resour
es than

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
, and respe
tively they al-

ways 
hoose rti . The prin
ipal 
ould use it and allo
ate to all �rms in the t-th

period more resour
es than

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
, and respe
tively 
om-

pel them to invest in the advertisement more than it is advantageous to them.

However, it is not advantageous to the prin
ipal herself to allo
ate more than

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
! Therefore, the prin
ipal always allo
ates the value

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2

if it does not ex
eed her marketing budget R, oth-

erwise she allo
ates the resour
es as it is optimal for herself. This remains valid

until the instant H − 1 when the prin
ipal allo
ates a redu
ed amount of resour
es

whi
h provides in the instant H that the sum of values of the state variables is

stri
tly equal to x∗. Thus, the interests of the prin
ipal and the agents (�rms) are


ompletely 
ompatible.
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3. Di�eren
e Sta
kelberg Game with a Constraint on the Sum of State

Variables. Case of the Sto
hasti
 from the Left Matrix A

Now take a standard assumption that the in�uen
e matrix A is sto
hasti
 from

the left, i.e.

n∑

j=1

aij = 1, j = 1, 2, . . . , n,

and other assumptions are the same as in the previous se
tion. The model takes the

form

J0 =

T∑

t=0

δt




n∑

j=1

zjx
t
j −

m∑

i=1

rti


→ max, (51)

rti ≥ 0,

m∑

i=1

rti ≤ R, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (52)

x∗ ≤
n∑

j=1

zjx
t
j ≤ x∗, t = 0, 1, 2, . . . , T − 1, T, (53)

Ji =

T∑

t=0

δt




n∑

j=1

(zjx
t
j − siju

i,t
j )


→ max, (54)

n∑

j=1

ui,tj ≤ rti , ui,tj ≥ 0, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (55)

xt+1
j =

m∑

i=1

bij

√
ui,tj +

n∑

l=1

aljx
t
l , x0j = xj0, j = 1, 2, . . . , n, (56)

sij =

{
1, if bij > 0,
0, if bij = 0,

(57)

where zj > 0, j = 1, 2, . . . , n, are 
omponents of the positive (right) eigenve
tor

whi
h 
orresponds to the Frobenius eigenvalue 1 of the matrix A.
Let us redu
e the standard situation to the already 
onsidered 
ase. Let Z be

an eigenve
tor 
orresponding to the eigenvalue 1 of the matrix A:

Z =




z1
z2
. . .
zn


 , zj > 0, j = 1, 2, . . . , n.

It is evident that the diagonal matrix

Ξ =




z1 0 . . . 0
0 z2 . . . 0
. . . . . . . . . . . .
0 0 . . . zn




is the matrix of transfer to the sto
hasti
 (from the right) matrix P :

P = Ξ−1AΞ.
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Then

A = ΞPΞ−1,

i.e.

Aτ = Ξ−1P τΞ,

and the problem (51)-(57) 
an be formulated in other 
oordinates.

Introdu
e a family of matri
es Bi
:

Bi =




bi1 0 . . . 0
0 bi2 . . . 0
. . . . . . . . . . . .
0 0 . . . bin




and ve
tors

√
U i,t =




√
ui,t1√
ui,t2
. . .√
ui,tn



, i = 1, 2, . . . ,m.

Then the 
onstraint (56) takes the matrix form

Xt+1 =

m∑

i=1

Bi
√
U i,t + Ξ−1P τΞXt,

i.e.

Y t+1 =

m∑

i=1

B̃i
√
U i,t + P τY t,

where

Xt =




xt1
xt2
. . .
xtn


 , Y t =




yt1
yt2
. . .
ytn


 = ΞXt,

B̃i = ΞBi =




z1b
i
1 0 . . . 0

0 z2b
i
2 . . . 0

. . . . . . . . . . . .
0 0 . . . znb

i
n


 =




b̃i1 0 . . . 0

0 b̃i2 . . . 0
. . . . . . . . . . . .

0 0 . . . b̃in


 ,

or in the 
oordinate form:

yt+1
j =

m∑

i=1

b̃ij

√
ui,tj +

n∑

l=1

pljy
t
l ,

and the 
onstraint (53) looks like

x∗ ≤
n∑

j=1

ytj ≤ x∗.
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The expression (54) takes the form

Ji =

T∑

t=0

δt




n∑

j=1

(ytj − siju
i,t
j )


→ max,

and (51) takes the form

J0 =

T∑

t=0

δt




n∑

j=1

ytj −
m∑

i=1

rti


→ max .

Other expressions in the problem (51)-(57) do not 
hange. Based on the solution of

the problem from the Se
tion 2, we �nd the optimal strategies of the �rms:

ui,tj =

(
b̃ij

)2
rti

∑n
j=1

(
b̃ij

)2 =

(
zjb

i
j

)2
rti∑n

j=1

(
zjbij

)2 , i = 1, 2, . . . ,m, t = 1, 2, . . . , T.

As for the prin
ipal, let in the moment t = H the value

∆ =

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
,
√
R



+

+

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
(1 + δ) ,

√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
(

H−1−t∑

s=0

δs

)
,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
(

H−1∑

s=0

δs

)
,
√
R





for the �rst time be
omes greater or equal than x∗ −∑n
j=1 zjx

0
j (if it is possible for

some t ≤ T ). Denote

∆1 = x∗ −
n∑

j=1

zjx
0
j −


∆−

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
,
√
R






 ,

we �nd the total amount of resour
es that the prin
ipal should allo
ate to the �rms

in the moment H − 1 so that in the moment H the sum

n∑

j=1

zjxj

be stri
tly equal to x∗:

R̃ =
(∆1)

2

∑m
i=1

∑n
j=1

(
zjbij

)2 . (58)
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Thus, the prin
ipal's optimal strategy is the following:

when 0 ≤ t ≤ H − 2

rti =

∑n
j=1

(
zjb

i
j

)2
∑m

i=1

∑n
j=1

(
zjbij

)2 min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−1−t∑

s=0

δs

)2

, R



 ;

when t = H − 1

rH−1
i =

∑n
j=1

(
zjb

i
j

)2
∑m

i=1

∑n
j=1

(
zjbij

)2 R̃;

when H ≤ t ≤ T
rti = 0, i = 1, 2, . . . ,m.

The maximal guaranteed payo� of the prin
ipal is equal to

(
H−1∑

s=0

δs

)
n∑

j=1

zjx
0
j +

(
H−1∑

s=1

δs

)√√√√R0

m∑

i=1

n∑

j=1

(
zjbij

)2 −R0+

+

(
H−1∑

s=2

δs

)√√√√R1

m∑

i=1

n∑

j=1

(
zjbij

)2 − δR1 + · · ·+

+

(
H−1∑

s=t+1

δs

)√√√√Rt

m∑

i=1

n∑

j=1

(
zjbij

)2 − δtRt + · · ·+

+δH−1

√√√√RH−2

m∑

i=1

n∑

j=1

(
zjbij

)2 − δH−2RH−2 − δH−1R̃+ x∗
T∑

h=H

δh,

where, as 
an be seen from (34),

R0 = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−1∑

s=0

δs

)2

, R



 ,

R1 = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−2∑

s=0

δs

)2

, R



 , . . . ,

Rt = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−1−t∑

s=0

δs

)2

, R



 , . . . ,

RH−2 = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(1 + δ)2, R



 ,

where Rt
denotes the sum

∑m
i=1 r

t
i , t = 0, 1, 2, . . . , H − 2, and the value R̃ is deter-

mined by the expression (58).

It is 
lear that SCI = 1 as in the previous problem from the Se
tion 2. The

expressions for the maximal guaranteed payo� in this 
ase di�er from those in the

se
tion 2 only by the multipliers zj � the 
omponents of Frobenius eigenve
tor of

matrix A. So, in this problem with the homeostasis 
ondition, as in the similar

problem without this 
ondition, the interests of players are 
ompletely 
ompatible.
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4. Di�erential Sta
kelberg Game with a Constraint on the Sum of

State Variables. Case of the Sto
hasti
 (from the Right) Matrix A

4.1. The Problem Statement

Consider this problem in 
ontinuous time. Now the model takes the form

J0 =

∫ T

0

e−ρt




n∑

j=1

xj(t)−
m∑

i=1

ri(t)


 dt→ max, (59)

ri(t) ≥ 0,

m∑

i=1

ri(t) ≤ R, t ∈ [0, T ], i = 1, 2, . . . ,m, (60)

x∗ ≤
n∑

j=1

xj(t) ≤ x∗, t ∈ [0, T ], (61)

Ji =

∫ T

0

e−ρt




n∑

j=1

(xj(t)− siju
i
j(t))


 dt→ max, (62)

n∑

j=1

uij(t) ≤ ri(t), uij(t) ≥ 0, t ∈ [0, T ], i = 1, 2, . . . ,m, (63)

ẋj =

m∑

i=1

bij

√
uij(t) +

n∑

l=1

ãljxl(t), xj(0) = xj0, j = 1, 2, . . . , n, (64)

sij =

{
1, if bij > 0,
0, if bij = 0.

(65)

Here aij is a 
oe�
ient of in�uen
e of the i-th basi
 agent to the j-th basi
 agent in

the dis
rete model. When we move from the dis
rete des
ription to the 
ontinuous

one, the in�uen
e matrix A is substituted by the matrix Ã in the form

Ã = A− I.

Thus,

ãij =

{
aij , if i 6= j,

aij − 1, if i = j.

Let us �rst assume that the matrix A is sto
hasti
 (from the right), i.e.

n∑

j=1

aij = 1, i = 1, 2, . . . , n.

Solving the problem of the i-th �rm, we 
an substitute n state variables xj by

their sum and denote by x the only state variable:

n∑

j=1

xj = x,

n∑

j=1

xj0 = x0,
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then

n∑

j=1

n∑

l=1

ãljxl =

n∑

j=1

n∑

l=1

aljxl −
n∑

j=1

xj =

n∑

l=1

xl −
n∑

j=1

xj = x− x = 0,

and the 
onditions (62) and (64) respe
tively take the form

Ji =

∫ T

0

e−ρt


x−

n∑

j=1

siju
i
j(t)


 dt→ max, (66)

and

ẋ =

n∑

j=1

m∑

i=1

bij

√
uij(t), x(0) = x0. (67)

4.2. Solution the Problem of i-th Firm

The Hamilton-Ja
obi-Bellman equation has the form

ρVi −
∂Vi
∂t

= max
ui
j ,1≤j≤n



x(t)−

n∑

j=1

siju
i
j(t) +

∂Vi
∂x

n∑

j=1

m∑

k=1

bkj

√
ukj (t)



 (68)

with 
onstraint

n∑

j=1

uij(t) ≤ ri(t).

Maximizing by uij , j = 1, 2, . . . , n, bij 6= 0, we re
eive

∂Vi
∂x

bij
1

2

(
uij
)− 1

2 − 1 = µ,

where µ is a Lagrange multiplier. Then for any 1 ≤ j1, j2 ≤ n:

(∂Vi/∂x)b
i
j2

(∂Vi/∂x)bij1
=
bij2
bij1

=

(
uij2
uij1

) 1
2

.

Denote the sum

uij1(
bij1
)2

n∑

j=1

(
bij
)2

by Ri(t). Then

uij =
Ri(t)(b

i
j)

2

∑n
j=1(b

i
j)

2
. (69)

As we take the linear Bellman fun
tions,

Vi(x, t) = αi(t)x+ βi(t),

then we 
an write the equation (68) with 
onsideration of (69) in the form

ραi(t)x + ρβi(t)− α
′i(t)x − β

′i(t) = x−Ri(t) + αi(t)

m∑

k=1

n∑

j=1

bkj
√
Rk(t)b

k
j√∑n

j=1

(
bkj
)2 ,
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or

ραi(t)x+ ρβi(t)− α
′i(t)x − β

′i(t) = x−Ri(t) + αi(t)

m∑

k=1

√√√√Rk(t)

n∑

j=1

(
bkj
)2
. (70)

Equation of the 
oe�
ients at the variable x in the left and right hand sides of

the equation (26), we re
eive a di�erential equation for αi(t). Its solution gives

αi(t) = Ceρt +
1

ρ
.

Using the boundary 
ondition αi(T ) = 0, we �nd the integration 
onstant

C = −1

ρ
eρT .

Therefore,

αi(t) =
1

ρ

(
1− eρ(t−T )

)
.

Fun
tion αi(t) is the same for all �rms, then we will omit the index i of the
fun
tions αi(t). Equating the 
onstant terms in the left and right hand sides of the

equation (26), we re
eive a di�erential equation for βi(t):

β
′i(t)− ρβi(t) = Ri(t)− αi(t)

m∑

k=1

√√√√Rk(t)
n∑

j=1

(
bkj
)2
,

and solve it by the method of variation of parameters. We have:

βi(t) = eρtC(t),

C
′

(t)eρt = Ri(t)− α(t)

m∑

k=1

√√√√Rk(t)

n∑

j=1

(
bkj
)2
,

C(t) =

∫ t

0

e−ρτ


Ri(τ) − α(τ)

m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
bkj
)2

 dτ + C.

Considerating the boundary 
ondition βi(T ) = 0, we re
eive

C = −
∫ t

0

e−ρτ


Ri(τ)− α(τ)

m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
bkj
)2

 dτ.

Therefore,

βi(t) = eρt
∫ T

t

e−ρτ


α(τ)

m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
bkj
)2 −Ri(τ)


 dτ.
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Choosing the maximal value of the right hand side of the expression (26) in

dependen
e of Ri(t), we have

−Ri(t) + αi(t)
√
Ri(t)

√√√√
n∑

j=1

(
bij
)2 → max,

hen
e

(Ri(t))max =
1

4
(α(t))

2
n∑

j=1

(
bij
)2
.

Thus, the value Ri(t) (omitting the index i at αi(t)) is equal to

Ri(t) = min





1

4
(α(t))

2
n∑

j=1

(
bij
)2
, ri(t)



 . (71)

Thus we have proved the statement.

Proposition 4. The optimal strategies of �rms in problem (66)�(67) are de�ned

by expression (69), where Ri(t) de�ned by (27) and

α(t) =
1

ρ

(
1− eρ(t−T )

)
.

4.3. The Prin
ipal's Problem

Now 
onsider the prin
ipal's strategy. The prin
ipal 
annot de
rease the value∑n
j=1 xj ; she 
an only in
rease it by allo
ating the resour
es to �rms. Then her op-

timal strategy is evident. From the problem formulation it follows that

∑n
j=1 xj0 ≥

x∗. The prin
ipal solves the problem:

J0 =

∫ T

0

e−ρt




n∑

j=1

xj(t)−
m∑

i=1

ri(t)


 dt→ max,

with 
onstraints (60)�(61), (63)�(65).

It is 
lear that for maximization of her payo� the prin
ipal should in
rease

the value

∑n
j=1 xj(t) as in the previous dis
rete problem but only up to the value

x∗, after what she must 
ease to allo
ate resour
es to the �rms. Then the value∑n
j=1 xj(t) will remain equal to x∗ until the end of the game. For implementation

of this strategy the prin
ipal should already at the instant t = 0 determine the

instant t = h when the value

∑n
j=1 xj(t) be
omes equal to x∗ given the respe
tive

strategy.

As a

ording to (27) the prin
ipal will never allo
ate to any �rm i in any instant

t more resour
es than

1

4
(α(t))2

n∑

j=1

(
bij
)2
,

we 
an rewrite the expression (69) in the form

uij =
ri(t)

(
bij
)2

∑n
j=1

(
bij
)2 . (72)
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Substituting to the equation (67) for the sum of variables x the expression (72),

we re
eive

ẋ =

m∑

i=1

√√√√ri(t)

n∑

j=1

(
bij
)2
, x(0) = x0. (73)

Integration the equation (73), we �nd

x(t) =

∫ t

0

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2
dτ + x0. (74)

Thus, h = x−1(x∗) is the instant of time when the right hand side of the expression

(74) be
omes equal to x∗.
Given the value of h and using the assumption about sto
hasti
ity of the in�u-

en
e matrix, we 
an reformulate the prin
ipal's problem as follows:

J0 =

∫ h

0

e−ρt

(
x(t)−

m∑

i=1

ri(t)

)
dt→ max, (75)

with 
onstraints

ri(t) ≥ 0,

m∑

i=1

ri(t) ≤ R, t ∈ [0, h], i = 1, 2, . . . ,m

and (73).

The Hamilton-Ja
obi-Bellman equation takes the form:

ρV0 −
∂V0
∂t

= max
ri,1≤i≤m



x(t) −

m∑

i=1

ri(t) +
∂V0
∂x

m∑

i=1

√√√√ri(t)
n∑

j=1

(
bij
)2


 (76)

with 
onstrain

m∑

i=1

ri(t) ≤ R.

We take the linear Bellman fun
tion:

V0(x, t) = α0(t)x + β0(t). (77)

Substituting (77) into (76), we re
eive

ρα0(t)x + ρβ0(t)− α
′0(t)x− β

′0(t) =

= max
ri(t),1≤i≤m



x(t)−

m∑

i=1

ri(t) + α0(t)

m∑

i=1

√√√√ri(t)

n∑

j=1

(
bij
)2


 . (78)

Equating in the left and right hand sides of the equation (78) the 
oe�
ients at the

variable x, we re
eive a di�erential equation for α0(t):

α
′0(t)− ρα0(t) = −1.
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It 
oin
ides with the di�erential equations for αi(t) but has other boundary 
ondi-

tion

α0(h) = 0.

Therefore,

α0(t) =
1

ρ

(
1− eρ(t−h)

)
, t ∈ [0, h]. (79)

Equating the 
onstant terms in the left and right hand sides of the equation (78),

we re
eive a di�erential equation for β0(t):

β
′0(t)− ρβ0(t) =

m∑

i=1

ri(t)− α0(t)
m∑

i=1

√√√√ri(t)
n∑

j=1

(
bij
)2
.

Its solution by the method of variation of parameters gives

β0(t) = C(t)eρt,

C
′

(t)eρt =

m∑

i=1

ri(t)− α0(t)

m∑

i=1

√√√√ri(t)

n∑

j=1

(
bij
)2
,

C(t) =

∫ t

0




m∑

i=1

ri(τ)− α0(τ)

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

 e−ρτdτ + C.

Using the boundary 
ondition

β0(h) = 0,

we �nd

C = −
∫ t

0




m∑

i=1

ri(τ) − α0(τ)

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

 e−ρτdτ.

Therefore,

C(t) =

∫ h

t


α0(τ)

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2 −

m∑

i=1

ri(τ)


 e−ρτdτ,

β0(t) = eρt
∫ h

t


α0(τ)




m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ.

Parti
ularly, when t = 0 we have

β0(0) =

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)
n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ. (80)

Maximizing the right hand side of the expression (78) by ri(t), i = 1, 2, . . . ,m,

with 
onstraint

∑m
i=1 ri(t) ≤ R, we re
eive

1− α0(t)

√∑n
j=1

(
bij
)2

2
√
ri(t)

= µ,
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where µ is a Lagrange multiplier. Then

√∑n
j=1

(
bi1j
)2

√∑n
j=1

(
bi2j
)2 =

√
ri1(t)√
ri2(t)

.

Therefore, for any 1 ≤ i1, i2 ≤ m it is true that

ri2 (t) =

∑n
j=1

(
bi2j
)2

∑n
j=1

(
bi1j
)2 ri1(t).

Denote the sum

∑m
i=1 ri(t) by r(t). Then

ri1 (t)

m∑

i=1

n∑

j=1

(
bij
)2

= r(t)

n∑

j=1

(
bi1j
)2
.

Therefore,

ri(t) = r(t)

∑n
j=1

(
bij
)2

∑m
k=1

∑n
j=1

(
bkj
)2 . (81)

Substituting (81) in the right hand side of (78) we re
eive:

x(t)− r(t) + α0(t)

√√√√r(t)

m∑

i=1

n∑

j=1

(
bij
)2
.

A non-
onditional optimization of this expression by r(t) gives

(r(t))max =
1

4

(
α0(t)

)2 m∑

i=1

n∑

j=1

(
bij
)2
.

Thus, for the instants t ∈ [0, h] when

R ≥ 1

4

(
α0(t)

)2 m∑

i=1

n∑

j=1

(
bij
)2
,

the prin
ipal's optimal strategy is

ri(t) =
1

4

(
α0(t)

)2 n∑

j=1

(
bij
)2
, i = 1, 2, . . . ,m.

For the instants t ∈ [0, h] when

R <
1

4

(
α0(t)

)2 m∑

i=1

n∑

j=1

(
bij
)2
,

the prin
ipal's optimal strategy is

ri(t) =

∑n
j=1

(
bij
)2

∑m
k=1

∑n
j=1

(
bkj
)2R i = 1, 2, . . . ,m.

Combining the two expressions for ri(t) in the one formula, we re
eive following

statement.
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Proposition 5. The prin
ipal's optimal 
ontrol is

ri(t) =

∑n
j=1

(
bij
)2

∑m
k=1

∑n
j=1

(
bkj
)2 min





1

4

(
α0(t)

)2 m∑

k=1

n∑

j=1

(
bkj
)2
, R



 , t ∈ [0, h], (82)

ri(t) = 0, t ∈ [h, T ], i = 1, 2, . . . ,m,

where

α0(t) =
1

ρ

(
1− eρ(t−h)

)
.

Using (79) and (80), we 
an write:

max
ri,1≤i≤m

Ĵ0 = V0(x(0), 0) = α0(0)x(0) + β0(0) =

=
1

ρ

(
1− e−ρh

)
x0+

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)
n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ, (83)

when the value ri(τ) is determined by the expression (82), and α0(τ) - by the

expression (79). Then a

ording to (83) the prin
ipal's guaranteed payo� is equal

to

max
ri,1≤i≤m

J0 + x∗
∫ T

h

e−ρtdt =
1

ρ

(
e−ρh − e−ρT

)
x∗ +

1

ρ

(
1− e−ρh

)
x0+

+

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ, (84)

where the instant h is determined by the expression (74).

4.4. System Compatibility Index

Cal
ulate the system 
ompatibility index:

SCI =
max{ri}m

i=1
min{ui

j}
m; n
i=1;j=1∈NE({ri}m

i=1)
J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

)

max{ri}m
i=1

max{ui
j}

m; n
i=1;j=1

J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

) . (85)

As soon, SCI shows the measure of 
ompatability of system. The numerator of (85)

is the payo� of the prin
ipal in the 
ase if the �rms 
hoose the most unfavorable

for prin
ipal equilibrium strategies. The denumerator of (85) is the payo� of the

prin
ipal in the 
ase if the �rms 
hoose the most favorable for prin
ipal strategies.

Given the prin
ipal's strategy the set of equilibrium strategies of ea
h agent is

one-element in our 
ase, so the numerator of the expression (85) is equal to the

right hand side of (84). For 
al
ulation of the denominator in the expression (85)

let us assume that ea
h agent maximizes not his payo� but the prin
ipal's payo�

given her strategy, i.e. the agent solves the problem

J̃i =

∫ T

0

e−ρt
n∑

j=1

xj(t)dt → max,

with 
onstraints (61) and (63) � (65).
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If

∑n
j=1 x

0
j ≥ x∗ then the optimal strategy of ea
h �rm is evident: it does not

invest to the advertisement. Moreover, it is impossible be
ause in this 
ase the

prin
ipal does not allo
ate any �nan
ial resour
e to the �rms, i.e. then ui,tj = 0.

Let

∑n
j=1 x

0
j < x∗. Unlike the prin
ipal, any agent is unable to estimate a priori

in whi
h instant of time h the sum of values of the state variables be
omes equal to

x∗, but it is redundant be
ause the optimal strategies of the �rms do not depend

on the game's length.

Consider the game in the time segment [0, h]. Similar to the Se
tion 3 we re
eive

for the optimal strategies of all �rms the expressions similar to (69), (27), (79):

uij(t) =
Ri(t)

(
bij
)2

∑n
j=1

(
bij
)2 , Ri(t) = min





1

4
α(t)

n∑

j=1

(
bij
)2
, ri(t)



 , α(t) =

1

ρ

(
1− eρ(t−h)

)
.

As the prin
ipal will never allo
ate to any �rm more resour
es than

1

4
α(t)

n∑

j=1

(
bij
)2
,

we 
an write

uij(t) =

(
bij
)2
ri(t)

∑n
j=1

(
bij
)2 , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, t ∈ [0, h].

Then the prin
ipal's problem is the same as already solved, and the denominator in

(85) is also expressed by the formula (84). Therefore, in the problem with 
onstraint

on the sum of state variables the interests of players are 
ompletely 
ompatible, i.e.

SCI = 1.

Proposition 6. In the problem de�ned in subse
tion 4.1.

SCI = 1.

Remark 2. A non-trivial situation arises again. At the instant t the �rms should


hoose the advertisement 
ost equal to (1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2

if this value

does not ex
eed rti , and 
hoose rti , otherwise. But the �rms do not know the instant

h, and the value (1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, respe
tively. However, they know

that the prin
ipal will never allo
ate to them more resour
es than

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, and they always 
hoose rti . The prin
ipal 
ould use

it and allo
ate to all �rms in the moment t more resour
es than

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, and 
ompel them to invest more. However, it is not

advantageous for the prin
ipal herself to allo
ate more than

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
. Therefore, she always allo
ates

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, if this value does not ex
eed her marketing budget

R, otherwise she allo
ates the resour
es in the way optimal to her. This strategy

remains valid until the instant h, after what the prin
ipal does not allo
ate more

resour
es be
ause the value x∗ is a
hieved optimally. Thus, in the problem with


onstraint on the sum of state variables the interests of the prin
ipal and the �rms

are 
ompletely 
oordinated as in the problem without the homeostasis 
ondition.
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5. Di�erential Sta
kelberg Game with a Constraint on the Sum of

State Variables. Case of the Sto
hasti
 from the Left Matrix A

Now take a standard assumption that the in�uen
e matrix A is sto
hasti
 from

the left, i.e.

n∑

j=1

aij = 1, j = 1, 2, . . . , n.

Let zj > 0, j = 1, 2, . . . , n are 
omponents of the positive (right) eigenve
tor 
orre-

sponding to the Frobenius eigenvalue 1 of the matrix A.
The model takes the form

J0 =

∫ T

t=0

e−ρt




n∑

j=1

zjxj(t)−
m∑

i=1

ri(t)


→ max, (86)

ri(t) ≥ 0,

m∑

i=1

ri(t) ≤ R, t ∈ [0, T ], i = 1, 2, . . . ,m,

x∗ ≤
n∑

j=1

zjxj(t) ≤ x∗, t ∈ [0, T ], (87)

Ji =
T∑

t=0

δt




n∑

j=1

(zjxj(t)− siju
i
j(t)


→ max, (88)

sij =

{
1, if bij > 0,
0, if bij = 0,

n∑

j=1

uij(t) ≤ ri(t), uij(t) ≥ 0, t ∈ [0, T ], i = 1, 2, . . . ,m,

ẋj(t) =

m∑

i=1

bij

√
uij(t) +

n∑

l=1

aljxl(t), xj(0) = xj0, j = 1, 2, . . . , n. (89)

Here aij is a 
oe�
ient of in�uen
e of the i-th basi
 agent to the j-th basi
 agent in

the dis
rete model. As earlier, when we move from the dis
rete des
ription to the


ontinuous one, the in�uen
e matrix A is substituted by the matrix Ã in the form

Ã = A− I.

Therefore,

ãij =

{
aij , if i 6= j,
aij − 1, if i = j.

Let

Z =




z1
z2
. . .
zn


 , zj > 0, j = 1, 2, . . . , n.
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be the Frobenius eigenve
tor of the matrix A, 
orresponding to the eigenvalue 1 of

the matrix A. The diagonal matrix

Ξ =




z1 0 . . . 0
0 z2 . . . 0
. . . . . . . . . . . .
0 0 . . . zn




is the matrix of transfer to the sto
hasti
 (from the right) matrix P :

P = Ξ−1AΞ.

Then

A = ΞPΞ−1,

i.e.

Aτ = Ξ−1P τΞ.

We 
an reformulate the problem (86)-(89) other 
oordinates. Introdu
e a family of

matri
es Bi
:

Bi =




bi1 0 . . . 0
0 bi2 . . . 0
. . . . . . . . . . . .
0 0 . . . bin




and a family of ve
tor fun
tions

√
U i(t) =




√
ui1(t)√
ui2(t)
. . .√
uin(t)


 , i = 1, 2, . . . ,m.

Then the 
onstraint (89) takes the matrix form

Ẋ(t) =

m∑

i=1

Bi
√
U i(t) + (Ξ−1P τΞ − I)X(t),

i.e.

Ẏ (t) =

m∑

i=1

B̃i
√
U i(t) + (P τ − I)Y (t),

where

X(t) =




x1(t)
x2(t)
. . .
xn(t)


 , Y (t) =




y1(t)
y2(t)
. . .
yn(t)


 = ΞX(t),

Ẋ(t) =




ẋ1(t)
ẋ2(t)
. . .
ẋn(t)


 , Ẏ (t) =




ẏ1(t)
ẏ2(t)
. . .
ẏn(t)


 = ΞẊ(t),
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B̃i = ΞBi =




z1b
i
1 0 . . . 0

0 z2b
i
2 . . . 0

. . . . . . . . . . . .
0 0 . . . znb

i
n


 =




b̃i1 0 . . . 0

0 b̃i2 . . . 0
. . . . . . . . . . . .

0 0 . . . b̃in


 , P̃ = P − I,

or in 
oordinates:

ẏj(t) =

m∑

i=1

b̃ij

√
uij(t) +

n∑

l=1

pljyl(t).

The 
onstraint (87) takes the form

x∗ ≤
n∑

j=1

yj(t) ≤ x∗, t ∈ [0, T ].

The expression (86) is written as

J0 =

∫ T

t=0

e−ρt




n∑

j=1

yj(t)−
m∑

i=1

ri(t)


 dt→ max,

and the expression (88) as

Ji =

∫ T

t=0

e−ρt




n∑

j=1

(yj(t)− siju
i
j(t)


 dt → max .

Other expressions in the formulation of the problem (86)-(89) do not 
hange.

Based on the previous solution, we �nd the optimal strategies of all �rms:

uij(t) =

(
b̃ij

)2
ri(t)

∑n
j=1

(
b̃ij

)2 =

(
zjb

i
j

)2
ri(t)

∑n
j=1

(
zjbij

)2 , i = 1, 2, . . . ,m, t ∈ [0, T ],

and the prin
ipal:

ri(t) =

∑n
j=1

(
zjb

i
j

)2
∑m

k=1

∑n
j=1

(
zjbkj

)2 min





1

4

(
α0(t)

)2 m∑

k=1

n∑

j=1

(
zjb

k
j

)2
, R



 , t ∈ [0, h],

ri(t), t ∈ (h, T ], i = 1, 2, . . . ,m,

where

α0(t) =
1

ρ

(
1− eρ(t−h)

)
, t ∈ [0, h].

The prin
ipal's maximal guaranteed result is equal to

1

ρ

(
e−ρh − e−ρT

)
x∗ +

1

ρ

(
1− e−ρh

)
x0+

+

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)

n∑

j=1

(
zjbij

)2

−

m∑

i=1

ri(τ)


 e−ρτdτ,
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where the instant of time h solves the equation

y(t) = x∗ =

∫ t

0

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
zjbij

)2
dτ +

n∑

j=1

zjxj0, (90)

i.e. h is the instant t when the right hand side of (90 be
omes equal to x∗.
As soon, SCI = 1 as in the previous problem from the Se
tion 4. The expressions

for the maximal guaranteed payo� in this 
ase di�er from those in the se
tion 4 only

by the multipliers zj � the 
omponents of Frobenius eigenve
tor of matrix A. So,
the interests of players are 
ompletely 
ompatible as in the problem without the


onditions of homeostasis.

6. Con
lusion

We studied di�eren
e and di�erential Sta
kelberg game theoreti
 models of opin-

ion 
ontrol in marketing networks in whi
h the prin
ipal should provide that a given

limit value of the summary opinion not be ex
eeded. First, the problem is solved

for the sto
hasti
 in�uen
e matrix A, and then this strong assumption is substi-

tuted by a weaker standard assumption that the matrix A is sto
hasti
 from the

left. It is possible to introdu
e a weaker assumption, namely that a non-negative

in�uen
e matrix has a stri
tly positive Frobenius eigenve
tor. In this 
ase, it is only

required to introdu
e in the re
eived formulas the Frobenius eigenvalue of the in�u-

en
e matrix as a multiplier. It appears that for the prin
ipal it is not advantageous

to allo
ate to the forms more resour
es than they need in their rational behavior.

In all 
ases in frame of the 
onsidered model the interests of players are 
ompletely


ompatible.

Other formulations of the homeostasis 
onditions are possible, for example, x∗ ≤∑n
j=1 xj ≤ x∗. But in the 
onsidered model, when all state variables 
an only

in
rease their values or remain 
onstant, the 
onstraints from below are satis�ed

automati
ally.

Another formulation 
an use the 
onstraints only for the terminal values of the

variables, i.e. x∗ ≤ ∑n
j=1 x

T
j ≤ x∗, where xTj are the values of the state variables

in the end of the game. However, the satisfa
tion of these 
onditions in any instant

along the game implies their satisfa
tion in the �nal instant also. The inverse impli-


ation is also true be
ause the values of the state variables do not de
rease during

the game.

At last, the 
onstraints 
an bound ea
h state variable separately: x∗j ≤ xj ≤ x∗j

or x∗j ≤ xTj ≤ x∗j . In su
h formulation it is ne
essary to evaluate in whi
h instant

of time whi
h variable rea
hes its boundary value. Starting from these instants, the


ontrol impa
t must be exerted only to the remaining state variable whi
h de
reases

the problem dimension.
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