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Abstract Difference and differential Stackelberg games of opinion control
on marketing networks are considered. The principal allocates financial re-
sources to the firms for marketing purposes. It is supposed that the structure
of a target audience described by a weighted directed graph is already de-
termined in the stage of network analysis, and marketing control actions are
applied only to the members of strong subgroups (opinion leaders). Condi-
tions of homeostasis (phase constraints) which reflect the requirements of
sustainable management are introduced additionally. The Stackelberg equi-
libria are found analytically. It is shown that the interests of the principal
and the firms are completely compatible.
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1. Introduction

The basic model of influence in a social network is a weighted directed graph
where vertices represent the members of the network (basic agents), and arcs de-
scribe their mutual influence. Each vertex is ascribed a real value (an opinion
of this agent) which is a function of time, and each arc is ascribed a constant
real value (weight) which characterizes a degree of influence of an agent to an-
other (or trust of the latter to the former). Besides, there are one or several in-
fluence agents (firms) which exert impact to the basic agents in their (influence
agents) interests (Chkhartishvili et al., 2019). An approach close to ours is used in
(Sedakov and Zhen, 2019; Zhen, 2019).

This paper represents formulations and solutions of the game theoretic models
of opinion control in social groups with a given network structure of the interac-
tions. The models are interpreted in (not unique) marketing terms. It is supposed
that there is a coordinating body which determines the firms’ marketing budgets.
Thus, the Stackelberg games of the type "one principal - several agents" are con-
sidered. It is also supposed that in the stage of network analysis the target au-
dience is already segmented into strong subgroups (opinion leaders) and satellites
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(Agieva et al., 2019). Then the control actions are restricted by the set of members
of the strong subgroups that reduces the marketing expenditures essentially.

The objective of the control impact is maximization of the sum of opinions
of all agents at the whole period from t=1 till t=T. The impact in closed-loop
strategies is exerted to the current opinions of the members of strong subgroups.
Accordingly to the requirements of sustainable management, the state vector of the
controlled dynamical system must belong to a certain domain of the space of states
(homeostasis conditions) (Ougolnitsky, 2011).

The dynamics of the controlled system (opinions of the agents) is described
by difference of differential equations. Respectively, the payoff functionals of the
principal and the agents are or sum, or integral of their current payoff functions.
An introduction of the discrete or continuous time are complementary approaches
which permit to reflect different effects in real systems, and it is rational to use
both types of the models. Thus, both difference and differential Stackelberg games
with several agents are studied. The best response of the agents is defined as a Nash
equilibrium in their game in strategic form. The difference models are analyzed by
induction on the number of game periods, and the differential models are studied by
means of the Hamilton-Jacobi-Bellman equations. For the consideration of budget
constraints the Lagrange multipliers method is used.

The key problem in hierarchical systems is the coordination of interests of differ-
ent control levels. The most widespread formulation of this problem is a comparison
of the socially optimal outcome of the game with outcomes of the egoistic behav-
ior of the players (the problem of inefficiency of equilibria) (Nisan et al., 2007). In
this paper the index of system compatibility is used for the characteristic of the
coordination of interests. It is a fraction in which the numerator is a value of the
principal’s payoff in the worst Nash equilibrium in the game of the agents, and the
denominator is the value of her globally maximal payoff (Sukhinov et al., 2020).

For the solution of the problems with the homeostasis condition we use the fol-
lowing approach. First, we solve a basic optimization problem without this condition
and find the optimal strategies of the players. In the basic model both principal and
agents maximize the summary opinions of the target audience, and the principal
determines the marketing budgets of the agents. Given the optimal strategies and
the homeostasis condition (the sum of the state variables should not exceed a given
value z*), we suppose that the influence matrix A is stochastic (from the right).
This assumption permits to abstract from the interaction of the basic agents. In this
case the multiplication by the matrix A from the left does not change the sum of
components of the state vector. Then the algorithm consists in optimal increasing
of the sum of the state variables up to the level z*, and then to do nothing unless
the period of consideration finishes.

However, this assumption is too strong. The standard assumption in the control
problems on networks is that the matrix A is stochastic from the left. The matrix
stochastic from the left has also a Frobenius eigenvalue equal to one, and a positive
Frobenius eigenvector corresponding to this value. By means of the diagonal matrix
= with the components of this Frobenius eigenvector on the main diagonal, we can
perform the conjunction operation and move from the initial influence matrix A
to the similar matrix P which is stochastic from the right. Making a substitution
of the state variables by the transform matrix =, we reduce the initial problem
with the influence matrix A to the problem with the stochastic matrix P in the new
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coordinates. Solving this problem and making the inverse transform of the variables,
we receive the solution of the initial problem.

The payment for this transform consists in a small change of the problem formu-
lation. The initial homeostasis condition 2?21 x; < z* takes the form 2?21 zjr; <
x*, where z; are components of the Frobenius eigenvector of the matrix A. Though
these two formulations are not equivalent, they do not differ essentially. In fact, in
the initial formulation we could take instead of z* the value z/ "7, z;, and the
degree of the resulting values of the state variables remains the same. Besides, now
we have to maximize not simply the sum Z?:l x; of the values of state variables but
the projection of the demand vector to the Frobenius eigenvector of the matrix A.
In other words, we maximize only the summary demand Z?Zl zjx; along a general
direction of the mutual influences of the agents as it is done with a standard good
in the Leontief-Sraffa model (Leontief, 1987; Sraffa, 1960; Sraffa, 1962).

We use this approach both in the discrete and continuous time. Respectively, the
paper consists of four parts. In the Sections 2 and 3 we study difference Stackelberg
game theoretic models of opinion control in which the principal should provide that
a given limit value of the summary opinion not be exceeded. In the Section 2 the
problem is solved for the stochastic influence matrix A, and in the Section 3 this
strong assumption is substituted by a weaker standard assumption that the matrix
A is stochastic from the left. The values of the system compatibility index are
calculated. They are equal to one that witnesses about an ideal coordination of the
modeled system. It appears that for the principal it is not advantageous to allocate
to the agents more resources than they need from the point of view of their rational
behavior. In the Sections 4 and 5 we analyze differential Stackelberg game theoretic
models of opinion control with the homeostasis condition by the completely similar
scheme. The Section 6 concludes.

2. Difference Stackelberg Game with a Constraint on the Sum of State
Variables. Case of the Stochastic (from the Right) Matrix A

2.1. The Problem Statement
The model has the form

T n m
JO:Z(St Iz—er — maxz, (1)
t=0 j=1 i=1
ri>0, Y ri<R, t=0,1,2,....,T, i=12,...,m, (2)
1=1
2. <Y 2t <R, t=0,1,2,...,7-1T, (3)
j=1
T n ]
Jzzzy Z(wﬁ—s;u”) — max, (4)
t=0 j=1
Souyt <ol wit>0, t=0,1,2,....T, i=12,..,m, (5)
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m n
t+1 _ i /ot t 0 _ .
= E biyJuy” + E ajry, T =xj0, j=1,2,...,n, (6)
i=1 1=1

i1, af bi>0,
5-7'_{0, if b=0. @

Here n — a number of basic agents (a number of target audience), m — a number
of control agents (competing firms), R — a total marketing budget of the leader, T' —
a length of the game, Jy, J; — the payoff functionals of the leader and the followers
(control agents) respectively, rf — a marketing budget allocated to the i-th follower
by the leader in the moment (dlscrete period) of time ¢, % — an opinion of the j-th
basic agent in the moment ¢, ! — expenditures of the i- th control agent for the
marketing impact (advertlzmg and so on) to the j-th basic agent in the moment ¢,
a;; — a coefficient of influence of the i-th basic agent to the j-th basic agent, bé- -
a coeflicient of influence of the i-th control agent to the j-th basic agent, § denotes
a discount factor, i.e. 6 = e~ ?. As different firms can exert influence to different
members of the strong subgroups, we simply assume that if the i-th firm (control
agent) does not influence to the j-th basic agent then bl = 0. Denote by A a matrix
of the coeflicients of influence among basic agents, i.e. A {aijti=1,2,..ni=1,2,...n,
A" — a transposed matrix of influences, X* — a column vector of the values of state
variables (opinions) in the moment ¢, € — a row vector of the dimension n formed
by units, I — the unit n X n-matrix.

Agsume that matrix of influences of the basic agents A is stochastic (from the

right), i.e
n

Zaijzl, i:1,2,...,n.

j=1
In this case an action of the matrix A™ from the left on any vector does not change
the sum of its components. Thus,

e(ANTX0 = (AT 1X0 = ... = cATX0 = X0,
Aj=A2=-.=AT =1, j=12,...,n,

where ¢ is a row vector of n units.

2.2. Solving the i-th Firm’s Problem

Consider the problem of the i-th firm (4) — (7). In the one-period (without
consideration of the zero period) game each i-th firm solves the problem

Zx ZZO"‘(SZ 11

Jj=1
DL T D WA 9 IUE I
j=1 j=1 7j=11=1 j=11=1 Uiy j=1,2,...,n

with constraint

n

,0 0
g U; <r.
j=1
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Optimizing by the Lagrange multipliers method, we receive the relations:

7
bjl

b

J2

for any agents j; and js impacted by the i-th firm, therefore

i 2
U0 = 40 bﬁ
J2 | pi )
J1

Denote > 7, u u 0 by RY, then we have:

n 2,0 n
i,0 2 i 0
dou = g (b)) = R,
=7 ) o
and, therefore,
bi- 2 0
uz,O — ( 7) RZ (9)

Zx?—R?+6

Thus, the optimal strategy of the i-th firm is

. bi)? 2 n
UJ?O = n( j) -\ 2 min % (b;)2 7Tz'0
S (0%) =1

Consider a two-period game. Each firm ¢ solves the problem
n n
Z(:z: —sluzo) —|—5Z(:17 —slu“) —|—52Z:17? o max (11)
j=1 =1 imee,

with constraint

where u;-’l, j=1,2,...,n, is the solution of the one-period game. We have

m n

i /00
=D b Jut + Y ayaf, (12)
1= =1
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n

wf =D byuy D ayat =) bt ) ay (Z b+ %ﬂ3> )
i=1 =1 i=1 =1 i=1 p=1
= Yo urt ey Yo+ (A7) X0 (13)
i=1 =1

=1 /
Substituting (12) and (13) into (11) we receive

n n m n
3 () 03 (Sl St - ) o
j= i =1

=1

<.

+0° i ibz V u?l +67 i ialj ib; Y, U?O + 8% (AT)Z X0 o max,
1 j=11=1 ’

j=11i= i=1 Uy j=1,2,..., n

or, denote by A; the sum of the elements of the j-th row of the influence matrix A,

3 (o) 03 (37 St ot )+
j=1 j=1 \i=1 =1
62D N b uit 7Y 0D A u’ + 8% (AP X0 — max, (14)
j=1i=1 j=1i=1 Ui j=1,2,..., n

Maximizing (14) with constraint

for any agents j; and js impacted by the i-th firm, therefore
i\ 2
uz ,0 uz ,0 (1 + 6Aj2) b72
J2 J1 (1+5Aj1)b;1
Denote Y7, u’ by RY, then receive:

ui,O n

Soull = N (1404 6] = RY,
j=1

[(1+684,) 00" =

and, therefore,
12
. 14+ 04;)b:]" RY
U;-70 = [i J) J:I _l 3 (15)
ooy [(1+04;) b
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Substituting (15) into (14) and choosing only the terms with u;’o, we receive

DD vl FW T T Ay VR

~RY+6
VI [b (1 +64) VI b1+ 64,)]
=—RY+6) |RO> [0 (1+44;) (16)
i=1 j=1
A non-conditional maximization of (16) by RY gives:
62
( mam = Z 1 + 614
_]:1
Thus, the optimal strategy of the i-th firm is
. bi (14647 2 n
u;,O — [ ( )} m. % bz 1—|—§A )}
Z] 1 [ (1 +6A )} j=1

Now consider the T-period game. Denote

(Zb; V u?t) :Bt7 t=0,1,2,...T. (17)
i=1 j

1

Then we have
Xl — ATXO + 50’

X2 = (A7) + A7B° 4 B,
and iterations by t give
X' = (AT XO+ (AT 1B+ (A7) 2B+ AR 4 g (18)
Each i-th firm solves the problem
T n n

ZétZ(x —su ) Z&t th—Zs;-u;’t L max, (19)

t=0 j=1 j=1 Uy g=1,2,0m

with constraint

j=1
where u; ' u; 2. ,u; T=1(j =1,2,...,n) are the respective solutions of the (T'—1)-
period, (T' — 2)-period, ..., one- perlod problems. _
Choosing in (19) only the terms whith variables u;-’o,j =1,2,...,n, we receive

the expression

n

—Z uf0 e [0+ 2AT + - + 87 (AT)T1] B0 (20)
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Maximizing (20) with the constraint

i0
> ub? <o, (21)

(1+ 644, + -+ 87T AT i,

(1+0A;, +---+ 0T AT )i~

for any agents j; and jo influenced by the ¢-th firm, where A; denotes the sum of
elements of the j-th row of the t-th power of the influence matrix, ¢t =1,2,...,7—1.

] i 0 .
Denote as earlier the sum Y7, u}" by RY, we receive

(v 524;)2 RY
S (B o)

A substitution of (22) into (20) with consideration of (17) gives

i,0
Uu - =

(22)

n

S . Tf 5t i T AR
J

777

J 2 =
=1 i=1 j=1 t=0 n i =1 ¢p At
> o1 (05 220 0YA]

m n T-1 2
=-R)+6> |RY> (b;. > 5tA;) . (23)
i=1 j=1 t=0

Maximizing (23) by R} without restrictions, we receive

. _ 2
1 [ (130 o)
- 2\/R) '

Therefore,

t
Thus, with consideration of the constraint (21),
o (EEea) (et N
U;-’O = - : 3 min Z Z <b 5tA§> 71"(-)
: n i T-1 -
Zj:l (bj t=0 5tA§') j=1
Respectively, in the period ¢ (t =1,2,...,7 — 1) we have

b T:lft 55 A8 2 n T—1—t 2
u;t = ( ! 250 J) 5 min & Z (bi- Z 55AS-> TEp (24)
LS (i) =
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where 7! are the resources allocated to the i-th firm by the principal in the ¢-

th period. As the principal in the period ¢ never chooses a value r! greater than

2
542 (bZ Zzz_ol_t 6SA§) , the expression (24) may be substituted by

u§7t: (bz ZT 1- t53As) rt | )

Z (bz ZT 1-t 55As)
Considering the stochasticity of the matrix A, the expression (25) takes the form
} L 2
o (BEm o) (BEi5e) ot (b)) rt (26)
uj7 = = = o ; 5
Sy (01 t&SAS) S (B f(ss) 21 (8)

and does not depend on the length of period T'. Thus we have proved the statement.

Proposition 1. The optimal strategy of the i-th firm in problem (4)—(7) is

it (b§)2 ri

uj = n i\2
2o (55)
2.3. Solving the Principal’s Problem

The principal cannot decrease the value 2?21 x4, and only increases it by al-
location the resources between the firms. It follows from the problem formulation
that 2. <37 | 23 < 2*, and the value )77, ; cannot become less than z.. Then
the principal’s optimal strategy is evident. The principal solves the problem (1)—(3),
(5)-(6).

It is clear that for the maximization of her objective function the principal must
optimally increase the value 2?21 :10; only up to the value z*, after what she must
cease the allocation of resources to the firms. Then the value Z?:l ! remains
equal to z* until the end of the period of consideration. For the implementation
of this strategy the principal already in the instant of time t = 0 must determine
the instant ¢ = H, when the value Z -1 xH becomes greater than x* due to the
respective strategy. At the instant t = H — 1 the value of allocated resources should
be reduced so that starting from the instant ¢ = H the value Y 7_, x% be strictly
equal to x*

Consider the H-period game. The principal solves the problem

H n m H m
Z st Z x§ - Z ri] = Z st <€Xt - Z rf) , —  max (27)
t=0 =1 i=1 i i 1=

with constraint

m

S

i=1
where 7},7?, ..., rF 7 (i = 1,2,...,m) are the respective solutions of the (H — 1)-
period, (H — 2)-period, ..., one-period problems, and

i\ 2
. i)yt
u;_’t:i(']) d s t:1,2,,H—1

S (b))
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according to (26). Using the denotation (17) and decomposition (18), choosing in
(27) only the terms that include 77, and considering that A} = 1, we receive the
expression

> 0 (048744 6M) e, (28)

where

S )

po(Tnf) - () L e
i=1 j=1 i1

Substituting (29) into (28), we receive

m n.om Obi2
DL R CETSEE i DY V) L=
i=1 J=1li=1 />0, (v%)

(30)
by the Lagrange multipliers method, we receive the relations
n s\ 2
Yo ()" rd,
n i\2 0
Zj:l (bj]) "
for any influence agents 7; and i2. Denote as earlier the sum ZZ 1T 9 by R°, we
receive
Z”’ Zz 12] 1( ) “:R07
i=1 ijl (bjl)
therefore )
n i 0
v m n 2"
Dic Zj:l (bj)
Substituting the expression (31) into (30) we receive
H m n )
RO+ VRO 5t DD (v) (32)
t= i=1 j=1

Maximizing the expression (32) by R without constraints, we receive

5\/21212]1 225t7
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and

Therefore, with consideration of the constraint R° < R the principal’s optimal
strategy is

r? = Z?ZI (b§)2 min ﬁ ) i. 2<H15t>2
BT ER 22 P PR B S

Completely similar to (33) we receive for t =1,2,..., H — 1:

S ) RO (H ) .

rt = z I min{ — b ) ,Ry,i=1,2,...,m.
ST KPP e

(34)

Using the denotation (17), decomposition (18) and the formula (26), we can write

the value >."_,  in the H-period game, t = 0,1,2,..., H, where H is exactly the

Jj=1"J
instant when the value Z?:l :1:§ first becomes equal to z*, in the form

ext =5X0+5BO+5ﬁ1 +...+55H—2 +65H—1 _
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first becomes greater or equal than 2* — >."_, 2% (if it is possible for a t < T). In

. J=1"7
this case denote

It is clear that the summary amount of resources allocated by the principal between
the firms in the instant H — 1 so that in the instant H the sum of the values of
state variables be strictly equal to #*, must be equal to

(Ay)?

R= .
2211 2?21 (bé)

(37)

We obtain the statement.

Proposition 2. The principal has in the problem (1)-(3), (5)-(6) the following
optimal strategy. When 0 <t < H — 2

no(pi)? g m o n H—1—t 2
rt = Ejzln( '7) 3 min %Z (b;)2< Z 55> , R ;
dim Zj:l (bj) i=1 j=1 5=0

whent=H —1

=17

n i\2
pH-1 ijl (bj) R

%

)

TS (0)?

and when H <t <T
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H-1
+ < > 55>
s=t+1
T

+oH1 | RE-23TS T (b8)? - 6H2RHS2 _gH R 40 N6k, (38)
i=1 j=1 h=H

Rt zm: zn: (b%)* — 'R +

i=1 j=1

where

0 = min ZZ(b§)2<Z 55> Ry, (39)

i=1 _]:1 =
52 m n 9 H—-1-t 2
R! = min ZZZ j) Z Ol , Ry, (41)
i=1 j=1 s=0
62 m n
R¥=2 = min ZZ 1+5 , (42)
=1 ]:1

by R! is denoted the sum ZZ 1rht=0,1,2,...,H — 2, and the value R is deter-

mined by the expression (37).
Proof. Tt can be seen from (34). O

2.4. System Compatability Index

Denote the set of collections of equilibrium strategies of firms provided that
principal’s strategy is {r;}/2, by NE({r;}!™,). Calculate the system compatibility
index for the considered problem:

MAX(rym, Wigeym  » enp({rym,) 7o ({radizy {ushi,t)

MaX fr;}ym | MaXgyiymi, " Jo ({Tl}z 1,{u }7, 1,7n1)

SCI = (43)

This index shows the measure of compatability of system. The numerator of (43)
is the payoff of the principal in the case if the firms choose the most unfavorable
for principal equilibrium strategies. The denumerator of (43) is the payoff of the
principal in the case if the firms choose the most favorable for principal strategies.

Given the principal’s strategy the set of equilibrium strategies of each agent is
one-element in our case, so the numerator of the expression (43) is equal to (38).
For calculation of the denominator in the expression (43) let us assume that each
agent maximizes not his payoff but the principal’s payoff given her strategy, i.e. the
agent solves the problem

x’; — max,
1

T
Ji=) 6
t=0

with constraint (3) and (5) — (6).

n

J
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If Z?:l x? > x* then the optimal strategy of each firm is evident: it does not
invest to the advertisement. Moreover, it is impossible because in this case the
principal does not allocate any financial resources to the firms, i.e. then u;-’t =0.

Let Z?Zl ZC? < x*. Unlike the principal, any agent is unable to estimate a priori
the number of time periods H which is required for the sum of values of the state
variables becomes equal to z*, but it is redundant because the optimal strategies
of the firms do not depend on the game’s length.

Consider the H-period game. Denote as earlier

n

(Zbé-\/%’t) =B, t=0,1,2,...H—1. (44)
1=1

Jj=1

Then
Xl _ XO +507

X2:X0+BO+BI’
and so on, the iterations by ¢ give
Xt:XO+BO+51+"'+Bt72+ﬂt71- (45)
Each i-th firm solves the problem
T n T
Z S5t Z ah = Z steX? o T max, (46)
t=0  j=1 t=0 Uy o d=120m

with constraint
n

i,0 0
j=1
where u;’l, u§’2, . ,ujﬁH*l(j =1,2,...,n) are the respective solutions of the (H —

1)-period, (H — 2)-period, ..., one-period problems.
Choosing in (46) only the terms whith variables u}
the expression

0 . .
J=1,2,...,n, we receive

ot zn: i bl i (48)

Maximizing (48) with the constraint (47) by the Lagrange multipliers method, we
receive the relations

7
bj 2

bi

J1

for any agents j; and jo impacted by the i-th firm. Denote as earlier the sum

n ,0 0 :
> = u; by Ry, we receive

i\ 2
, b:)” RY
u;;O _ % (49)
> (89)
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Substitution of (49) into (48) gives

(57)%

i=1

(50)

Maximizing (50) by R? with constraint (47), we receive

(RQ =79,

l)maz ?

Thus we have .,
u;‘_,o _ (bE) - 0.
S (0%)
Let us write the strategy of the i-th firm in the H-period game. Fort =0,1,..., H-1
the optimal strategy of the i-th firm is

i\ 2
it _ (bj) t

If t = H then u}” =0, =1,2,....n.

Then the principal’s problem is the same as the previous problem already solved
in searching the numerator on (43), and the denominator of (43) is also expressed
by the formula (38). Therefore, in this problem the players’ interests are ideally
compatible, and SCTI = 1.

Proposition 3. In the model defined in subsection 2.1.
SCI =1.

Remark 1. A non-trivial situation arises. In the ¢-th period the firm should choose
, o 2
the advertisement cost equal to % > i (b})2 (Ziol ! 53) if this value does not
_ 2
exceed 1, and choose 7? if the value & Py (b;)2 (Zf:_ol_t 55) is greater than r!.
But the firms do not know the index H, and therefore, the value

, L 2
% Z?:l (b})2 (Zf:()l t 65) . However, they know that the principal never allocates

_ L 2
them more resources than % Z?:l (b;-)2 (Ziol k 55) , and respectively they al-

ways choose r!. The principal could use it and allocate to all firms in the t-th
_ L 2

period more resources than %Z};l (b;-)2 (Zf:ol t55) , and respectively com-

pel them to invest in the advertisement more than it is advantageous to them.

However, it is not advantageous to the principal herself to allocate more than

_ 2
% ?:1 (b;-)2 (Zf:_ol_t 65) ! Therefore, the principal always allocates the value
5% <—n N2 (~Helot c5\2 ¢ .

T 2 im1 (bj) Yoe—o 0°) if it does not exceed her marketing budget R, oth-
erwise she allocates the resources as it is optimal for herself. This remains valid
until the instant H — 1 when the principal allocates a reduced amount of resources
which provides in the instant H that the sum of values of the state variables is
strictly equal to z*. Thus, the interests of the principal and the agents (firms) are
completely compatible.
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3. Difference Stackelberg Game with a Constraint on the Sum of State
Variables. Case of the Stochastic from the Left Matrix A

Now take a standard assumption that the influence matrix A is stochastic from
the left, i.e.

n
Zaijzl, j:1,2,...,n,
Jj=1

and other assumptions are the same as in the previous section. The model takes the
form

T n m
Jo = Z st Z 27x§ - er — maz, (51)
t=0 j=1 i=1
ri>0, Y ri<R, t=0,1,2,....T, i=12,..,m, (52)
=1
z. <Y zal<at, t=0,1,2,...,T-1T, (53)
j=1
T n )
J; = Zét Z(zsz - s;u;t) — max, (54)
t=0 j=1
Zu;}tgrg, u;’zfzo, t=0,1,2,....,T, i=1,2,...,m, (55)

m n
t+1 ] it t 0 _ s
= E biyJu;" + E ajry, T =xj0, j=1,2,...,n, (56)
i=1 =1

, 1, if b >0,
5= {0 if bi=0
) J )
where z; > 0, j = 1,2,...,n, are components of the positive (right) eigenvector
which corresponds to the Frobenius eigenvalue 1 of the matrix A.
Let us reduce the standard situation to the already considered case. Let Z be
an eigenvector corresponding to the eigenvalue 1 of the matrix A:

(57)

21

Z ="

,2; >0, 7=1,2,...,n.
Zn

It is evident that the diagonal matrix

z1 0...0
= _ 0 220
0 0 ...z,

is the matrix of transfer to the stochastic (from the right) matrix P:

P=="14A=.
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Then

_ op=-1
ie.

AT==2"1p’%5

[

3

and the problem (51)-(57) can be formulated in other coordinates.
Introduce a family of matrices B*:

bt 0 ... 0
Bi_ 0 by...0
0 0 ...0b%
and vectors
ui’t

Then the constraint (56) takes the matrix form

X =N "BWU + 27 PTEXY,
i=1

i.e.
YL =N "BVUY + PTYY,
=1
where
g Yy
Xt: CCE Yt yé ::Xt
;C.t. yt
zbi 0 0 B 0 ... 0
Bi_zpgi_| 0 =b 0 | _|0b5...0 |
0 0 ...z:b 00 ..0

or in the coordinate form:

m n
41 7i [ it t
gt =B Dl
i=1 =1

and the constraint (53) looks like

n
Ty < Zy§ < z*.
i=1
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The expression (54) takes the form

T n
Ji = Z(St Z(y; - s;u;t) — max,
t=0 |j=1
and (51) takes the form
T n m
Jg—Z(St Zyﬁ—er — max.
t=0 |j=1 i=1

Other expressions in the problem (51)-(57) do not change. Based on the solution of
the problem from the Section 2, we find the optimal strategies of the firms:

~\ 2
» (bl) ri 2;bi) % rt
utt = ! = (23)) o, i=1,2,....m, t=12,...T.

S () S Gty)”

As for the principal, let in the moment ¢ = H the value

for the first time becomes greater or equal than z* — >, z;2% (if it is possible for

some t < T'). Denote

n

X 0
A==z —g 25T

Jj=1

we find the total amount of resources that the principal should allocate to the firms
in the moment H — 1 so that in the moment H the sum

n

E :ijj

Jj=1

be strictly equal to x*:

(58)



42 Movlatkhan T. Agieva, Alexei V. Korolev, Guennady A. Ougolnitsky

Thus, the principal’s optimal strategy is the following:
when 0 <t < H —2

. 2

> (zjb?)Q I P - <H—1—t )

e GBSt (S ) Ry
>ica Z?:l (Zjb;')2 4 ;; o Z

whent=H —1

n i\ 2
H-1 _ Zj:l (Z7bj) 5.
T - m n i\ 2 R
dim1 Zj:l (Zjb;)

when H <t<T

¢ .
r, =0, 1=1,2,...,m.

The maximal guaranteed payoff of the principal is equal to

<Hzl 55> Xn:zjxg? + <Hzl 55> RO i Xn: (208)” — RO+

J=1 i=1 j=1

H-1 m n
+<Z(55> RlzZ(zjb;)z—éRl-i--”-i-
5=2

i=1 j=1

H-1 m n
+<Z 55) RUYSY (eb) 8R4

s=t+1 i=1 j=1
m n T
+611 | RE=237 57 (200)* — 67 2RI2 _ gT 1Ry 0 Y g,
i=1 j=1 h=H

where, as can be seen from (34),

i=1 j=1 s=0
52 m n 9 H-2 2
S N <Z 55> RV
i=1 j=1 s=0
52 m n ) H—-1—t 2
t 7 S
R" = min ZZ (zjbj)<z5>,R, ,
i=1 j=1 s=0
52 m n
RM-2 _ min T ZZ (205)" (1+6)% R,
i=1 j=1
where R! denotes the sum > 7}, t =0,1,2,..., H — 2, and the value R is deter-

mined by the expression (58).

It is clear that SCI = 1 as in the previous problem from the Section 2. The
expressions for the maximal guaranteed payoff in this case differ from those in the
section 2 only by the multipliers z; — the components of Frobenius eigenvector of
matrix A. So, in this problem with the homeostasis condition, as in the similar
problem without this condition, the interests of players are completely compatible.
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4. Differential Stackelberg Game with a Constraint on the Sum of
State Variables. Case of the Stochastic (from the Right) Matrix A

4.1. The Problem Statement

Consider this problem in continuous time. Now the model takes the form

n

T m
Jo = /0 e Pt Zx7 (t) — Zri(t) dt — max, (59)

j=1 =1
ri(t) >0, Zrl(t) <R, tel0,T], i=1,2,...,m, (60)
i=1
ZC*SZZCJ(t)<$*, t e 0,7, (61)
j=1

j=1
Zu;(t) < ri(¢), u;(t) >0, t€[0,T], i=1,2,...,m, (63)
j=1
By =Y i Jui(t) + 3 agm(t), z;(0)=z0, j=1,2,...,n, (64)
=1 =1

J 0, if b;=0.
Here a;; is a coefficient of influence of the i-th basic agent to the j-th basic agent in

the discrete model. When we move from the discrete description to the continuous
one, the influence matrix A is substituted by the matrix A in the form

(65)

A=A-1.
Thus,
G :{ aij, if 1#7,
Y aij — 1, ’Lf 1= j

Let us first assume that the matrix A is stochastic (from the right), i.e.

n
E aijzl, i:1,2,...,n.
j=1

Solving the problem of the i-th firm, we can substitute n state variables x; by
their sum and denote by x the only state variable:

n n
E T; =, E Zjo = To,
Jj=1 Jj=1
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then

n n

j=11=1 j=

n n n n n
E ajx; = E E aj Ty — T = E T — E zj=x—x=0,
j=11=1 j=1 =1 j=1

and the conditions (62) and (64) respectively take the form

T n
J, = / e Pl — Z séuz(t) dt — max, (66)
0 =1
and n m
g=Y Y bhJui(t), x(0) = (67)
j=1 i=1

4.2. Solution the Problem of i-th Firm

The Hamilton-Jacobi-Bellman equation has the form

ov; S i Vi v~ k[ ok
pVi= Gy = max z(t) — Zsjuj(t) + ZZbﬂ/uj (t) (68)
J j=1 =1 k=1
with constraint .
Zu; (t) <ri(t)
j=1
Maximizing by v}, j =1,2,...,n, b} # 0, we receive
ov; ;1 , , -1
o bJE (u7) F-l=np,

where p is a Lagrange multiplier. Then for any 1 < j1,7j2 < n:

(0Vi/0x)bj, _ b, _ ()

OVijou)ts, b, \,

Denote the sum )
1

S ()

2
(vi,)" =

u

by R;(t). Then .
R0 )
As we take the linear Bellman functions,
Vi(z,t) = o' () + B'(t),

then we can write the equation (68) with consideration of (69) in the form

pa' (t)z + pB' () — o' (B)r = F1(1) =2 = Ra(t) +a' (1) D D
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or

pal(t)x + pBi(t) — o (H)x — Bi(t) == — Ri(t) + a'(t) Y
k

—

Equation of the coefficients at the variable x in the left and right hand sides of
the equation (26), we receive a differential equation for a*(t). Its solution gives

; 1
a'(t) = Ceft + ~.
P

Using the boundary condition o?(T") = 0, we find the integration constant

C= —lePT.
p

Therefore,

al(t) = % (1 - ep(th)) .

Function of(t) is the same for all firms, then we will omit the index i of the
functions o(t). Equating the constant terms in the left and right hand sides of the
equation (26), we receive a differential equation for 3’ (¢):

Bi(t) = e’ C(t),

Therefore,
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Choosing the maximal value of the right hand side of the expression (26) in
dependence of R;(t), we have

—Ri(t) + ai (t) Ri (t)

hence

(Ri (t> )maz =

CONGE

Thus, the value R;(t) (omitting the index i at o*(t)) is equal to

B

R;(t) = min

(@(®)” > () ra() p - (71)

Jj=1

] =

Thus we have proved the statement.

Proposition 4. The optimal strategies of firms in problem (66)-(67) are defined
by expression (69), where R;(t) defined by (27) and
1

at) = p (1 - ep(th)) .

4.3. The Principal’s Problem

Now consider the principal’s strategy. The principal cannot decrease the value
2?21 x;; she can only increase it by allocating the resources to firms. Then her op-
timal strategy is evident. From the problem formulation it follows that Z?:l Zjo >
Z«. The principal solves the problem:

n m

T
Jo = / e Pt ij (t) — Zri(t) dt — max,
0
j

=1 i=1

with constraints (60)—(61), (63)—(65).

It is clear that for maximization of her payoff the principal should increase
the value Z;‘L:l x;(t) as in the previous discrete problem but only up to the value
x*, after what she must cease to allocate resources to the firms. Then the value
Z?:l x;(t) will remain equal to z* until the end of the game. For implementation
of this strategy the principal should already at the instant ¢ = 0 determine the
instant ¢ = h when the value Z?:l x;(t) becomes equal to z* given the respective
strategy.

As according to (27) the principal will never allocate to any firm 4 in any instant
t more resources than .

i\ 2
(a(0)* > (05)"

Jj=1

] =

we can rewrite the expression (69) in the form

. T t bl 2
uj = Zi : ((bjl))z (72)
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Substituting to the equation (67) for the sum of variables x the expression (72),
we receive

(74)

Thus, h = 271 (2*) is the instant of time when the right hand side of the expression
(74) becomes equal to z*.

Given the value of h and using the assumption about stochasticity of the influ-
ence matrix, we can reformulate the principal’s problem as follows:

m

h
Jo = /0 e Pt (x(t) - Zn(t)) dt — max, (75)

i=1
with constraints
ri(t) >0, > m(t) <R, te[0h], i=1,2,...,m
i=1

and (73).
The Hamilton-Jacobi-Bellman equation takes the form:

pVo — ot o max (76)
with constrain .
ZTZ' (t) < R
i=1
We take the linear Bellman function:
V(e £) = (e + B(0). (77)
Substituting (77) into (76), we receive
pa’(t)a + pB°(t) — o () — B°(t) =
= max qa(t) = om0 +a') ) [0 05)° 78)
ritthisism i=1 i=1 j=1

Equating in the left and right hand sides of the equation (78) the coefficients at the
variable z, we receive a differential equation for a(t):

o O(t) = pal(t) = —1.
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It coincides with the differential equations for () but has other boundary condi-
tion
a®(h) = 0.
Therefore,
aO(t) = p (1 - eP<t*h>) . telo,h]. (79)
Equating the constant terms in the left and right hand sides of the equation (78),
we receive a differential equation for 8°(¢):

Its solution by the method of variation of parameters gives

BO(t) = C(t)e™,

=1

Using the boundary condition

we find

Therefore,

(80)

Maximizing the right hand side of the expression (78) by r;(t), i = 1,2,...,m,
with constraint Y., 7;(t) < R, we receive

S ()
1-— ao(t) 72 ’I’i(t) = M,
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where p is a Lagrange multiplier. Then

\/ Jj= 1 b“ TZI

\/ZJ 1 ( blz \/T”
Therefore, for any 1 <143,i9 < m it is true that

n 7 2

> (67)
ﬁrh (t)
>y (65)
Denote the sum Y7, 7;(¢) by r(¢). Then

Ty (t) Z Z Z bz]
j=1

i=1 j=1

Tig (t) =

Therefore,
2

> (6))
Zk 1ZJ 1 (bk)

Substituting (81) in the right hand side of (78) we receive:

2(t) = 7(t) + (1), | r(t) _Z > (B

ri(t) = r(t)

n
2 .
E 1,2,...,m.

<
S
P
~
=
»Jklr—‘

For the instants ¢t € [0, h] when
0 2 UL 2
)" > > (1)
i=1 j=1
the principal’s optimal strategy is
n i\ 2
o (85)

ri(t) = — — sz 1=1,2,...,m.
D ket 2aj=1 (bj)

49

Combining the two expressions for r;(¢) in the one formula, we receive following

statement.
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Proposition 5. The principal’s optimal control is

ri(t) = Lo (b§)2 5 min ! (ao(t))Qii (b?)2 JR, t€][0,h], (82)
Do Z?:l (bﬁ) 4 k=1j=1
ri(t) =0, te[hT], 1=1,2,...,m,
where

Using (79) and (80), we can write:

max Jo = Vo(2(0),0) = a®(0)z(0) + 8°(0) =

ri, 1<i<m

m

*l —e M)z haT
--( )o+/0 W (Y

i=1

m

;i (7) Z (b§)2 - Z’I’i(T) e PTdr, (83)

j=1 i=1

when the value r;(7) is determined by the expression (82), and a(7) - by the
expression (79). Then according to (83) the principal’s guaranteed payoff is equal
to

(efph — epr) ¥+ % (1 — efph) To+

T
max Jy+2* e Pt =
ri, 1<i<m h

I

(84)
where the instant h is determined by the expression (74).
4.4. System Compatibility Index
Calculate the system compatibility index:
m i iym; n m J ini, ’an’ﬁ
cop g, iy enp((rr,) To (7 }1‘1,,;{%3“1”_1) (85)

maxgyye maxgiymnoJo ({radey, {uf bl l)
As soon, SCI shows the measure of compatability of system. The numerator of (85)
is the payoff of the principal in the case if the firms choose the most unfavorable
for principal equilibrium strategies. The denumerator of (85) is the payoff of the
principal in the case if the firms choose the most favorable for principal strategies.

Given the principal’s strategy the set of equilibrium strategies of each agent is
one-element in our case, so the numerator of the expression (85) is equal to the
right hand side of (84). For calculation of the denominator in the expression (85)
let us assume that each agent maximizes not his payoff but the principal’s payoff
given her strategy, i.e. the agent solves the problem

T n
ji = / e_pt Z Z; (t)dt — Inax,
0

j=1

with constraints (61) and (63) — (65).
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If Z?:l x? > x* then the optimal strategy of each firm is evident: it does not
invest to the advertisement. Moreover, it is impossible because in this case the
principal does not allocate any financial resource to the firms, i.e. then uzt =0.

Let Y7, < z*. Unlike the principal, any agent is unable to estimate a priori
in which instant of time h the sum of values of the state variables becomes equal to
x*, but it is redundant because the optimal strategies of the firms do not depend
on the game’s length.

Counsider the game in the time segment [0, k). Similar to the Section 3 we receive
for the optimal strategies of all firms the expressions similar to (69), (27), (79):

. % n
ui(t) = Lft) 0) 5. Ri(t) = min ia(t) SO ) pra@) == (1= e,
iy (8%) i=1

As the principal will never allocate to any firm more resources than

D=

n

100 (),

<.
—

we can write

(bj) ri (t)
n 27

i (0)
Then the principal’s problem is the same as already solved, and the denominator in
(85) is also expressed by the formula (84). Therefore, in the problem with constraint

on the sum of state variables the interests of players are completely compatible, i.e.
SCI =1.

ui(t) = , j=1,2,....n, tel0,h].

Proposition 6. In the problem defined in subsection 4.1.
SCI =1.

Remark 2. A non-trivial situation arises again. At the instant ¢ the firms should
choose the advertisement cost equal to (1/4p) (1 — (=) Z?:l (bj»)2 if this value
does not exceed r!, and choose 7!, otherwise. But the firms do not know the instant
h, and the value (1/4p) (1 — eP(t=1)) > (bj»)g, respectively. However, they know
that the principal will never allocate to them more resources than
(1/4p) (1 — er(t=1) > i1 (b;-)g, and they always choose rf. The principal could use
it and allocate to all firms in the moment t more resources than
(1/4p) (1 —ertt=m) 370, (b;)Q, and compel them to invest more. However, it is not
advantageous for the principal herself to allocate more than
(1/4p) (1 —ePti=m)) 377 (b;)2 Therefore, she always allocates

(1/4p) (1 — er(t=1) > (bj»)g, if this value does not exceed her marketing budget
R, otherwise she allocates the resources in the way optimal to her. This strategy
remains valid until the instant A, after what the principal does not allocate more
resources because the value x* is achieved optimally. Thus, in the problem with
constraint on the sum of state variables the interests of the principal and the firms
are completely coordinated as in the problem without the homeostasis condition.
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5. Differential Stackelberg Game with a Constraint on the Sum of
State Variables. Case of the Stochastic from the Left Matrix A

Now take a standard assumption that the influence matrix A is stochastic from
the left, i.e.

n
Y aij=1,j=12,...,n
j=1

Let z; >0, j =1,2,...,n are components of the positive (right) eigenvector corre-
sponding to the Frobenius eigenvalue 1 of the matrix A.
The model takes the form

=1
Ty < szgcj (t)<z*, tel0,T], (87)
i=1
T n
Ji = Z S5t Z(zjxj (t) — sjui(t) | — max, (88)
t=0 j=1

(1) = b ul(t) + Y aymi(t), x;(0) =z, j=1,2,...,n. (89)
=1 =1

Here a;; is a coefficient of influence of the i-th basic agent to the j-th basic agent in
the discrete model. As earlier, when we move from the discrete description to the
continuous one, the influence matrix A is substituted by the matrix A in the form

A=A-1
Therefore,
a4 @y if i#F]
“ aij =1, if i=]
Let
21
z22
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be the Frobenius eigenvector of the matrix A, corresponding to the eigenvalue 1 of
the matrix A. The diagonal matrix

Z1 0 . 0
= _ 0 z9 0
0 0 Zn

P=="1AZ.
Then
A=EP=E"1
i.e.
AT =£571p7=.

We can reformulate the problem (86)-(89) other coordinates. Introduce a family of
matrices B*:

i 0 ... 0
Bi— 0 by ... 0
0 0 ...b

n

and a family of vector functions
NGO
T = | VeO | i—12. . m
n(t)

ul

Then the constraint (89) takes the matrix form

X(t)=>_ B\U(t)+ (P2 - DX(t),
Y(t) = iBl Ui(t) + (PT = I)Y (¢),
where

r1(t) yi(t)

x=| "= vay= [ =Y | = =2x0),
Ty (1) Yn(t)
a1(t) (t)

=20 vw= [ 2O | ==X,

dn(t) Un(t)
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z21bp 0 ... 0 by 0 ... 0
Bl:EBZ: O 22b2... O _ O b2 O ’ p:P—I,
0 0 ...z} 0 0 ...0,
or in coordinates: . .
g5(t) = Y _b5\/ul(t) + D pigu(t).
=1 =1
The constraint (87) takes the form
x*§2yj(t)<x*, te[0,T]
j=1
The expression (86) is written as
T n m
Jo = / e Pt Z y;(t) — Z ri(t)| dt — max,
=0 j=1 i=1

and the expression (88) as

T n
J; = / e~ Pt Z(% (t) — s;u;(t) dt — max.
t=0 j=1

Other expressions in the formulation of the problem (86)-(89) do not change.
Based on the previous solution, we find the optimal strategies of all firms:

N2
bt i (t) b 2 (1
ul(t) = (J) —— = (ZZ J) T(L, i=1,2,...,m, te0,T],
S (b;i) > (2b)
and the principal:
n i\ 2
Sy Sy () k=1 j=1

rit), te(mT), i=1,2,...,m,

7 (t)

where

aAO(t) = P (1 - e”(t_h)) , tel0,h].

The principal’s maximal guaranteed result is equal to

(e_”h — e_pT) ¥ + % (1 — e_ph) To+

h U n m
+ [ o |32 w)z@jb;f)— r(r)| emr,

i=1 j=1 i=1

D=
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where the instant of time h solves the equation

n

y(t) =x* = t Xm: ;i (7) Z (zjb;-)QdT + 2": 2T 0, (90)
07 ;

j=1

i.e. his the instant ¢ when the right hand side of (90 becomes equal to z*.

As soon, SCT =1 as in the previous problem from the Section 4. The expressions
for the maximal guaranteed payoff in this case differ from those in the section 4 only
by the multipliers z; — the components of Frobenius eigenvector of matrix A. So,
the interests of players are completely compatible as in the problem without the
conditions of homeostasis.

6. Conclusion

We studied difference and differential Stackelberg game theoretic models of opin-
ion control in marketing networks in which the principal should provide that a given
limit value of the summary opinion not be exceeded. First, the problem is solved
for the stochastic influence matrix A, and then this strong assumption is substi-
tuted by a weaker standard assumption that the matrix A is stochastic from the
left. It is possible to introduce a weaker assumption, namely that a non-negative
influence matrix has a strictly positive Frobenius eigenvector. In this case, it is only
required to introduce in the received formulas the Frobenius eigenvalue of the influ-
ence matrix as a multiplier. It appears that for the principal it is not advantageous
to allocate to the forms more resources than they need in their rational behavior.
In all cases in frame of the considered model the interests of players are completely
compatible.

Other formulations of the homeostasis conditions are possible, for example, z, <
Z?:l z; < z*. But in the considered model, when all state variables can only
increase their values or remain constant, the constraints from below are satisfied
automatically.

Another formulation can use the constraints only for the terminal values of the
variables, i.e. x, < 2?21 :v;f < z*, where x? are the values of the state variables
in the end of the game. However, the satisfaction of these conditions in any instant
along the game implies their satisfaction in the final instant also. The inverse impli-
cation is also true because the values of the state variables do not decrease during
the game.

At last, the constraints can bound each state variable separately: z.; < z; < z*/
or T,; < :v;f < z*J. In such formulation it is necessary to evaluate in which instant
of time which variable reaches its boundary value. Starting from these instants, the
control impact must be exerted only to the remaining state variable which decreases
the problem dimension.
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