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Abstrat We onsider a dynami Stakelberg game theoreti model of the

oordination of soial and private interests (SPICE-model) of resoure allo-

ation in marketing networks. The dynamis of ontrolled system desribes

an interation of the members of a target audiene (basi agents) that leads

to a hange of their opinions (ost of buying the goods and servies of �rms

ompeting on a market). An interation of the �rms (in�uene agents) is

formalized as their di�erential game in strategi form. The payo� funtional

of eah �rm inludes two terms: the summary opinion of the basi agents

with onsideration of their marketing osts (a ommon interest of all �rms),

and the inome from investments in a private ativity. The latter inome is

desribed by a linear funtion. The �rms exert their in�uene not to all basi

agents but only to the members of strong subgroups of the in�uene digraph

(opinion leaders). The opinion leaders determine the stable �nal opinions of

all members of the target audiene. A oordinating prinipal determines the

�rms' marketing budgets and maximizes the summary opinion of the basi

agents with onsideration of the alloated resoures. The Nash equilibrium

in the game of in�uene agents and the Stakelberg equilibrium in a general

hierarhial game of the prinipal with them are found. It is proved that the

value of opinion of a basi agent is the same for all in�uene agents and the

prinipal. It is also proved that the in�uene agents assign less resoures for

the marketing e�orts than the prinipal would like.

Keywords: di�erential Stakelberg games, marketing, opinion ontrol on

networks, resoure alloation.

1. Introdution

Models of in�uene and opinion ontrol on networks are widespread in the lit-

erature in the last several deades (Chkhartishvili, Gubanov and Novikov, 2019;

Jakson, 2008). The approah most lose to the authors' one is presented in the

papers (Sedakov and Zhen, 2019; Zhen, 2019). In those models a network is de-

sribed by a weighted direted graph in whih the verties represent the members

of the network (basi agents), and the weights of the ars re�et an intensity of

their mutual in�uene. The basi agents have their opinions about an issue whih

an hange in time due to the network interation. External in�uene agents an

impat the basi agents in their own interests. We suppose the following. First, it

is rational to exert ontrol impat not to all basi agents but only to the members

⋆
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of strong subgroups of the in�uene digraph (opinion leaders). It is known that the

opinion leaders determine the stable �nal opinions of all basi agents. Seond, we

onsider marketing networks in whih the opinions of basi agents are their osts

of buying of the goods and servies providing by �rms ompeting on a market (in-

�uene agents), and ontrol variables of the in�uene agents are their marketing

e�orts direted to the opinion leaders (Agieva, Korolev and Ougolnitsky, 2019).

Models of oordination of the soial and private interests, inluding their dy-

nami formulation, are studied in the publi eonomis (Long, 2010). In those mod-

els it is supposed that eah agent divides his e�orts between a private ativity and

the prodution of a good whih is ommon for all agents. In turn, the agent's payo�

is a sum of the inome from his private ativity and his share in the utility from the

prodution of the ommon good. The author's formulation of the models of oordi-

nation of soial and private resoures (SPICE-models) is given in (Gorbaneva, 2019),

and some examples of the appliation of SPICE-models in di�erent problem domains

are desribed in (Anophenko and others, 2019a; Anophenko and others, 2019b;

Sukhinov, Ougolnitsky and Usov, 2020; Ugol'nitskii and Usov, 2020).

An important aspet of the ontrol in omplex systems onsists in the evaluation

of a degree of oordination between the ative agents. The most known formulation

is the problem of ine�ieny of equilibria when the global maximal value of the

funtion of soial welfare is ompared with its value in the worst of Nash equilibria

in a game of the agents (Nisan, Roughgarden, Tardos and Vazirani, 2007).

This paper is based on the mentioned streams of researh and makes the fol-

lowing ontribution. We onsider a hierarhial dynami SPICE-model of resoure

alloation in a marketing network. The dynamis of opinions of the basi agents

(members of the target audiene) is determined by their interation and marketing

e�orts of several ompeting �rms (in�uene agents) that form the lower ontrol

level. The payo� funtional of eah �rm inludes two terms: the summary opinion

of all basi agents with onsideration of the marketing ost (a ommon interest of

all in�uene agents), and the inome from investments in a private ativity. The

latter inome is desribed by a linear funtion. It is assumed that in the stage of

analysis of the network the members of its strong subgroups (opinion leaders) are

already found, and the �rms exert marketing in�uene only on them. On the upper

ontrol level a oordinating prinipal is situated. The prinipal alloates marketing

budgets between the �rms (in�uene agents) for the maximization of the summary

opinion of the basi agents. The unique Nash equilibrium in the game of in�uene

agents in strategi form and the unique Stakelberg equilibrium in the game of the

prinipal with them are found. The evaluation of the degree of oordination be-

tween the prinipal and the in�uene agents is made by means of a speial system

ompatibility index (Sukhinov, Ougolnitsky and Usov, 2020).

In Setion 2 we desribe the SPICE-model of resoure alloation in marketing

networks, preise its spei�s, and haraterize the used methods. In Setion 3 the

Nash equilibrium in the di�erential game of in�uene agents in strategi form is

built. In Setion 4 the solution of the di�erential Stakelberg game between the

prinipal and the in�uene agents is built. In setion 5 the system ompatibility in-

dex is alulated. Setion 6 onludes and ontains the diretions of future researh.
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2. Dynamial Hierarhial SPICE-Model

The hierarhial dynami SPICE-model of resoure alloation in a marketing

network has the form:

J0 ( {ri}mi=1, {{uij}nj=1}mi=1, {xj}nj=1) =

=

∫ T

0

e−ρt




n∑

j=1

xj(t)−
m∑

i=1

ri(t)


 dt→ max, (1)

ri (t) ≥ 0,

m∑

k=1

rk(t) ≤ R,

Ji ( ri, {uij}nj=1, {xj}nj=1) = (2)

=

∫ T

0

e−ρt


pi


ri(t)−

n∑

j=1

uij(t)


 +

n∑

j=1

[xj(t)− siju
i
j(t)]


 dt→ max, (3)

0 ≤
n∑

j=1

uij(t) ≤ ri(t), i = 1, . . . ,m; t ∈ [0, T ]; (4)

ẋj =

m∑

i=1

bij

√
uij(t) +

n∑

l=1

aljxl(t), xj(0) = xj0, j = 1, . . . , n, (5)

sij =

{
1, bij > 0,
0, bij = 0.

(6)

Thus, (1)-(6) is a di�erential Stakelberg game of the prinipal with several in�uene

agents (�rms). Here n is a number of basi agents (a number of target audiene),

m � a number of in�uene agents (ompeting �rms), R � a total marketing budget

of the leader, T � a length of the game, J0, Ji � the payo� funtionals of the leader

and the in�uene agents respetively, ri(t) � a marketing budget alloated to the

i-th in�uene agent by the leader in the moment of time t, xj(t) � an opinion of

the j-th basi agent in the moment t (ost of buying of goods and servies), uij(t) �
expenditures of the i-th in�uene agent for the marketing impat (advertizing and

so on) to the j-th basi agent in the moment t, aij � a oe�ient of in�uene of

the i-th basi agent to the j-th basi agent, bij � a oe�ient of in�uene of the i-th
in�uene agent to the j-th basi agent, δ denotes a disount fator, i.e. δ = e−ρ

.

As di�erent �rms an exert in�uene to di�erent members of the strong subgroups,

we simply assume that if the i-th �rm (in�uene agent) does not impat to the

j-th basi agent then bij = 0, sij haraterizes the onnetion of the i -th agent of

in�uene and the j -th basi agent.

The Prinipal has at any instant of time t a value of resoures to be alloated

to the in�uene agents. Eah of the agents reeives a value of resoures ri(t) that
is a ontinuous funtion ri(t) : [0, T ] → [0, R]. The budget onstraint means that∑m

i=1 ri(t) ≤ R. After reeiving the resoures ri(t) from the Prinipal the in�uene

agents use them in private and ommon interests. The ommon interests are modeled

by the funtion uij(t) whih desribes the share of the i-th in�uene agent's resoures
assigned for the marketing impat on the j-th basi agent at the moment t. The
ontinuous funtions uij(t) : [0, T ] → [0, ri(t)] are the strategies of the i-th in�uene
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agent whih satisfy the budget onstraint

∑n
j=1 u

i
j(t) < ri(t). The marketing impat

inludes advertizing, speial ations, disounts, gifts, and so on.

A ommon (soial) interest of the in�uene agents is modeled as maximization

of the summary opinion of the basi agents, and their private interests are repre-

sented by the inome from an ativity whih is not onerned with marketing e�orts

(for example, the private investments). We used the linear funtions of the private

ativity, i.e. pi(x) = pi · x, where pi > 0 is a onstant value. In turn, the prini-

pal maximizes the summary opinion of all basi agents minus the ost of resoures

alloated to the �rms.

The unique Nash equilibrium in the game of in�uene agents in strategi form

and the unique Stakelberg equilibrium in the game of the prinipal with them are

found analytially by the Hamilton-Jaobi-Bellman equations.

3. Building the Nash Equilibrium in the Game of In�uene Agents

Let us investigate the problem of the i-th �rm (3)-(6). The Hamilton-Jaobi-

Bellman equation is

ρVi −
∂Vi
∂t

= max
ui
j ,1≤j≤n





n∑

j=1

[
xj(t)− siju

i
j(t)
]
+ pi


ri(t)−

n∑

j=1

uij(t)


 +

+
n∑

q=1

∂Vi
∂xq

[
m∑

k=1

bkq

√
ukq (t) +

n∑

l=1

alqxl

]}
(7)

with ondition 0 ≤ ∑n
j=1 u

i
j(t) ≤ ri(t). Maximization by uij, j = 1, 2, ..., n, bij 6= 0

gives

uij(t) =
Ri(t)

(
bij

∂Vi

∂xj

)2

∑
j:bij 6=0

(
bij

∂Vi

∂xj

)2 , (8)

where

∑
j:bij 6=0 u

i
j(t) = Ri(t) ≤ ri(t).

Notie that we an substitute the expression uij(t) =
Ri(t)

(
bij

∂Vi
∂xj

)2

∑
j:bi

j
6=0

(
bij

∂Vi
∂xj

)2 by uij(t) =

=
Ri(t)

(
bij

∂Vi
∂xj

)2

∑
n
j=1

(
bij

∂Vi
∂xj

)2 , and the expression Ri(t) =
∑

j:bij 6=0 u
i
j(t) by Ri(t) =

∑n
j=1 u

i
j(t),

as if bij = 0 then the summand

(
bij

∂Vi

∂xj

)2
is equal to zero and an be inserted

in the ommon sum. Therefore,

∑n
j=1

(
bij

∂Vi

∂xj

)2
=
∑

j:bij 6=0

(
bij

∂Vi

∂xj

)2
. Similarly,

∑n
j=1 u

i
j(t) =

∑
j:bij 6=0 u

i
j(t), as if b

i
j = 0 then uij(t) = 0. We onsider the ase when

the produt of all bij is not equal to zero, otherwise the problem has no pratial

sense (there is no in�uene).

Let us use the linear Bellman funtions

Vi(x, t) =

n∑

j=1

αi
j(t)xj + βi(t),
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then we an write the equation (7) with onsideration of (8) as

ρ

n∑

j=1

αi
j(t)xj + ρβi(t)−

n∑

j=1

α′i
j (t)xj − ρβ′i(t) =

=

n∑

j=1

xj(t)−Ri(t) + pi ·


ri(t)−

n∑

j=1

uij(t)


+

n∑

l=1

n∑

j=1

αi
j(t)aljxl +

+

m∑

k=1

n∑

j=1

αi
j(t)b

k
j

√
(Rk(t)|αk

j (t)b
k
j |√∑n

j=1

(
αk
j (t)b

k
j

)2 . (9)

Equating in the left and right hand sides of the equation (9) the oe�ients at the

�rst power of x, we reeive the following di�erential equations for the oe�ients α:

ραi
j(t)− α′i

j (t) = 1 +

n∑

l=1

αi
l(t)ajl, j = 1, 2, ..., n. (10)

Rewrite the system of equations (10) in the matrix form

α′j = (ρI −A)αj − ǫ, (11)

where A = {aij}i=1,2,...,n;j=1,2,...,n is the in�uene matrix, αi
� the olumn vetor

of the oe�ients αi
j , j = 1, 2, ..., n, I � the unit matrix, ǫ � n-dimensional olumn

vetor of units. System (11) is the same for all in�uene agents, therefore α1
j (t) =

= α2
j (t) = ... = αm

j (t) = αj(t) for any basi agent j = 1, 2, ..., n, and from this point

we will omit the supersript i of the oe�ients αj .

Solving the system of di�erential equations (10), we reeive:

ᾱ = (ρI −A)−1ǫ,

α = e(ρI−A)tC + (ρI −A)−1ǫ.

The olumn vetor of the onstants of integration is found from the boundary

onditions:

α(T ) = 0,

therefore

α = −e(ρI−A)(t−T )(ρI −A)−1ǫ+ (ρI −A)−1ǫ =
(
e(ρI−A)(T−t) − I

)
(A− ρI)−1ǫ.

In partiular, for t = 0 we have

α(0) =
(
e(ρI−A)T − I

)
(A− ρI)−1ǫ. (12)

Considering that αi
j(t) = αk

j (t) for any k = 1, 2, ..., n, we rewrite (9) in the form:

ρ

n∑

j=1

αi
j(t)xj + ρβi(t)−

n∑

j=1

α′i
j (t)xj − β′i(t) =

n∑

j=1

xj(t)−Ri(t) +

+pi · (ri(t)−Ri(t)) +

n∑

l=1

n∑

j=1

αi
j(t)aljxl +

m∑

k=1

√
Rk(t)

√√√√
n∑

j=1

(
αk
j (t)b

k
j

)2
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Choosing the maximal value of the right hand side of (7) in dependene of the sum

Ri(t), we have

−Ri(t) + pi · (ri(t)−Ri(t)) +
√
Ri(t)

√√√√
n∑

j=1

(
αi
j(t)b

i
j

)2 → max, (13)

and

(Ri(t))max =

∑n
j=1(b

i
jα

i
j(t))

2

4(1 + pi)2
.

Thus, the value Ri(t) in (13) with onsideration of (4) is equal to

Ri(t) = min

{∑n
j=1(b

i
jα

i
j(t))

2

4(1 + pi)2
; ri(t)

}
.

Let us all the amount αi
j(t) the opinion value of the j-th basi agent for the

i-th in�uene agent. In fat, in the Bellman funtion of the i-th in�uene agent

Vi(x, t) =
∑n

j=1 α
i
j(t)xj+β

i(t), the fator αi
j(t) is a weight oe�ient of the opinion

of the respetive basi agent xj . Thus, from the ondition αi
j(t) = αk

j (t) we reeive

Proposition 1. The opinion value of eah basi agent is the same for all in�uene

agents.

Equating the onstant terms in the left and right hand sides of (9), we reeive the

di�erential equation for βi
:

β′i(t)− ρβi(t) = −
m∑

k=1

√
Rk(t)

√√√√
n∑

j=1

(
αj(t)bkj

)2
+ piRi(t) +Ri(t). (14)

The equation (14) is solved by the method of variation of parameters:

βi(t) =

∫ T

t

e−ρ(τ−t)





m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
αj(τ)bkj

)2 − (pi + 1)Ri(τ)



 dτ.

For t = 0 we have

βi(0) =

∫ T

0

e−ρτ





m∑

k=1

√√√√Rk(τ)
n∑

j=1

(
αj(τ)bkj

)2 − (pi + 1)Ri(τ)



 dτ,

where for any k = 1, 2, ..., n (in partiular, for the given i) we have

Rk(t) =

{ ∑n
j=1(b

k
jαj(t))

2

4(1+pk)2
;
∑n

j=1(b
k
jαj(t))

2 ≤ 4(1 + pk)
2rk(t),

rk(t),
∑n

j=1(b
k
jαj(t))

2 ≤ 4(1 + pk)
2rk(t).

(15)

Thus, the maximal payo� of the in�uene agent is

max
ui
j ,1≤j≤n

Ji = Vi(x(0), 0) =

n∑

j=1

αj(0)xj(0) +

+

∫ T

0

e−ρτ





m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
αj(τ)bkj

)2 − (pi + 1)Ri(τ)



 dτ,
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where the omponents αj(0), j = 1, 2, ..., n of the vetor α(0) are determined by the

expression (12), and Rk(τ), k = 1, 2, ...,m are determined by the expression (15).

The ontrol values are determined by the expression (8):

uij(t) =
Ri(t)

(
bijαj(t)

)2
∑n

j=1

(
bijαj(t)

)2 ,

where

α(t) =
(
e(A−ρI)(T−t) − I

)
(A− ρI)−1ǫ,

Ri(t) = min

{∑n
j=1(b

i
jα

i
j(t))

2

4(1 + pi)2
; ri(t)

}
.

4. The Stakelberg Game of the Prinipal with the In�uene Agents

Let us move to the prinipal's problem (1)-(2),(5)-(6). The Hamilton-Jaobi-

Bellman equation has the form

ρV0 −
∂V0
∂t

= max
ri(t),1≤i≤m





n∑

j=1

xj(t)−
m∑

i=1

ri(t) +

+

n∑

j=1

∂V0
∂xj

[
m∑

k=1

bkj

√
ukj (t) +

n∑

l=1

aljxl

]
 (16)

with onditions 0 ≤∑m
i=1 ri(t) ≤ R, ri(t) ≥ 0 , i = 1, 2, ...,m , where

uij(t) = min

{
(bijαj(t))

2

4(1 + pi)2
;
ri(t)(b

i
jαj(t))

2

∑n
j=1(b

i
jαj(t))2

}
.

The equation (16) takes the form:

ρV0 −
∂V0
∂t

= max
ri(t),1≤i≤m





n∑

j=1

xj(t)−
m∑

i=1

ri(t) +

n∑

j=1

∂V0
∂xj

[
n∑

l=1

aljxl +

+

m∑

i=1

bij

∣∣bijαj(t)
∣∣

√∑n
j=1

(
bijαj(t)

)2 min





√√√√1

4

n∑

j=1

(
bijαj(t)

)2
;
√
ri(t)









 . (17)

Let us take the linear Bellman funtion

V0(x, t) =
n∑

j=1

α0
j (t)xj + β0(t).

Let us show that α0
j (t) = αj(t), j = 1, 2, ..., n , t ∈ [0, T ] . Equating in (17) the

oe�ients at the �rst power of xj in the left and right hand sides, we reeive the

di�erential equation for α0
j(t):

α′0
j (t)− ρα0

j (t) +

n∑

l=1

α0
l (t)ajl = −1,
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whih oinides with (10) for the same boundary onditions

α(T ) = 0,

therefore

α0
j (t) = α1

j (t) = ... = αm
j (t) = αj(t), j = 1, 2, ..., n, t ∈ [0;T ]. (18)

Let us all α0
j(t) the opinion value of the j-th basi agent for the prinipal. In the

prinipal's Bellman funtion V0(x, t) =
∑n

j=1 α
0
j (t)xj + β0(t) the fator α0

j (t) is

the weight oe�ient of the opinion of the respetive basi agent. Thus, from the

ondition (18) we reeive

Proposition 2. The opinion value of eah basi agent is the same for all in�uene

agents and the prinipal.

With onsideration of (18) we an rewrite (17) as

ρ


β0 +

n∑

j=1

αjxj


−


β′0 +

n∑

j=1

α′
jxj


 =

= max
ri(t),1≤i≤m





n∑

j=1

xj(t)−
m∑

i=1

ri(t)+
n∑

i=1

n∑

j=1

αj(t)aijxi +

+

n∑

j=1

m∑

i=1

(
αj(t)b

i
j

)2
√∑n

j=1

(
αj(t)bij

)2 min





1

2(1 + pi)

√√√√
n∑

j=1

(
bijαj(t)

)2
;
√
ri(t)







 . (19)

If the minimum is attained in the �rst expression, the funtion dereases on ri(t),
and the optimal value of ri(t) is minimal. It is minimal if the expressions under the

sign of minimum are equal. Thus, the minimum is attained in the seond expression

or it is absent.

Notie that the non-onditional maximization of the expression (19) gives the

amount of resoures

ri(t) =
1

4

n∑

j=1

(
bijαj(t)

)2
.

In this ase

uij(t) = min

{
1

4(1 + pi)2
(
bijαj(t)

)2
;

(
bijαj(t)

)2

4

}
=

1

4(1 + pi)2
(
bijαj(t)

)2
.

It means that it is not advantageous for the prinipal to alloate the amount of

resoures

ri(t) =
1

4

n∑

j=1

(
bijαj(t)

)2
.

Thus, the prinipal alloates to an in�uene agent as many resoures as the latter

is ready to assign for the ommon purposes, i.e.

ri(t) =
1

4(1 + pi)2

n∑

j=1

(
bijαj(t)

)2
. (20)
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and we reeive the following

Proposition 3. The in�uene agents assign less resoures for the marketing e�orts

than the prinipal would like.

Thus if

m∑

i=1

∑n
j=1

(
bijαj(t)

)2

(1 + pi)2
≤ 4R

then the prinipal alloates to eah agent the amount of resoures equal to (20).

How the prinipal should alloate the resoures if

∑m
i=1

∑n
j=1(b

i
jαj(t))

2

(1+pi)2
> 4R? The

answer is given by the onditional maximization of the expression (19). Maximizing

the right hand side of (19) by ri(t), i = 1, 2, ...,m with ondition

∑n
i=1 ri(t) ≤ R,

we reeive

ri(t) = R

∑n
j=1

(
αj(t)b

i
j

)2
∑m

i=1

∑n
j=1

(
αj(t)bij

)2 .

Thus, in the instants t ∈ [0, T ] when

m∑

i=1

∑n
j=1

(
bijαj(t)

)2

(1 + pi)2
≤ 4R,

the optimal ontrol of the prinipal is

ri(t) =
1

4(1 + pi)2

n∑

j=1

(
bijαj(t)

)2
, i = 1, 2, ...,m,

and in the instants t ∈ [0, T ] when

m∑

i=1

∑n
j=1

(
bijαj(t)

)2

(1 + pi)2
> 4R,

the optimal ontrol of the prinipal is

ri(t) =

∑n
j=1

(
αj(t)b

i
j

)2
∑m

i=1

∑n
j=1

(
αj(t)bij

)2R, i = 1, 2, ...,m.

Combining both expressions for ri(t) in the same formula, we reeive the �nal

optimal ontrol of the prinipal:

ri(t) =

∑n
j=1

(
αj(t)b

i
j

)2
∑m

k=1

∑n
j=1

(
αj(t)bkj

)2 min





1

4(1 + pi)2

m∑

k=1

n∑

j=1

(
αj(t)b

k
j

)2
;R



 , (21)

i = 1, 2, ...,m, t ∈ [0, T ],

where

α(t) =
(
e(A−ρI)(T−t) − I

)
(A− ρI)−1ǫ.
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Given (21) we an simplify (19) beause

m∑

i=1

ri(t) = min

{
1

4

m∑

i=1

∑n
j=1

(
bijαj(t)

)2

(1 + pi)2
, R

}
,

and the last term in (19) is

m∑

i=1

n∑

j=1

(
αj(t)b

i
j

)2
√∑n

j=1

(
αj(t)bij

)2 min





1

2(1 + pi)

√√√√
n∑

j=1

(
αj(t)bij

)2
;
√
ri(t)



 =

=





1
2

∑m
i=1

∑n
j=1(b

i
jαj(t))

2

1+pi
,

∑m
i=1

∑n
j=1(b

i
jαj(t))

2

(1+pi)2
≤ 4R,√

R
∑m

i=1

∑n
j=1

(
bijαj(t)

)2
,
∑m

i=1

∑n
j=1(b

i
jαj(t))

2

(1+pi)2
> 4R.

Equating the onstant terms in the left and right hand sides of (19), we reeive the

di�erential equation for β0(t) :

β′0(t)− ρβ0(t) = f(t), (22)

where

f(t) =





1
4

∑m
i=1

∑n
j=1

(
bijαj(t)

)2 2p2
i+pi+1

(1+pi)2
,
∑m

i=1

∑n
j=1(b

i
jαj(t))

2

(1+pi)2
≤ 4R,√

R
∑m

i=1

∑n
j=1

(
bijαj(t)

)2 −R,
∑m

i=1

∑n
j=1(b

i
jαj(t))

2

(1+pi)2
> 4R.

(23)

Solving the equation (22) by the method of variation of parameters, we reeive:

β0(t) =

∫ T

t

e−ρ(τ−t)f(τ)dτ.

When t = 0 we have

β0(0) =

∫ T

0

e−ρτf(τ)dτ.

Thus, the maximal guaranteed payo� of the prinipal is

max
ri,1≤i≤m

J0 = V0(x(0), 0) =

n∑

j=1

αj(0)xj(0) +

∫ T

0

e−ρτf(τ)dτ, (24)

where the omponents αj(0), j = 1, 2, ..., n of the vetor α(0) are determined by the

expression (12), and f(τ) is determined by the expression (23).

5. System Compatibility Index

Now let us alulate the system ompatibility index:

SCI =
maxri(t) minui

j(t)∈NE(ri(t)) J0({ri}mi=1, {{uij}nj=1}mi=1, {xj}nj=1)

maxri(t) maxui
j(t)

J0({ri}mi=1, {{uij}nj=1}mi=1, {xj}nj=1)
, (25)

where the set NE(ri(t)) is the Nash equillibrium of the agents of in�uene in re-

spone to the resoure amount ri(t).
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This index shows the measure of ompatability of system. The numerator of (25)

is the payo� of the prinipal in the ase if the �rms hoose the most unfavorable

for prinipal equilibrium strategies. The denumerator of (25) is the payo� of the

prinipal in the ase if the �rms hoose the most favorable for prinipal strategies.

It is evident that 0 ≤ SCI ≤ 1. A similar formula is used in the paper (Agieva,

Korolev and Ougolnitsky, 2019).

In our ase the set of equilibrium strategies of eah in�uene agent given the

prinipal's strategy is a singleton, therefore, the numerator in (25) is equal to the

right hand side of the formula (24).

For the alulation of the denominator in the expression (25) let us assume that

eah in�uene agent maximizes not his payo� but the prinipal's payo� given her

strategy, i.e. the in�uene agent solves the problem

J̃i({xj(t)}nj=1) =

∫ T

0

e−ρt
n∑

j=1

xj(t)dt → max,

with onditions (4)-(6). This funtion is introdued for �nding the in�uene agent

stratigies whih maximize the payo� funtion of the Centre.

The Hamilton-Jaobi-Bellman equation has the form

ρVi −
∂Vi
∂t

= max
ui
j ,1≤j≤n





n∑

j=1

xj(t) +

n∑

j=1

∂Vj
∂xj

[
m∑

k=1

bkj

√
ukj (t) +

n∑

l=1

aljxl

]
 (26)

with ondition 0 ≤ ∑n
j=1 u

i
j(t) ≤ ri(t). Maximization by uij , j = 1, 2, ..., n, bij 6= 0,

we reeive

uij(t) =
Ri(t)

(
bij

∂Vi

∂xj

)2

∑n
j=1

(
bij

∂Vi

∂xj

)2 ,

and, naturally,

n∑

j=1

uij(t) = Ri(t).

Taking the linear Bellman funtions

Vi(x, t) =
n∑

j=1

αi
j(t)xj + βi(t), (27)

we an write the equation (26) with onsideration of (27) as

ρ

n∑

j=1

αi
j(t)xj + ρβi(t)−

n∑

j=1

α′i
j (t)xj − ρβ′i(t) =

=

n∑

j=1

xj(t) +

n∑

l=1

n∑

j=1

αi
j(t)aljxl +

m∑

k=1

n∑

j=1

αi
j(t)b

k
j

√
(Rk(t)α

k
j (t)b

k
j√∑n

j=1

(
αk
j (t)b

k
j

)2 . (28)
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Equating the oe�ients at the �rst power of x in the left and right hand sides of

(28), we reeive di�erential equations for the oe�ients α:

α′i
j (t)− ραi

j(t) +

n∑

l=1

αi
l(t)ajl = −1, (29)

oiniding with the equations (10) solved by the expression (12).

Choosing the maximal value of the right hand side of (28) in dependene on the

sum of Ri(t), we have

Ri(t) = ri(t),

that is natural beause the in�uene agents are for the prinipal's payo� instead

of their own one. Thus, the strategies of all in�uene agents are:

uij(t) =
ri(t)

(
bijαj(t)

)2
∑n

j=1

(
bijαj(t)

)2 , (30)

and, therefore,

n∑

j=1

uij(t) = ri(t),

where αj(t), j = 1, 2, ..., n are the omponents of the vetor α(t) whih is determined

by the expression (12).

Let us move to the prinipal's problem (1)-(2),(5). The ondition (5) with on-

sideration of (30) an be immediately written as

ẋj =

m∑

i=1

√
ri(t)b

i
j

αj(t)b
i
j√∑n

j=1

(
αi
j(t)b

i
j

)2 +

n∑

l=1

aljxl.

The Hamilton-Jaobi-Bellman equation has the form

ρV0 −
∂V0
∂t

= max
ri(t),1≤i≤m





n∑

j=1

xj(t)−
m∑

i=1

ri(t) +

+

n∑

j=1

∂V0
∂xj




m∑

i=1

√
ri(t)b

i
j

αj(t)b
i
j√∑n

j=1

(
αi
j(t)b

i
j

)2 +

n∑

l=1

aljxl(t)





 (31)

with ondition

∑m
i=1 ri(t) ≤ R, ri(t) ≥ 0, i = 1, 2, ...,m.

Let us use the linear Bellman funtion:

V0(x, t) =

n∑

j=1

α0
j(t)xj + β0(t),

then the equation (31) takes the form

ρ


β0 +

n∑

j=1

α0
jxj


−


β′0 +

n∑

j=1

α′0
j xj


 = max

ri(t),1≤i≤m





n∑

j=1

xj(t)−

−
m∑

i=1

ri(t) +

n∑

j=1

α0
j




m∑

i=1

√
ri(t)b

i
j

αj(t)b
i
j√∑n

j=1

(
αj(t)bij

)2 +

n∑

l=1

aljxl(t)





 (32)
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with ondition

∑m
i=1 ri(t) ≤ R, ri(t) ≥ 0, i = 1, 2, ...,m.

Let us show that α0
j(t) = αj(t), j = 1, 2, ..., n, t ∈ T . Equating in (32) the

oe�ients at the �rst power of xj in the left and right hand sides, we reeive the

di�erential equation for α0
j(t):

α′0
j (t)− ρα0

j (t) +
n∑

l=1

α0
l (t)ajl = −1,

whih oinides with (10) for the same boundary onditions

α(T ) = 0,

therefore

α0
j (t) = α1

j (t) = ... = αm
j (t) = αj(t), j = 1, 2, ..., n, t ∈ [0;T ]. (33)

With onsideration of (33) we an rewrite (32) as

ρ


β0 +

n∑

j=1

αjxj


−


β′0 +

n∑

j=1

α′
jxj


 = max

ri(t),1≤i≤m





n∑

j=1

xj(t)−
m∑

i=1

ri(t)+

+

n∑

j=1

n∑

l=1

αj(t)aljxl +

m∑

i=1

√
ri(t)

√√√√
n∑

j=1

(
αj(t)bij

)2


(34)

with ondition

∑m
i=1 ri(t) ≤ R, ri(t) ≥ 0, i = 1, 2, ...,m. Notie that the non-

onditional maximization of the expression (34) gives the value of resoures

ri(t) =
1

4

n∑

j=1

(
bijαj(t)

)2
. (35)

Thus, the prinipal is interested to alloate to eah in�uene agent i the value of

resoures (35). Therefore if

m∑

i=1

n∑

j=1

(
bijαj(t)

)2 ≤ 4R,

then the prinipal alloates to eah in�uene agent i the value of resoures (35). How

the prinipal should alloate the resoures if

∑m
i=1

∑n
j=1

(
bijαj(t)

)2
> 4R? Maximiz-

ing the right hand side of (34) by ri(t), i = 1, 2, ...,m with ondition

∑m
i=1 ri(t) ≤ R,

we reeive

ri(t) = R

∑n
j=1

(
αj(t)b

i
j

)2
∑m

i=1

∑n
j=1

(
αj(t)bij

)2 .

Thus, in the instants t ∈ [0, T ] when

R ≥ 1

4

m∑

i=1

n∑

j=1

(
bijαj(t)

)2
,
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the prinipal's optimal ontrol value is

ri(t) =
1

4

n∑

j=1

(
bijαj(t)

)2
.

In the instants t ∈ [0, T ] when

R <
1

4

m∑

i=1

n∑

j=1

(
bijαj(t)

)2
,

the prinipal's optimal ontrol value is

ri(t) =

∑n
j=1

(
αj(t)b

i
j

)2
∑m

i=1

∑n
j=1

(
αj(t)bij

)2R, i = 1, 2, ...,m.

Combining both expressions for ri(t) in the same formula, we reeive the �nal

prinipal's optimal ontrol:

ri(t) =

∑n
j=1

(
αj(t)b

i
j

)2
∑m

k=1

∑n
j=1

(
αj(t)bkj

)2 min





1

4

m∑

k=1

n∑

j=1

(
αj(t)b

k
j

)2
;R



 , (36)

i = 1, 2, ...,m, t ∈ [0, T ],

where

α(t) =
(
e(A−ρI)(T−t) − I

)
(A− ρI)−1ǫ.

Given (36) we an simplify (34) beause

m∑

i=1

ri(t) = min





1

4

m∑

i=1

n∑

j=1

(
bijαj(t)

)2
, R



 ,

and the last term in (34) is equal to

m∑

i=1

√√√√
n∑

j=1

(
αj(t)bij

)2
=

√√√√
m∑

k=1

n∑

j=1

(
αj(t)bkj

)2
min





√√√√
m∑

k=1

n∑

j=1

(
αj(t)bkj

)2
;
√
R



 .

Equating the onstant terms in the left and right hand sides of (34), we reeive the

di�erential equation for β0(t):

β′0(t)− ρβ0(t) = ψ(t), (37)

where

ψ(t) = min





1

4

m∑

k=1

n∑

j=1

(
bkjαj(t)

)2
;

√√√√R

m∑

k=1

n∑

j=1

(
bkjαj(t)

)2 −R



 , (38)
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i.e.

ψ(t) =

{
1
4

∑m
i=1

∑n
j=1

(
bijαj(t)

)2
,

∑m
i=1

∑n
j=1

(
bijαj(t)

)2 ≤ 4R,√
R
∑m

i=1

∑n
j=1

(
bijαj(t)

)2 −R,
∑m

i=1

∑n
j=1

(
bijαj(t)

)2
> 4R.

(39)

Thus, the equation (37) oinides with the equation (22) for the same boundary

onditions, therefore,

β0(t) =

∫ T

t

e−ρ(τ−t)ψ(τ)dτ.

When t = 0 we have

β0(0) =

∫ T

0

e−ρτψ(τ)dτ,

where ψ(t) is determined by the expression (37).

Thus, the denominator of the expression (25) maxy∈Y maxz∈Z J0(y, z), or the
global maximum of the prinipal's payo� in the ase of ooperative behavior, is

equal to:

n∑

j=1

αj(0)xj(0) +

∫ T

0

e−ρτψ(τ)dτ,

where αj(0), j = 1, 2, ..., n , are determined by the formula (12), and ψ(τ) is deter-
mined by the expression (37).

The system ompatibility index in this problem is equal to

SCI =

∑n
j=1 αj(0)xj(0) +

∫ T

0
e−ρτf(τ)dτ

∑n
j=1 αj(0)xj(0) +

∫ T

0 e−ρτψ(τ)dτ
< 1.

Notie that the omplete system ompatibility is ahieved only if f(τ) = ψ(τ),
and this is possible only in the ase when for all in�uene agents the inequality∑m

k=1

∑n
j=1

(
bkjαj(t)

)2 ≤ 4R(1+pi)
2
is true, and they lak resoures for the ommon

purpose.

6. Conlusion

We onsidered a dynami SPICE-model of resoure alloation in a marketing

network. The network inludes a oordinating prinipal that alloates resoures,

several in�uene agents (ompeting �rms), and basi agents whih form the target

audiene. The model represents a di�erential Stakelberg game of the prinipal

with the in�uene agents. In the ase of linear funtions of private inome of the

in�uene agents we found analytially the unique Nash equilibrium in the game of

agents and Stakelberg equilibrium in the general game by means of the Hamilton-

Jaobi-Bellman equations. We proved that the opinion value of any basi agent is

equal for all in�uene agents and the prinipal. Also we proved that the in�uene

agents assign less resoures for the marketing e�orts than the prinipal would like.

We plan to spread the reeived results to the funtions of private inome in more

general form. Besides, it seems rational to onsider in more details the �rm's utility

from buying by the basi agents the goods and servies of this spei� �rm instead

of all �rms in the totality.
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