
Contributions to Game Theory and Management, XIII, 427�440

Sto
hasti
 Data Transmission Model with Un
ertainty on

Dropper's Appearan
e

⋆

Xue Juan

1
and Elena M. Parilina

2

1
Saint Petersburg State University,

7/9 Universitetskaya nab., Saint Petersburg 199034, Russia

E-mail: juanxueqd�qq.
om

2
Saint Petersburg State University,

7/9 Universitetskaya nab., Saint Petersburg 199034, Russia

E-mail: e.parilina�spbu.ru

WWW home page: http://www.apmath.spbu.ru/en/staff/parilina/index.html

Abstra
t We 
onsider a sto
hasti
 dynami
 game with un
ertainty about

appearan
e of an dropper in in�nite time horizon. For the la
k of informa-

tion about whether the dropper is present or not, two di�erent states of

nature 
an appear with some given probabilities at ea
h stage. We study

the non-
ooperative behavior of players, and Nash equilibrium is 
onsidered

as an equilibrium 
on
ept. We investigate how limited information about

the dropper's appearan
e impa
ts the anti-jamming strategy.

Keywords: sto
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1. Introdu
tion

In wireless 
ommuni
ations, it is important to ensure the data se
urity between

a transmitter and a re
eiver when fa
ing interferen
e. In (Mukherjee et al., 2014), a


omprehensive survey about prin
iples of physi
al layer se
urity in multiuser wire-

less networks is given. There is a variety of works whi
h study jamming problems

(e.g., see Altman et al., 2010; Altman et al., 2011; Vadlamania et al., 2016).

In jamming problems, a transmitter would like to transmit a signal with a good

quality, while a jammer tries to degrade the signal quality at the intended re
eiver.

For the 
on�i
ting interests of players, game theory has been widely employed in the

literature to model di�erent jamming problems when we 
onsider mali
ious interfer-

en
e (see Charilas and Panagopoulos, 2010; Wu et al., 2012; Slimeni et al., 2016).

In (Garnaev et al., 2012), a jamming game in a dynami
 setting for a slotted

ALOHA-like network is 
onsidered. In (Altman et al., 2011), the e�e
t of partially

available information and 
orrelation among sub-
arriers on the user behavior is

investigated. Zero-sum games are 
onsidered in the 
ase when the user does not

know how jamming e�orts are distributed among sub-
arriers and the user does

not know the fading 
hannels' gains with 
ertainty. In (Garnaev et al., 2017), the

in�uen
e of un
ertainty about whether or not a jamming atta
k is applied to an

OFDM s
enario on the resulting anti-jamming strategy has been investigated.

We 
onsider a sto
hasti
 dynami
 game with un
ertainty about the dropper's

appearan
e in in�nite time horizon and study a simple 
ommuni
ation network rep-

resented in Figure 1. In this 
ommuni
ation network, a transmitter (Ali
e) wishes

to 
ommuni
ate with the intended re
eiver (Bob) both se
retly and with su�
ient
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Fig. 1. Communi
ation relationship between Ali
e, Bob and Eve

throughput. There is a jammer or a dropper (Eve) wants to eavesdrop on 
om-

muni
ation between Ali
e and Bob. The dropper Eve appears with un
ertainty,

and we take it into a

ount by des
ribing two di�erent states of the game. In the

state without dropper's appearan
e, the transmitter fo
uses solely on the relia-

bility of 
ommuni
ation. The utility is asso
iated with 
ommuni
ation reliability

to be maintaining su�
ient throughput whi
h is re�e
ted by Shannon 
apa
ity

(Shannon, 1948). The state is 
alled as a throughput state. In the state with drop-

per's appearan
e, the transmitter fo
uses on the se
re
y of 
ommuni
ation. We


onsider the se
re
y 
apa
ity whi
h is provided in (Csiszar and Korner, 1978) and

also used in (Garnaev and Trappe, 2016). The state is 
alled as a se
re
y state.

A sto
hasti
 
ommuni
ation model is 
onsidered with in�nite number of stages.

At any stage, throughput and se
re
y state 
an appear with a given probability.

Payo� in a sto
hasti
 game is a random variable and the mathemati
al expe
tation

of the player's payo� is assumed to be the utility of his payo� in sto
hasti
 game

as in (Parilina and Tampieri, 2018). We study the non-
ooperative behavior of the

players, and 
al
ulate the Nash equilibria.

The paper is organized as follows. In the se
ond se
tion, we introdu
e the

sto
hasti
 
ommuni
ation model and 
onsider a problem setting with a unique

player. In this 
ase, we �nd an optimal strategy of the player and 
onsider the

fa
tors whi
h have in�uen
e on it. In the third se
tion, we introdu
e a sto
hasti



ommuni
ation game with two players. We 
al
ulate the Nash equilibrium and 
on-

sider the fa
tors in�uen
ing the equilibrium strategies. Finally, we brie�y 
on
lude

in the forth se
tion.

2. Sto
hasti
 Communi
ation Model

2.1. Model Introdu
tion

We introdu
e the model of 
ommuni
ation model given in Figure 1. Ali
e wishes

to 
ommuni
ate with her 
olleague Bob but fa
es the un
ertainty with the appear-

an
e of a eavesdropper (Eve), who wants to get information that Ali
e sends to Bob.

To des
ribe the un
ertainty of Eve's appearan
e, we 
onsider two states of Nature

in the 
ommuni
ation model�with and without Eve's showup.

In the 
ommuni
ation network, the underlying wireless medium has been 
han-

nelized into n separate 
hannels (e.g, di�erent sub
arriers in an OFDM system).

Thus, Ali
e 
ommuni
ates to Bob a
ross n (sub)
hannels, and the response of 
han-

nel i is represented by its 
oe�
ient hi, i ∈ {1, . . . , n}. In the state with Eve's ap-

pearan
e, she 
an eavesdrop on Ali
e's 
ommuni
ation a
ross a broad
ast medium

(as in a wireless setting), and the 
hannels from Ali
e to Eve are represented by 
o-
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e�
ients hEi
, i ∈ {1, . . . , n}. We fo
us on the 
omplete 
hannel state model, whi
h

means that Ali
e knows both the Ali
e�Bob and Ali
e�Eve 
hannel 
oe�
ients.

We des
ribe two possible states of Nature de�ning the set of strategies and the

payo�(
ost) fun
tion for the players parti
ipating in the game.

We des
ribe the strategy for Ali
e as a power allo
ation ve
tor P = (P1, . . . , Pn),
where Pi ∈ R+ is the power transmitted through 
hannel i, i.e. it is the ve
tor

des
ribing how to distribute her transmission power through di�erent 
hannels.

Denote by P̄ ∈ R+ the total power to transmit by Ali
e, then the relation between

the total power and the power in ea
h 
hannel is as follows

n∑
i=1

Pi = P̄ , Pi ∈
[0, P̄ ], ∀ i = 1, 2, . . . , n. The set of Ali
e's feasible strategies is denoted by Ω, where

Ω = {(P1, · · · , Pn) : Pi ∈ [0, P̄ ],
n∑

i=1

Pi = P̄}.
Ali
e fa
es di�erent problems in two di�erent states mentioned above.

State Γ 1
. In this state without Eve's appearan
e there is one player. Ali
e 
an

fo
us solely on the throughput asso
iated with the transmitted signal to Bob, whi
h


an be 
onsidered as a utility for this 
ommuni
ation between Ali
e and Bob. Thus,

we 
all the state a throughput state, and denote it as Γ 1
. The 
apa
ity or payo� to

Ali
e is des
ribed by fun
tion

vT (PT ) =

n∑

i=1

ln

(
1 +

hiP
T
i

σ2

)
, (1)

where hi is fading gains of the main 
hannels and σ is ba
kground noise of the

main 
hannels, and PT
i is a power of transmitting by 
hannel i in Γ 1

satisfying

n∑
i=1

PT
i = P̄ , PT

i ∈ [0, P̄ ], ∀ i = 1, 2, . . . , n, and ve
tor PT = (PT
1 , . . . , P

T
n ) is a

strategy of Ali
e in state Γ 1.
A task for Ali
e in Γ 1

is to maintain throughput as high as possible, i.e., to �nd

a strategy maximizing her transmission payo� given by

P̂T = arg max
PT∈Ω

vT (PT ).

One 
an noti
e that the solution of the maximization problem exists.

State Γ 2
. In this state Ali
e's 
ommuni
ation 
an be dropped by Eve, and

Ali
e fo
uses on maintaining the se
re
y of her 
ommuni
ation. Thus, we shall


all su
h a mode as operating in the se
re
y state, and denote it as Γ 2
. We use

se
re
y 
apa
ity to 
hara
terize the payo� of Ali
e in se
re
y mode. In the 
ase of

multi
hannel transmission, su
h as in OFDM, the se
re
y 
apa
ity 
an be des
ribed

as

vS(PS) =

n∑

i=1

[
ln

(
1 +

hiP
S
i

σ2

)
− ln

(
1 +

hEiP
S
i

σ2
E

)]
, (2)

where hEi
is fading gains of the eavesdropper's 
hannels, σE is ba
kground noise of

the eavesdropper's 
hannels, and PS
i is a power of transmitting by 
hannel i in Γ 2

satisfying

n∑
i=1

PS
i = P̄ , PS

i ∈ [0, P̄ ], ∀ i = 1, 2, . . . , n, and ve
tor PS = (PS
1 , . . . , P

S
n )

is a strategy of Ali
e in state Γ 2.

Without loss of generality, we assume that

hi
σ2

≥ hEi

σE
for any i. This relation

implies that Ali
e does not use any 
hannels that would not have supported any
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se
re
y in Ali
e-Bob's 
ommuni
ation. Just for simpli�
ation of notation, we intro-

du
e the following auxiliary notations:

hi :=
hi
σ2
, hEi

:=
hEi

σ2
E

. (3)

Then we 
an rewrite the Ali
e's payo� in Γ 1
as

vT (PT ) =

n∑

i=1

ln
(
1 + hiP

T
i

)
, (4)

and her payo� in Γ 2
as

vS(PS) =

n∑

i=1

[
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i )
]

=

n∑

i=1

ln

(
1 + hiP

S
i

1 + hEi
PS
i

)

=

n∑

i=1

ln

(
1 +

(hi − hEi
)PS

i

1 + hEi
PS
i

)
,

(5)

and from (5) we obtain that vS(PS) ≥ 0 for any i, as hi ≥ hEi
, and the term in

square bra
kets under the sum is the saved 
apa
ity when Ali
e' 
ommuni
ation is

dropped by Eve.

Denote the strategy under whi
h Ali
e maximizes her se
re
y 
apa
ity in Γ 2
by

P̂S = arg max
PS∈Ω

vS(PS).

We use the supers
ript S or T just to distinguish the strategies between di�erent

states, we use supers
ript T of PT
to signal the strategy in throughput mode, and

S of PS
to signal the strategy in se
re
y mode.

Now we 
onsider a sto
hasti
 
ommuni
ation model with in�nite number of

stages. In ea
h stage, throughput and se
re
y states may appear with given prob-

abilities. We use matrix of transition probabilities to des
ribe sto
hasti
 pro
ess of

transitions between two states, whi
h is given as follows:

Π =

(
p11 1− p11
p21 1− p21

)
, (6)

where p11 ∈ [0, 1] is the probability to transmit from the throughput state to the

throughput state, 1− p11 is the probability to transmit from the throughput state

to the se
re
y state, p21 ∈ [0, 1] is the probability to transmit from the se
re
y state

to the throughput state, 1−p21 is the probability to transmit from the se
re
y state

to the se
re
y state.

We assume that players use stationary strategies, whi
h means that a player


hooses her strategy in ea
h stage depending only on whi
h state is realized at this

stage. The problem of Ali
e in the sto
hasti
 
ommuni
ation game is to determine

how to distribute her total transmission power through di�erent 
hannels in di�erent

states with un
ertainty about transitions from state to state. Thus, the strategy in

repeated 
ommuni
ation model is 
hara
terized as P = (PT , PS), where PT =
(PT

1 , P
T
2 , . . . , P

T
n ) and PS = (PS

1 , P
S
2 , . . . , P

S
n ).
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De�nition 1. Sto
hasti
 
ommuni
ation problem G is de�ned as follows:

G = 〈δ, π0, Π, P, V 〉, (7)

where δ is the dis
ount fa
tor, π0 = (p0, 1 − p0) is the the ve
tor of the initial

distribution on states Γ 1
and Γ 2

, and p0 ∈ [0, 1] is the probability that state Γ 1
is

realized at the �rst stage, 1 − p0 is the probability that state Γ 2
is realized at the

�rst stage, and V = (vT (PT ), vS(PS)) is a ve
tor the Ali
e's payo�s in two states

de�ned above.

The payo� to the player in problem G is a random variable, and the mathemat-

i
al expe
tation is used to represent the payo�, whi
h 
an be written in the form

(see Parilina, 2015; Parilina and Tampieri, 2018):

E(P ) = π0(I− δΠ)−1V.

Now we illustrate the 
al
ulation pro
ess of the payo� when the game pro
ess

starts from π0 = (1, 0). In this 
ase, the payo� is expressed as follows:

E(P ) = E(PT , PS)

= (1, 0)

(
1− δp11 −δ(1− p11)
−δp21 1− δ(1 − p21)

)−1




n∑
i=1

ln(1 + hiP
T
i )

n∑
i=1

(
ln(1 + hiP

S
i )− ln(1 + hEiP

S
i )
)




=

(1− δ(1− p21))
n∑

i=1

ln(1 + hiP
T
i )

(1− δ)(1 − δ(p11 − p21))

+

δ(1 − p11)
n∑

i=1

(
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i )
)

(1− δ)(1 − δ(p11 − p21))
.

Theorem 1. The optimal solution strategy (PT , PS) in sto
hasti
 
ommuni
ation

problem G de�ned by (7) is the solution of the following system:

∂Lw(P
T , PS)

∂PT
i

=
1− δ(1− p21)

(1− δ)(1− δ(p11 − p21))

hi

1 + hiPT
i

− w1 = 0, i = 1, . . . , n, (8)

∂Lw(P
T , PS)

∂PS
i

=
δ(1 − p11)

(1− δ)(1− δ(p11 − p21))

[
hi

1 + hiPS
i

− hEi

1 + hEi
PS
i

]
− w2 = 0,

(9)

i = 1, . . . , n,

P̄ −
n∑

i=1

PT
i = 0, (10)

P̄ −
n∑

i=1

PS
i = 0. (11)

Proof. The proof is given by the formulation of Karush-Kuhn-Tu
ker (KKT) prob-

lem. To �nd optimal strategy P that maximizes the fun
tion E(P ) given above, we
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de�ne the Lagrange fun
tion taking into a

ount the power 
onstraints:

Lw(P
T , PS) =

(1− δ(1− p21))
n∑

i=1

ln(1 + hiP
T
i )

(1− δ)(1− δ(p11 − p21))

+

δ(1− p11)
n∑

i=1

(
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i )
)

(1 − δ)(1− δ(p11 − p21))

+ w1(P̄ −
n∑

i=1

PT
i ) + w2(P̄ −

n∑

i=1

PS
i ).

The optimal strategy P = (PT , PS) is found as a solution of the system (7)�(10)

whi
h are the 
onditions given by KKT method.

The system is nonlinear, and we provide a numeri
al solution. Suppose that Ali
e


ommuni
ates to Bob a
ross 2 (sub)
hannels, and we take the 
oe�
ient values

of 
hannels as h1 = 19, h2 = 10, hE1 = 10, hE2 = 5, the value of total power

transmitted by Ali
e is P̄ = 100, the transmission probability from state Γ 1
to

Γ 1
is p11 = 0.3, the transmission probability from Γ 2

to Γ 1
is p21 = 0.6, the

value of dis
ount fa
tor is δ = 0.9, take the ve
tor of initial distribution as π0 =
(1, 0) to start from state Γ 1

. By solving this system,we 
an get the unique optimal

solution of the system (7)�(10) whi
h is P = ((50.0237, 49.9763), (40.7829, 59.2171)).
One 
an mention that a

ording to the optimal Ali
e's strategy in state Γ 1

the

transmission powers are almost equally distributed, but in a se
re
y state the power

of transmission via 
hannel 2 is grater than via 
hannel 1.

2.2. Sensitivity Analysis for Sto
hasti
 Communi
ation Problem

In this se
tion, we illustrated how the Ali
e's optimal strategy in problem G is

in�uen
ed by some fa
tors, in
luding the total power transmitted by Ali
e and the


hara
teristi
 of the 
ommuni
ation network su
h as fading gains of the 
hannels.

By giving a network with three 
ommuni
ation (sub)
hannels, we 
hange one of

the values of fa
tors mentioned above to see how the strategies 
hange when other

parameters remain the same. For 
omfortable observation we use the number of

per
entage of total power in ea
h 
hannel as a dependent variable shown in the

ordinate axis in any �gure.

First, we explore the relationship of 
hannel 
oe�
ient hi and other variables.

From Figure 2, Figure 3 and Figure 4, we 
an see that both per
entages of PT
i and

PS
i in
rease with the in
rease of their 
hannel 
oe�
ient hi, and for any PT

j and

PS
j with j 6= i, the per
entages de
rease when hi in
reases.
Then, we explore the relationship between hEi

and other variables. Taking into

a

ount that hEi
des
ribes the 
hannel 
oe�
ient with Ali
e and Eve, then the


hange of hEi
only in�uen
es the strategy in se
re
y mode, that is the value PS

i .
From Figure 5, we 
an see that PS

i de
reases with the in
rease of the eavesdropper's


hannel 
oe�
ient hEi
, and for any PS

j with j 6= i in
reases when hEi
in
reases.

Finally, we explore the relationship of total power P̄ and other variables. From

Figure 6, we 
an see the tenden
y of in
rease for PT
3 and de
rease the others in

throughput mode, and the 
hange of power in the se
re
y mode is not that obvious.

From the 
oe�
ient h = (20, 22, 10) and hE = (19, 20, 8), we 
an see that the value
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for the third 
hannel is mu
h smaller than the others. This may explain why Ali
e

in
reases the power in this 
hannel for throughput mode, just to get a balan
ed

distribution among all 
hannels.

(a) Power 
hanges in the �rst


hannel.

(b) Power 
hanges in the se
-

ond 
hannel.

(
) Power 
hanges in the

third 
hannel.

Fig. 2. The relationship between h1 and power per
entage in any 
hannel.

(a) Power 
hanges in the �rst


hannel.

(b) Power 
hanges in the se
-

ond 
hannel.

(
) Power 
hanges in the

third 
hannel.

Fig. 3. The relationship between h2 and power per
entage in any 
hannel.

3. Two-player Sto
hasti
 game

3.1. Model

Now suppose that the dropper Eve 
an parti
ipate in 
ommuni
ation a
ting as

a player in the game. We de�ne sto
hasti
 game with two players with throughput

and se
re
y states that 
an appear with given probabilities in ea
h stage.

In state Γ 1
, Eve has no strategies, hen
e the Eve's payo� equals zero, i.e,

vTEve(·) = 0 for any Ali
e's 
hoi
e. The strategy and payo� for Ali
e remains the

same as in the last se
tion. We use ve
tor PT = (PT
1 , · · · , PT

n ) to des
ribe Al-

i
e's strategy as a power allo
ation ve
tor, where PT
i ∈ R+ is the power trans-

mitted through 
hannel i. All feasible strategies for Ali
e is denoted by set Ω,

Ω = {(PT
1 , · · · , PT

n ) : PT
i ∈ [0, P̄ ],

n∑
i=1

PT
i = P̄}, where P̄ ∈ R+ is the total power

to transmit by Ali
e.

The payo� to Ali
e in this state is des
ribed by fun
tion

vTAlice(P
T ) =

n∑

i=1

ln
(
1 + hiP

T
i

)
,
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(a) Power 
hanges in the �rst


hannel.

(b) Power 
hanges in the se
-

ond 
hannel.

(
) Power 
hanges in the

third 
hannel.

Fig. 4. The relationship between h3 and power per
entage in any 
hannel.

(a) Change of PS
i with hE1 (b) Change of PS

i with hE2 (
) Change of PS
i with hE3

Fig. 5. The relationship between hEi and power per
entage in the se
re
y mode in any


hannel.

(a) Power 
hanges in the �rst


hannel.

(b) Power 
hanges in the se
-

ond 
hannel.

(
) Power 
hanges in the

third 
hannel.

Fig. 6. The relationship between total power P̄ and power per
entage in any 
hannel.

where hi is de�ned by (3), strategy PT = (PT
1 , · · · , PT

n ) ∈ Ω.
In state Γ 2

, Eve has to de
ide how to distribute her total transmit power Q̄,
whi
h is represented by ve
torQ = (Q1, · · · , Qn), whereQi is the power transmitted

by Eve through 
hannel i. Obviously, the relation between the total power and the

power in ea
h 
hannel satis�es

n∑
i=1

Qi = Q̄, Qi ∈ [0, Q̄] for any i = 1, 2, . . . , n.

Let Ψ be the set of all feasible strategies of Eve, where Ψ = {(Q1, . . . , Qn) : Qi ∈
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[0, Q̄],
n∑

i=1

Qi = Q̄}. The payo� to Eve in this state is des
ribed by

vSEve(P
S , Q) =

n∑

i=1

Qi ln(1 + hEiP
S
i ).

and the payo� to Ali
e equals

vSAlice(P
S , Q) =

n∑

i=1

[
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i Qi)

]
,

where PS = (PS
1 , . . . , P

S
n ) ∈ Ω is the Ali
e's strategy in state Γ 2

and Q =
(Q1, . . . , Qn) ∈ Ψ is Eve's strategy in this state.

A sto
hasti
 
ommuni
ation model is the game with in�nite number of stages.

In ea
h stage, throughput or se
re
y state may appear with some probability. The

transition relationship between two states is de�ned by the matrix of transition

probabilities given by (6).

Assuming that players use stationary strategies, the Ali
e's strategy in sto
hasti



ommuni
ation game is 
hara
terized by P = (PT , PS), where PT = (PT
1 , . . . , P

T
n )

and PS = (PS
1 , . . . , P

S
n ). The Eve's strategy in the game is Q = (Q1, . . . , Qn).

De�nition 2. Sto
hasti
 
ommuni
ation game Ḡ is de�ned by

Ḡ = 〈δ, π0, Π, P,Q, VAlice, VEve〉, (12)

where δ ∈ (0, 1) is the dis
ount fa
tor, π0 = (p0, 1 − p0) is the the ve
tor of the

initial distribution on states Γ 1
and Γ 2

, and p0 ∈ [0, 1] is the probability that state
Γ 1

is realized at the �rst stage, 1 − p0 is the probability that state Γ 2
is realized

at the �rst stage, VAlice = (vTAlice(P
T ), vSAlice(P

S , Q)) is a ve
tor 
omposed by the

Ali
e's payo� in both states, VEve = (0, vSEve(P
S , Q)) is a ve
tor 
omposed by the

Eve's payo�s in both states.

The payo� to the player in game Ḡ is a random variable, and the mathemati
al

expe
tation 
an be used to represent the payo�, whi
h 
an be written in the following

form (see Parilina and Tampieri, 2018):

EAlice(P,Q) = π0(I− δΠ)−1VAlice, (13)

and

EEve(P,Q) = π0(I− δΠ)−1VEve. (14)

De�nition 3. The Nash equilibrium in sto
hasti
 
ommuni
ation game Ḡ is the

strategy pro�le ((PT∗, PS∗), Q∗) su
h that

EAlice((P
T∗, PS∗), Q∗) ≥ EAlice((P

T , PS), Q∗) for any PT ∈ Ω,PS ∈ Ω,

EEve((P
T∗, PS∗), Q∗) ≥ EEve((P

T∗, PS∗), Q) for any Q ∈ Ψ.

We des
ribe the pro
ess of 
al
ulation of the Nash equilibrium in the game

starting from state Γ 1
, i.e., π0 = (1, 0). Making the similar 
al
ulations as in the last

se
tion, we �nd the Nash equilibrium strategy pro�le with players' payo� fun
tions

given by (13) and (14). The theoreti
al result giving the 
onditions for the Nash

equilibrium in the following.
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Theorem 2. The Nash equilibrium ((PT , PS), Q) in sto
hasti
 
ommuni
ation game
Ḡ de�ned by (12) is given by the solution of the following system:

∂LAlice
w (PT , PS , Q)

∂PT
i

=
1− δ(1− p21)

(1 − δ)(1− δ(p11 − p21))

hi
1 + hiPT

i

− w1 = 0, i = 1, . . . , n,

(15)

∂LAlice
w (PT , PS , Q)

∂PS
i

=
δ(1 − p11)

(1 − δ)(1− δ(p11 − p21))

(
hi

1 + hiPS
i

− hEi
Qi

1 + hEi
PS
i Qi

)

− w2 = 0, i = 1, . . . , n, (16)

∂LEve
w (PS , Q)

∂Qi
=

δ(1 − p11)

(1 − δ)(1− δ(p11 − p21))

hEi
PS
i

1 + hEi
PS
i Qi

− w3 = 0, (17)

i = 1, . . . , n,

P̄ −
n∑

i=1

PT
i = 0, (18)

P̄ −
n∑

i=1

PS
i = 0. (19)

Q̄−
n∑

i=1

Qi = 0. (20)

Proof. The proof is given by the formulation of Karush-Kuhn-Tu
ker (KKT) prob-

lem. To �nd the Nash equilibrium, i.e., strategy pro�le ((PT , PS), Q), we de�ne the
Lagrange fun
tion taking into a

ount the power 
onstraints:

LAlice
w ((PT , PS), Q) =

(1− δ(1− p21))
n∑

i=1

ln(1 + hiP
T
i )

(1− δ)(1 − δ(p11 − p21))

+

δ(1− p11)
n∑

i=1

(
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i Qi)

)

(1− δ)(1 − δ(p11 − p21))

+ w1(P̄ −
n∑

i=1

PT
i ) + w2(P̄ −

n∑

i=1

PS
i ),

LEve
w (PS , Q) =

δ(1 − p11)

(1− δ)(1− δ(p11 − p21))

n∑

i=1

ln(1 + hEi
PS
i Qi)

+ w3(Q̄−
n∑

i=1

Qi).

The Nash equilibrium strategy pro�le ((PT , PS), Q) is found as a solution of the

system (15)�(20) whi
h are the 
onditions given by KKT method.

The system is nonlinear, therefore, we provide the numeri
al simulation to demon-

strate the solution of the system (15)�(20). Suppose that Ali
e 
ommuni
ates to Bob

a
ross 2 (sub)
hannels, and we take the 
oe�
ient values of 
hannels as h = (20, 10),
hE = (15, 5), the value of total power transmitted by Ali
e is P̄ = 0.5, the value
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of total power transmitted by Eve is Q̄ = 0.3, the probability of transmission

from state Γ 1
to Γ 1

is p11 = 0.3, the probability of transmission from Γ 2
to Γ 1

is p21 = 0.6, the value of dis
ount fa
tor is δ = 0.9, the ve
tor of initial dis-

tribution over the set of states is π0 = (1, 0) (the game pro
ess is started from

state Γ 1
). By solving the system (15)�(20), we obtain the unique Nash equilibrium

P = ((0.275, 0.225), (0.172272, 0.327728)), Q = (0.26164, 0.0383604).

3.2. Sensitivity Analysis for Sto
hasti
 Communi
ation Game

In this se
tion, we explore the 
onne
tion between di�erent variables of the game

des
ribed in the previous se
tion. Given that the network with n = 2, we illustrate
the 
onne
tion by examples represented in the �gures.

First, we explore the relationship of the Ali
e's total power P̄ and other variables.

On Figure 7 one 
an see there is a signi�
ant 
hange of Eve's power distribution,

but only slight 
hanges in Ali
e's strategy as a fun
tion of total power P̄ . More

spe
i�
ally, Eve de
reases her power in the �rst 
hannel and in
reases her power in

the se
ond one in the Nash equilibrium. The values of the parameters are h1 = 20,
h2 = 10, hE1 = 15, hE2 = 5, Q̄ = 0.3. The 
oe�
ient between Ali
e and Eve in the

�rst 
hannel is mu
h larger than in the se
ond one, this means that Eve de
reases

the power in the 
hannel with larger 
oe�
ient. We remind that in all graphs, in

the y-axis, the power in per
entage is given (i.e., power in the 
hannel divided by

the total power of a player).

Then, we explore the relationship of total power Q̄ and other parameters. As

Eve 
hooses strategy only in the se
re
y mode, then the strategy for Ali
e in the

throughput mode remains the same. From Figure 8, we 
an see that PS
1 in
reases

and Q1 de
reases with the in
rease of the Eve's total power. The values of other

parameters are h1 = 20, h2 = 10, hE1 = 15, hE2 = 5, P̄ = 1. The di�eren
e

between Ali
e and Eve in the �rst 
hannel is mu
h larger than the se
ond one, this

means that Ali
e in
reases the power in the 
hannel with larger 
oe�
ient, but Eve

de
reases it.

Then, we examine the relationship between the 
hannel 
oe�
ient hi and other

variables. From Figures 9 and 10, we 
an see that both PT
i and PS

i in
rease with the

in
rease of their 
hannel 
oe�
ient hi, and for any PT
j and PS

j with j 6= i de
rease
when hi in
reases. Also, there is a in
rease of the Eve's power in the 
hannel i with
the in
rease of 
oe�
ient hi.

Now, we explore the relationship of variable hEi
and other variables. Coe�
ient

hEi
only in�uen
es the strategy only in the se
re
y mode. From Figures 11 and

12, we 
an see that PS
i de
reases with the in
rease of the eavesdropper's 
hannel


oe�
ient hEi
, and with in
rease for Eve's power in this 
hannel.
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(a) Power 
hanges in �rst


hannel for Ali
e.

(b) Power 
hanges in se
ond


hannel for Ali
e.

(
) Power 
hanges in the

Eve's 
hannel.

Fig. 7. The relation between P̄ and the per
entage of power distribution for both players.

(a) Power 
hanges for Ali
e's


hannel in the se
re
y state.

(b) Power 
hanges in the Eve's


hannel.

Fig. 8. The relation between Q̄ and the per
entage of power distribution for both players.

(a) Power 
hanges in the Al-

i
e's �rst 
hannel.

(b) Power 
hanges in the Al-

i
e's se
ond 
hannel.

(
) Change of power in the

Eve's 
hannel.

Fig. 9. The relationship between h1 and the per
entage of power distribution for both

players.
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(a) Power 
hanges in the Al-

i
e's �rst 
hannel.

(b) Power 
hanges in the Al-

i
e's se
ond 
hannel.

(
) Power 
hanges in the

Eve's 
hannel.

Fig. 10. The relationship between h2 and the per
entage of power distribution for both

players.

(a) Power 
hanges for the Ali
e's


hannel in se
re
y state.

(b) Power 
hanges in Eve's 
han-

nel.

Fig. 11. The relationship between hE1 and the per
entage of power distribution for both

players.

(a) Power 
hanges for the Ali
e's


hannel in se
re
y state.

(b) Power 
hanges in the Eve's


hannel.

Fig. 12. The relationship between hE2 and the per
entage of power distribution for both

players.
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4. Con
lusion

In this paper, the in�uen
e of un
ertainty about dropper's appearan
e on the

optimal strategy in sto
hasti
 
ommuni
ation problem and on the Nash equilibrium

in sto
hasti
 
ommuni
ation game has been examined. Simulation results have been

given to illustrate the relationship between some fa
tors of the system and the

optimal strategy and equilibrium strategies. In the future work, we 
an 
onsider

the in�uen
e of other features of the dropper like limited transmission power of the

dropper on the optimal player's strategy.
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