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Abstract We counsider a stochastic dynamic game with uncertainty about
appearance of an dropper in infinite time horizon. For the lack of informa-
tion about whether the dropper is present or not, two different states of
nature can appear with some given probabilities at each stage. We study
the non-cooperative behavior of players, and Nash equilibrium is considered
as an equilibrium concept. We investigate how limited information about
the dropper’s appearance impacts the anti-jamming strategy.
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1. Introduction

In wireless communications, it is important to ensure the data security between
a transmitter and a receiver when facing interference. In (Mukherjee et al., 2014), a
comprehensive survey about principles of physical layer security in multiuser wire-
less networks is given. There is a variety of works which study jamming problems
(e.g., see Altman et al., 2010; Altman et al., 2011; Vadlamania et al., 2016).

In jamming problems, a transmitter would like to transmit a signal with a good
quality, while a jammer tries to degrade the signal quality at the intended receiver.
For the conflicting interests of players, game theory has been widely employed in the
literature to model different jamming problems when we consider malicious interfer-
ence (see Charilas and Panagopoulos, 2010; Wu et al., 2012; Slimeni et al., 2016).
In (Garnaev et al., 2012), a jamming game in a dynamic setting for a slotted
ALOHA-like network is considered. In (Altman et al., 2011), the effect of partially
available information and correlation among sub-carriers on the user behavior is
investigated. Zero-sum games are considered in the case when the user does not
know how jamming efforts are distributed among sub-carriers and the user does
not know the fading channels’ gains with certainty. In (Garnaev et al., 2017), the
influence of uncertainty about whether or not a jamming attack is applied to an
OFDM scenario on the resulting anti-jamming strategy has been investigated.

We consider a stochastic dynamic game with uncertainty about the dropper’s
appearance in infinite time horizon and study a simple communication network rep-
resented in Figure 1. In this communication network, a transmitter (Alice) wishes
to communicate with the intended receiver (Bob) both secretly and with sufficient

* The work of the second author was supported by the Russian Science Foundation under
grant no. 17-11-01079.
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Fig. 1. Communication relationship between Alice, Bob and Eve

throughput. There is a jammer or a dropper (Eve) wants to eavesdrop on com-
munication between Alice and Bob. The dropper Eve appears with uncertainty,
and we take it into account by describing two different states of the game. In the
state without dropper’s appearance, the transmitter focuses solely on the relia-
bility of communication. The utility is associated with communication reliability
to be maintaining sufficient throughput which is reflected by Shannon capacity
(Shannon, 1948). The state is called as a throughput state. In the state with drop-
per’s appearance, the transmitter focuses on the secrecy of communication. We
consider the secrecy capacity which is provided in (Csiszar and Korner, 1978) and
also used in (Garnaev and Trappe, 2016). The state is called as a secrecy state.

A stochastic communication model is considered with infinite number of stages.
At any stage, throughput and secrecy state can appear with a given probability.
Payoff in a stochastic game is a random variable and the mathematical expectation
of the player’s payoff is assumed to be the utility of his payoff in stochastic game
as in (Parilina and Tampieri, 2018). We study the non-cooperative behavior of the
players, and calculate the Nash equilibria.

The paper is organized as follows. In the second section, we introduce the
stochastic communication model and consider a problem setting with a unique
player. In this case, we find an optimal strategy of the player and consider the
factors which have influence on it. In the third section, we introduce a stochastic
communication game with two players. We calculate the Nash equilibrium and con-
sider the factors influencing the equilibrium strategies. Finally, we briefly conclude
in the forth section.

2. Stochastic Communication Model

2.1. Model Introduction

We introduce the model of communication model given in Figure 1. Alice wishes
to communicate with her colleague Bob but faces the uncertainty with the appear-
ance of a eavesdropper (Eve), who wants to get information that Alice sends to Bob.
To describe the uncertainty of Eve’s appearance, we consider two states of Nature
in the communication model—with and without Eve’s showup.

In the communication network, the underlying wireless medium has been chan-
nelized into n separate channels (e.g, different subcarriers in an OFDM system).
Thus, Alice communicates to Bob across n (sub)channels, and the response of chan-
nel 7 is represented by its coefficient h;, ¢ € {1,...,n}. In the state with Eve’s ap-
pearance, she can eavesdrop on Alice’s communication across a broadcast medium
(as in a wireless setting), and the channels from Alice to Eve are represented by co-
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efficients hg,, i € {1,...,n}. We focus on the complete channel state model, which
means that Alice knows both the Alice-Bob and Alice-Eve channel coefficients.
We describe two possible states of Nature defining the set of strategies and the
payoff(cost) function for the players participating in the game.
We describe the strategy for Alice as a power allocation vector P = (Py,..., P,),
where P; € R, is the power transmitted through channel 7, i.e. it is the vector
describing how to distribute her transmission power through different channels.
Denote by P € R, the total power to transmit by Alice, then the relation between
n

the total power and the power in each channel is as follows Y. P, = P, P, €
i=1

[0,P], Vi=1,2,...,n. The set of Alice’s feasible strategies is denoted by (2, where

Q={(P,- ,P): Pe[0,P], 3 P = P},

i=

Alice faces different problems in two different states mentioned above.

State I'!. In this state without Eve’s appearance there is one player. Alice can
focus solely on the throughput associated with the transmitted signal to Bob, which
can be considered as a utility for this communication between Alice and Bob. Thus,
we call the state a throughput state, and denote it as I'!. The capacity or payoff to
Alice is described by function

oT(PT) = im <1 + hif) : (1)

where h; is fading gains of the main channels and o is background noise of the

main channels, and P7 is a power of transmitting by channel i in I'! satisfying

SWPF =P PFel0,P], Vi=1,2,...,n, and vector PT = (PL,...,PT) is a
i=1

strategy of Alice in state I'!.
A task for Alice in I'! is to maintain throughput as high as possible, i.e., to find
a strategy maximizing her transmission payoff given by
PT = arg max o7 (PT).
PTeg
One can notice that the solution of the maximization problem exists.

State I'2. In this state Alice’s communication can be dropped by Eve, and
Alice focuses on maintaining the secrecy of her communication. Thus, we shall
call such a mode as operating in the secrecy state, and denote it as I'?>. We use
secrecy capacity to characterize the payoff of Alice in secrecy mode. In the case of
multichannel transmission, such as in OFDM, the secrecy capacity can be described

) vS(PS)_Xn:{ln (1+hi0_—];is>—1n (1+@>} (2)

o
i=1 E

where hp, is fading gains of the eavesdropper’s channels, og is background noise of

the eavesdropper’s channels, and P is a power of transmitting by channel i in '
n — —

satisfying . P = P, P? € [0,P], Vi=1,2,...,n, and vector P° = (P?,..., P?)
i=1

is a strategy of Alice in state I'2.

hp,

h.
Without loss of generality, we assume that —; > for any 4. This relation
g OF

implies that Alice does not use any channels that would not have supported any
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secrecy in Alice-Bob’s communication. Just for simplification of notation, we intro-
duce the following auxiliary notations:

hi = —, hg, '= —-. 3
o2 Ei o2 (3)

Then we can rewrite the Alice’s payoff in I'! as

T (PT) = zn:m (1+nPl), (4)

=1

and her payoff in I'? as

v3(PY) =

I

@
I
A

(In(1 + h;P7) — In(1 + hg, P7)]

14 hP?
1 [ S
! (1+hEiF)iS) (5)

(hi — hg,) P’
1 1 A e A
n( + 1+hE1_P,LS )

|
M=

1

.
Il

I

=1

and from (5) we obtain that v*(P°) > 0 for any i, as h; > hg,, and the term in
square brackets under the sum is the saved capacity when Alice’ communication is
dropped by Eve.

Denote the strategy under which Alice maximizes her secrecy capacity in I'? by

HS S/ pS
P = arg max v (P~).

We use the superscript S or T just to distinguish the strategies between different
states, we use superscript 7' of PT to signal the strategy in throughput mode, and
S of P® to signal the strategy in secrecy mode.

Now we consider a stochastic communication model with infinite number of
stages. In each stage, throughput and secrecy states may appear with given prob-
abilities. We use matrix of transition probabilities to describe stochastic process of
transitions between two states, which is given as follows:

7= (pu 1 _pll) ’ (6)
p21 1 —pa1
where p1; € [0,1] is the probability to transmit from the throughput state to the
throughput state, 1 — p11 is the probability to transmit from the throughput state
to the secrecy state, pa1 € [0, 1] is the probability to transmit from the secrecy state
to the throughput state, 1 —po; is the probability to transmit from the secrecy state
to the secrecy state.

We assume that players use stationary strategies, which means that a player
chooses her strategy in each stage depending only on which state is realized at this
stage. The problem of Alice in the stochastic communication game is to determine
how to distribute her total transmission power through different channels in different
states with uncertainty about transitions from state to state. Thus, the strategy in
repeated communication model is characterized as P = (PT, P¥), where PT =
(PL,PT,...,PT)and PS = (P?,Py,..., P?).
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Definition 1. Stochastic communication problem G is defined as follows:

G = (6,7°,II, P, V), (7)

where § is the discount factor, 7% = (pg,1 — po) is the the vector of the initial
distribution on states I'* and I'?, and pg € [0, 1] is the probability that state I'! is
realized at the first stage, 1 — po is the probability that state I'? is realized at the
first stage, and V = (vT (PT),v%(P)) is a vector the Alice’s payoffs in two states
defined above.

The payoff to the player in problem G is a random variable, and the mathemat-
ical expectation is used to represent the payoff, which can be written in the form
(see Parilina, 2015; Parilina and Tampieri, 2018):

E(P)=r1-4s1)""

Now we illustrate the calculation process of the payoff when the game process
starts from 7% = (1,0). In this case, the payoff is expressed as follows:

E(P) = E(PT, P?)
" In(1 + hyPY
— o (1m0 N Z )
—0p21 1=0(1=px) S (In(1 + hiPS) — In(1 + hi PS))
=1

(1= 61— po1)) 3 In(1 + hi PT)

TR r———"
§(1—p11) z (In(1 + h;PP) —In(1 + hg, PY))
)

—

* (:1 8)(1 = d(p11 — p21))

Theorem 1. The optimal solution strategy (PT, P%) in stochastic communication
problem G defined by (7) is the solution of the following system:

6Lw(PT,PS) 1—6(1—]921) hi .
= — =0,1=1,...,n, 8
8P1T (1 — 5)(1 — 5(])11 —pzl)) 1 =+ hlPZT w ! " ( )
6Lw(PT,PS) . 6(1 _pll) hi _ hE7 Wy =0
oPS (1—=6)(1—0(pu —p21)) |1+ hP° 1+ hgP? S
9)
1=1,...,n,
P-Y Pr=o, (10)
i=1
P-Y Pf=o. (11)
i=1

Proof. The proof is given by the formulation of Karush-Kuhn-Tucker (KKT) prob-
lem. To find optimal strategy P that maximizes the function E(P) given above, we
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define the Lagrange function taking into account the power constraints:

3

o (1— (1—p21))§ n(l+hiPl)
Ly(P",P7) = (1-06)(1—d(p11 —p21))

§(1—pi1) Y (In(1+ ~P%) — In(1 + hg, PP))

1=1

(1 —=0)(1—0(p11 — p21))

+wi(P =Y Pl +wy(P - P?).
1=1 1=1

The optimal strategy P = (PT, P?) is found as a solution of the system (7)—(10)
which are the conditions given by KKT method.

3

+

The system is nonlinear, and we provide a numerical solution. Suppose that Alice
communicates to Bob across 2 (sub)channels, and we take the coefficient values
of channels as h; = 19, ha = 10, hg, = 10, hg, = 5, the value of total power
transmitted by Alice is P = 100, the transmission probability from state I'! to
I'' is p;; = 0.3, the transmission probability from I'? to I'' is ps; = 0.6, the
value of discount factor is § = 0.9, take the vector of initial distribution as 7° =
(1,0) to start from state I'!. By solving this system,we can get the unique optimal
solution of the system (7)—(10) which is P = ((50.0237,49.9763), (40.7829,59.2171)).
One can mention that according to the optimal Alice’s strategy in state I'! the
transmission powers are almost equally distributed, but in a secrecy state the power
of transmission via channel 2 is grater than via channel 1.

2.2. Sensitivity Analysis for Stochastic Communication Problem

In this section, we illustrated how the Alice’s optimal strategy in problem G is
influenced by some factors, including the total power transmitted by Alice and the
characteristic of the communication network such as fading gains of the channels.
By giving a network with three communication (sub)channels, we change one of
the values of factors mentioned above to see how the strategies change when other
parameters remain the same. For comfortable observation we use the number of
percentage of total power in each channel as a dependent variable shown in the
ordinate axis in any figure.

First, we explore the relationship of channel coefficient h; and other variables.
From Figure 2, Figure 3 and Figure 4, we can see that both percentages of P and
Pf increase with the increase of their channel coefficient h;, and for any PjT and
Pjs with j # i, the percentages decrease when h; increases.

Then, we explore the relationship between hp, and other variables. Taking into
account that hg, describes the channel coefficient with Alice and Eve, then the
change of hg, only influences the strategy in secrecy mode, that is the value P7.
From Figure 5, we can see that P;” decreases with the increase of the eavesdropper’s
channel coefficient hg,, and for any Pjs with j # ¢ increases when hp, increases.

Finally, we explore the relationship of total power P and other variables. From
Figure 6, we can see the tendency of increase for P] and decrease the others in
throughput mode, and the change of power in the secrecy mode is not that obvious.
From the coefficient h = (20,22,10) and hg = (19,20, 8), we can see that the value
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for the third channel is much smaller than the others. This may explain why Alice

increases the power in this channel for throughput mode, just to get a balanced
distribution among all channels.

(a) Power changes in the first(b) Power changes in the sec- (c) Power changes in the
channel. ond channel. third channel.

Fig. 2. The relationship between h; and power percentage in any channel.

20 21 22 23 24 25 26 27 28 29 30 31 20 21 22 23 24 25 26 27 28 29 30 31

(a) Power changes in the first(b) Power changes in the sec- (c) Power changes in the
channel. ond channel. third channel.

Fig. 3. The relationship between hy and power percentage in any channel.

3. Two-player Stochastic game

3.1. Model

Now suppose that the dropper Eve can participate in communication acting as
a player in the game. We define stochastic game with two players with throughput
and secrecy states that can appear with given probabilities in each stage.

In state I'', Eve has no strategies, hence the Eve’s payoff equals zero, i.e,
vE,.(-) = 0 for any Alice’s choice. The strategy and payoff for Alice remains the
same as in the last section. We use vector PT = (PL,--- PT) to describe Al-
ice’s strategy as a power allocation vector, where PI € R, is the power trans-
mitted through channel i. All feasible strategies for Alice is denoted by set (2,

Q={PL,---,PT). PT €0, P, ;PiT = P}, where P € R, is the total power

to transmit by Alice.
The payoff to Alice in this state is described by function

Vhiice (PT) = In (14 h;Pl),
=1
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(a) Power changes in the first(b) Power changes in the sec- (c) Power changes in the
channel. ond channel. third channel.

Fig. 4. The relationship between hs and power percentage in any channel.

—--P17s

(a) Change of P° with hg, (b) Change of P with hp, (c) Change of P with hp,

Fig. 5. The relationship between hg, and power percentage in the secrecy mode in any
channel.
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(a) Power changes in the first(b) Power changes in the sec- (c) Power changes in the
channel. ond channel. third channel.

Fig. 6. The relationship between total power P and power percentage in any channel.

where h; is defined by (3), strategy PT = (PL,--- ,PT) € . )

In state I'?, Eve has to decide how to distribute her total transmit power Q,

which is represented by vector Q = (Q1, - , Qn), where Q; is the power transmitted

by Eve through channel i. Obviously, the relation between the total power and the

power in each channel satisfies Y. Q; = @Q, Q; € [0,Q] for any i = 1,2,...,n.
i=1

Let ¥ be the set of all feasible strategies of Eve, where ¥ = {(Q1,...,Qn) : Q; €
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[0, Q] Qi = Q}. The payoff to Eve in this state is described by

HM:

v%ve(Psv Q) = Z Q’L 111(1 + hElpzs)

i=1
and the payoff to Alice equals

n

Viiiee (P%,Q) =Y [In(1+ hiP%) = In(1 + hpg, P Q1)) ,
=1

where P% = (Pf,...,PJ) € 2 is the Alice’s strategy in state > and Q =
(Q1,...,Qn) € V¥ is Eve’s strategy in this state.

A stochastic communication model is the game with infinite number of stages.
In each stage, throughput or secrecy state may appear with some probability. The
transition relationship between two states is defined by the matrix of transition
probabilities given by (6).

Assuming that players use stationary strategies, the Alice’s strategy in stochastic
communication game is characterized by P = (P, P¥), where PT = (P[',..., PT)
and P° = (P{,..., PY). The Eve’s strategy in the game is Q = (Q1, ..., Q).

Definition 2. Stochastic communication game G is defined by
G = <§, WO,Ha P1Q7VAliceavae>a (]‘2>

where § € (0,1) is the discount factor, 7% = (pg,1 — po) is the the vector of the
initial distribution on states I'* and I'2, and pg € [0, 1] is the probability that state
I'! is realized at the first stage, 1 — pg is the probability that state I'? is realized
at the first stage, Vajice = (Uz;lice(PT), vilice(PS, Q)) is a vector composed by the
Alice’s payoff in both states, Viye = (0,v3,.(P°,Q)) is a vector composed by the
Eve’s payoffs in both states.

The payoff to the player in game G is a random variable, and the mathematical
expectation can be used to represent the payoff, which can be written in the following
form (see Parilina and Tampieri, 2018):

EAlice (Pa Q) = WO(H - (SH)_IVAlicea (13>
and

EEve(Pa Q) = WO(H - 5H)71VE716' (14)
Definition 3. The Nash equilibrium in stochastic communication game G is the

strategy profile ((PT*, P9*),Q*) such that

EAlice((PT*aps*)aQ*) 2 EAlice((PTaPS)aQ*) for any PT S Q’PS S Qa
Epe((PT", P¥),Q") = Epye((PT*, P¥),Q) for any Q € V.

We describe the process of calculation of the Nash equilibrium in the game
starting from state I'!, i.e., 7% = (1,0). Making the similar calculations as in the last
section, we find the Nash equilibrium strategy profile with players’ payoff functions

given by (13) and (14). The theoretical result giving the conditions for the Nash
equilibrium in the following.
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Theorem 2. The Nash equilibrium ((PT, P%), Q) in stochastic communication game
G defined by (12) is given by the solution of the following system:

oLpMe(PT,P5,Q) — 1-6(1—py) hi = 0.i=1.....n
OPT T8l —pa)) L+ RET T T
(15)
BLZ‘)MC&(PT,PSa Q) _ 5(1 _pll) ( h; . hEle )
OPF (1=0)(1=0(p11 —p21) \1+hP7  1+hpP7Q
—wQZO’i:17...,n7 (16)
ILE™(PS,Q) 5(1 = pur) g, P 0. ()
= _w =
0Q; (1=08)(1—d(p11 —p2)) L+ hg, P5Qi
1=1,...,n,
P-Y Pl =0, .
=1
P-% P’=o. 1
1=1
Q-5 qi=o. (20)
1=1

Proof. The proof is given by the formulation of Karush-Kuhn-Tucker (KKT) prob-
lem. To find the Nash equilibrium, i.e., strategy profile ((P?, P%), Q), we define the
Lagrange function taking into account the power constraints:

(1 —0(1 —p21)) f: In(l + A P1)
LAlce((PT | PS),Q) = (1-68)(1— 5?;11 — p21))
§(1=pi1) 3 (In(1 + hiPY) —In(1 + b, P7Qs))
z:(ll —6)(1 —8(p11 — p21))
+wn (P — ZHZPZ-T) +wa(P - Zn:Pz‘S)’

=1

+

6(1 —pu1) S
(1—=0)(1—0(p11 —p21)) Zln(l +he PEQ)

i=1

Lgve(P57 Q) —

+ws(@ =) Q).

=1

The Nash equilibrium strategy profile ((PT, P%),Q) is found as a solution of the
system (15)—(20) which are the conditions given by KKT method.

The system is nonlinear, therefore, we provide the numerical simulation to demon-
strate the solution of the system (15)—(20). Suppose that Alice communicates to Bob
across 2 (sub)channels, and we take the coefficient values of channels as h = (20, 10),

hg = (15,5), the value of total power transmitted by Alice is P = 0.5, the value
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of total power transmitted by Eve is Q = 0.3, the probability of transmission
from state I'' to I'" is p;; = 0.3, the probability of transmission from I'? to I'!
is pa1 = 0.6, the value of discount factor is 6 = 0.9, the vector of initial dis-
tribution over the set of states is 7 = (1,0) (the game process is started from
state I'!). By solving the system (15)—(20), we obtain the unique Nash equilibrium
P = ((0.275,0.225), (0.172272, 0.327728)), Q = (0.26164, 0.0383604).

3.2. Sensitivity Analysis for Stochastic Communication Game

In this section, we explore the connection between different variables of the game
described in the previous section. Given that the network with n = 2, we illustrate
the connection by examples represented in the figures.

First, we explore the relationship of the Alice’s total power P and other variables.
On Figure 7 one can see there is a significant change of Eve’s power distribution,
but only slight changes in Alice’s strategy as a function of total power P. More
specifically, Eve decreases her power in the first channel and increases her power in
the second one in the Nash equilibrium. The values of the parameters are hy; = 20,
hy =10, hg, = 15, hg, = 5, Q = 0.3. The coefficient between Alice and Eve in the
first channel is much larger than in the second one, this means that Eve decreases
the power in the channel with larger coefficient. We remind that in all graphs, in
the y-axis, the power in percentage is given (i.e., power in the channel divided by
the total power of a player).

Then, we explore the relationship of total power Q) and other parameters. As
Eve chooses strategy only in the secrecy mode, then the strategy for Alice in the
throughput mode remains the same. From Figure 8, we can see that P} increases
and @)1 decreases with the increase of the Eve’s total power. The values of other
parameters are hy = 20, ho = 10, hg, = 15, hg, = 5, P = 1. The difference
between Alice and Eve in the first channel is much larger than the second one, this
means that Alice increases the power in the channel with larger coefficient, but Eve
decreases it.

Then, we examine the relationship between the channel coefficient h; and other
variables. From Figures 9 and 10, we can see that both P! and P/ increase with the
increase of their channel coefficient h;, and for any PJT and PJS with j # i decrease
when h; increases. Also, there is a increase of the Eve’s power in the channel 7 with
the increase of coefficient h;.

Now, we explore the relationship of variable hg, and other variables. Coefficient
hg, only influences the strategy only in the secrecy mode. From Figures 11 and
12, we can see that P decreases with the increase of the eavesdropper’s channel
coefficient hg,, and with increase for Eve’s power in this channel.
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(a) Power changes in first(b) Power changes in second (c) Power changes in the
channel for Alice. channel for Alice. Eve’s channel.

Fig. 7. The relation between P and the percentage of power distribution for both players.
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Fig. 8. The relation between Q and the percentage of power distribution for both players.
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Fig. 9. The relationship between h; and the percentage of power distribution for both
players.
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ice’s first channel.
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4. Conclusion

In this paper, the influence of uncertainty about dropper’s appearance on the
optimal strategy in stochastic communication problem and on the Nash equilibrium
in stochastic communication game has been examined. Simulation results have been
given to illustrate the relationship between some factors of the system and the
optimal strategy and equilibrium strategies. In the future work, we can consider
the influence of other features of the dropper like limited transmission power of the
dropper on the optimal player’s strategy.
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