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Abstrat We onsider a stohasti dynami game with unertainty about

appearane of an dropper in in�nite time horizon. For the lak of informa-

tion about whether the dropper is present or not, two di�erent states of

nature an appear with some given probabilities at eah stage. We study

the non-ooperative behavior of players, and Nash equilibrium is onsidered

as an equilibrium onept. We investigate how limited information about

the dropper's appearane impats the anti-jamming strategy.

Keywords: stohasti game, throughput, serey, Nash equilibrium

1. Introdution

In wireless ommuniations, it is important to ensure the data seurity between

a transmitter and a reeiver when faing interferene. In (Mukherjee et al., 2014), a

omprehensive survey about priniples of physial layer seurity in multiuser wire-

less networks is given. There is a variety of works whih study jamming problems

(e.g., see Altman et al., 2010; Altman et al., 2011; Vadlamania et al., 2016).

In jamming problems, a transmitter would like to transmit a signal with a good

quality, while a jammer tries to degrade the signal quality at the intended reeiver.

For the on�iting interests of players, game theory has been widely employed in the

literature to model di�erent jamming problems when we onsider maliious interfer-

ene (see Charilas and Panagopoulos, 2010; Wu et al., 2012; Slimeni et al., 2016).

In (Garnaev et al., 2012), a jamming game in a dynami setting for a slotted

ALOHA-like network is onsidered. In (Altman et al., 2011), the e�et of partially

available information and orrelation among sub-arriers on the user behavior is

investigated. Zero-sum games are onsidered in the ase when the user does not

know how jamming e�orts are distributed among sub-arriers and the user does

not know the fading hannels' gains with ertainty. In (Garnaev et al., 2017), the

in�uene of unertainty about whether or not a jamming attak is applied to an

OFDM senario on the resulting anti-jamming strategy has been investigated.

We onsider a stohasti dynami game with unertainty about the dropper's

appearane in in�nite time horizon and study a simple ommuniation network rep-

resented in Figure 1. In this ommuniation network, a transmitter (Alie) wishes

to ommuniate with the intended reeiver (Bob) both seretly and with su�ient

⋆
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Fig. 1. Communiation relationship between Alie, Bob and Eve

throughput. There is a jammer or a dropper (Eve) wants to eavesdrop on om-

muniation between Alie and Bob. The dropper Eve appears with unertainty,

and we take it into aount by desribing two di�erent states of the game. In the

state without dropper's appearane, the transmitter fouses solely on the relia-

bility of ommuniation. The utility is assoiated with ommuniation reliability

to be maintaining su�ient throughput whih is re�eted by Shannon apaity

(Shannon, 1948). The state is alled as a throughput state. In the state with drop-

per's appearane, the transmitter fouses on the serey of ommuniation. We

onsider the serey apaity whih is provided in (Csiszar and Korner, 1978) and

also used in (Garnaev and Trappe, 2016). The state is alled as a serey state.

A stohasti ommuniation model is onsidered with in�nite number of stages.

At any stage, throughput and serey state an appear with a given probability.

Payo� in a stohasti game is a random variable and the mathematial expetation

of the player's payo� is assumed to be the utility of his payo� in stohasti game

as in (Parilina and Tampieri, 2018). We study the non-ooperative behavior of the

players, and alulate the Nash equilibria.

The paper is organized as follows. In the seond setion, we introdue the

stohasti ommuniation model and onsider a problem setting with a unique

player. In this ase, we �nd an optimal strategy of the player and onsider the

fators whih have in�uene on it. In the third setion, we introdue a stohasti

ommuniation game with two players. We alulate the Nash equilibrium and on-

sider the fators in�uening the equilibrium strategies. Finally, we brie�y onlude

in the forth setion.

2. Stohasti Communiation Model

2.1. Model Introdution

We introdue the model of ommuniation model given in Figure 1. Alie wishes

to ommuniate with her olleague Bob but faes the unertainty with the appear-

ane of a eavesdropper (Eve), who wants to get information that Alie sends to Bob.

To desribe the unertainty of Eve's appearane, we onsider two states of Nature

in the ommuniation model�with and without Eve's showup.

In the ommuniation network, the underlying wireless medium has been han-

nelized into n separate hannels (e.g, di�erent subarriers in an OFDM system).

Thus, Alie ommuniates to Bob aross n (sub)hannels, and the response of han-

nel i is represented by its oe�ient hi, i ∈ {1, . . . , n}. In the state with Eve's ap-

pearane, she an eavesdrop on Alie's ommuniation aross a broadast medium

(as in a wireless setting), and the hannels from Alie to Eve are represented by o-
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e�ients hEi
, i ∈ {1, . . . , n}. We fous on the omplete hannel state model, whih

means that Alie knows both the Alie�Bob and Alie�Eve hannel oe�ients.

We desribe two possible states of Nature de�ning the set of strategies and the

payo�(ost) funtion for the players partiipating in the game.

We desribe the strategy for Alie as a power alloation vetor P = (P1, . . . , Pn),
where Pi ∈ R+ is the power transmitted through hannel i, i.e. it is the vetor

desribing how to distribute her transmission power through di�erent hannels.

Denote by P̄ ∈ R+ the total power to transmit by Alie, then the relation between

the total power and the power in eah hannel is as follows

n∑
i=1

Pi = P̄ , Pi ∈
[0, P̄ ], ∀ i = 1, 2, . . . , n. The set of Alie's feasible strategies is denoted by Ω, where

Ω = {(P1, · · · , Pn) : Pi ∈ [0, P̄ ],
n∑

i=1

Pi = P̄}.
Alie faes di�erent problems in two di�erent states mentioned above.

State Γ 1
. In this state without Eve's appearane there is one player. Alie an

fous solely on the throughput assoiated with the transmitted signal to Bob, whih

an be onsidered as a utility for this ommuniation between Alie and Bob. Thus,

we all the state a throughput state, and denote it as Γ 1
. The apaity or payo� to

Alie is desribed by funtion

vT (PT ) =

n∑

i=1

ln

(
1 +

hiP
T
i

σ2

)
, (1)

where hi is fading gains of the main hannels and σ is bakground noise of the

main hannels, and PT
i is a power of transmitting by hannel i in Γ 1

satisfying

n∑
i=1

PT
i = P̄ , PT

i ∈ [0, P̄ ], ∀ i = 1, 2, . . . , n, and vetor PT = (PT
1 , . . . , P

T
n ) is a

strategy of Alie in state Γ 1.
A task for Alie in Γ 1

is to maintain throughput as high as possible, i.e., to �nd

a strategy maximizing her transmission payo� given by

P̂T = arg max
PT∈Ω

vT (PT ).

One an notie that the solution of the maximization problem exists.

State Γ 2
. In this state Alie's ommuniation an be dropped by Eve, and

Alie fouses on maintaining the serey of her ommuniation. Thus, we shall

all suh a mode as operating in the serey state, and denote it as Γ 2
. We use

serey apaity to haraterize the payo� of Alie in serey mode. In the ase of

multihannel transmission, suh as in OFDM, the serey apaity an be desribed

as

vS(PS) =

n∑

i=1

[
ln

(
1 +

hiP
S
i

σ2

)
− ln

(
1 +

hEiP
S
i

σ2
E

)]
, (2)

where hEi
is fading gains of the eavesdropper's hannels, σE is bakground noise of

the eavesdropper's hannels, and PS
i is a power of transmitting by hannel i in Γ 2

satisfying

n∑
i=1

PS
i = P̄ , PS

i ∈ [0, P̄ ], ∀ i = 1, 2, . . . , n, and vetor PS = (PS
1 , . . . , P

S
n )

is a strategy of Alie in state Γ 2.

Without loss of generality, we assume that

hi
σ2

≥ hEi

σE
for any i. This relation

implies that Alie does not use any hannels that would not have supported any
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serey in Alie-Bob's ommuniation. Just for simpli�ation of notation, we intro-

due the following auxiliary notations:

hi :=
hi
σ2
, hEi

:=
hEi

σ2
E

. (3)

Then we an rewrite the Alie's payo� in Γ 1
as

vT (PT ) =

n∑

i=1

ln
(
1 + hiP

T
i

)
, (4)

and her payo� in Γ 2
as

vS(PS) =

n∑

i=1

[
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i )
]

=

n∑

i=1

ln

(
1 + hiP

S
i

1 + hEi
PS
i

)

=

n∑

i=1

ln

(
1 +

(hi − hEi
)PS

i

1 + hEi
PS
i

)
,

(5)

and from (5) we obtain that vS(PS) ≥ 0 for any i, as hi ≥ hEi
, and the term in

square brakets under the sum is the saved apaity when Alie' ommuniation is

dropped by Eve.

Denote the strategy under whih Alie maximizes her serey apaity in Γ 2
by

P̂S = arg max
PS∈Ω

vS(PS).

We use the supersript S or T just to distinguish the strategies between di�erent

states, we use supersript T of PT
to signal the strategy in throughput mode, and

S of PS
to signal the strategy in serey mode.

Now we onsider a stohasti ommuniation model with in�nite number of

stages. In eah stage, throughput and serey states may appear with given prob-

abilities. We use matrix of transition probabilities to desribe stohasti proess of

transitions between two states, whih is given as follows:

Π =

(
p11 1− p11
p21 1− p21

)
, (6)

where p11 ∈ [0, 1] is the probability to transmit from the throughput state to the

throughput state, 1− p11 is the probability to transmit from the throughput state

to the serey state, p21 ∈ [0, 1] is the probability to transmit from the serey state

to the throughput state, 1−p21 is the probability to transmit from the serey state

to the serey state.

We assume that players use stationary strategies, whih means that a player

hooses her strategy in eah stage depending only on whih state is realized at this

stage. The problem of Alie in the stohasti ommuniation game is to determine

how to distribute her total transmission power through di�erent hannels in di�erent

states with unertainty about transitions from state to state. Thus, the strategy in

repeated ommuniation model is haraterized as P = (PT , PS), where PT =
(PT

1 , P
T
2 , . . . , P

T
n ) and PS = (PS

1 , P
S
2 , . . . , P

S
n ).
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De�nition 1. Stohasti ommuniation problem G is de�ned as follows:

G = 〈δ, π0, Π, P, V 〉, (7)

where δ is the disount fator, π0 = (p0, 1 − p0) is the the vetor of the initial

distribution on states Γ 1
and Γ 2

, and p0 ∈ [0, 1] is the probability that state Γ 1
is

realized at the �rst stage, 1 − p0 is the probability that state Γ 2
is realized at the

�rst stage, and V = (vT (PT ), vS(PS)) is a vetor the Alie's payo�s in two states

de�ned above.

The payo� to the player in problem G is a random variable, and the mathemat-

ial expetation is used to represent the payo�, whih an be written in the form

(see Parilina, 2015; Parilina and Tampieri, 2018):

E(P ) = π0(I− δΠ)−1V.

Now we illustrate the alulation proess of the payo� when the game proess

starts from π0 = (1, 0). In this ase, the payo� is expressed as follows:

E(P ) = E(PT , PS)

= (1, 0)

(
1− δp11 −δ(1− p11)
−δp21 1− δ(1 − p21)

)−1




n∑
i=1

ln(1 + hiP
T
i )

n∑
i=1

(
ln(1 + hiP

S
i )− ln(1 + hEiP

S
i )
)




=

(1− δ(1− p21))
n∑

i=1

ln(1 + hiP
T
i )

(1− δ)(1 − δ(p11 − p21))

+

δ(1 − p11)
n∑

i=1

(
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i )
)

(1− δ)(1 − δ(p11 − p21))
.

Theorem 1. The optimal solution strategy (PT , PS) in stohasti ommuniation

problem G de�ned by (7) is the solution of the following system:

∂Lw(P
T , PS)

∂PT
i

=
1− δ(1− p21)

(1− δ)(1− δ(p11 − p21))

hi

1 + hiPT
i

− w1 = 0, i = 1, . . . , n, (8)

∂Lw(P
T , PS)

∂PS
i

=
δ(1 − p11)

(1− δ)(1− δ(p11 − p21))

[
hi

1 + hiPS
i

− hEi

1 + hEi
PS
i

]
− w2 = 0,

(9)

i = 1, . . . , n,

P̄ −
n∑

i=1

PT
i = 0, (10)

P̄ −
n∑

i=1

PS
i = 0. (11)

Proof. The proof is given by the formulation of Karush-Kuhn-Tuker (KKT) prob-

lem. To �nd optimal strategy P that maximizes the funtion E(P ) given above, we
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de�ne the Lagrange funtion taking into aount the power onstraints:

Lw(P
T , PS) =

(1− δ(1− p21))
n∑

i=1

ln(1 + hiP
T
i )

(1− δ)(1− δ(p11 − p21))

+

δ(1− p11)
n∑

i=1

(
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i )
)

(1 − δ)(1− δ(p11 − p21))

+ w1(P̄ −
n∑

i=1

PT
i ) + w2(P̄ −

n∑

i=1

PS
i ).

The optimal strategy P = (PT , PS) is found as a solution of the system (7)�(10)

whih are the onditions given by KKT method.

The system is nonlinear, and we provide a numerial solution. Suppose that Alie

ommuniates to Bob aross 2 (sub)hannels, and we take the oe�ient values

of hannels as h1 = 19, h2 = 10, hE1 = 10, hE2 = 5, the value of total power

transmitted by Alie is P̄ = 100, the transmission probability from state Γ 1
to

Γ 1
is p11 = 0.3, the transmission probability from Γ 2

to Γ 1
is p21 = 0.6, the

value of disount fator is δ = 0.9, take the vetor of initial distribution as π0 =
(1, 0) to start from state Γ 1

. By solving this system,we an get the unique optimal

solution of the system (7)�(10) whih is P = ((50.0237, 49.9763), (40.7829, 59.2171)).
One an mention that aording to the optimal Alie's strategy in state Γ 1

the

transmission powers are almost equally distributed, but in a serey state the power

of transmission via hannel 2 is grater than via hannel 1.

2.2. Sensitivity Analysis for Stohasti Communiation Problem

In this setion, we illustrated how the Alie's optimal strategy in problem G is

in�uened by some fators, inluding the total power transmitted by Alie and the

harateristi of the ommuniation network suh as fading gains of the hannels.

By giving a network with three ommuniation (sub)hannels, we hange one of

the values of fators mentioned above to see how the strategies hange when other

parameters remain the same. For omfortable observation we use the number of

perentage of total power in eah hannel as a dependent variable shown in the

ordinate axis in any �gure.

First, we explore the relationship of hannel oe�ient hi and other variables.

From Figure 2, Figure 3 and Figure 4, we an see that both perentages of PT
i and

PS
i inrease with the inrease of their hannel oe�ient hi, and for any PT

j and

PS
j with j 6= i, the perentages derease when hi inreases.
Then, we explore the relationship between hEi

and other variables. Taking into

aount that hEi
desribes the hannel oe�ient with Alie and Eve, then the

hange of hEi
only in�uenes the strategy in serey mode, that is the value PS

i .
From Figure 5, we an see that PS

i dereases with the inrease of the eavesdropper's

hannel oe�ient hEi
, and for any PS

j with j 6= i inreases when hEi
inreases.

Finally, we explore the relationship of total power P̄ and other variables. From

Figure 6, we an see the tendeny of inrease for PT
3 and derease the others in

throughput mode, and the hange of power in the serey mode is not that obvious.

From the oe�ient h = (20, 22, 10) and hE = (19, 20, 8), we an see that the value
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for the third hannel is muh smaller than the others. This may explain why Alie

inreases the power in this hannel for throughput mode, just to get a balaned

distribution among all hannels.

(a) Power hanges in the �rst

hannel.

(b) Power hanges in the se-

ond hannel.

() Power hanges in the

third hannel.

Fig. 2. The relationship between h1 and power perentage in any hannel.

(a) Power hanges in the �rst

hannel.

(b) Power hanges in the se-

ond hannel.

() Power hanges in the

third hannel.

Fig. 3. The relationship between h2 and power perentage in any hannel.

3. Two-player Stohasti game

3.1. Model

Now suppose that the dropper Eve an partiipate in ommuniation ating as

a player in the game. We de�ne stohasti game with two players with throughput

and serey states that an appear with given probabilities in eah stage.

In state Γ 1
, Eve has no strategies, hene the Eve's payo� equals zero, i.e,

vTEve(·) = 0 for any Alie's hoie. The strategy and payo� for Alie remains the

same as in the last setion. We use vetor PT = (PT
1 , · · · , PT

n ) to desribe Al-

ie's strategy as a power alloation vetor, where PT
i ∈ R+ is the power trans-

mitted through hannel i. All feasible strategies for Alie is denoted by set Ω,

Ω = {(PT
1 , · · · , PT

n ) : PT
i ∈ [0, P̄ ],

n∑
i=1

PT
i = P̄}, where P̄ ∈ R+ is the total power

to transmit by Alie.

The payo� to Alie in this state is desribed by funtion

vTAlice(P
T ) =

n∑

i=1

ln
(
1 + hiP

T
i

)
,
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(a) Power hanges in the �rst

hannel.

(b) Power hanges in the se-

ond hannel.

() Power hanges in the

third hannel.

Fig. 4. The relationship between h3 and power perentage in any hannel.

(a) Change of PS
i with hE1 (b) Change of PS

i with hE2 () Change of PS
i with hE3

Fig. 5. The relationship between hEi and power perentage in the serey mode in any

hannel.

(a) Power hanges in the �rst

hannel.

(b) Power hanges in the se-

ond hannel.

() Power hanges in the

third hannel.

Fig. 6. The relationship between total power P̄ and power perentage in any hannel.

where hi is de�ned by (3), strategy PT = (PT
1 , · · · , PT

n ) ∈ Ω.
In state Γ 2

, Eve has to deide how to distribute her total transmit power Q̄,
whih is represented by vetorQ = (Q1, · · · , Qn), whereQi is the power transmitted

by Eve through hannel i. Obviously, the relation between the total power and the

power in eah hannel satis�es

n∑
i=1

Qi = Q̄, Qi ∈ [0, Q̄] for any i = 1, 2, . . . , n.

Let Ψ be the set of all feasible strategies of Eve, where Ψ = {(Q1, . . . , Qn) : Qi ∈



Stohasti Data Transmission Model 435

[0, Q̄],
n∑

i=1

Qi = Q̄}. The payo� to Eve in this state is desribed by

vSEve(P
S , Q) =

n∑

i=1

Qi ln(1 + hEiP
S
i ).

and the payo� to Alie equals

vSAlice(P
S , Q) =

n∑

i=1

[
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i Qi)

]
,

where PS = (PS
1 , . . . , P

S
n ) ∈ Ω is the Alie's strategy in state Γ 2

and Q =
(Q1, . . . , Qn) ∈ Ψ is Eve's strategy in this state.

A stohasti ommuniation model is the game with in�nite number of stages.

In eah stage, throughput or serey state may appear with some probability. The

transition relationship between two states is de�ned by the matrix of transition

probabilities given by (6).

Assuming that players use stationary strategies, the Alie's strategy in stohasti

ommuniation game is haraterized by P = (PT , PS), where PT = (PT
1 , . . . , P

T
n )

and PS = (PS
1 , . . . , P

S
n ). The Eve's strategy in the game is Q = (Q1, . . . , Qn).

De�nition 2. Stohasti ommuniation game Ḡ is de�ned by

Ḡ = 〈δ, π0, Π, P,Q, VAlice, VEve〉, (12)

where δ ∈ (0, 1) is the disount fator, π0 = (p0, 1 − p0) is the the vetor of the

initial distribution on states Γ 1
and Γ 2

, and p0 ∈ [0, 1] is the probability that state
Γ 1

is realized at the �rst stage, 1 − p0 is the probability that state Γ 2
is realized

at the �rst stage, VAlice = (vTAlice(P
T ), vSAlice(P

S , Q)) is a vetor omposed by the

Alie's payo� in both states, VEve = (0, vSEve(P
S , Q)) is a vetor omposed by the

Eve's payo�s in both states.

The payo� to the player in game Ḡ is a random variable, and the mathematial

expetation an be used to represent the payo�, whih an be written in the following

form (see Parilina and Tampieri, 2018):

EAlice(P,Q) = π0(I− δΠ)−1VAlice, (13)

and

EEve(P,Q) = π0(I− δΠ)−1VEve. (14)

De�nition 3. The Nash equilibrium in stohasti ommuniation game Ḡ is the

strategy pro�le ((PT∗, PS∗), Q∗) suh that

EAlice((P
T∗, PS∗), Q∗) ≥ EAlice((P

T , PS), Q∗) for any PT ∈ Ω,PS ∈ Ω,

EEve((P
T∗, PS∗), Q∗) ≥ EEve((P

T∗, PS∗), Q) for any Q ∈ Ψ.

We desribe the proess of alulation of the Nash equilibrium in the game

starting from state Γ 1
, i.e., π0 = (1, 0). Making the similar alulations as in the last

setion, we �nd the Nash equilibrium strategy pro�le with players' payo� funtions

given by (13) and (14). The theoretial result giving the onditions for the Nash

equilibrium in the following.
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Theorem 2. The Nash equilibrium ((PT , PS), Q) in stohasti ommuniation game
Ḡ de�ned by (12) is given by the solution of the following system:

∂LAlice
w (PT , PS , Q)

∂PT
i

=
1− δ(1− p21)

(1 − δ)(1− δ(p11 − p21))

hi
1 + hiPT

i

− w1 = 0, i = 1, . . . , n,

(15)

∂LAlice
w (PT , PS , Q)

∂PS
i

=
δ(1 − p11)

(1 − δ)(1− δ(p11 − p21))

(
hi

1 + hiPS
i

− hEi
Qi

1 + hEi
PS
i Qi

)

− w2 = 0, i = 1, . . . , n, (16)

∂LEve
w (PS , Q)

∂Qi
=

δ(1 − p11)

(1 − δ)(1− δ(p11 − p21))

hEi
PS
i

1 + hEi
PS
i Qi

− w3 = 0, (17)

i = 1, . . . , n,

P̄ −
n∑

i=1

PT
i = 0, (18)

P̄ −
n∑

i=1

PS
i = 0. (19)

Q̄−
n∑

i=1

Qi = 0. (20)

Proof. The proof is given by the formulation of Karush-Kuhn-Tuker (KKT) prob-

lem. To �nd the Nash equilibrium, i.e., strategy pro�le ((PT , PS), Q), we de�ne the
Lagrange funtion taking into aount the power onstraints:

LAlice
w ((PT , PS), Q) =

(1− δ(1− p21))
n∑

i=1

ln(1 + hiP
T
i )

(1− δ)(1 − δ(p11 − p21))

+

δ(1− p11)
n∑

i=1

(
ln(1 + hiP

S
i )− ln(1 + hEi

PS
i Qi)

)

(1− δ)(1 − δ(p11 − p21))

+ w1(P̄ −
n∑

i=1

PT
i ) + w2(P̄ −

n∑

i=1

PS
i ),

LEve
w (PS , Q) =

δ(1 − p11)

(1− δ)(1− δ(p11 − p21))

n∑

i=1

ln(1 + hEi
PS
i Qi)

+ w3(Q̄−
n∑

i=1

Qi).

The Nash equilibrium strategy pro�le ((PT , PS), Q) is found as a solution of the

system (15)�(20) whih are the onditions given by KKT method.

The system is nonlinear, therefore, we provide the numerial simulation to demon-

strate the solution of the system (15)�(20). Suppose that Alie ommuniates to Bob

aross 2 (sub)hannels, and we take the oe�ient values of hannels as h = (20, 10),
hE = (15, 5), the value of total power transmitted by Alie is P̄ = 0.5, the value
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of total power transmitted by Eve is Q̄ = 0.3, the probability of transmission

from state Γ 1
to Γ 1

is p11 = 0.3, the probability of transmission from Γ 2
to Γ 1

is p21 = 0.6, the value of disount fator is δ = 0.9, the vetor of initial dis-

tribution over the set of states is π0 = (1, 0) (the game proess is started from

state Γ 1
). By solving the system (15)�(20), we obtain the unique Nash equilibrium

P = ((0.275, 0.225), (0.172272, 0.327728)), Q = (0.26164, 0.0383604).

3.2. Sensitivity Analysis for Stohasti Communiation Game

In this setion, we explore the onnetion between di�erent variables of the game

desribed in the previous setion. Given that the network with n = 2, we illustrate
the onnetion by examples represented in the �gures.

First, we explore the relationship of the Alie's total power P̄ and other variables.

On Figure 7 one an see there is a signi�ant hange of Eve's power distribution,

but only slight hanges in Alie's strategy as a funtion of total power P̄ . More

spei�ally, Eve dereases her power in the �rst hannel and inreases her power in

the seond one in the Nash equilibrium. The values of the parameters are h1 = 20,
h2 = 10, hE1 = 15, hE2 = 5, Q̄ = 0.3. The oe�ient between Alie and Eve in the

�rst hannel is muh larger than in the seond one, this means that Eve dereases

the power in the hannel with larger oe�ient. We remind that in all graphs, in

the y-axis, the power in perentage is given (i.e., power in the hannel divided by

the total power of a player).

Then, we explore the relationship of total power Q̄ and other parameters. As

Eve hooses strategy only in the serey mode, then the strategy for Alie in the

throughput mode remains the same. From Figure 8, we an see that PS
1 inreases

and Q1 dereases with the inrease of the Eve's total power. The values of other

parameters are h1 = 20, h2 = 10, hE1 = 15, hE2 = 5, P̄ = 1. The di�erene

between Alie and Eve in the �rst hannel is muh larger than the seond one, this

means that Alie inreases the power in the hannel with larger oe�ient, but Eve

dereases it.

Then, we examine the relationship between the hannel oe�ient hi and other

variables. From Figures 9 and 10, we an see that both PT
i and PS

i inrease with the

inrease of their hannel oe�ient hi, and for any PT
j and PS

j with j 6= i derease
when hi inreases. Also, there is a inrease of the Eve's power in the hannel i with
the inrease of oe�ient hi.

Now, we explore the relationship of variable hEi
and other variables. Coe�ient

hEi
only in�uenes the strategy only in the serey mode. From Figures 11 and

12, we an see that PS
i dereases with the inrease of the eavesdropper's hannel

oe�ient hEi
, and with inrease for Eve's power in this hannel.
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(a) Power hanges in �rst

hannel for Alie.

(b) Power hanges in seond

hannel for Alie.

() Power hanges in the

Eve's hannel.

Fig. 7. The relation between P̄ and the perentage of power distribution for both players.

(a) Power hanges for Alie's

hannel in the serey state.

(b) Power hanges in the Eve's

hannel.

Fig. 8. The relation between Q̄ and the perentage of power distribution for both players.

(a) Power hanges in the Al-

ie's �rst hannel.

(b) Power hanges in the Al-

ie's seond hannel.

() Change of power in the

Eve's hannel.

Fig. 9. The relationship between h1 and the perentage of power distribution for both

players.
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(a) Power hanges in the Al-

ie's �rst hannel.

(b) Power hanges in the Al-

ie's seond hannel.

() Power hanges in the

Eve's hannel.

Fig. 10. The relationship between h2 and the perentage of power distribution for both

players.

(a) Power hanges for the Alie's

hannel in serey state.

(b) Power hanges in Eve's han-

nel.

Fig. 11. The relationship between hE1 and the perentage of power distribution for both

players.

(a) Power hanges for the Alie's

hannel in serey state.

(b) Power hanges in the Eve's

hannel.

Fig. 12. The relationship between hE2 and the perentage of power distribution for both

players.
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4. Conlusion

In this paper, the in�uene of unertainty about dropper's appearane on the

optimal strategy in stohasti ommuniation problem and on the Nash equilibrium

in stohasti ommuniation game has been examined. Simulation results have been

given to illustrate the relationship between some fators of the system and the

optimal strategy and equilibrium strategies. In the future work, we an onsider

the in�uene of other features of the dropper like limited transmission power of the

dropper on the optimal player's strategy.
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