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Abstract One class of differential games with random duration is consid-
ered. It is assumed that duration of the game is a random variable with
values from a given finite interval. The game can be interrupted only on this
interval. Methods of construction feedback and open-loop Nash equilibria
for such games are proposed.
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1. Introduction

Differential game theory is commonly used to describe realistic conflict-controlled
processes with many participants. When modeling economic or environmental pro-
cesses, many researchers turn to the use of differential games with finite or infinite
duration. However, the recently popular direction of studying games with random
duration allows to simulate a process close to the real one, in which the terminal
time of the game is not known in advance, but is an implementation of some random
variable (Petrosjan and Murzov, 1966; Petrosjan and Shevkoplyas, 2000; Shevko-
plyas, 2014). For the first time the class of differential games with random duration
was introduced in (Petrosyan and Murzov, 1966) for a particular case of a zero-sum
pursuit game. Later, the general formulation of the differential games with random
duration was given in (Petrosyan and Shevkoplyas, 2000).

The aim of this paper is to investigate the case when the ending of the game is
possible not over the whole period of the game, but only at a certain given interval.
Players know that the game will not be interrupted until a certain point. After this
moment, the game may abruptly end. Consideration of the problem in this vein
leads to the fact that payoffs of players can be represented as sums of integrals with
different but adjoint time intervals. The paper provides ways to construct open-loop
and feedback Nash equilibria in this class of games.

The paper is structured as follows. In section 2 the problem formulation is given.
One method of construction feedback Nash equilibrium is considered in section 3.
This method is applied to an illustrative example in section 3.1. The construction
of Nash equilibrium in open-loop strategies is investigated in section 4. In section
4.1 open-loop Nash equilibrium strategies are studied for the example from sec. 3.1.

* The reported study was funded by RFBR according to the research project N 18-00-
00727 (18-00-00725)
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2. Problem Formulation

Counsider differential n-player game I'(zo, T — to) defined on the interval [t, T
with the system dynamics described by differential equations:

@(t) = g(t, x, u),
x(to) = X, (1)
r€RY w=(u,...,un), u; = u;(t) € U; C compR¥.

The game I'(zo, T — to) starts from initial state zy at the time instant ¢y. But
duration of the game is not fixed. We assume that 7' is a random variable with
some predetermined distribution law. Let a cumulative distribution function has
the form: .

0 for 7 < T —9,
F(ir)=S o(r),for T—6 <7 <T+56, (2)
1 for 7> T +6,

where (1) is assumed to be an absolutely continuous nondecreasing function sat-
isfying the following conditions: (T — 6) = 0, ¢(T + §) = 1. This means that the
game could end only during the period [T — 6, T + 6], where § € [to, T].

The expected payoff of player i € N in I'(zg, T — o) is defined in the following

way:

T—6§ T+5 T
Ki(xo, T —to;u) = / h[s, z(s),u]ds + / / h'[s, z(s), u]ldsdF ().  (3)
to T-6T—6
According to (Gromova and Tur, 2017), where the transformation procedure of

the double integral functional and its reduction to a single integral is described, the
expected payoff of player ¢ € N can be represented in the form:

T-6 T+5
Ki(xo, T —to;u) = / h'[s, x(s), u]ds + / hi[s, z(s),u](1 — F(s))ds. (4)
to T—5

And the expected payoff of player i in subgame I'(x(t), T — t), starting at the
moment ¢ from x(t) is:

Ki(x(t)vT —liu) =

-4 T+ —
f hils ulds + f hi[s,z(s),u)(1 — F(s))ds, for t € [to, T — 9),

=7 B -5 (5)
0] tf hils, z(s),u](1 — F(s))ds, for t € [T —6,T +6).

We assume an existence of a probability density function f(t) = F'(¢).

3. Feedback Nash Equilibrium. Hamilton-Jacobi-Bellman Equations

One of the principles of optimality in non-cooperative differential games is a
feedback Nash equilibrium. Feedback Nash equilibrium strategies depend only on
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the time variable and the current value of the state, but not on memory (includ-
ing the initial state z¢) (Bagar and Olsder, 1995). We use the sufficient conditions
of Hamiltom-Jacobi-Bellman equations in order to find a feedback Nash equilib-
rium. The Hamilton-Jacobi-Bellman equations for differential games with random
duration was proposed in (Shevkoplyas, 2014). Here this method is adapted for the
problem under consideration.

In the framework of this approach the Bellman function Vi(¢,z) is defined as
the payoff of player i in feedback Nash equilibrium uN¥(t,2) in the subgame of
I'(x(t), T —t) starting at the instant ¢ € [T —6, T+ 6] in the state x(t). And W(t, x)
is a payoff of player i in feedback Nash equilibrium v™¥(¢,z) in the subgame of
I(x(t), T — t) starting at the instant ¢ € [to,T — §] in the state z(t).

The following theorem takes place:

Theorem 1. uNP(t, x) is the Nash equilibrium in feedback strategies in the dif-
ferential game I'(xo, T — to), if there exist continuously differentiable functions
Vit,o): [T—06,T+6]x R - R, i € N and Wi(t,x) : [to,T -] x Rl = R, i € N,
satisfying the following system of partial differential equations:

Sa(t())Vl(t x) — Vi(t,z) = H};lx{hz (t, 2, uNE) + Vi(t,z)g(t,z,uNE)} =

= hi(t,z,ulNE) + Vi(t,2)g(t, z,uNF), i € N,
VHT +6,2(T+6)) =0, i€N,

—Wi(t, z) —n}bax{hl (t,z, uMF) + Wit,z)g(t, z,uVF)} =
h’l(tv'rquE)—i_WzZ(t?x) (t,I,U ) ’LGN,

Wi(T — 5,2(T — 6)) = Vi(T — 6,2(T — 8)), i € N,
where uNE (¢;) = (ul¥E, . by, ulE).

Proof. Define I = [to, T — 6] and Iy = [T — 6,T + §].
First, consider our problem on the segment /5. The payoff of player ¢ € N on I
is given by

T+6
KPP (x(t),T — t;u) = 1%}7(0 / his,z(s),u](1 — F(s))ds, for t € [T — 6, T + 6).

t
, (7)
The Bellman function V*(¢,x) is defined as the payoff of player i in feedback
Nash equilibrium V¥ (¢, z) in the subgame of I'(x(t), T — t) starting at the instant
t € [T — 6, T + 6] in the state x(t).
According to (Shevkoplyas, 2014) HJB equations for finding Nash equilibrium
in the game with payoffs of the form (7) are as follows:

1—¢(t)
= hi(t,z,uNE) + Vi(t,z)g(t, 2, uNE), i € N, (8)

£(t) Vi(t,z) — Vi(t,x) = I%ax{hl (t,z, uF) + Vi(t,z)g(t,z,uNE)} =

VHT +6,2(T+06)) =0, i€N,
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where vV (¢;) = (W, ... diy. .., ulE).
Cons1der now our problem starting at some moment ¢ € I;. The payoff of player

1€ N is:
T-6
KD ((t), T — t;u) = / h'[s, 2(s),ulds + Vi(T — 6, 2(T — 9)), 9)

t

where V;(T — 6, x(_T —§)) — the payoff of player i in Nash equilibrium for the period
I5. The value V;(T — §,z(T — 9)) is considered as a terminal payoff of player ¢ for
the period I;. So we get the second part of (6):

—Wi(t, ) = max {h*(t, 2, uF) + Wit 2)g(t, 2, uF) } =
hi(t, z, ulNE) + Wit x)g(t, z,uNF) i € N, (10)

WHT — 6,2(T — 6)) = VYT — 6,z(T - 8)), i € N,

where uNE (¢;) = (ulVE ... iy .. ulE).

3.1. Differential Game of Investment

Consider an illustrative example. Assume that there are n individuals who invest
in a public stock of knowledge (Dockner et al., 2000). Let x(¢) be the stock of
knowledge at time ¢ and w;(¢, x) — the investment of agent ¢ in public knowledge at
time t. The stock of knowledge evolves according to the accumulation equation:

B(t) = ur(t) + ua(t) + ... +un(t), 2(0) = zo. (11)

If each agent derives linear utility from the consumption of the stock of knowl-
edge, the expected payoff of player i € N is given by

Ki(zo,T;u) E/ qiT riug (t))dt. (12)

Assume that the random variable T distributed uniformly on [T — §,T 4 4]. The
cumulative distribution function has the form:

0, for 7 <T -6,
F(r) =3 =L for T— 6 <7 <T+5, (13)
1 for 7 >T +6.

3

3.2. Feedback Nash Equilibrium

To find the feedback Nash equilibrium in the subgame, starting at the time
instant T — ¢ from the state z(T — §), consider the first part of HJB equations (6):

T+5 tVl(t x) — Vi(t,z) = n}ix(qigc —ru? + Vit o) (u; + J;ujVE))a 14)

Vi(T +6,2(T +6)) =0, i€ N.

Bellman function is defined in the form: Vi(¢, ) = a;(t)x +b;(t). The maximiza-
tion problem in (14) yields a strategy for player i:
Vit,z)  ai(t)

K2 (2
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Substituting it into (14) we have the following system of differential equations for

a;(t):
1
1;(t) = =——a;(t) — q;, 'EN, 15
() = i)~ (15)
a;i(T +68) = 0.
Then o
ait) = ST+ 1)

For b;(t) we have:

: 1 a? a;a;
bi(t) = = bi(t) — —+ — 1'7, i €N, 16
So we get
bi(t):%(f—i—é—t)?’, i€ N, (17)
where m; = 1%2 + > 4L
=

Then the feedback Nash equilibrium strategies on I are:

ulE(t2) = LT +6-1), i=1eN, te[T-5T+d.

T
The payoff of player ¢ € N in Nash equilibrium for the period I looks as follows:
Vi(T - 6,2(T — §)) = ¢;02(T — §) +2m;6®>, i€ N. (18)

Then, the bound condition for the problem on I; is:

WZ(T—(S,,T(T—é)) :qiéx(T—6)+2mi63, i€ N.
To find the feedback Nash equilibrium in the subgame, starting at the time

instant to from z¢ and ending at T — ¢ in (T — §), consider the system of HJB
equations:

~Wi(t,2) = max(qiw — riu? + Wilt,o)(uwi+ Y u}?), €N, (19)
' i#i

WHT — 6,2(T - 6)) = qi6x(T — ) +2m;6%, i € N.

Bellman function is defined in the form: W*(t,z) = ¢;(t)z 4 d;(t). The maxi-
mization problem in (19) yields a strategy for player i: ulN¥(¢,z) = %im) = CQ—S)
Substituting it into (19) we have the following system of differential equations for
C; (t):

éi(t) =—q;, 1€ N (20)

Ci(T — 5) = qié.
Then .
eilt) = ai(T — t).
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For d;(t) we have:

di(t) = —— — . €N, 21
0= — 252 e (21)
i£]

di(T — 6) = 2m;5°

We get
4m(T — )3  2m;63
gt = AL =7 2mad” Ly (22)
3 3
qa 2
where m; = T6 STJ-]'
i#]

Then the feedback Nash equilibrium strategies in the game I'(xo, T — to) are:
WV (1) = %@‘ﬂ’ i=1eN, telto,T 4],
’ 4q—r7'i(T+5—t), i=1eN,te[T-45T+47].

4. Open-Loop Nash Equilibrium

The second part of the paper is devoted to construction of open-loop Nash
equilibrium for the game under consideration, which depends only on the time
parameter ¢ and the initial state of the system (Bagar and Olsder, 1995).

The method we introduce here is based on Pontryagin’s maximum principle
(Pontryagin et al., 1963).

We will find the solution on two intervals Iy = [to; T — 8] and Iy = [T — 6; T + 4.
The boundary conditions at time T"— ¢ are considered as parameters. We will find
their values at the end of the solution from the maximization condition.

Let’s start with studying the game at the period I;.
T-6

Each player ¢ € N tries to maximize [ h'[s,z(s),u]ds for dynamic (1). The
t

problem will be solved with two fixed ends: z(tg) = z¢ and z(T — §) = z;. Intro-
duce z; as a parameter of the solution (we will see that z7 is indeed a function
of n parameters). The use of such a method for cooperative differential games was
proposed in (Gromov and Gromova, 2017), (Gromova and Magnitskaya, 2019). Here
we adapt it for non-cooperative games.

On the interval I; the Hamiltonian for player i is:

Hi(z,u™F ) = ig(t, z,u™F) + hi(t,z,u™NF), i € N. (23)
The equilibrium strategies uE are found from the first order extremality con-
dition:
OH;(z,uNE 1)
IR U=
3ui

The adjoint equations are:

ot o ' (24)
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We introduce the boundary conditions ;(T — §) = z; as parameters of the solu-
tion. Let uNE(s, 21,.-.,2n) — equilibrium strategies on I;. And the equilibrium tra-
jectory ¥ P (t, z1,. .., 2zn) we can found from (1). And 21 = 2N E(T = 6, 21,..., zn).

Now turn to studying the solution on the second interval I5.

T+5
Player i maximizes [ h'[s,z(s),u](1 — F(s))ds for dynamic (1) with initial
T—5
condition z(T — 0) = a1 = 2N (T — 6,21, .., 2,), and with a loose right end.
The Hamiltonian for player i is:

Hi(z,uNE ) = g, z,u¥E) + (1 — F())hi(t, 2, u™F). (25)
To find equilibrium strategies uNZ we use the necessary condition for the max-
imum:
OH;(z,uNE )
SRS L'
Bui

The adjoint equations are:

op;  OH(x, ulNE )

= A 26
ot Ox ’ (26)
with transversality conditions
(T +6) = 0.
Let uﬁE(t, Z1,...,2n) — equilibrium strategies on I and :ng(t, Z1yeneyZn) -
equilibrium trajectory on Is.
On the last step of our solution we find the value of parameters 27, ..., 2} in the
following way:
T-§
i NE *
2F = = argmax / hi[s, 2 F (s, z2x_y), ul B (s, 2%;)]ds+
to
T+6
/ h'[s, 5512 (s,zii),uﬁE(s,zii)](l — F(s))ds), (27)
T-§
where z*, = (25, ..., 25 1, 2,25 1,...,25).
Finally we get equilibrium strategies:
NE * sl
NE (t,Zl,.. z )] te[to,T—(S],
NE(t) = — — 28
ui 7 (1) {ugVE(t,zf,.. 25, te[T—6T+74) (28)

The method of constructing strategies (28) ensures that they are equilibrium
strategies.
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4.1. Differential Game of Investment. Open-Loop Nash Equilibrium

Consider again the example suggested in section 3. Find the solution in the class
of open-loop strategies.
Intervals I

Let’s start with studying the game at the period I;.
T-6
Payoff of player ¢ on I is [ (giz(t) — r;u?(t))dt for dynamic (1).
0

The Hamiltonian for player 7 is:

Hi(w,u, ) = i (ui + Y ul ) + qa(t) — riwd (b). (29)
J#i
To find equilibrium strategies uNZ we use the necessary condition for the max-
imum: SH
8uz =i — 2rju,(t) =0,
NE ¥
uE(e) = 3t

The Hessian matrix is negative definite hence we conclude that Hamiltonian H;
is concave w.r.t. u;, t € [0,T — 4],

0%H;
Ou?

K2

= —2r; <O0.

The adjoint equations are as follows:

— = —q;. 30
5t 5 Gi (30)
We introduce the boundary conditions ¢;(T —§) = z;, 4 = 1,...,n as parameters
of the solution.
Hence,
¥i(t) = zi — qit,
2i — q;t

The dynamic is:

z(t) = Zui(t) = Z %ﬁ =z —1q,
i=1 ’

i=1

_ n Zi ~ n qi
where z =370, 75, 4=, -

We use the boundary condition:
z(0) = xo. (32)
Then the optimal trajectory for the interval I7:
qt*

xﬁE(t,z):zt—T—i-aro. (33)
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sl — ST 85)2
Then IﬁE(T —6,2z)=2(T-46) - Q(TQ o + xo.
Intervals I,
Now turn to studying the solution on the second interval I5.

T+ —
Player ¢ maximizes [ (1— #)(qix(t) —r;u?(t))dt for dynamic (1) and initial
T—6
condition z(T — 0) = aNE(T — 6,21,..., 2n).

The Hamiltonian for player 7 is:

t—T+56

Hi(w,u,0) = ¢i(ui + Y u) ™)) + (1 gy aw(t) — riug(t)). (34)
J#i
To find equilibrium strategies uNZ we use the necessary condition for the max-
imum: _
O0H; t—T+96
—— =¢i —2(1 — ———)ru; =0,
u ~ U 25 v =0
0
'LL{VE(t)]2 = d)i_
0—t+T)r

The Hessian matrix is negative definite hence we conclude that Hamiltonian H;
is concave w.r.t. u;, t € [T — 6; T + 0],

0% H; t—T+$6
The adjoint equations are:
¢  OHi(z,u,9) t—T+0
with transversality conditions:
¢;(T+6)=0, icN. (36)

We get the solution of (35)-(36):

GO+ T)(E=T+6)  a(t® = (T —9)*)

s 2 + 15

To get the optimal trajectory substitute (37) into (11):
, 5 — ¢
t - I
#?) t—T+6¢ ; T
The boundary condition is the following: #(T — 0) = aN*(T — 6, 21,...,2n) =

AT —6) — LI 4 g,
Then the optimal trajectory is:

xﬁ%wzzﬁtw)—@—iii+xm+c@, (38)

where C(t) is an expression independent of 21, ..., z,.
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Optimal strategies on I have the form:

e G@+T(E-T+0) 5 |
U; (t)b _( 25 15 +Q16)

_aT+d-1)

yr . (39)
Intervals I, I,

We _ﬁnd Z1, - .., zpn from the maximization condition of the total payoff in the interval
[0,T 4+ 6], i.e.

zF = argmax K;(0, 20, u™ P (t, 2*,)),
2

according to the (33), (31), (38), (39). Substituting (33), (31), (38), (39) to the (27),
we get:

T+6 —
[ e EOn = rad R [ 0= a0l i =
0

3 12

T-§

_ qiz(T — 5)2 Z?(T —9)

qizi(T — 5)2
2 47’1' +

1 +¢:2(T — 0)d + B(T, ), (40)
i
where B(T, d) is an expression independent of z1,. .., z,.

To find z; we use the necessary condition for the maximum:

0K;
8—2;1-:07 121,,TL
Solving
(T —0)% 2%(T—-6) @(T—-06* q(T—05)d .
_ =0 1,...
4r; 4r; + 4r; * 2r; » ¢ ’ '
we have:
z; = qT.
Finally, we get
(T —t
uNE(t) i ), te 0, T -4,
2r;
(T +6—t S
ulME(t);, = %, te [T —06,T+94).

It can be noted, that in the game under consideration open-loop and feedback

equilibrium strategies coincide. This is also characteristic of classical differential
games with a linear structure.

Note also that lim ulNZ(¢) = w, and these are Nash equilibrium strategies
5— T
in the differential game with prescribed duration T — ¢g.
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4.2. Numeric Example

425

Consider the previous example with numeric parameters.

Letn=3,T=10,6=3,q =4, @2 = 3,
Consequently:

Q3:6,7’1:2,7"2:1,7"3:5,560:20.

—31¢2
N E(t) o~ T 31+20,
ulE(t);, =10 —t,
3t
uévE(t)Il =15 57
3t
ud F(t), =6 — = t€10,7),
—31¢2 403t
af B (t) = 0 o AT,
13 ¢t
uiVE(t)Iz = 7 - 55
39 3t
uéVE(t)Iz = I - Zv
39 3t
ud F(t), = 0" 10 t € [7,13].
200 ;IINis(t) 1l ol |
—o—z)E (1)
150 |- i 8 g
6, -
S 100 i g
4+ B
50 i 2r )
0 B
0 2 4 6 8 10 12 14 0 2 4 6 s 10 12 14

Fig. 1. Nash equilibrium trajectory Fig. 2. Equilibrium strategy for player 1

5. Conclusion

The special class of differential games with random duration is investigated.
The method of construction feedback Nash equilibrium based on Hamilton-Jacobi-
Bellman equations is proposed. The method of construction open-loop Nash equilib-
rium based on Pontryagin’s maximum principle is studied. An illustrative example
demonstrating both of two methods is considered. The numerical example is given.
The results are drawn.
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T T T
15 H 6 ——uYE (), ||
+u’§lE (t>|z
10 . 4+ g
o~ m
3 3
5 g 2+ g
0 . 0 -
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
t t

Fig. 3. Equilibrium strategy for player 2 Fig. 4. Equilibrium strategy for player 3
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