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Abstract In this paper we consider the problem of the existence and deter-
mining stationary Nash equilibria for switching controller stochastic games
with discounted and average payoffs. The set of states and the set of actions
in the considered games are assumed to be finite. For a switching controller
stochastic game with discounted payoffs we show that all stationary equilib-
ria can be found by using an auxiliary continuous noncooperative static game
in normal form in which the payoffs are quasi-monotonic (quasi-convex and
quasi-concave) with respect to the corresponding strategies of the players.
Based on this we propose an approach for determining the optimal stationary
strategies of the players. In the case of average payoffs for a switching con-
troller stochastic game we also formulate an auxiliary noncooperative static
game in normal form with quasi-monotonic payoffs and show that such a
game possesses a Nash equilibrium if the corresponding switching controller
stochastic game has a stationary Nash equilibrium.

Keywords: Stochastic game, Switching control, Stationary strategies, Sta-
tionary Nash equilibrium

1. Introduction

A switching controller stochastic game is a stochastic game in which the transi-
tion probabilities in a state are controlled only by one of the players. So, the set of
states of an m-player switching controller stochastic game can be divided into m dis-
joint subsets where each subset represents the set of states for one of the player that
governs the transition probabilities. The problem of determining stationary Nash
equilibria in switching controller stochastic games recently has been studied by
Bayraktar et al., 2016; Dubey et al., 2017; Krishnamurthy, N., Neogy, S.K., 2020.
For a switching controller stochastic game with discounted payoffs stationary equi-
libria exist because stationary Nash equilibria exist for a discounted stochastic
game in general. Schultz, 1992 showed that the optimal stationary strategies of
the players in a discounted switching controller stochastic game can be found by
solving an auxiliary linear complimentary problem. In the case of switching con-
trol stochastic games with average payoffs stationary Nash equilibria are known
to exist only for some special classes of games, however, for such an arbitrary
game Thuijman and Raghavan, 1997 showed the existence of e- Nash equilibria.
In general, the question of the existence of stationary Nash equilibria for an average
stochastic game is an open problem.

In this paper we propose some new results concerned with determining stationary
Nash equilibria in switching controller stochastic games with discounted and average
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payoffs. We show that all stationary equilibria for a discounted switching controller
stochastic game can be obtained as Nash equilibria for an auxiliary noncoopera-
tive continuous static game in normal form where the payoffs are quasi-monotonic
(quasi-convex and quasi-concave) with respect to the corresponding strategies of
the players. Based on this we propose an approach for determining the optimal
stationary strategies of the players for a discounted switching controller stochastic
game. For an average switching controller stochastic game we also formulate an aux-
iliary noncooperative static game with quasi-monotonic payoffs and show that such
a game has a Nash equilibrium if the corresponding average switching controller
stochastic game has a stationary Nash equilibrium.

2. Formulation of the Basic Game Models

An m-player switching controller stochastic game consists of the following ele-
ments:

- a finite set of states X;

- a finite set of actions A’(z) in each state z € X for an arbitrary player
i€{1,2,...,m};

-areward 7, for each player i€ {1,2,...,m} in each state x € X for an
arbitrary action vector a = (a',a?...,a™), where a’ € A*(z),i =1,2...,m;

- a partition X = X7 UXoU---UX,,, of the set of states X, where X; represents
the set of controllable states of player i € {1,2,...,m};

Al(z) x X — [0,1] for each
i1€{1,2,...,m} that gives the transition probabilities pgjy of player i

from an arbitrary x € X; and each a’ € A’(x) to an arbitrary y € X where
Zyexpgjy =1,V € X;,Va' € Al(x);

- a transition probability function p? : X; x [L.c X;

- a starting state zg € X.

The game starts in the state zg at the moment of time ¢ = 0 where the players

simultaneously and independently fix their actions af € A(xg), i = 1,2,...,m.
After that the players receive the corresponding rewards r, ., i=1,2,...,min xo
for the given action vector ag = (a3, a?, . ..,ad"). Then the game passes randomly to

a state 21 € X according to the probability distribution {piéy}ye x - At the moment
of time t = 1 players observe the state z; € X and again simultaneously and
independently select their actions a} € A%(z1), i = 1,2,...,m in the state z; and
receive the corresponding rewards T;hal,i =1,2,...,m for the given action vector
ar = (al,a?,...,a). Then the game passes randomly to a state zo € X according
to a probability distribution {pﬁ,y}yGX- In general, at the moment of time ¢ the
players observe the state z; € X, fix their actions a! € A%(zy), i = 1,2,...,m in
x; and receive the corresponding rewards r;wt’ i=1,2,...,m in z; for the given
action vector a; = (a},az,...,al). Such a play of the game produces a sequence of
states and actions xg, ag, 1, a1, ..., T¢, at, . .. that defines a stream of stage rewards
rloor2 o™ t=0,1,2,....

Tt,a¢) " Tt,a¢) Y xy,ag)
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The average switching-controller stochastic game is the game with payoffs of the

players
=
Wy, = tli}rgloinf E (t ZJT;T’GT> , i=1,2,...,m
p—

where E is the expectation operator with respect to the probability measure induced
by the Markov process with actions chosen by the first player and given starting
state xzy. Each player in this game has the aim to maximize his average reward per
transition.

The discounted switching-controller stochastic game with a given discount factor
v is the game with payoffs of the players

0o

i T4

Oz = E Z’Y Terar |
7=0

Each player in this game has the aim to maximize his discounted sum of stage
rewards.

We will study these games in the case when the players use stationary strategies
of selection the actions in the states.

3. Switching Controller Stochastic Games in Stationary Strategies

A strategy s'(zy) of player i € {1,2,...,m} in a switching controller stochastic
game is a mapping s’ that provides for every state x; € X a probability distribution
over the set of actions A?(x;). If these probabilities take only values 0 and 1, then s°
is called a pure strategy, otherwise s is called a mized strategy. If these probabilities
depend only of the state 7; = x € X (i.e. s' do not depend on t), then s’ is called
a stationary strategy, otherwise s’ is called a non-stationary strategy.

Thus, we can identify the set of stationary strategies S* of player i with the set
of solutions of the following system

s; wi =1L Vo € X;
aieA(z)
s;a >0, Ve e X, Vae A(x)

in which the basic solutions corresponds to the set of pure stationary strategies.

Let s = (s1,8%,...,s™) €S =5"%x82x---x 8™ be a profile of stationary
strategies (pure or mixed strategies) of the players. Taking into account that the
transition probabilities in each state are controlled only by one of the players, we
have that the dynamics of the game is determined by the stochastic matrix P* =
(P3.,), where the elements p; , are calculated as follows

Doy = Z sivaipijw forre X;andye X, i=1,2,...,m. (1)
at€A(x)

If Q°* = (q;,) is the limiting probability matrix of P* then the average payoffs per

transition w, (s), w2 (s),...,wy (s) for the players are determined as follows
wio(s) = Z quo,yT;’S, 1=1,2,...,m, (2)

yeX
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where
n

v

Tys = Sy,akrz,(al,a2a-<~7am) (3)
(al,a?,....,am)EA(y) k=1

expresses the average payoff (immediate reward) in the state y € X of player ¢

when the corresponding stationary strategies s',s2,...,s™ have been applied by
players 1,2,...,m in y. Here A(y) = [[]~, A*(y).

The functions  w} (s), w2 (s), ..., wi(s) on § =8"x 8% x... x5,
defined according to (2), (3), determine a game in normal form that we denote by
({S"} =t {wly (8)}i—17m )- This game corresponds to the average switching con-
troller stochastic game in stationary strategies that in extended form is determined
by the tuple ({X:}, 5 (A7)} pex st (Mo biora P} T0)-

A discounted switching controller stochastic game in stationary strategies with
given discount factor v we define as follows. Let s = (s',s%,...,5™) be a profile of
stationary strategies (pure or mixed strategies) of the players. Then the elements
of the probability transition matrix P* = (p; ,) induced by s can be calculated
according to (1) and we can find the matrix W* = (w} ), where W* = (I —yP*)~",
After that we can determine the payoffs for the players as follows

O;O(S) = Z wxo,yr‘fm, i1=1,2,...,m,
yeX
where 7} _ is calculated according to (3). These payoffs on S define a normal form
game ({S'},_17, {0, (5)},—17 ) that corresponds to the discounted switching con-
troller stochastic game in stationary strategies. In the extended form this game is

determined by tuple ({X;},_17m, {A"(®)}oeximtms 7o ticTom P e Vs %0)-

In this paper we will consider also an average switching controller stochastic
game in which the starting state is chosen randomly according to a given distribution
6 ={6.} on X.So, for a game we will assume that the play starts in the state

x € X with probability 6, > 0 where > 6, = 1. If the players use stationary
zeX
strategies then the payoff functions

wh(s) = Z O,wi(s), i=1,2,....,m

zeX

on S define a game in normal form ({S*},_1, {wy(s)},—75 ) that in the extended
form is determined by the tuple ({X;},_17, {A"()}oex izt (7ot P> 0)-
In the case 0, = 0,Vx € X \{zo}, 6, = 1 the considered game becomes an average
switching controller stochastic game with a fixed starting state .

Similarly, for a discounted switching controller stochastic game we can consider
the case when the starting state is chosen randomly according to a given distribution
0 ={6,} on X.In this case we can define the payoffs

oh(s) = Z 0,0 (s), i=1,2,...,m

zeX

on S and we obtain the game in normal form ({S'}, 1, {04(s)};_17 ) that is

determined by the tuple ({Xi}i=m’ {Ai(x)}xEX,izm’ {fi(:n,a}izm, D, v, 0).
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Note that an average switching controller stochastic game in the case m =
1 becomes an average Markov decision problem that is determined by the tuple
(X, {A(@)}zex, {raa}, p, 0), where X = X1, A(z) = AY(x),7pa = 73, and
a = a' € A(z) for z € X. Similarly, a discounted switching controller stochastic
game in the case m = 1 becomes a discounted Markov decision problem that is

determined by the tuple (X, {A(z)}sex, {Tz.ats P,7,0).

4. Preliminaries

In this section we present some properties of Markov decision problems with
average and expected total discounted reward optimization criteria that we shall
use in the following two sections for studying the switching controller stochastic
games.

Let us consider a discounted Markov decision problem that is determined by the
tuple (X, {A(x)}zex, {rz.a}, p,7,0). Lozovanu and Pickl, 2018 showed that this
decision problem can be formulated and studied in terms of stationary strategies
because the expected total discounted reward oy(s) for a given stationary strat-
egy s when the starting state y € X is chosen randomly according to probability
distribution 6 = {6,},cx can be represented as

0'0(5) = Z Z Tz,a8x,aqx
z€X acA(x)
where g, for x € X are determined uniquely from the following system

qy — 7 Z Z Sz,aqex = 9y7Vy e X.

z€X a€A(x)
Furthermore, the following theorem has been proven.

Theorem 1. Let a discounted Markov decision problem be given and consider the

function
00(5) = Z Z Tz,aSz,aqx

ze€X a€A(x)
where q, for x € X satisfies the condition

qy —7 Z Z Sz,aqx = Qy,Vy € X.

ze€X acA(x)
Then on the set S of the solutions of the system

> Spa=1, Vo € X;
acA(x)

Sz,a >0, Ve e X, Vae A(x).

the function o¢(s) depends only on sy, for = € X, a € A(zx) and ogy(s)
is quasi-monotonic on S, i.e. op(s) is quasi-convex and quasi-concave on S (see
Boyd and Vandenberghe, 2004). Moreover cy(s) is continuous on S.

Thus, a discounted Markov decision problem in stationary strategies can be
represented as a problem of maximization of quasi-monotonic function oy(s) on a
polyhedron set S.
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We can present some similar results for an average Markov decision problem.

Let us consider an average Markov decision problem that is determined by the
tuple (X, {A(z)}zex, {rsa}, p,0). Lozovanu, D., 2018 showed that this decision
problem can be formulated and studied in terms of stationary strategies. In this
case the expected average reward wy(s) for a given stationary strategy s when
the starting state y € X is chosen randomly according to probability distribution
{0ycx} can be represented as

WQ(S): Z Z Tz,a8z,aqx

z€X acA(x)

where ¢, for x € X are determined uniquely from the following system of linear
equations

qQy — Z Z sm,apgwam - 0; Vy € X,
z€X a€A(x)
Qytwy— > Y SaPh Wi =0y Yy € X,
z€X a€A(x)

For the considered problem the following theorem has been proven.
Theorem 2. Let an average Markov decision problem be given and consider the

function
@ =Y Y rraseats

r€X acA(x)

where q, for x € X satisfies the condition

Gy =2 Y SwaPgyls =0, Yy € X;
z€X acA(x)
Qy+wy— Y D SzaPy,We =0y Yy € X,
z€X a€A(x)

Then on the set S of the solutions of the system

> Spa=1, Ve € X;
acA(x)

Sz, > 0, Ve € X, Vae€ A(z).

the function wy(s) depends only on sz o for x € X,a € A(z) and og(s) is quasi-
monotonic on S (i.e. wy(s) is quasi-convex and quasi-concave on S).

So, an average Markov decision problem in stationary strategies can be rep-
resented as a problem of maximization of a quasi-monotonic function wg(s) on a
polyhedron set S. However, here, the function wy(s) on S may be discontinuous,
unless the fact that it is well defined on S.

The switching controller stochastic game models in stationary strategies with
discounted and average payoffs that we present in the next two sections contain
the game variants of the corresponding Markov decision problems in stationary
strategies formulated above.



296 Dmitrii Lozovanu, Stefan Pickl

5. Determining Stationary Nash Equilibria for a Discounted Switching
Controller Stochastic Game

The existence of stationary Nash equilibria for discounted stochastic games with
finite state and action spaces has been proven by Fink, 1964 and Takahashi, 1964.
Based on a constructive proof of this result suitable algorithms for determining
stationary Nash equilibria for a discounted stochastic game has been elaborated
(see Kallenberg, 2016). Lozovanu and Pickl, 2018 proposed the following approach
for determining stationary equilibria in a discounted stochastic game with finite
state and action spaces.

Let (X, {A"(2)};,—1m {74 o }icTim >, 0) be the tuple that determines a dis-
counted stochastic game where X is the finite set of states; A’(z) is the set of
actions of player i € {1,2,...,m} in the state x € X rfm is the reward of player
i € {1,2,...,m} in the state x for an action vector a = (a',a?,...,a™) in z;
P X x[lex [Tty A'(z) x X — [0,1] is the probability function that gives transi-
tion probabilities pj , from an arbitrary x € X to an arbitrary y € X for each action
vector a = (a',a?,...,a™) in z; v is a given discount factor and 0 = {6, },ecx is a
distribution function on X where 0, expresses the probability that the game starts in
y. Lozovanu and Pickl, 2018 showed that all stationary equilibria for such a game
represents Nash equilibria of the following noncooperative static game in normal
form ({S*}, 17, {04(s)}iz17m )» Where each set of strategies S°, i € {1,2,...,m}
represents the set of solutions of the system

oSt a=1, Ve € X;
al€Ai(x) (4)
Siai >0, Vo € X, Vae Al(x)
and each payoff 0%, (s',s?,...,5™)) is defined as follows
O-g(slaSQ’ sy ST =20 > HSI; ak‘r;': al,a?...am s
z€X (al,a2,....,am)eA(z) k=1 "~ T (5)

i=1,2,...,m,

where ¢, © € X are determined uniquely from the following system of equations

Qy — 7Y Z Z H Sl;akpgs;,a{”.,am)qw — 91” Vy € X; (6)

z€X (a',a?,...,am)eA(z) k=1

for an arbitrary s = (st,s2,...,5™) € § = S x 82 x --- x §™, where S represents
the set of solutions of system (4).
Each payoff o, (st,s%,...,5™)) in the considered auxiliary noncooperative game

possesses the properties that it is continuous on S and quasi-monotonic with respect
to the strategy s° on S*. Therefore, based on results of Dasgupta and Maskin, 1986
the game ({S"};,_17, {04(5)},—17 ) has a Nash equilibrium and this equilibrium
is a stationary Nash equilibrium of the discounted stochastic game.

Taking into account that a discounted switching controller stochastic game repre-
sent a special case of a discounted stochastic game then we can specify the auxiliary
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game ({S'}, 17, {0h(s)};—17 ) for a special case. So, if in (6) we take into account
that for each set X; the transition probabilities in the states z € X, are controlled
only by player i then the payoff o(s) of player i € {1,2,...,m} on S is defined as
follows

. m .
oh(st,s?, ..., s™) = > ITs* . T (. am) " dos
z€X (al,a?,...,am)EA(z) k=1 ’ (7)

i=1,2,...,m,

where ¢,, * € X are determined uniquely from the following system of equations

=Y Y Y shapw=0, WeXi (@)

k=1 z€X) akcAF(x)

for an arbitrary fixed s = (s!,s%,...,s™) €S =8 x 5% x ... x ™.
Each payoff function o(s',s%,...,s™) on S is continuous. Moreover, Lo-
zovanu and Pickl, 2018 showed that each payoff o)(s',s?, ..., s™) on S is

quasi-monotonic with respect to strategy s’ on S?. Therefore, based on the results
of Fan, 1966 and Dasgupta and Maskin, 1986 the following theorem holds.

Theorem 3. The game ({S'},_17, {04(s)}ictm ) has a  Nash equilibrium
s* = (s2,s27,...,8m") € § = S x 8% x ... x S™ that is a stationary Nash
equilibrium of the discounted switching controlled stochastic game determined by the
tuple ({ X} 17 {AY (%) Y=t {75 0 VizTom» D5 Vs 0). Moreover this equilibrium is
a stationary Nash equilibrium of the discounted switching controller stochastic game
with an arbitrary starting state x € X.

So, a stationary Nash equilibrium for a discounted switching controller stochas-
tic game determined by the tuple ({X;},_17, {A*(#) }i—1m, {70} = 1,m, p, 7, 0)
can be found by computing a Nash equilibrium of the noncooperative static game
({S*}i=tm» {06(s)}iztom )» where the payoffs are determined according to (7),(8).

6. On Determining Stationary Nash Equilibria for an Average
Switching Controller Stochastic Game

In this section we show that if an average switching controller stochastic game
has a stationary Nash equilibrium then all such equilibria can be found from an aux-
iliary noncooperative static game in normal form ({S*},_1, {w§(s)};_1 ) where
each payoffs wé(sl, s2,...,8™) are quasi-monotonic with respect to the correspond-
ing strategies of the players. To prove this we shall use the conditions obtained by
Lozovanu and Pickl, 2020 concerned with the existence of stationary Nash equilibria
for an average stochastic game with finite state and action spaces.

Let (X, {A"(2)};,—t7m {7%atictsns D> 0) be the tuple that determines an
average stochastic game where X is the finite set of states; A%(x) is the set of
actions of player ¢ € {1,2,...,m} in the state z; r;a is the reward of player
i € {1,2,...,m} in the state z for an action vector a = (a',a?,...,a™) in x;
p: X x [T ex ITim; A(x) x X — [0,1] is the probability function that gives tran-
sition probabilities pj , from an arbitrary z € X to an arbitrary y € X for each
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action vector a = (a',a?,...,a™) inz and 6 = {0,},ex is a distribution function
on X where 0, expresses the probability that the average stochastic game starts
in y.

Lozovanu and Pickl, 2020 showed that if the average stochastic game determined
by the tuple (X, {A"(x)},_17, {rh.}ictm P 0) has stationary Nash equilibria
then for such a game an auxiliary noncooperative game ({S"}, 1, {w§(s)}ie17m )
with quasi-monotonic payoffs wj(s), i =1,2,...,mon S = S* x §?x,..., xS™ for
which Nash equilibria represents stationary Nash equilibria of the average stochas-
tic game can be constructed. The set of strategies S’ of player i € {1,2,...,m}
represents the set of solutions of the system

oSt a=1, Vr e X;
ateAt(z) (9)
i:ai >0, Vo € X, Va'e€ Ai(x)
and each payoff w} (s',s?,...,s™)) is defined as follows
wh(st, s?,...,sm) = > s’;a -7“; al a2 am) " o
z€X (al,a?,...,am)cA(z) k=1 i o(at,a..am) (10)

where ¢, for x € X are determined uniquely from the following system of linear
equations
1 (a',a*,....a™)

aQy— > Siﬂk *Pxy gz =0, Vy € X;
z€X (al,a?,...,am)eA(z) k=1

(11)
ok (a',a®,....a™)
Qy+wy—z Z H Sl.,ak'px,y 'waGy; VZIGX7
z€X (at,a?,...,am)€A(z) k=1
for a fixed strategy s = (s!, s2,..., s™) € S. In general, an average stochastic

game may have no stationary Nash equilibria (see Flesch et al., 1997) and then the
game ({S°},_157, {wj(s)}i—17 ) has no Nash equilibrium. However if the game
{S"} it {wj(s)}i—177 ) has a Nash equilibrium s* = (s'",s2",...,s™x) then
this equilibrium is a stationary Nash equilibrium of the average switching stochastic
game for an arbitrary starting state y € X (see Lozovanu and Pickl, 2020). In the
unichain case of the average stochastic game, when the matrix P# is unichain for
an arbitrary s € S, system (11) can be replaced by the following system

m
(a,a2,....a™)

dy — > > Siﬂk *Px,y gz =0, Vy € X;
z€X (al,a?,...,am)eA(z) k=1 (12)

ZIeX gz =1

In this case the game ({S'}, 17, {w§(s)};—15 ) has a Nash equilibrium s* =
(s*",s2",...,s™%) that is a stationary Nash equilibrium of the average stochastic
game for an arbitrary starting state y € X.

We can specify for an average switching controller game the auxiliary game
model ({S'}, 17, {wé(s)}izm ) for the average stochastic game . If we specify the
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auxiliary noncooperative game ({S*},_17, {w§(s)};—17 ) for an average switching

controller stochastic game determined by the tuple ({X;},_17, {Ai(x)}wex,i:m,
{rt o}iztm» p, 0) then we obtain the game where the sets of strategies S,

i=1,2,...,m represent the corresponding sets of solutions of the systems
>t =1, Vo € X;
at€eAi(z) (13)
Spai 20, Ve e X, Va' € A'(x)

and the payoffs

wy(s',s%,...,8™)=>" > IT Si’ak “T(at,a2..am) " Qo
2€X (al,a2,...,am)EA(x) k=1 (14)

i=1,2,...,m,

where ¢, for x € X are determined uniquely from the following system of linear
equations

m

k
QGy— > > 2 Sk Phy e =0, Yy € X;
k=1z€Xy akc Ak (x)

m

k
Qy'i'wy_z Z Z S§7ak'p;7y'w$:9y, vy€X7
k=1z€X) akc Ak (z)

for a fixed s = (s!, s%,..., s™) € S.
Based on the results bove we can formulate the following theorem.

Theorem 4. Let be given an average switching controller stochastic game deter-
mined by the tuple ({Xi}ilen» {Al(x)}weX,i:m7 {rfc’a}i:m, {pl}i:m, xo) and
let ({S"};—17m> {wo(s)}iztim ) be the auziliary moncooperative static game with
quasi-monotonic payoffs wh(s), i =1,2,...,m for the average switching controller
stochastic game. Then the game ({S'},_17, {wj(s)}i17 ) has a Nash equilib-
rium if and only if the average switching controller game has a stationary Nash
equilibrium.

So, if an average switching controller stochastic game has stationary Nash equi-
libria then such equilibria can be found as Nash equilibria of the auxiliary nonco-

operative game ({S*}, 17, {wj(8)}i=17 ), Where S* and wy(s), i = 1,2....,m are
defined according to (13)-(15). In general, the problem of determining a Nash equi-
librium for the game ({S"},_17, {wj(s)},—17 ) may be a difficult problem because

the payoffs in the considered auxiliary game may be discontinuous with respect
to all strategies of the players. If the paypffs of the auxiliary game are continu-
ous or graph-continuous then according to Dasgupta and Maskin, 1986 we obtain
that the average switching controller stochastic game possesses a stationary Nash
equilibrium. An important class of average switching controller stochastic games
for which stationary Nash equilibria exist represents the average stochastic posi-
tional games (see Lozovanu, D., 2018) and single controller stochastic games (see
Rosenberg et al.;2004). For the unichain games the payoffs of the auxiliary game
are continuous and therefore in this case the average switching controller stochastic
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game possesses a stationary Nash equilibrtum. In this case the system (15) can be
replaced by the following system

m

k
QGy— > > > Sk Dhy, =0, Yy € X;
k=1z€Xy ak€ Ak (x)

qu=1

yeX

and we obtain a more simple game model.

7. Conclusion

A discounted switching controller stochastic game always possesses stationary
Nash equilibria and all such equilibria can be found as Nash equilibria of the auxil-
iary noncooperative game with quasi-monotonic payoffs from Section 5. This aux-
iliary noncooperative game always has a Nash equilibrium because the payoffs are
quasi-monotonic with respect to the corresponding strategies of the players and
continuous with respect to all strategies of the players. For an average switching
controller stochastic game also can be considered an auxiliary noncooperative static
game with quasi-monotonic payoffs as it is shown in Section 6. However in this case
the payoffs may be not continuous with respect to all strategies of the players and
therefore the problem of determining a Nash equilibrium for the auxiliary static
game may be a difficult problem. If the payoffs in the auxiliary game are continu-
ous or graph-continuous in the sense of Dasgupta and Maskin, 1986 then the aver-
age switching controller stochastic game has a stationary Nash equilibrium. In the
unichain case an average switching controller stochastic game always has a station-
ary Nash equilibrium because the payoffs in the auxiliary static game are continuous
with respect to all strategies of the players. In general, the existence and determin-
ing stationary Nash equilibria for an average switching controller stochastic game
is a difficult open problem (see Thuijman and Raghavan, 1997, Flesch et al., 1997).
Nevertheless for an average switching controller stochastic game we can state that
the proposed auxiliary noncooperative static game from Section 6 has a Nash equi-
librium if and only if the average switching controller stochastic game has a station-
ary Nash equilibrium. An important class of average switching controller stochastic
games for which stationary Nash equilibria exist represents the average stochas-
tic positional games and single controller stochastic games. So, if we determine a
Nash equilibrium for the auxiliary static game then we determine a stationary Nash
equilibrium for the average switching controller stochastic game.
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