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Abstract A novel approach to sustainable cooperation called subgame-
perfect core (S-P Core) was introduced by P. Chander and M. Wooders in
2020 for n-person extensive-form games with terminal payo�s. This solution
concept incorporates both subgame perfection and cooperation incentives
and implies certain distribution of the total players' payo� at the terminal
node of the cooperative history. We use in the paper an extension of the S-P
Core to the class of extensive games with payo�s de�ned at all nodes of the
game tree that is based on designing an appropriate payo� distribution pro-
cedure β and its implementation when a game unfolds along the cooperative
history. The di�erence is that in accordance with this so-called β-subgame-
perfect core the players can redistribute total current payo� at each node
in the cooperative path. Moreover, a payo� distribution procedure from the
β-S-P Core satis�es a number of good properties such as subgame e�ciency,
non-negativity and strict balance condition.
In the paper, we examine di�erent properties of the β-S-P Core, introduce
several re�nements of this cooperative solution and provide examples of its
implementation in extensive-form games. Finally, we consider an application
of the β-S-P Core to the symmetric discrete-time alternating-move model of
�shery management.

Keywords: extensive game, sustainable cooperation, subgame-perfect equi-
librium, core, payo� distribution procedure, renewable resource extraction.

1. Introduction

A new solution concept for n-person games in extensive form with terminal
payo�s that takes into account both cooperation incentives and subgame perfec-
tion notion was introduced in (Chander and Wooders, 2020). This solution concept
called subgame-perfect core (S-P Core) is based on two speci�c properties of an
extensive-form game and two main assumptions:

� A set of players in the subgame could be smaller than the set of all players in
the original extensive-form game. It is worth noting that a speci�c approach
to the subgame de�nition that takes into account only the "active" players
(i.e. the players which have at least one decision node in the subgame), called
"A-subgame concept" was elaborated in (Kuzyutin and Romanenko, 1998;
Petrosyan and Kuzyutin, 2000; Kuzyutin et al., 2019a).
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� "Bargaining power" of some coalition (guaranteed or achievable payo� of this
coalition) may vary, i.e., be higher or lower as a game unfolds along the history
generated by a strategy pro�le.

� If a coalition S deviates from the cooperative scenario in a subgame (all players
in S should be active in this subgame) the remaining players do not form any
coalitions, and achievable payo� of coalition S is equal to the (highest) subgame-
perfect equilibrium payo� of S in the "induced" game between S and remaining
separate players. Such assumption was used in (Chander and Tulkens, 1997;
Chander, 2007) to introduce so-called γ-characteristic function for cooperative
games.

� The payo�s are transferable and, hence, the players can promise to redistribute
maximal total payo� of the grand coalition between the players (in the corre-
sponding terminal node) to sustain a cooperative scenario.

A natural extension of the subgame-perfect core concept to more broad class
of extensive games (namely, when the player's payo�s are determined at all the
nodes) was proposed in (Kuzyutin and Smirnova, 2021). This cooperative solution
(called β-S-P Core) implies designing an appropriate payo� distribution proce-
dure (PDP) (see, e.g., Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000;
Yeung and Petrosyan, 2012; Haurie et al., 2012; Kuzyutin et al., 2018) that deter-
mines a rule of the current total payo�s redistribution at each node along the co-
operative path and satis�es a number of good properties.

In the paper, we are mainly focused on the following issues:

� If we compare two closely related cooperative solutions � subgame-perfect core
(Chander and Wooders, 2020) and β-S-P Core (Kuzyutin and Smirnova, 2021)
� which of them provides more powerful tool to sustain the cooperative agree-
ment?

� Is there a relationship between strong Nash equilibria (SNE) and β-S-P Core
for the class of extensive-form games under consideration?

� If β-S-P Core consists of multiple payo� distribution procedures (in general, this
is exactly the case due to Prop. 3), what approaches for the re�nement/contraction
of the β-S-P Core could be proposed?

We provide answers to these questions below. Besides, we demonstrate the β-
S-P Core implementation for sustaining a cooperative scenario in the symmetric
version of the discrete-time �shery-management model (Levhari and Mirman, 1980;
Haurie et al., 2012; Kuzyutin and Smirnova, 2021).

The remainder of the paper is organized as follows: the class of extensive-form
games with perfect information is presented in Section 2. In Section 3, we provide
the S-P Core de�nition due to (Chander and Wooders, 2020) as well as an example
of extensive game with terminal payo�s and empty S-P Core. Then, in Section 4, we
treat the same game as the game with payo�s de�ned at each node of the game tree
and �nd out that β-S-P Core is non-empty and consists of multiple PDP. In Section
5, we reveal the relationship between SNE and β-S-P Core. Several approaches
to the β-S-P Core re�nement are proposed in Section 6. We consider β-S-P Core
implementation in the symmetric two-stage �shery-management model in Section
7 and brie�y conclude in Section 8.
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2. Extensive-form game with perfect information

We consider a �nite multistage game in extensive form following (Kuhn, 1953;
Petrosyan and Kuzyutin, 2000; Kuzyutin and Romanenko, 1998; Kuzyutin and
Smirnova, 2020). First we need to de�ne the basic notations that will be used in
the sequel:

� N = {1, . . . , n} is the �nite set of all players.
� K is the game tree with the root (origin) x0 and the set of all nodes P .
� S(x) is the set of all direct successors of the node x, and S−1(y) is the unique
predecessor (parent) of the node y ̸= x0 such that y ∈ S(S−1(y)).

� Pi is the set of all decision nodes of the ith player (at these nodes the player i
chooses the following node), Pi ∩ Pj = ∅, for all i, j ∈ N , i ̸= j.

� Pn+1 = {zj}mj=1 denotes the set of all terminal nodes (�nal positions), S(z
j) = ∅

∀zj ∈ Pn+1. Note that
n+1⋃
i=1

Pi = P .

� ω = (x0, . . . , xt−1, xt, . . . , xT ) is the history (or the path) in the game tree,
xt−1 = S−1(xt), 1 ≤ t ≤ T , xT = zj ∈ Pn+1; where "time index" t in xt
denotes the ordinal number of this node in the path ω.

� hi(x) is the payo� of the ith player at node x ∈ P . We suppose that the payo�s
are non-negative, that is, hi(x) ⩾ 0 for all i ∈ N , and x ∈ P .
Let GP (n) denote the class of all �nite n-person extensive-form games with

perfect information (see, e.g., Kuhn, 1953; Petrosyan and Kuzyutin, 2000; Haurie
et al., 2012), while Γ x0 ∈ GP (n) denotes a game with origin x0.

Since all the solutions we are interested in throughout the paper are attainable
when the players restrict themselves to the class of pure strategies we will focus on
this class of strategies. The pure strategy ui(·) of the ith player for each node x ∈ Pi

speci�es the next node ui(x) ∈ S(x) which the player i has to select at x. Let Ui

denote the set of all pure strategies of the i-th player, U =
∏

i∈N Ui. Each strategy
pro�le u = (u1, . . . , un) ∈ U generates a path ω(u) = (x0, . . . , xt, xt+1, . . . , xT ) =
(x0, x1(u), . . . , xt(u), xt+1(u), . . . , xT (u)), where xt+1 = uj(xt) ∈ S(xt) if xt ∈ Pj ,
0 ≤ t ≤ T − 1, xT ∈ Pn+1, and, hence, a vector of the players' payo�s. Lastly, let

Hi(u) = h̃i(ω(u)) =

T∑
τ=0

hi(xτ (u))

denote the value of the ith player's payo� function given strategy pro�le u.
According to (Kuhn, 1953; Petrosyan and Kuzyutin, 2000; Haurie et al., 2012)

each decision node xt ∈ P \ Pn+1 generates a subgame Γ
xt with the subgame tree

Kxt . Let P xt
i , i ∈ N , denote the restriction of Pi on the subgame tree Kxt , and

uxt
i , i ∈ N , denote the restriction of the ith player's pure strategy ui(·) in Γ x0

on P xt
i . The (subgame) strategy pro�le uxt = (uxt

1 , . . . , u
xt
n ) determines the path

ωxt(uxt) = (xt, xt+1, . . . , xT ) = (xt, xt+1(u
xt), . . . , xT (u

xt)) in the subgame and,
correspondly, a vector of the player's payo�s in the subgame Γ xt :

Hxt
i (uxt) = h̃xt

i (ωxt(uxt)) =

T∑
τ=t

hi(xτ (u
xt)). (1)

Note that (1) essentially di�ers from the subgame payo� de�nition that is ac-
cepted for the games with terminal payo�s in extensive form (see, e.g., Kuhn, 1953;
Petrosyan and Kuzyutin, 2000).
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De�nition 1. (Nash, 1950) A strategy pro�le u = (u1, u2, . . . , un) is a Nash Equi-
librium (NE) in Γ x0 ∈ GP (n), if Hi(vi, u−i) ⩽ Hi(ui, u−i), ∀vi ∈ Ui,∀i ∈ N.

Let NE(Γ x0) denote the set of all pure strategy Nash equilibria in Γ x0 .

De�nition 2. (Selten, 1975) A strategy pro�le u is a subgame perfect (Nash) equi-
librium (SPE) in Γ x0 ∈ GP (n), if ∀x ∈ P \ Pn+1 it holds that ux ∈ NE(Γ x), i.e.
the restriction of u on each subgame Γ x forms a NE in this subgame.

3. S-P Core in an extensive game with terminal payo�s

The novel and promising concept of consistent cooperative behavior called subga-
me-perfect core was introduced in (Chander and Wooders, 2020) for extensive form
games with perfect information (the authors focus on the special type of extensive-
form games when the players payo�s are de�ned and, hence, could be redistributed
only in terminal nodes). For the sake of completeness we provide a subgame-perfect
core de�nition below following (Chander and Wooders, 2020). Namely, the player
i ∈ N is called active in the subgame Γ x if this player has at least one decision node
in this subgame, i.e. Pi ∩ Kx ̸= ∅. Similarly, we shall refer to coalition S ⊂ N as
active coalition in Γ x (or simply "active at x") if all the players from S are active
in Γ x.

Given coalition S ⊂ N let Γ x0,S denote the induced game, which di�ers from Γ x0

only in that coalition S becomes a new player with hS(x) =
∑
i∈S

hi(x), x ∈ Pn+1.

The induced subgame Γ x,S is de�ned in the same manner given that coalition S is
active in Γ x.

Denote by γ(S;x), x ∈ P \ Pn+1, S ⊂ N , the highest possible subgame-perfect
equilibrium payo� of S in the induced game Γ x,S . In an extensive-form game with
terminal payo�s a payo� vector (p1, . . . , pn) is feasible if

∑
i∈N

pi =
∑
i∈N

hi(z) =

hN (z) for some terminal node z ∈ Pn+1. Note that for any terminal node z ∈
Pn+1 there exists a unique history ω = (x0, . . . , z) leading to this node. Following
(Chander and Wooders, 2020) we will refer to a history leading to z ∈ Pn+1 as a
history leading to the feasible payo�s vector (p1, . . . , pn), given that

∑
i∈N

pi = hN (z).

De�nition 3. (Chander and Wooders, 2020) A feasible payo� vector (p1, . . . , pn)
belongs to the subgame-perfect core (S-P Core) of a game Γ ∈ GP (n) in ex-
tensive form with terminal payo�s, if for all decision nodes x along any history
ω = (x0, . . . , z) leading to (p1, . . . , pn),

∑
i∈N

pi = hN (z) and for all coalitions S ⊂ N

which are active at x the following inequality holds

γ(S;x) ⩽
∑
i∈S

pi. (2)

Remark 1. De�nition 3 implies (see (Chander and Wooders, 2020) for details)
that any feasible payo� vector (p1, . . . , pn) from the subgame-perfect core is e�-
cient, i.e. ∑

i∈N

pi = max
z∈Pn+1

∑
i∈N

hi(z) = hN (z∗). (3)

Moreover, (2) means that no coalition S which is active in any subgame Γ x

along the histories leading to all the terminal nodes z∗ meeting (3) can get a SPE
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payo� γ(S;x) that is higher than its total payo� in a subgame-perfect core vector
(p1, . . . , pn).

The total payo� (3) could be interpreted as a (maximal) cooperative payo� of
the grand coalition N while any history (x0, . . . , z

∗) is a cooperative history. Then,
S-P Core payo� vector (p1, . . . , pn) is an imputation (distribution of the cooperative
payo� among the players) that is consistent in a sense of (2) in any subgame Γ x

along any cooperative history. Hence, if the S-P Core of an extensive-form game
Γ ∈ GP (n) with terminal payo�s is non-empty, the players can ensure the sus-
tainability of the cooperative scenario via redistribution of the total payo� hN (z∗)
at all terminal nodes z∗ meeting (3) according to the subgame-perfect core vector
(p1, . . . , pn).

Let us use the following example to demonstrate the S-P Core features.

Example 1. (A 2-player extensive-form game with terminal payo�s: S-P Core).
Let n = 2, Pn+1 = {z1, . . . , z8}, P1 = {x0, x3, x4, x5, x6}, P2 = {x1, x2}. Firstly,

consider this extensive-form game as a game with terminal payo�s, i.e. the players
payo�s hi(z) are de�ned only in terminal nodes z ∈ Pn+1. This payo�s (h1(z), h2(z))

T

are written in rectangles below each terminal node, while we assume zero players'
payo�s for all decision nodes x0, . . . , x6.

The cooperative history ω̄ = (x0, x2, x6, z7 = z∗), which is marked in bold in
�g.1, corresponds to the maximal total (cooperative) payo� 24. This game possesses
a unique subgame-perfect equilibrium (the corresponding choices of the players at all
decision nodes are marked as dotted lines) that determines a path ω = (x0, x1, x3, z1)
and payo� vector (14, 8).

Obviously, p1 + p2 = 24 according to (3), and the S-P Core is empty since

γ({1};x0) = 14 ⩽ p1, γ({2};x2) = 12 ⩽ p2.

Hence, the players can not ensure the sustainability of the cooperative scenario
by means of only redistributing the cooperative payo� at terminal node z7 = z∗.

However, we will use this example to motivate the way of the S-P Core con-
cept extension to more broad class of extensive-form games. Namely, if the players
payo�s are determined at all the nodes, and the players can redistribute the to-
tal current payo� at every node in the cooperative path, a natural modi�cation of
the S-P Core de�nition allows to ensure a non-emptiness of the (modi�ed or ex-
tended) S-P Core for the game in Ex. 1 as well as to provide the algorithm of its
implementation via an appropriate payo� distribution procedure (see, for instance
(Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000; Haurie et al., 2012)).

4. Payo� distribution procedure approach and β-subgame-perfect core

Hereinafter we consider the general case of an extensive-form game Γ x0 ∈ GP (n)
when the players payo�s hi(x) are determined at all nodes x ∈ P . Let ω̄ = ω̄(ū) =
(x0 = x̄0, . . . , x̄t, . . . , x̄T ) denote a cooperative (history), i.e.

max
u∈U

∑
i∈N

Hi(u) =
∑
i∈N

Hi(ū) =
∑
i∈N

T∑
τ=0

hi(x̄τ ) =
∑
i∈N

h̃i(ω̄). (4)

Suppose that there exists a unique cooperative path in Γ x0 ∈ GP (n). Other-
wise, we assume that the players use a speci�c approach (for instance, the PRB
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Fig. 1. 2-person extensive-form game

algorithm proposed in (Kuzyutin and Smirnova, 2020)) to select a unique cooper-
ative path from all the histories ω̄ meeting (4). It is worth noting that PRB algo-
rithm was proved to satisfy time consistency property (see, e.g., Petrosyan, 1977;
Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000; Kuzyutin and Smir-
nova, 2020).

A vector (px̄t
1 , . . . , p

x̄t
n ) such that

∑
i∈N

px̄t
i =

∑
i∈N

T∑
τ=t

hi(x̄τ ) =
∑
i∈N

h̃i(ω̄
x̄t) (5)

determines a possible distribution of the total cooperative (subgame) payo� among
the players and could be considered as a cooperative solution for the subgame
Γ x̄t , x̄t ∈ ω̄.

Let β = {βi(x̄τ )}, i = 1, . . . , n; τ = 0, . . . , T ; x̄τ ∈ ω̄, denote the Payo� Distribu-
tion Procedure (PDP) for the cooperative solution (p1, . . . , pn) = (px̄0

1 , . . . , p
x̄0
n ) (see,

e.g., Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000;
Yeung and Petrosyan, 2012; Haurie et al., 2012; Kuzyutin et al., 2018), i.e., a time
schedule of actual payments to the players along the cooperative path. Namely,
βi(x̄τ ) denotes the actual current payment that the i-th player receives at node
x̄τ ∈ ω̄ instead of hi(x̄τ ) if the players employ payo� distribution procedure β.

Let us remind several advantageous properties of a PDP β (see
(Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000; Kuzyutin et al., 2018;
Kuzyutin and Smirnova, 2020) for details).
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De�nition 4. (Kuzyutin and Smirnova, 2020) The PDP β for the payo� vector
(p1, . . . , pn) meeting (5) satis�es the subgame e�ciency condition, if for all x̄t ∈
ω̄ = (x̄0, . . . , x̄T )

T∑
τ=t

βi(x̄τ ) = β̃i(x̄t, x̄t+1, . . . , x̄T ) = β̃i(ω̄
x̄t) = px̄t

i . (6)

Condition (6) for t = 0 is usually called the e�ciency in the whole game
(Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000; Kuzyutin and Smirnova,
2020).

De�nition 5. (Petrosyan and Danilov, 1979; Petrosyan and Kuzyutin, 2000;
Kuzyutin et al., 2018) The PDP β = {βi(x̄τ )} satis�es the strict balance condi-
tion if for each node x̄τ ∈ ω̄, τ = 0, . . . , T∑

i∈N

βi(x̄τ ) =
∑
i∈N

hi(x̄τ ). (7)

Remark 2. The strict balance constraint (7) for a PDP β follows from the subgame
e�ciency condition (6).

In the paper, we assume that PDP β should satisfy non-negativity constraint:

βi(x̄τ ) ⩾ 0 ∀i ∈ N ∀t = 0, . . . , T. (8)

We introduced in (Kuzyutin and Smirnova, 2021) such a PDP β that all active
coalitions S ⊂ N have an incentive to follow a cooperative agreement (px̄t

1 , . . . , p
x̄t
n )

in each subgame Γ x̄t , x̄t ∈ ω̄, along the cooperative history. Let us provide the
de�nition of the β-subgame-perfect core (Kuzyutin and Smirnova, 2021) below for
the sake of completeness.

Suppose that a coalition S ⊂ N follows a cooperative scenario (namely, a PDP
β is implemented along the cooperative path from the root x̄0 till some intermediate
node x̄t ∈ ω̄, 1 ⩽ t ⩽ T −1), but then decides to deviate from the cooperative mode
in the subgame Γ x̄t (S should be active in Γ x̄t). Then, assuming that the remain-
ing players form singletons (see (Chander, 2007; Chander and Wooders, 2020) for
discussion), the highest payo� a coalition S could reach in the whole game Γ x0 is

equal to
t−1∑
τ=0

βS(x̄τ ) + γ(S; x̄t).

If one suppose that

t−1∑
τ=0

βS(x̄τ ) + γ(S; x̄t) ⩽
t−1∑
τ=0

βS(x̄τ ) +

T∑
τ=t

βS(x̄τ ), (9)

then coalition S has no reason to deviate at x̄t from the cooperative scenario.
If we simplify (9) and take into account t = 0, we get the following condition for

the "subgame sustainability" of a cooperative agreement (S is active at x̄t):

γ(S; x̄t) ⩽
T∑

τ=t

βS(x̄τ ), x̄t ∈ ω̄, t = 0, . . . , T − 1. (10)

Note that inequality (10) implies the same sustainability of the cooperative
agreement property as inequality (2) in the S-P Core de�nition.
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De�nition 6. (Kuzyutin and Smirnova, 2021). The set of all payo� distribution
procedures β meeting (6), (5), (7), (8), and (10) is called the β-subgame-perfect core
(β-S-P Core) for an extensive-form game Γ x0 ∈ GP (n).

Let us use again 2-person extensive-form game from Example 1 to demonstrate
a proposed extension of the S-P Core based on the payo� distribution procedure
approach.

Example 2. (A 2-player extensive-form game with payo�s de�ned at each node:
β-S-P Core.)

Hereinafter suppose that the players' payo�s in the extensive-form game Γ x0

from Ex. 1 are determined at all nodes x ∈ P (this payo�s (h1(x), h2(x))
T are

written in the game tree while the total payo�s collected along each history are
written below corresponding terminal nodes).

Constraints (6), (5) for t = 0 take the form

β1(x0) + β1(x2) + β1(x6) + β1(z7) = β̃1(ω̄) = p1,

β2(x0) + β2(x2) + β2(x6) + β2(z7) = β̃2(ω̄) = p2,

p1 + p2 = 24.

Let us write conditions (10), for instance, in the subgame Γ x2 along the coop-
erative history for all coalitions S which are active at x2:


γ(N ;x2) = 18 ⩽ β1(x2) + β2(x2) + β1(x6) + β2(x6) + β1(z7) + β2(z7),

γ({1};x2) = 10 ⩽ β1(x2) + β1(x6) + β1(z7),

γ({2};x2) = 7 ⩽ β2(x2) + β2(x6) + β2(z7).

(11)

Note that the �rst constraint in (11) is binding due to strict balance conditions
(7).

Straightforward veri�cation shows that the system (5)�(8) and (10) for this
extensive-form game is compatible, and therefore the β-S-P Core is non-empty.
Moreover, each PDP β from the β-S-P Core has to satisfy the following condition:

β̃1 = 15 + ε, β̃2 = 9− ε, −1 ⩽ ε ⩽ 1.

Let us present two examples of the payo� distribution procedures β from the
β-S-P Core. The �rst PDP β implies that the players split equally the total bene�t
from cooperation: β̃1 = 15, β̃2 = 9;

ω̄ x0 x2 x6 z7
β1(xt) 4 1 2 8
β2(xt) 2 4 2 1

Another PDP β′ implies that the second player receives all the bene�t from
cooperation: β̃′

1 = 14, β̃′
2 = 10;

ω̄ x0 x2 x6 z7
β′
1(xt) 3 1 2 8
β′
2(xt) 3 4 2 1
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5. A strategic support of the β-S-P Core

If the players redistribute current payo�s at each node along the cooperative path
according to some PDP β it is interesting to consider a related (non-cooperative)
game Γ x0

β which di�ers from the original game Γ x0 only in that the payo�s hi(x̄t),
i ∈ N , at every node x̄t ∈ ω̄ in the cooperative path are replaced by βi(x̄t). This
approach was used earlier, in particular, in (Petrosyan and Kuzyutin, 2000) to intro-
duce a "regularized game" for di�erential and multistage cooperative game and in
(Chander and Wooders, 2020) to de�ne a "strategic transform" of a game in an
extensive form with terminal payo�s.

As it was proved in (Kuzyutin and Smirnova, 2021), if β-S-P Core is non-empty
then there exists a SPE u in a non-cooperative related game Γ x0

β that generates
exactly a cooperative path ω̄ = ω(u) with a SPE payo�s vector Hi(u), i ∈ N , from
the β-S-P Core of the original game Γ x0 . This property means that a cooperative
scenario based on the PDP β from the β-S-P Core is strategically supported (i.e.,
could be implemented as a subgame-perfect equilibrium) in a closely related non-
cooperative game Γ x0

β .

Proposition 1. (Kuzyutin and Smirnova, 2021). Let the β-subgame-perfect core
of an extensive-form game Γ x0 ∈ GP (n) is non-empty, and β = βi(x̄t), i ∈
N, x̄t ∈ ω̄, is a payo� distribution procedure from the β-S-P Core. Then there ex-
ists a subgame-perfect equilibria u = (u1, . . . , un) in a related non-cooperative game
Γ x0

β which generates a cooperative history ω̄ = (x̄0, . . . , x̄T ) with a SPE payo�s

vector Hi(u) =
T∑

t=0
βi(x̄t) = β̃i(ω̄), i ∈ N .

A re�nement of Nash equilibria concept called Strong NE (SNE) was introduced
in (Aumann, 1976) for strategic games. As it turns out, if an extensive game Γ ⊂
GP (n) admits a unique subgame perfect SNE then β-S-P Core consists of the unique
simplest payo� distribution procedure.

De�nition 7. (Chander and Wooders, 2020) A pure strategy pro�le u = (u1,
. . . , un) is a subgame perfect SNE of Γ x0 ⊂ GP (n) if u is a SPE of each induced
game Γ x0,S , S ⊂ N .

If an extensive game possesses subgame perfect SNE u then no coalition has a
pro�table joint deviation from u in any subgame.

Note that a pure strategy de�nition for extensive game originally implies some re-
dundancy (see, for instance, (Kuhn, 1953; Myerson, 1997;
Petrosyan and Kuzyutin, 2000) for details), namely two strategy pro�les could de-
�ne di�erent choices of some players at some nodes but generate the same path in
the game tree and the same players' payo�s. In what follows, we will refer to "a
game Γ possesses a unique SPE or Γ has multiple SPE but all of them generate
the same path in the game tree" as "a game Γ admits a unique SPE".

Proposition 2. Let each induced game Γ x0,S , S ⊂ N , of the game Γ x0 ⊂ GP (n)
admits a unique SPE. If Γ x0 admits a subgame perfect SNE then this subgame
perfect SNE is unique and β-S-P Core consists of the unique payo� distribution
procedure, namely:

βi(x̄t) = hi(x̄t), x̄t ∈ ω̄. (12)
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Proof. The proof of the �rst statement is straightforward and has been already
provided in (Chander and Wooders, 2020). Let u = (u1, . . . , un) denote the unique
subgame perfect SNE in Γ x0 .

Since u is a unique SPE in Γ x0,N it generates exactly the cooperative history
ω̄ = (x̄0, . . . , x̄T ) in the game tree. Moreover, a unique SPE at each induced game
Γ x0,S , S ⊂ N , is u and every induced subgame Γ x̄t,S , S ⊂ N, t = 0, . . . , T − 1
admits a unique SPE (namely, the restriction of u onto the subgame Γ x̄t,S) that
generates a SPE history ω̄x̄t = (x̄t, . . . , x̄T ).

Then (10) takes the form

γ(S; x̄t) =

T∑
τ=t

hS(x̄τ ) ⩽
T∑

τ=t

βS(x̄τ ), t = 0, . . . , T − 1. (13)

Taking (5), (6) and the strict balance condition (7) into account we obtain from
(13) by backwards induction that

βi(x̄t) = hi(x̄t), x̄t ∈ ω̄.

Hence, there exists a unique PDP β in the β-S-P Core which implies no transfers
between the players while the game unfolds along the cooperative history ω̄. ⊓⊔

Corollary 1. If a two-player extensive-form game Γ x0 ∈ GP (2) admits a unique
SPE which is Pareto-e�cient, the β-S-P Core consists of the unique PDP (12).

It is worth noting that the β-S-P Core for extensive-form games is a weaker con-
cept than the subgame-perfect SNE. For instance, the extensive game from Example
2 possesses a non-empty β-S-P Core, but has no subgame-perfect SNE.

6. Re�nement of the β-S-P Core

If the β-S-P Core of an extensive-form game is non-empty in general it consists
of multiple payo� distributions procedures.

Proposition 3. (Kuzyutin and Smirnova, 2021). If the β-S-P Core of an extensive-
form game Γ ∈ GP (n) is non-empty then it is a (closed) convex polytope B in
Rn×(T+1).

It is worth noting that the main purpose of each player j when selecting a unique
PDP β from β-S-P Core is the value pj = β̃j(ω̄) which the j-th player will get
according to the cooperative agreement, given that distribution {βi(x̄t)}, x̄t ∈ ω̄,
of the β̃i(ω̄) along the cooperative path satis�es additional constraints (6), (8) and
(10).

Let us suggest several optimization based approaches for the β-S-P Core re�ne-
ment, i.e., some rules for selecting β̃j(ω̄), j ∈ N . One approach is to maximize the
bene�t of some (target) player j from cooperation:

β̃j − γ({j};x0)→ max
β∈B

. (14)

Note that (14) is a linear programming problem which has a solution due to Prop.
3. If one apply this approach to the game in Ex.2 assuming that the 2-nd player's
payo� β2 is the goal function the resulting PDP will be β′ : β̃′

1 = 14, β̃′
2 = 10.
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Another approach is to adopt some bargaining solution (see, e.g. Moulin, 1988;

Casta�nr et al., 2021) to choose a unique vector (β̃j)j∈N from B when the subgame
perfect equilibrium payo�s vector (γ({j};x0))j∈N serves as a disagreement point
(point of the "status quo"). For instance, when employing the symmetric Nash
bargaining solution, the corresponding problem takes the form∏

i∈N

(β̃i − γ({i};x0))→ max
β∈B

. (15)

If we apply approach (15) to the game in Ex.2 we should choose PDP β : β̃1 =

15, β̃2 = 9.
Let us focus in the paper on the third approach (introduced

in (Kuzyutin and Smirnova, 2021)) which takes care of the relative bene�t from
cooperation (RBC) of the least winning player. Let ∆j denote the absolute range

of the j-th player's payo�s in Γ x0 . Then
β̃j−γ({j};x0)

∆j
could be interpreted as the

relative bene�t of player j from cooperation according to the PDP β. Then, the
players are expected to �nd the solution of the following optimization problem

max
β∈B

min
j∈N

β̃j − γ({j};x0)
∆j

. (16)

Remark 3. For two-player game problem (16) takes the form

β̃1 − γ({1};x0)
∆1

=
β̃2 − γ({2};x0)

∆2
. (17)

Let us illustrate the latter approach using 2-person game in Ex. 2:

β̃1 − 14

16− 6
=
β̃2 − 8

12− 6
⇐⇒ (15 + ϵ)− 14

10
=

(9− ϵ)− 8

6
⇐⇒ ϵ = 0.2.

Hence, β̃1 = 15.2, β̃2 = 8.8, while the exact distribution of β̃j along the coop-
erative history ω̄ satis�es constraints (7), (8) and (10). For instance, the following
PDP β′′ meets all the constraints.

ω̄ x0 x2 x6 x7 β̃
′′
j (ω̄)

β′′
1 (xt) 4.2 1 2 8 15.2
β′′
2 (xt) 1.8 4 2 1 8.8

We will refer later to the latter approach for the β-S-P Core re�nement as the
maxmin RBC rule. Note that di�erent approach to the evaluation of the relative
bene�t from cooperation (as well as for the "value of the preexisting knowledge")
was proposed in (Chebotareva et al., 2021) for di�erential games.

Another way to contract the β-S-P Core is to assume that a PDP β from the Core
has to satisfy some additional properties. For instance, let us consider the irrational-
behavior-proof property for cooperative solution that is implemented via IDP β in
an extensive-form game (this property was �rstly introduced in (Yeung, 2006) for
cooperative di�erential games).
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De�nition 8. (Yeung, 2006; Kuzyutin and Nikitina, 2017; Kuzyutin et al., 2019b)
The PDP β for the payo� vector (p1, . . . , pn) meeting (5), (6) satis�es irrational-
behavior-proof (IBP) property (for coalitions) if at each node x̄t ∈ ω̄ = (x̄0, . . . , x̄T ),
t = 1, . . . , T − 1, for all coalitions S which are active at x̄t the following inequality
holds:

t−1∑
τ=0

βS(x̄τ ) + γ(S; x̄t) ⩾ γ(S;x0). (18)

Inequality (18) means that each active coalition S has an incentive to cooperate
(at least from the origin x0 until the intermediate node x̄t will be reached) even if
S assumes that the cooperative scenario could be broken down at x̄t because of the
"irrational behavior" of some other players.

Note that formulae (9) and (18) provide estimations of the coalition S total
payo� given the following mode of partial cooperation: the players cooperate along
the cooperative history from x0 till x̄t and then switch to the non-cooperative
(namely � SPE) behavior.

Let us check whether two payo� distribution procedures β and β′ in Example 2
satisfy IBP property. It turns out that the �rst PDP β satis�es IBP conditions (18)
whereas the second PDP β′ does not. For instance, for coalition S = {1} inequalities
(18) at node x2 take the form:

β1(x0) + γ({1};x2) = 4 + 10 ⩾ 14 = γ({1};x0),

β′
1(x0) + γ({1};x2) = 3 + 10 ⩾ 14 = γ({1};x0).

Hence, when the β-S-P Core consists of multiple PDP, one can use the irrational-
behavior-proof condition (18) as a rule for the β-S-P Core re�nement.

7. β-S-P Core for �shery-management model

To demonstrate how β-S-P Core could be implemented in the dynamic models of
renewable resource extraction (see, e.g., Levhari and Mirman, 1980; Mazalov and
Rettiyeva, 2011; Breton et al., 2019; Chander, 2017; Ougolnitsky and Usov, 2019;
Mazalov et al., 2021) we use a 2-player �shery-management model in extensive form
introduced in (Kuzyutin and Smirnova, 2021) which is a �nite version of the origi-
nal �shery-management model (Levhari and Mirman, 1980) that has been studied
in (Haurie et al., 2012). We suppose in the paper that competing countries equally
evaluate the worth of the resource (�sh biomass) remainder after the resource extrac-
tion (�shery) process ends (namely, K1 = K2 = 1), whereas
in (Kuzyutin and Smirnova, 2021) the players di�erently appreciate the resource re-
mainder (the reasons for asymmetric environmental valuation were discussed, e.g.,
in (Cabo and Tidball, 2021)). Note, that cooperative path and payo� distribution
procedure from the β-S-P Core which are designed below for symmetric case es-
sentially di�er from the cooperative solution that was obtained in (Kuzyutin and
Smirnova, 2021) for the case of asymmetric environmental valuation.

Example 3. (A 2-player symmetric �shery-management model in extensive form).
Let y(t) denote a (normalized) �sh amount in year t, t = 0, 1, . . . , T , that evolves

according to the equation
y(t+ 1) = a · y(t),
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where a > 1 denotes the annual net growth rate. Assume that two players (e. g.,
companies or countries) exploit the �shery and let uj(t) ≥ 0 denote the harvest of
player j in year t. Given the initial condition y(0) = y0 the system dynamics is
described by the state equation

y(t+ 1) = a · (y(t)− (u1(t) + u2(t))) , (19)

where 0 ≤ u1(t) + u2(t) ≤ y(t).
The objective function of player j has the following form

Hj(·) =
T−1∑
t=0

δtj

√
uj(t) +Kj · δTj

√
y(T ), j = 1, 2, (20)

where δj ∈ [0, 1) is the jth player's discount factor while Kj > 0 describes how the
jth player values the �sh biomass remainder (�shery's scrap after the exploitation
period).

Some additional assumptions are accepted in (Kuzyutin and Smirnova, 2021)
to embed the �shery-management model (19)�(20) into an extensive-form game
framework. Firstly, suppose that both players can �sh out at only two levels: Low
(uLj = Lj) or High (uHj = Hj) and consider two-year model, i. e., T = 2. Further,
to obtain a game with perfect information we suppose that in every year player 1
moves (i.e. chooses a particular level of u1) �rst.

The resulting discrete-time symmetric �shery-management model in extensive
form for particular parameter values: y(0) = 10; a = 1.25; uHj = Hj = 3, uLj =
Lj = 1; δ1 = δ2 = δ = 0.9; K1 = K2 = 1, is presented in �gure 2. Note that
P1 = {x0, x3, x4, x5, x6}, P2 = {x1, x2, x7 − x14}, Pn+1 = {z1, . . . , z16}, the right
alternative at every node xk ∈ Pj corresponds to high level of �shery e�orts (har-

vest) (uj(xk) = Hj). It is worth noting that the current payo�s
√
uj(0) in x1 − x6

correspond to the �rst period of �shery process (i. e., δ0 = 1 according to (20))
whereas the current payo�s

√
uj(1) in x7 − x14 and z1 − z16 correspond to the

second year (i. e., δ1 = 0.9). The payo�s hj(x0), j = 1, 2, at the origin x0 could be
considered as the players' initial assets.

The extensive-form game described above possesses a unique SPE (the corre-
sponding equilibrium choices at every decision node are presented as dotted lines in
�g. 2). This SPE generates the path ωSPE = (x0, x2, x5, x12, z12) with the resulting
non-cooperative payo�s (5.4; 4.67).

The cooperative path ω̄ = (x0, x1, x3, x7, z1), which is emphasized in bold in
�g. 2, corresponds to the highest �sh biomass remainder (both environmentally
concerned players each year �sh out at low level) and implies maximal summary

payo� h̃1(ω̄) + h̃2(ω̄) = 5.46 + 5.46 = 10.92.
Note that the system (5)�(8) and (10) for the extensive-form �shery-management

game is compatible, thus the β-S-P Core is non-empty. To choose a payment vector
(β̃1(ω̄), β̃2(ω̄)) from the β-S-P Core we employ the maxmin RBC rule. Using the

notations β̃1(ω̄) = 5.46 + ε, β̃2(ω̄) = 5.46− ε, we obtain equation (17) in the form

(5.46 + ε)− 5.4

5.98− 4.54
=

(5.46− ε)− 4.67

5.98− 4.01
⇐⇒ ε = 0.3.

Hence, β̃1(ω̄) = 5.76, β̃2(ω̄) = 5.16. The table below presents an example of partic-
ular PDP β from the β-S-P Core that was determined via backwards induction and
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x0

L1

x1

H1

x2

L2

x3

H2

x4

L2

x5

H2

x6

x7 x8 x9 x10 x11 x12 x13 x14

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16

1
1

1
0

1.73
0

0
1

0
1.73

0
1

0
1.73

0.9
0

1.56
0

0.9
0

1.56
0

0.9
0

1.56
0

0.9
0

1.56
0

0
0.9

0
1.56

0
0.9

0
1.56

0
0.9

0
1.56

0
0.9

0
1.56

0
0.9

0
1.56

0
0.9

0
1.56

0
0.9

0
1.56

0
0.9

0
0

Value of the �sh biomass remainder β2
√

y(2) :

2.56 2.22 2.22 1.81 2.12 1.69 1.69 1.11 2.12 1.69 1.69 1.11 1.57 0.91 0.91 1.28

Total players' payo�s (20) :

5.46
5.46

5.12
5.78

5.78
5.12

5.37
5.37

5.02
5.75

4.59
5.98

5.25
5.32

4.67
5.40

5.75
5.02

5.32
5.25

5.98
4.59

5.4
4.67

5.2
5.2

4.54
5.2

5.2
4.54

5.57
4.01

Fig. 2. Fishery-management symmetric 2-player model in extensive form

implies no payo� transfers at terminal node z1 and minimal transfers between the
players at decision nodes in the cooperative path.

ω̄ x0 x1 x3 x7 z1 β̃j(ω̄)
β1(xt) 1.39 1 0.23 0.58 2.56 5.76
β2(xt) 0.61 0 0.77 0.32 3.46 5.16

β1(xt)− h1(xt) 0.39 0 0.23 -0.32 0 0.3

Note that the exact values of the payo� transfers (from player 2 to player 1)
which are necessary at each node of the cooperative path to ensure the sustainability
of the cooperative agreement are given in the lowest table row.

8. Conclusion

The paper contributes to the theory of cooperative behavior in extensive-form
games. Firstly, we compare the subgame-perfect core (Chander and Wooders, 2020)
and β-S-P Core (Kuzyutin and Smirnova, 2021) and demonstrate in Sections 3 and
4 that the latter solution is more powerful tool to implement a cooperative agree-
ment (this implication was brie�y noted in (Kuzyutin and Smirnova, 2021) without
discussion). Secondarily, in Section 5 we reveal relationship between strong Nash
equilibria and β-S-P Core for the class of extensive-form games with perfect infor-
mation and payo�s de�ned at each node. Lastly, in Section 6 we propose several
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approaches for the β-S-P Core re�nement (some of them require an optimization
problem solution, others imply that particular PDP from the β-S-P Core has to
satisfy additional properties like irrational-behavior-proof condition) and illustrate
these approaches using two examples.

Note that β-S-P Core approach is very promising and could be applied to
other classes of extensive-form games (e.g., extensive games with chance moves
(Kuzyutin and Smirnova, 2020) or extensive-form multicriteria games
(Kuzyutin and Nikitina, 2017; Kuzyutin et al., 2018; Kuzyutin et al., 2019b). It is
also of interest how one can adapt the β-S-P Core concept in the discrete-time mod-
els of dynamic interaction between several religious and political movements (see,
e.g., Tantlevskij et al., 2021; Kuzyutin et al., 2020).
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