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Abstract Motivated by research works on Zeuthen-Hicks bargaining, which
leads to the Nash bargaining solution, we analyze experimental data of re-
source allocation gaming with Groves-Ledyard mechanism. The games were
designed in the form of negotiation to allow players to reach consensus.
Behavior models based on best response, constant behavior, and Nash bar-
gaining solution are de�ned. Analysis conducted over decisions made by
participants shows that a signi�cant share of all decisions leads to an in-
crease of the Nash bargaining value. It is even higher than the share of
decisions that are in agreement with the best-response concept. Consensus-
ended games show light attraction to the Nash bargaining solution, it's less
than we obtained in games with the mechanism of Yang-Hajek from another
class of so-called proportional allocation mechanisms. We discuss di�erences
of consensus-ended games from timeout-ended games, what decisions lead
to the situations with the Nash bargaining value increasing and di�erences
between balanced mechanism Groves-Ledyard and unbalanced mechanism
Yang-Hajek.

Keywords: resource allocation mechanisms, Nash implementation, Nash
bargaining solution, Groves-Ledyard mechanism.

1. Introduction

Let's consider a player's behavior in an economic situation from two sides:

� goal � what a player strives to increase. For example: goal function at the end
of the game or at each step of the game; total or mean or discounted sum of
goal function values at each game step ...

� behavior � how a player behaves in order to reach his goal. Examples: best
response, learning, strategy thinking, etc.

The research works on Zeuthen-Hicks bargaining, which leads to the Nash bar-
gaining solution (Harsanyi, 1956), (Vetschera, 2018) shows that the Nash function
value can be the goal of players' behavior and/or help players achieve consensus
in negotiations. We try to analyze the data of players' behavior through this point
of view. Paper (Korgin and Korepanov, 2020) stated that this approach gives some
insights which motivate us to do similar tests on the data of games with another
mechanism.

For our research we use data of the experimental gaming comparison of re-
source allocation rules described in (Korgin and Korepanov, 2017). In that research,
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several mechanisms were compared in setting with transferable and quasi-linear
utilities: a mechanism (YH) from the class of proportional allocation mechanisms
(Yang and Hajek, 2005, Ba�sar and Maheswaran, 2003), a mechanism (GL) with bal-
anced payments using the Groves-Ledyard rule (Groves and Ledyard, 1977) that
gives the e�cient solution of the problem as a Nash equilibrium in the players'
game introduced in (Korgin, 2016), as well as its modi�cation reducing the dimen-
sion of the action space of the players (Korgin, 2016) and a mechanism based on
the distributed optimization algorithm problem (Boyd et al., 2011).

In this paper, we analyze decisions made by participants in games with the GL
mechanism. Unlike to the research of YHmechanism (Korgin and Korepanov, 2020),
GL is a mechanism with balanced transfers and players have no need and possibil-
ity to decrease total transfers. Nevertheless, we show that a signi�cant share of all
decisions leads to an increase of the Nash bargaining value, and it is even higher
than the share of decisions that are in agreement with the best-response concept.
We also discuss how these decisions correspond with other types of behavior ac-
tively exhibited by participants of these experiments � so-called Constant or Inertia
behavior and with the end of the negotiation process in games.

2. Resource allocation problem

An organizational system consists of a single Principal and a set N = {1, . . . , n}
of players. Principal disposes of some in�nitely divisible good in a limited amount
R ∈ IR1 and allots it among the players in any proportion.

The utility of each player i ∈ N in terms of the good xi ∈ [0, R] allotted to
him is described by a function ui(•) : IR1 → IR1 belonging to a certain set Ui of
admissible utility functions.

The set of admissible allocations is

A = {x = (x1, ..., xn) :
∑
i∈N

xi ≤ R, x ∈ IRn
+}, (1)

the set of possible utility pro�les is

U = {u = (u1(•), . . . , un(•)) : ui(•) ∈ Ui, i ∈ N}. (2)

The problem is to �nd an e�cient allocation mapping g(•) : U → A that should
maximize the total utility of all players for any utility pro�le u ∈ U :

g(u) ∈ Argmax
x∈A

∑
i∈N

ui(xi). (3)

3. Model

We consider the model N = {1, 2, 3} with utility functions ui(xi) =
√
ri + xi,

where r = (1, 9, 25) - pro�le of "initial endowment" of players or, generally, types of
utility functions. These types are given to players and they don't change through a
game. Type ri of a player i is private information and generally not known to the
Principal and other players. The amount of disposable resource is R = 115.

An e�cient allocation accordingly to the right part of (3) is allocation when the
sum of utilities attains a maximum value. For our model, e�cient allocation and
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pro�t of each player:

xeff = (49, 41, 25) (4)

ueff = u1(x
eff
1 ) = u2(x

eff
2 ) = u3(x

eff
3 ) ≈ 7.07 (5)

3.1. Incentive incompatibility

In the case of arbitrary types r the e�cient allocation is determined according
to:

xi = (R+
∑
i∈N

ri)/n− ri, i ∈ N. (6)

Obviously, being answered about ri any player strives for underrating the value
of his parameter (to increase his utility) instead of truth-telling . Thus, each player
i answer ri = 1, �e�cient allocation� will be x∗ ≈ (38.3, 38.3, 38.3), but total utility
with real players' types will be less than optimal since x∗ ̸= xeff .

So we have the incentive incompatibility problem: we can't just ask players about
their types. There exists a range of mechanisms to solve the resource allocation
problem with incentive incompatibility. Generally a mechanism ρ =< S, x, t >
consists of a set S = ×i∈NSi of admissible bids of all players, a mapping x(·) : S → A
for getting resource allocation from bids and a mapping t(·) : S → IRn - some
procedure for transfer utilities of players. A mechanism ρ induces a strategic form
game Γ (ρ) =< N,S, ϕu,ρ >, where ϕu,ρi (s) = ui(x(s))− ti(s), i ∈ N .

3.2. Game process model and experimental data

The Game process is implemented in the form of an iterative process as follows.
At each iteration (step), n bids (one bid from each player) are acquired and processed
according to the rules of the Groves-Ledyard resource allocation mechanism (see
appendix 1). The result of its operation is reported to all players. At the next step,
any player may vary his bid, possibly a�ecting the result. The game process stops
if none of the players vary his bid ("stop rule"), or the process reaches a maximum
admissible step T known to all players. Parameter T was di�erent in some game
sessions: 60, 20, or 15. The payo� of each player is de�ned as the pro�t at the last
step.

So the last step is crucial because players receive payo�s on the last step. At the
same time, the "stop rule" allows players to reach an agreement.

The participants of the experiments were Russian students of several State Uni-
versities of Moscow, Perm, Samara cities from faculties of Technology or Economics.
Participants of one session studied the game rules and play in learning games, and
then they were randomly allocated in groups of three and play �nal (test) games.
We treat the results of each group as one separate game.

Notations: at each step t players make bids s1(t), s2(t), s3(t) - bids of the �rst,
second and third player accordingly. The situation at step t is the tuple s(t) =
(s1(t), s2(t), s3(t)). Then, in accordance with the GL mechanism, they receive re-
sources x(s(t)), give transfers τ(s(t)) and their pro�ts are ϕ(s(t)) = u(x(s(t)) −
τ(s(t)).

As experiments' results, we have data of 10 games, 10 sets of start-to-end sit-
uations {(s1(1), s2(1), s3(1)), ..., (s1(teg), s2(teg), s3(teg))}, where teg is the end step of
game g ∈ {1, ..., 10}. Of course, in addition to the situations, we also have derived
data: given resources, transfers, and pro�ts in accordance with the GL mechanism.
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4. The main approach: Nash bargaining solution

We can treat the game process as a negotiation process among players: they
bargain their pro�ts. If they have reached a satisfactory result, they do not have
a desire to change anything and therefore, will not change bids, and the game will
stop by the "stop rule".

Initial Zeuthen-Hicks bargaining model considers the sequential interaction be-
tween two parties - the seller and the buyer (Harsanyi, 1956), (Vetschera, 2018).
It was showed, that parties have an incentive to increase the value of the Nash
bargaining objective function

U(x) = (ui(x)− ui(di)) · (u−i(x)− u−i(d−i)) (7)

the maximum of which is the Nash Bargaining Solution (NBS) [Nash, 1950].
In case of three players it is not possible to treat negotiation as Zeuthen-Hicks

Bargaining, but we can look at the Nash Bargaining objective function:

UNash(s, d) =

3∏
i=1

(ϕi(s)− ui(di)), (8)

where d = (0, 0, 0) with u(d) = (1, 3, 5), i.e. disagreement utility is base utility
without transfers pi = 0 and resources xi = 0.

Due to GL mechanism, we use a pro�t ϕ of players instead of their utilities.
Value of UNash(s, d) in a concrete situation we will call "NBS value" for simplicity.

Another way to look at bargaining goal is "local NBS" version of the NBS:

UNash
loc (s, t) =

3∏
i=1

(ϕi(s)− ϕi(s(t− 1)). (9)

In our concrete case, UNash(s, d) and moreover UNash
loc (s, t) can be positive if two

of three multipliers in (8) and (9) are negative. Therefore, we use �shifted� objective
functions:

U(s, d) = min
i
sign

(
ϕi(s)− ui(di)

)
· |UNash(s, d)| (10)

Uloc(s, t) = min
i
sign

(
ϕi(s)− ϕi(s(t− 1))

)
· |UNash

loc (s, t)|. (11)

The (10) and (11) functions are positive only if all multipliers (8) and (9) are
positive. Additionally, for local NBS it means that player's pro�ts have increased
at step t.

Now let us proceed to the description of our approach to behavior analysis, incl.

5. Behavior models

We estimate a behavior model by share of players' decisions corresponding to the
model and share of situations when some or all players made decisions corresponding
to the model.

Let's denote c � the count of all individual bids in our data, C � the count of all
situations. Note c = 3C for our 3-player games considered. Then the share of players
decisions for some behavior B is #{si(t)|si(t) ∈ B}/c and the share of situations
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for the behavior B where at least p players made decisions according to the B is
#{s(t)|#{si(t) ∈ B|i = 1, 2, 3} ≥ p}/C. ('#S' means the number of elements in the
set S )

Now let us proceed to the description of the considered behavior models.

Nash bargaining behavior

� Firstly, we consider decisions that go into the direction of NBS increase, inde-
pendently of whether the move is su�ciently large. We treat si(t) to be Nash-
increasing (NI) decision if:

U(si(t), d) > U(s(t− 1), d), i ∈ N, (12)

where si(t) = (si(t), s−i(t− 1)) and d = (0, 0, 0):
� Further, we can de�ne Real Nash increasing (Real NI) situations. We treat s(t)
to be Real Nash-increasing situation if it did increase the NBS value at step t :

U(s(t), d) > U(s(t− 1), d). (13)

� Similarly, instead of the NBS we can use local NBS. We treat si(t) to be local
Nash-increasing (LNI) decision if:

Uloc(s
i(t), t) > 0, (14)

� and we treat s(t) to be Real local Nash-increasing (Real LNI) situation if:

Uloc(s(t), t) > 0. (15)

Rational behavior All rational behavior models are based on the best response
(BR) of a player to a situation on the previous step:

bri(s(t− 1)) = argmax
y∈IR+

ϕi(yi, s−i(t− 1)). (16)

Let's consider two rational behavior models.

� We treat si(t) to be near best response decision with accuracy ε (BR(ε)) if:

|si(t)− bri(s(t− 1))| < ε

� We treat si(t) to be Toward BR decision (TBR) if:{
si(t) = si(t− 1), if bri(s(t− 1)) = si(t− 1),(
si(t)− si(t− 1)

)
/
(
bri(s(t− 1))− si(t− 1)

)
> 0, otherwise.

Constant behavior Earlier we denoted bid of player i at step t as si(t). Here
we will denote a sequence of bids from step t1 to step t2 of player i as si(t1, t2) =
(si(t1), si(t1 + 1), ..., si(t2)).

Some sequence of bids of one player i from step ts to step te > ts with accuracy
ε is called Constant Behavior CB(i, ts, te, ε) if:

1. |si(ts, te)| ≤ ε
2. ∀a < ts, b > te : |si(a, te)| > ε ∧ |si(ts, b)| > ε
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3. Not exists another CB(i, t′s, t
′
e, ε) such that t′s < ts and ts < t′e < te.

The above items describe mathematically results of the �algorithm� of sequential
search for unchanged bids (with some accuracy ε): starting from the �rst step, we
are looking for the bids sequence of players whose maximum and minimum di�er
by no more than ε.

The set of all CB with accuracy ε is denoted as CB(ε).

� We treat si(t) to be Agree CB decision (ACB) if the player i doesn't change his
decision at all - signal that he is agree with current allocation:

si(t) = si(t− 1)

� We treat si(t) to be Waiting CB decision (WCB) if the player i slightly changes
his decision in order not to stop negotiation process:

WCB(ε) = CB(ε) \ACB

� We treat si(t) to be Rational WCB decision (RWCB) if the player i perform
WCB toward his BR:

RWCB(ε) =WCB(ε) ∩ TBR

Next section devoted to analysis based on the shares of the behavior models.

6. Results

6.1. Individual decisions in YH Games

In the table below (see �gure 1), shares of individual decisions for the behav-
ior models are presented. In the columns of the table results about all games, not
consensus and consensus-ended games are depicted. We have equal number of not
consensus and consensus-ended games, with similar amount of situations and indi-
vidual decisions. Rows with couple behavior models, separated by '\' (for example
- LNI\NI), correspond to decisions that suit a �rst behavior model (LNI) but not
to a second one (NI).

The most observed models in all games are Local NI, Local NI \WCB(1), Local
NI \NI and NI. It seems that non-Agree CBs occur signi�cantly rare.

The data of games with consensus is similar to non-consensus games, but there
is an exceptions:

1. Local Nash increasing models are found more often,
2. Slightly more Toward BR decisions,
3. Slightly more ACB decisions and slightly less WCB(1) \ACB decisions at once.

Generally most observed models in consensus and non-consensus games are al-
most equivalent. In consensus-ended games, players exhibit more intention to act
accordingly to local NBS, i.e., to increase utility of all players. This result is simi-
lar to Local NI in games with YH mechanism [Korgin2020] but less evident: with
YH we had simultaneously too less WCB(1) decisions and twice more (in %) LNI
decisions in consensus games.

Items 2 and 3 are negligible.
It is interesting that more 50% (199) of NI decisions are LNI (for LNI this is

about 40%).
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Fig. 1. Individual decisions in GL nonconsensus games and in consensus-ended GL games.

6.2. Decision situations

In the previous section, we see at bids of players and their intention toward BR,
CB and NI, but view of negotiation process we can get from situations s = (s1, s2, s3)
- behavior of player's group altogether. Again �rstly we show general shares of
situations. We consider two types of situations: when all players act according to
the same behavior model and when at least one or two players act according to it.

Fig. 2. Decision situations in GL games.

In �gure 2 Rational and Constant behavior models are presented. We don't show
"Two ..." and "All ..." for behaviors with negligible "One ..." situations. "All ..."
situations have small shares at all, "Two ..." situations less than "One ..." and have
no di�erences between nonconsensus and consensus games and "at least one ..."
repeat individual decisions state.
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In �gure 3 NBS models in situations are considered. "One..." models repeat
decisions state. Situations with Real increase of non-local and local Nash function
(Real LNI) has the second most observable case after "All Local NI" and they all
are about half of situations!

Again share of behaviors decrease to 0 as we go from "One..." to "All..." sit-
uations. But we have exception with Local Nash function increasing behavior - it
decrease from 75-90% down to 45-55%. It split NI and LNI behavior - they have
di�erent template of "One..."-"All..." shares but have similar "Real ..." shares.

Concerning di�erences with consensus games for NI models, as with individual
decisions, we see similar shares of situations. But for LNI models we see system-
atic shares growth: 9-15% in consensus games. So when considering situations, the
statement "players who demonstrate wish to increase local Nash function (i.e., util-
ities) came to an agreement" may take place. Alternatively, consensus-ended games
have more players who demonstrate wish to increase utilities. Again in paper [Ko-
rgin2020] we had drastically more LNI-linked situations in consensus games (Real
LNI was twice more).

Let's dive in Real NI and LNI data to try to reveal di�erences of NI and LNI
models.

Figure 4 tells us that Real NI (Real LNI) situations toughly linked with NI (LNI)
decisions in it. And Real NI (Real LNI) � LNI (NI) interlinks are not negligible.

Let's look at how Real NI and Real LNI interlinked with decisions. For that
purpose we made two linear regression models for binary dependent variables 'Real
NI' and 'Real LNI' from 10 binary independent variables 'One NI','Two NI','All
NI','One LNI','Two LNI','All LNI','One TBR','Two TBR','One ACB','Two ACB'.

We found that the Real NI model has the mean squared error ≈ 0.15 and the
coe�cient of determination ≈ 0.35. Independent variables in regression coe�cients
decreasing order: 'All NI'(≈ 1), 'Two NI'(≈ 0.9), 'One NI'(≈ 0.5), 'Two ACB'(≈
0.3). Coe�cients of variables about LNI are negative and have small absolute values.

Fig. 3. Decision situations in GL games, NBS models.
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The second regression model about Real LNI has the mean squared error ≈ 0.1
and the coe�cient of determination ≈ 0.6. Independent variables in regression coef-
�cients decreasing order: 'All LNI'(≈ 0.85), 'Two LNI'(≈ 0.15), 'All NI'(≈ −0.15),
'Two NI'(≈ −0.1). Coe�cients of variables about NI are negative.

An example of negotiation process for one game (game number 107) ended with
consensus is presented in �gure 5. At step 6 players show all behavior types. At step
7 individual decisions and situations are NBS agree and players 1 and 2 slightly
change their bids. At step 8 only player 3 changes (slightly) his bid. May be players
act cooperatively, and characteristics of situation at step 7 may be indicators of
cooperative behavior. It is interesting that each player individually goes from some
not CB model through WCB to ACB model.

7. Conclusion

The research conducted in (Korgin and Korepanov, 2020) states that indicators
based on Nash bargaining value do allow us to predict possibilities for negotiation
parties to reach a consensus in the unbalanced mechanism YH.

This research lead us to a negative result: with balanced mechanism GL we see
that the Nash bargaining value cann't predict possibilities for negotiation parties to
reach a consensus. We see only a small increase of LNI decisions in consensus-ended
games. But we partially expect that since of balance property of the GL mechanism
- it has no possibility to reduce total transfers. Nevertheless players have shown
growth of "Local NI"-linked decisions and situations.

Since of negativity of the �rst result we look further at the Real NI and Real LNI
behaviors. Some preliminar results about links between Real (L)NI and "One (L)NI"
and from regression model about NBS value increasing prediction was obtained.

Perspectives of further research directions can be suggested. The �rst obvious
direction is to make comparative analysis of several mechanisms on the data from

Fig. 4. Decision situations in GL games, Real (Local)NI.

Fig. 5. Negotiation example.
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experimental games (Korgin and Korepanov, 2017) - to make equal sight to YH,
GL and ADMM for example. All these mechanisms are from three di�erent classes.
And we can look not only at the end of negotiation process and the NBS behavior
but on its causes - of course we can construct regression analysis of NBS value
increasing more accurately: feature selection, treatment of categorical variables and
con�dence estimations. This is the second direction.

The third direction is connected with the experiment design - we have games
when players take pay at each step of game - it may prevent they from negotiate
and propagate di�erent goal to maximize. So would it decrease the share of the NBS
behavior is interesting question.

8. Appendix

8.1. Groves-Ledyard mechanism

The message of each agent at step 1 is the desired amount of the available
resource si ∈ [0, R]. At the rest steps, the message of each agent is the desired
resource allocation among all agents si = (si1, ..., sin),

∑
j∈N sij ∈ [0, R], si ∈ IRn.

The resource allotted to each agent is the mean of the messages of all agents
about this agent, i.e.,

xi =
1

n

n∑
j=1

sji. (17)

Each agent is assigned the additional transfer

ti = pi −
1

n

n∑
j=1

pj , (18)

where pi = β
∑n

j=1(xj − sij)2 gives penalty for "discrepancy" and β = 5 × 104

is the penalty strictness.
The resulting payo� of an agent is his utility from the resource gained at the

last step of the game minus the assigned transfer: ϕi = ui − ti.
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