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Abstract The current study represents a survey on several modi�cations of
compartment epidemic models with continuous and impulse control policies.
The main contribution of the survey is the modi�cation of the classical Sus-
ceptible Infected Recovered (SIR) model with the assumption that two types
of viruses are circulating in the population at the same time. Moreover, we
also take into consideration the network structure of the initial population
in two-virus SIIR models and estimate the e�ectiveness of protection mea-
sures over complex networks. In each model, the optimal control problem
has been formalized to minimize the costs of the virus spreading and �nd
optimal continuous and impulse antivirus controllers. All theoretical results
are corroborated by a large number of numerical simulations.
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1. Introduction

The current paper represents an overview of the results obtained in the frame-
work of the controlled epidemic models by the authors and their colleagues in
(Gubar, 2013; Taynitskiy, 2016b; Taynitskiy, 2017a; Taynitskiy, 2017b). Infection
diseases remain a serious medical problem all around the world for many centuries
with million deaths per year. The emergence of new diseases such as the severe
acute respiratory syndrome (SARS) and, most recently, the rise of Ebola and Zika
viruses, Hepatitis, COVID-19 and other diseases represent a few examples of the
serious problems that the public health and medical science research need to inves-
tigate. A compartment epidemic models provide an appropriate mathematical tool
to study the factors that impact on epidemic growth to improve existing treatments
and evaluate new e�ective prevention measures. Moreover, the process of propa-
gation of biological virus in human or animal populations remain the propagation
of computer viruses or information/rumors in computer, and social networks. Ac-
cording to this reason spreading processes in di�erent domains can be modelled by
various modi�cations of the Susceptible-Infected-Recovered (SIR) epidemic model.
In our review, we will use the term virus to de�ne the object of spreading and
population to de�ne the domain of spreading. In traditional epidemiological com-
partment models, di�erential equations are used to capture the dynamic evolution
of di�erent classes of host populations. In particular, susceptible (S) is the class of
people who are not infected; infected (I) is the class of people who have the disease;
and removed or recovered (R) represents the quarantined or immune population.
The commonly used SIR model (Capasso, 1993; Conn, 2006) is used to describe the
population migrations between these three classes of models.

More speci�cally, in the current survey, it is assumed that two types of viruses
with di�erent strains and �tness functions circulate at the same time in the entire
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population. Such situation is a natural extension of the epidemic models, as well as,
it is known that during the epidemic season several respiratory diseases attack the
population. According to this assumption, it is supposed that both types of viruses
spread in the populations, and, hence, during an epidemic, di�erent parts of the
population are infected. Similar arguments can be applied to the virus propagation
process in computer and social networks. In our work, the infected subpopulations
are split into two subgroups and we considered a modi�ed SIR model. Therefore,
the epidemic process in the total population depends on changes in the virus sub-
population.

One of the main questions in epidemic modelling is how to prevent the rise of
epidemics and protect the population from the virus intervention. The application
of the optimal control approach helps to answer this question. Formulation of the
optimal control problem allows to �nd the optimal treatment or preventive strategies
which protect the population and evaluate the costs of the selected measures.

In the current review, we merge the results, received for several modi�cations
of the epidemiological model with two viruses. The paper is organized as follows.
In Section 6. a control-theoretic model to design disease control strategies through
quarantine and immunization is formulated to mitigate the impact of epidemics on
the entire population. Virus transmission in epidemics can be described by dynamics
on a graph where vertices denote individuals and an edge connecting a pair of ver-
tices indicates interaction between individuals. Due to a large population of people
involved in the process of disease transmission, random graph models such as the
small-world networks in (Strogatz, 2001) or scale-free networks in (Barabasi, 1999)
are convenient to capture the heterogeneous patterns in the large scale complex net-
work. We study two variants of controlled multi-strain epidemic models for hetero-
geneous populations over a large complex network. One is the Susceptible-Infected-
Recovered (SIR) epidemic process, where the control is to quarantine a fraction
of the infected individuals. Another model is the Susceptible-Infected-Susceptible
(SIS) epidemic process, here we assume that the control corresponds to treatment of
the infected individuals, however, treated individuals can become susceptible again
to the infection of the disease with the course of time.

In Section 9. the virus control mechanism is to remove an optimal fraction of
the infected items at discrete points in time. Such mechanism is also known as
an optimal impulse controller. The hybrid nature of discrete-time control policy
of continuous-time epidemic dynamics together with the network structure poses a
challenging optimal control problem. We apply the modi�ed Pontryagin's maximum
principle for impulsive systems to obtain an optimal structure of the controller and
corroborate it by using numerical experiments to demonstrate the structure of the
optimal control and the controlled dynamics. This work extends the investigation
of previous related works (Gubar, 2013; Taynitskiy, 2017a; Taynitskiy, 2017b) to
a new paradigm of coupled epidemic models and the regime of optimal impulsive
control. In Section 2., we discuss related work to our model. The paper is concluded
in Section 11..

2. Related works

The recent literature has seen a surge of interest in using optimal control and
game-theoretic methods to study disease control of respiratory viruses for public
health (Newman, 2005; Bomze, 2011; Vespignani, 2015). This research problem has
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been arisen from the work (Kermack, 1927), where a SIR mathematical framework
was proposed to study epidemic spread in a homogeneous population. Future re-
search (Perkins, 2020; Rowthorn, 2020) extends the classical model and design a
class of compartment epidemic models. Later, in (Wickwire, 1975), a control prob-
lem was formulated for a model of the carrier-borne epidemic model, and it was
shown that the optimal-control e�ort switches at maximum once between the maxi-
mum and the minimum control e�ort. In (Behncke, 2000), and (Pappas, 2016) many
variants of optimal-control models of SIR epidemics were investigated for di�erent
domains: vaccination and health-promotion campaigns, information security, infor-
mation spreading, etc. For example, in (Francis, 2004; Butler, 2012), a dynamic SIR
epidemic model was used to identify the optimal vaccination-policy mixes for �u
season.

Epidemic models have also been used in computer science and engineering to
describe the evolution of worm propagation in computer networks (Khouzani, 2011;
Taynitskiy, 2016a; Newman, 2016). In (Altman, 2010; Khouzani, 2010), optimal-
control methods were used to study the class of epidemic models in mobile wireless
networks, and Pontryagin's maximum principle was used to quantify the damage
that virus could in�ict on the network by deploying optimum decision rules.

Game-theoretic approaches were also used to analyze the strategic interactions
between malicious worms and the system under attack. In (Omic, 2009), a virus-
protection game was proposed based on two-state epidemic models for N nodes and
the characterization of the equilibrium focus on the steady-state of the response. In
(Zhu, 2012), static- and dynamic-game frameworks were used to design equilibrium-
revocation strategies for defending sensor networks from node-capturing and cloning
attacks. It was shown that the N + 1 non-zero-sum di�erential game framework
was equivalent to a zero-sum di�erential game between a team of N attackers and
the system. In (Fu, 2011; Taynitskiy, 2015) the SIR model was combined with a
game-theoretical approach to de�ne the optimal medical approach: vaccination or
treatment of seasonal in�uenza.

In many modern studies, di�erent modi�cations of SIR models were used to
estimate the behaviour of infectious diseases, such as Ebola and Severe acute respi-
ratory syndrome (SARS) (Chowell, 2017). Nowadays many research projects have
concentrated on the study of the pandemic outbreak, generated by the spreading of
SARS-COV-2 all over the world. Many research focuses not only on medical aspects
of the coronavirus propagation but also on the economic e�ects of the application
of long and short-terms lockdown (Pragyan, 2020; Rowson, 2020).

Di�erent from recent research, this survey considers a novel framework based on
the SIR epidemic model including virus mutations. This framework is motivated by
the fact that the epidemic spread of a virus can facilitate virus mutations or parallel
spreading, strengthening its virulence, which, in turn, accelerates the spread and
deteriorates epidemics.

3. Epidemic process for simultaneously spreading viruses

Infectious diseases, such as in�uenza, SARS, and novel coronavirus, are urgent
public health problems in modern urban environments. These infections spread
faster, especially in large urban populations, and a�ects people's lifestyle and work-
ing facilities. The appearance of epidemics depends on many factors, such as the
size of the human population, and the virus strain and virulence, and it has be-
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come important to use e�ective tools to reduce their impact on human populations
(Bonhoe�er, 1997; Gjorgjieva, 2005; Fu, 2011).

In this section of the survey, we present a joint dynamic process of virus prop-
agation and its impact on human populations, which is de�ned by extended SIIR
(Kermack, 1927; Khatri, 2003; Gubar, 2013) epidemic model. Based on the stan-
dard approach, a human population of sizeN is divided into subpopulations: the sus-
ceptible, the infected, and the recovered. However, it is assumed that the virus has
two types or strains, denoted by V1 and V2, and without loss of generality, we assume
that V2 dominates virus V1. A virus with higher virulence has a higher probability
of infection. The �tness of virus type Vi in the population is J i(Vi, Vj), i, j = 1, 2,
which depends on the survivability of the virus among its infected population (e.g.,
human beings).

According to this assumption, a human population is split into four groups: the
susceptible, the infected by virus V1, the infected by virus V2, and the recovered.
The Susceptible (S) are a subpopulation of human beings that are not infected by
viruses but could be infected by one or both types of viruses, and they do not have
immunity to them. We assume that two types of viruses coexist at the same time.
Human organisms can be occupied by both types of viruses, and, hence, this leads
to competition between viruses for the host. Depending on virus strength, people
infected by the �rst virus (I1) or by the second virus (I2) belong to the Infected
subpopulation. The Recovered subpopulation (R) consists of people recovered from
being infected. The mixing of urban populations allows viruses to spread quickly,
and each person in the population is assumed to be in contact with others with
equal probability. Hence, when a susceptible individual interacts with an infected,
the virus spreads.

4. SIIR-model with continuous control

In the paper (Gubar, 2013) we modeled a virus spreading in an urban pop-
ulation using the epidemiological SIIR model, coupled with virus mutation pro-
cess. A system of di�erential equations was used to describe the fraction of the
urban population as a function of time. At the time moment t, the fractions of
the population who are susceptible, infected by virus V1, infected by virus V2,
and recovered are equal to nS(t), nI1(t), nI2(t), nR(t), respectively. Also condition
N = nS(t) + nI1(t) + nI2(t) + nR(t) is satis�ed. De�ne the fraction of susceptible

as S(t) = nS(t)
N , the fractions of infected as I1(t) =

nI1
(t)

N , I2(t) =
nI2

(t)

N , and

R(t) = nR(t)
N are the fraction of recovered. At the beginning of epidemic process at

t = 0, most people are in the Susceptible state, small groups in the total popula-
tion are infected, and the other people are in the recovered subpopulation. Hence,
the initial states are: 0 < S(0) = S0 < 1, 0 < I1(0) = I01 < 1, 0 < I2(0) = I02 < 1,
R(0) = 1− S0 − I01 − I02 .

The extended the SIIR model to describe the process of propagation:

dS

dt
= −δ1(t)S(t)I1(t)− δ2(t)S(t)I2(t);

dI1
dt

= (δ1(t)S(t)− σ1 − u1(t))I1(t);
dI2
dt

= (δ2(t)S(t)− σ2 − u2(t))I2(t);
dR

dt
= (σ1 + u1(t))I1(t) + (σ2 + u2(t))I2(t);

(1)
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where δi(t) are the infection rates for virus Vi, i = 1, 2 at the time moment t.
Virus mutation leads to changes in the speed of the virus spreading. Parameters σ1
and σ2 are self-recovery rates of viruses V1 and V2. They show the probability that
infected nodes from subgroups I1 or I2 are recovered from the infection without
causing any costs to our system. Infection rate is de�ned as the product of infection
transmissibility, i.e., the probability of infection being transmitted during contact:

δi(t) = δi(t−∆t) + δi(t−∆t)(Ii(t)− Ii(t−∆t)), (2)

where δi(0) = δi0Ii(0). Here δi0 , i = 1, 2, determine the virulence of the particular
virus or the ability to infect a susceptible host.

From the previous research, it is known, that spreading of viruses can be con-
trolled using prevention measures such as medical treatment or isolation of infected
individuals of the population. Medical treatment or quarantine isolation reduces
the number of infected individuals in the urban population. These prevention mea-
sures can be interpreted as control parameters in the system de�ned as u = (u1, u2).
Here, ui are fractions of the infected that are quarantined or under intensive medical
treatment: 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, for all t.

4.1. Objective Function

In this work, we minimize aggregated cost in time interval [0, T ]. At any given
t, the following costs exist in the system: f1(I1(t)), f2(I2(t)) are infected costs;
g(R(t)) is bene�t rate function; h1(u1(t)), h2(u2(t)) are costs for medical treatments
(i.e., quarantine or removal) that help reduce the epidemic spread; kI1 , kI1 , kR,
costs and bene�t for invective and recovered at the end of the epidemic. Here,
functions fi(Ii(t)) are non-decreasing and twice-di�erentiable, convex functions, i.e.,
fi(0) = 0, fi(Ii(t)) > 0 for Ii(t) > 0, i = 1, 2., g(R(t)) is non-decreasing and
di�erentiable function and g(0) = 0, hi(ui(t)) is twice-di�erentiable and increasing
function in ui(t) such as hi(0) = 0, hi(ui(t)) > 0, i = 1, 2, when ui(t) > 0. We
represent the structure of the optimal control strategies for the general case of costs
functions. Hence, in particular cases this condition will be satis�ed for any functions
with the same properties.

The cost for the aggregated system is given by

J =
∫ T

0
f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))dt+

kI1I1(T ) + kI2I2(T )− kRR(T ),
(3)

and the optimal-control problem is to minimize the cost, i.e., min{u1,u2} J. To sim-
plify the analysis, we consider the case where kI1 = kI1 = kR = 0.

4.2. Optimal Control of SIIR-model with continuous control

We used Pontryagin's maximum principle (Pontryagin, 1987) to �nd optimal
control u(t) = (u1(t), u2(t)) to the problem described in Section 4.1. above. De-
�ne associated Hamiltonian H and adjoint functions λS(t), λI1(t), λI2(t), λR(t) as
follows:

H = f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))+
(λI1 − λS)δ1SI1 + (λI2 − λS)δ2SI2 + (λR − λI1)σ1I1+
(λR − λI2)σ2I2 − (λI1 − λR)I1u1 − (λI2 − λR)I2u2.

(4)
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Here, we used condition R(t) = 1−S(t)−I1(t)−I2(t). We constructed an adjoint
system as follows:

λ̇S(t) = −
∂H

∂S
= −λS(−δ1I1 − δ2I2)− λI1δ1I1 − λI2δ2I2;

λ̇I1(t) = −
∂H

∂I1
= −f ′1(I1) + λSδ1S − λI1(δ1S − σ1)− λRσ1;

λ̇I2(t) = −
∂H

∂I2
= −f ′2(I2) + λSδ2S − λI2(δ2S − σ2)− λRσ1;

λ̇R(t) = −
∂H

∂R
= g′(R);

(5)

with transversality conditions given by:

λI1(T ) = 0, λI2(T ) = 0, λS(T ) = 0, λR(T ) = 0. (6)

Consider next derivatives:

∂H

∂u1
= h′1(u1)− (λI1 − λR)I1;

∂H

∂u2
= h′2(u2)− (λI2 − λR)I2.

(7)

According to Pontryagin's maximum principle, there exist continuous and piece-
wise continuously di�erentiable costate functions λ that, at every point t ∈ [0, T ],
where u1 and u2 are continuous, satisfy system (5) and Equation (6). In addition,
we have:

(u1, u2) ∈ arg min
u1,u2∈[0,1]

H(λ, (S, I1, I2, R), (u1, u2)). (8)

We de�ne switching functions φi as follows:

φ1(t) = (λI1(t)− λR(t))I1(t), φ2(t) = (λI2(t)− λR(t))I2(t).

Based on previous research (Pontryagin, 1987; Khouzani, 2010), in this subsection
we show that optimal control u(t) = (u1(t), u2(t)) has the following structural re-
sults:

Functions hi(·) and the Hamiltonian are concave
Let hi(·) be a concave functions (h′′i (·) < 0), then according to (4), the Hamil-

tonian is a concave function of ui, i = 1, 2. There are two di�erent options for
ui ∈ [0, 1] that minimize the Hamiltonian, i.e., if at the time moment t

hi(0)− φi(t) · 0 < hi(1)− φi(t) · 1,

or
hi(1) > φi(t),

then optimal control is ui = 0 (see Fig. 2 (left)); otherwise ui = 1 (see Fig. 2
(right)).

For i = 1, 2, the optimal control parameters ui(t) are de�ned as follows:

u∗i (t) =

{
0, for φi(t) < hi(1),
1, for φi(t) ≥ hi(1).

(9)
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Fig. 1. Hamiltonian if functions hi(·) are concave.

Functions φi are non-negative functions, then there can be at most one time
moment t ∈ [0, T ] at which φi(t) = h′i(ui(t)). Moreover, if such moment exists, for
example, t1, then φi(t) < hi(1) on 0 ≤ t < t1 and φi(t) ≥ hi(1) on t1 ≤ t < T .

Functions hi(·) and the Hamiltonian are strictly convex
Let hi(·) be a strictly convex functions (h′′i (·) > 0), then Hamiltonian is a convex

function. Consider the following derivative:

∂
∂x (hi(x)− φix) |x=xi

= 0, (10)

where xi ∈ [0, 1], u∗i (t) = xi. There are three di�erent types of points at which the
Hamiltonian reaches its minimum (Fig. 3). To �nd them, we need to consider the
derivatives of the Hamiltonian at ui = 0 and ui = 1. If the derivatives (10) at ui = 0
are increasing (h′i(0) − φi ≥ 0), then the value of the control that minimizes the
Hamiltonian is less than 0, and according to our restrictions (ui ∈ [0, 1]) optimal
control will be equal to 0 (Fig. 3a). If the derivatives at ui = 1 are non-increasing
(h′i(1)− φi < 0), it means that the value of the control that minimizes the Hamil-
tonian is greater than 1. Hence the optimal control will be 1 (Fig. 3c); otherwise,
we can �nd such value u∗i ∈ (0, 1) (see Fig. 3b).

Fig. 2. Hamiltonian when functions hi(·) are convex.

Functions φi(t), h
′
i(t), u

∗
i (t) are continuous at all t ∈ [0, T ]. In this case hi is

strictly convex and h′i is strictly increasing functions, so h′i(0) < h′i(1). Thus there
exist points t0 and t1 (0 < t0 < t1 < T ) so that conditions (11) are satis�ed, and
according to φi(t) are non-positive functions. That is:

u∗i (t) =

0, for φi(t) ≤ h′i(0);
h′−1(φi), for h′i(0) < φi(t) ≤ h′i(1);
1, for h′i(1) < φi(t).

(11)
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5. Numerical Simulation of SIIR-model with continuous control

In this section, we present numerical simulations to corroborate our theoretical
results. Consider a city with population N = 100,000 people, where two viruses,
of di�erent strengths, spread (δ10 = 0.4 and δ20 = 0.5). At time moment t = 0,
half of the population are susceptible to the infection, i.e., S(0) = 0.5. The initial
Recovered subpopulation is R(0) = 0. We set 18% of population as infected by
virus V1, and 32% of the population are infected by virus V2, i.e., I1(0) = 0.18 and
I2(0) = 0.32. The epidemic lasted for 45 days. We assumed that, in this experiment,
the self-recovery rates are equal to σ1 = 0.001 and σ2 = 0.002. During the epidemic,
people from the infected population incur infected costs and, hence, we de�ned
cost functions as f1(I1(t)) = 5I1(t), f2(I2(t)) = 6I2(t); the bene�t rate from the
recovered subpopulation is g(R(t)) = 0.1R(t). In Section 4.2., we have shown that
medical-treatment cost functions to describe the value of treatment can be chosen
as concave or strictly convex. In our simulations, or concave cost functions, we
used h1(u1(t)) = 7u1(t), and h2(u2(t)) = 9u2(t); for convex cost functions, we used
h1(u1(t)) = 15u21(t) and h2(u2(t)) = 10u22(t). The costs here were measured in the
same monetary units (m.u.), which could be US dollars, Chinese RMB, or Euros,
depending on the context.

Fig. 3. Experiment 1.1. Left: SIIR model without virus mutation and without applying
control. Initial states are I1(0) = 0.18, I2(0) = 0.32, maximum values are I1max = 0.3031
and I2max = 0.6742. Epidemic peaks a reached at 11th and 10th days. Right: SIIR model
without virus mutation with application of control. Vertical axes show the fractions of the
subpopulations.

Experiment 1.1 shows the behaviour of the system without virus mutation.
As a control strategy, we used the medical treatment of the infected host, and
the convex form of cost functions, i.e., h1(u1) = 15u21 and h2(u2) = 10u22. After
simulations, we obtained that the maximum amount of replicas in the case without
applying treatment were I1(t1) = 0.3031 at t1 = 11.25, and I2(t2) = 0.6742 at
t2 = 10.25 (Figure 3). From this experiment, we can see that, in the absence of
treatment at the end of the epidemic period, our population had the following
distribution of Infected hosts: 29% are infected by the �rst type of virus and 64%
are infected by the second type of virus. As we have self-recovery rate σ1 = 0.001
and σ2 = 0.002, a fraction of the Recovered is R(T ) = 0.07. In the case when
we applied the control, the fraction of infected hosts is zero at the end of interval
T = 45, and the fraction of the recovered is 92%. There are also some susceptible
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nodes (S(T ) = 0.07) that were not a�ected by the epidemic. The aggregated system
costs are: J = 251.25 in the uncontrolled case and J = 67.08 in the controlled case
(Figure 4).

Fig. 4. Experiment 1.1. Left: Optimal control in SIIR model without virus mutation; cost
functions are convex hi(ui). Vertical axis shows the amount of applied control. Right:
Comparison of aggregated costs of SIIR model without virus mutation (Controlled case:
J = 67.08; uncontrolled case: J = 251.25). Vertical axis shows the aggregated costs at
time moment t in m.u.

Experiment 1.2 represents the SIIR model with virus mutation. Infection rates
δi(t), i = 1, 2 indicate the speed of viruses spreading in the population. In our work,
it means that we take the competition between viruses for the host into account.
Here, we supposed that the stronger virus captures more hosts. The strength of the
virus depends on the infection rates, which change under a mutation process. In this
experiment, infection rates changed by the formula (2). We can allocate available
resources in such way that the aggregated costs of the system are minimized. Using
the SIIR model, we illustrate how the system develops under various types of control.

Fig. 5. Experiment 1.2. Left: SIIR model with virus mutation and without applying con-
trol. Maximum values are I1max = 0.2165, I2max = 0.7746. Epidemic peaks reached at the
11th and 8th days. Right: SIIR model with virus mutation and application of control.
Functions hi(ui(t)) are convex. Vertical axes show the fractions of the subpopulations.
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Fig. 6. Experiment 1.2. Left: Optimal control in the SIIR model with virus mutation and
convex cost functions hi(ui(t)). Vertical axis shows the amount of applied control. Right:
Comparison of aggregated costs of the SIIR model with virus mutation (Controlled case:
J = 73.64, uncontrolled case: J = 261.4). Vertical axis shows the aggregated costs at time
moment t in m.u.

Figure 5 (left) shows the behaviour of the system in the uncontrolled case, where
the maximum population of V1 was I1(t1) = 0.2165 at t1 = 11.25 and the maximum
population of V2 was I2(t2) = 0.7746 at t2 = 8.5. By applying optimal treatment
strategies, we observed that the maximal values for both types of viruses were equal
to their initial state (I1(0) = 0.12 and I2(0) = 0.38). The structure of the optimal
control in the case with the virus mutation is shown in Figure 6 (left). Comparison
of aggregated costs is presented in Figure 6 (right). The aggregated system costs
are J = 261.4 in the uncontrolled case and J = 73.64 in the controlled case. Figure
7 demonstrates the change of the infection rates of Experiment 1.2 in uncontrolled
and controlled cases.

Fig. 7. Left: Experiment 1.3. Infected rates of the SIIR model with virus mutations (un-
controlled case). Infectious rates are δ1 = 0.44 and δ2 = 0.67 at the time moment t = T .
Right: Experiment 3. Infected rates of the SIIR model with virus mutations (controlled
case). Infectious rates are δ1 = 0.337 and δ2 = 0.339 at the time moment t = T .

Experiment 1.3 describes the case when the costs for medical treatments are
concave functions. In this case, we have proven in Section 4.2. that the optimal
control has a �bang-bang� structure, i.e., Figure 8 (right). The control for the �rst



A Survey on Two Viruses Extensions of Epidemic Model 137

type of virus is turned o� on the seventh day, and, for the second type, on the ninth
day. At the end of the interval T = 45, the proportion of the recovered hosts is 60%,
while the remaining population was still susceptible to infection. The comparisons
of the aggregated costs are presented in Figure 9 (left). Aggregated system costs
are J = 72.35 in the uncontrolled case and J = 289.42 in the controlled case.

Fig. 8. Experiment 1.3. Left: SIIR model with virus mutation and application of control.
Functions hi(ui(t)) are concave. Vertical axis shows the fractions of the subpopulations.
Right: Optimal control in SIIR model with virus mutation and concave-cost functions
hi(ui(t)). Control was switched o� at the seventh day for V1, and at the ninth day for V2.
Vertical axis shows the amount of applied control at time moment t.

Fig. 9. Experiment 1.3. Comparison of aggregated costs of the SIIR model with virus
mutation (Controlled case: J = 72.35, uncontrolled case: J = 258.85). Vertical axis shows
the aggregated costs at time moment t in m.u.

Experiment 1.4. The current simulations show the behaviour of the system on
the time interval of 30 days. The next values of the parameters have been used in
the experiments: infection rates are equal to δ10 = 0.3 and δ20 = 0.4, self-recovery
rates are σ1 = 0.002 and σ2 = 0.0012 for virus V1 and V2 respectively. Uncontrolled
and controlled epidemic processes are represented in Fig. 10. Medical treatment of
the infected host is considered as a control strategy. Treatment costs function are
in the convex form h1(u1) = 12u21 and h2(u2) = 16u22 and infection cost functions
are f1(I1(t)) = 8I1(t), f2(I2(t)) = 12I2(t). The structure of the optimal control and
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the aggregated system costs are presented in Fig. 11. Aggregated system costs are
J = 268.79 in the uncontrolled case and J = 59.2 in the controlled case.

Fig. 10. Experiment 1.4. Left: SIIR model without virus mutation and without applying
control. Initial states are I1(0) = 0.3, I2(0) = 0.2, maximum values are I1max = 0.53
and I2max = 0.42. Epidemic peaks a reached at 14th and 15th days. Right: SIIR model
without virus mutation with application of control. Vertical axes show the fractions of the
subpopulations.

Fig. 11. Experiment 1.4. Left: Optimal control in SIIR model without virus mutation;
cost functions hi(ui) are convex. Vertical axis shows the amount of applied control. Right:
Comparison of aggregated costs of SIIR model without virus mutation (Controlled case:
J = 59.2; uncontrolled case: J = 268.79). Vertical axis shows the aggregated costs at time
moment t in m.u.

6. SIIR-model over a complex network with continuous control

Network frameworks are a natural modi�cation of the epidemic model and pro-
vide a convenient tool for describing contacts between agents in a population. Such
modi�cation of the model from the Section 3. has been represented in (Taynitskiy,
2017b), where the spreading of the two di�erent types of viruses is described over
a complex network. In addition the network structure is the natural completion of
the epidemic process because in many real-life situations, people can contact not
only at random but in compliance with it is a network of relatives and neighbours.
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The same considerations can be applied to the computer and social networks. Ac-
cording to this reason we reformulate the epidemic model with two viruses in terms
of networks.

Denote by Sk(t), Rk(t) the population densities of the Susceptible and Recovered
nodes with degree k at time t. We consider two strains of viruses co-exist in the
network. I1k(t), I

2
k(t) are the population densities of the Infected nodes of degree

k at time t. In the network and for all t, we assume that the total population is
constant, i.e., Sk(t)+ I

1
k(t)+ I

2
k(t)+Rk(t) = 1 for any k. As in previous section, we

have extended the simple SIR model (Kermack, 1927) to describe the propagation
two di�erent viruses over a population, which is de�ned by complex network.

dSk

dt
= −δ1SI1Θ1 − δ2SI2Θ2;

dI1k
dt

= (δ1SkΘ1 − σ1 − u1)I1k ;
dI2k
dt

= (δ2SkΘ2 − σ2 − u2)I2k ;
dRk

dt
= (σ1 + u1)I

1
k + (σ2 + u2)I

2
k ;

(12)

where δi are infection rates for virus Vi, i = 1, 2, σi are recovered rates, and let
infectivity of the be denoted as li = δi/σi.

We considered the graph generated by using the algorithm devised in (Barabasi,
1999). We start from a small number m0 of disconnected nodes; every time step
a new node is added, with m links that are connected to an old node i with ki
links according to the probability ki/

∑
j kj . After iterating this scheme a su�cient

number of times, we obtain a network composed by N nodes with connectivity
distribution P (k) ≈ k−3 and average connectivity ⟨k⟩ = 2m. In this work, we take
m = 4.

At the beginning of epidemic process t = 0, most of nodes in the network belong
to the susceptible subgroup, and small subgroup in total population is infected;
and the remaining nodes are in the recovered subgroup. Hence initial states are:
0 < Sk(0) = S0 < 1, 0 < I1k(0) < 1, 0 < I2k(0) < 1, Rk(0) = 1− S0 − I1k(0)− I2k(0).
Θi(t) can be written in general (see (Fu, 2008; Vespignani, 2015)) as

Θi(li) =
∑
k′

liP (k
′|k)Ijk′

k′
, i = 1, 2, (13)

where P (k′|k) describes the probability of a node with degree k pointing to a node

with degree k′, and P (k′|k) = k′P (k′)
⟨k⟩ , where ⟨k⟩ =

∑
k′
kP (k). For scale-free node

distribution P (k) = C−1k−2−γ , 0 < γ ≤ 1, where C = ζ(2 + γ) is Riemann's
zeta function, which provides the appropriate normalization constant for su�ciently
large networks. The control parameters which can be used to protect the network
from the propagation of the virus are de�ned as u = (u1, u2). Here, ui are fractions
of the infected nodes which are quarantined in the population. Recovered rates
σi are the coe�cients of "self-recovery", which de�ned the self-recovery process,
without application of any special measures.

6.1. Objective Function

As in previous section, we will minimize the overall cost in time interval [0, T ].
At any given t, the following cost functions are presented in the system: f1(I

1
k(t)),
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f2(I
2
k(t)) are infection costs; g(Rk(t)) is utility of having Rk(t) fraction of nodes

recovered at time t; h1(u1(t)), h2(u2(t)) are costs for using antivirus patches or
quarantine that help to reduce epidemic spreading. Here, functions fi(t(t)) are non-
decreasing and twice-di�erentiable, convex functions, with fi(0) = 0, fi(Ii(t)) > 0
for Ii(t) > 0, i = 1, 2; g(·) is non-decreasing and di�erentiable, and g(0) = 0;
hi(ui(t)) is twice-di�erentiable and increasing function in ui(t) such that hi(0) = 0,
hi(ui(t)) > 0, i = 1, 2 when ui(t) > 0.

The aggregated system costs is given by

J =
T∫
0

f1(I
1
k(t)) + f2(I

2
k(t))− g(Rk(t)) + h1(u1(t)) + h2(u2(t))dt, (14)

and the optimal control problem is to minimize the cost, i.e., min{u1,u2} J .
Treatment or isolation is considered as the control parameters that can help to

reduce the fraction of infected nodes in network. We de�ne variable u = (u1, u2) as
control variables with 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, for all t.

6.2. Optimal control of SIIR-model over a complex network with
continuous control

As previously, we �nd the optimal solution u = (u1, u2) by using Pontryagin's
maximum principle (Pontryagin, 1987).

Since the algorithm of �nding the optimal control repeats steps from the Section
1, we represent auxiliary computation in Appendix 1, and in the current paragraph,
only the structure of the optimal control is shown. Firstly, switching functions φi

k

are de�ned as follows:

φ1
k = (λI1

k
− λRk

)I1k , φ2
k = (λI2

k
− λRk

)I2k .

Proposition 1. If h(·) and the Hamiltonian are concave, then the optimal control
policy has following structure:

u∗i (t) =

{
0, for φi

k(t) < hi(1),
1, for φi

k(t) ≥ hi(1).
(15)

If h(·) and the Hamiltonian are convex, then the optimal control policy has fol-
lowing structure:

u∗i (t) =

0, for φi
k(t) ≤ h′i(0);

h′−1(φi
k), for h′i(0) < φi

k(t) ≤ h′i(1);
1, for h′i(1) < φi

k(t).
(16)

7. SIIS-model over a complex network with continuous control

A set of nodes N is divided into two subgroups: Susceptible (S), Infected (I).
We suppose that two di�erent viruses with di�erent strains circulate in the network
at time t. Let Sk(t), I

1
k(t), I

2
k(t) be the densities of susceptible and infected nodes

with degree k at time t. Let li =
δi
σi
, where δi is infection rate and infected nodes

are cured and become again susceptible with rate σi, i = 1, 2.
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dSk

dt
= −l1Sk(t)Θ1 − l2Sk(t)Θ2 + (u1 + 1)I1k(t) + (u2 + 1)I2k(t);

dI1
dt

= l1Sk(t)Θ1 − I1k(t)− u1I1k(t);
dI2
dt

= l2Sk(t)Θ2 − I2k(t)− u2I2k(t).

(17)

7.1. Objective Function

At any given t in time interval [0, T ] following costs exist in the system: f(Ik(t))
these are treatment costs, hi(ui(t)) are costs for medical measures (i.e. quarantine)
that help to reduce epidemic spreading. Here, the functions fi(·) are non-decreasing
and twice-di�erentiable, convex functions, with fi(0) = 0, fi(I

i
k) > 0 for Iik > 0,

g(Sk(t)) is non-decreasing and di�erentiable function describing bene�ts of using
control, where Sk(t) = 1− I1k(t)− I2k(t) and g(0) = 0; hi(·) are twice-di�erentiable
and increasing function in ui(t) such that hi(0) = 0, hi(ui) > 0 when ui > 0, with
feasible controls ui ∈ [0, 1].

The aggregated system costs is given by

J =
T∫
0

f1(I
1
k(t)) + f2(I

2
k(t)) + h1(u1(t)) + h2(u2(t))− g(Sk(t))dt. (18)

and the optimal control problem is to minimize the cost, i.e.,minu1,u2∈[0,1] J. System
(17) describes the propagation of two di�erent strains of viruses in the network. The
propagation of the viruses is controlled by parameters ui, i = 1, 2. Here ui is the
antivirus strategy.

7.2. Optimal control of SIIS-model over a complex network with
continuous control

We �nd the optimal control u = (u1, u2) which yields the minimum solution to
the functional (18) for the problem described above following Pontryagin's maxi-
mum principle. The Hamiltonian of the system and the adjoint functions can be
found in Appendix 2. De�ne switching functions φi

k as follows:

φ1
k = (λI1

k
− λSk

)I1k ; φ2
k = (λI2

k
− λSk

)I2k . (19)

Proposition 2. If h(·) are concave, then the optimal control policy has following
structure:

u∗i (t) =

{
0, for φi

k(t) < hi(1),
1, for φi

k(t) ≥ hi(1).
(20)

If h(·) is convex, then the optimal control policy has following structure:

u∗i (t) =

0, for φi
k(t) ≤ h′i(0);

h′−1(φi
k), for h′i(0) < φi

k(t) ≤ h′i(1);
1, for h′i(1) < φi

k(t).
(21)

8. Numerical simulation of SIIR and SIIS models with continuous
control

In this section, series of numerical simulations are represented in support of the
main theoretical results from the Section 6. We represent optimal strategies for
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SIIR and SIIS models for strictly convex cost functions hi(ui) and compare the
aggregated system costs in uncontrolled and controlled cases.

Experiment 2.1. This experiment represents the behavior of the SIIR system.
We use the following initial states: susceptible subpopulation � Sk(0) = 0.5, infected
� I1k(0) = 0.2 and I2k(0) = 0.3, and recovered � Rk(0) = 0. Infection rates are
δ1 = 0.3 and δ2 = 0.4 for the �rst and the second viruses, respectively. Self-recovery
rates are σ1 = 0.003 and σ2 = 0.001. We consider time interval [0, T ], where T =
20. Infected cost functions incurred by the virus are fI1

k(t)
= 8I1k(t) and fI2

k(t)
=

10I2k(t). Utility function from the fraction of the recovered nodes Rk(t) are equal
to g(Rk(t)) = 0.1Rk(t). Treatment cost functions are strictly convex � h1(u1(t)) =
0.4u21(t) for the �rst virus and h2(u2(t)) = 0.5u22(t) for the second virus.

Fig. 12. Experiment 2.1. Left: SIIR model without applying of control. Right: SIIR with
application of control.

Behavior of the system (12) is presented in Figure 12: left � uncontrolled case,
right � controlled case. In uncontrolled case, most of the nodes are infected by one
of the viruses and a small fraction of the nodes are recovered. Epidemic peaks a
reached at the last 20-th day. In controlled case, at the end of the interval, all nodes
are in the recovered or susceptible states.

Fig. 13. Experiment 2.1. Left: Structure of the optimal control in SIIR model. Right:
Comparison of aggregated costs of SIIR model without virus mutation (Controlled case:
J = 36.39; uncontrolled case: J = 175.25).
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The optimal control strategy is shown in Figure 13(left). The set of switching
points are t1 = 1.4 and t2 = 1.8. Aggregation system costs are equal to J0 = 175.25
when treatment is not applied to the infected group, and J1 = 36.39 in controlled
case (Figure 13(right)).

Experiment 2.2. For the case of SIIS model, we use the following initial state
values: Sk(0) = 0.7, I1k(0) = 0.1, I2k(0) = 0.2; infection and recovered rates are the
same as in Experiment 2.1. The total duration of the epidemics in this experiment
remains the same T = 20. We also keep the values of all cost functions. Behavior of
the system (17) in uncontrolled and controlled cases are presented in Figure 14.

Fig. 14. Experiment 2.2. Left: SIIS model in uncontrolled case. Initial states are I1(0) =
0.1, I2(0) = 0.2, the maximum values are I1max = 0.12, I2max = 0.73. Epidemic peaks a
reached at the last 20-th day. Right: SIIS with application of control.

The optimal control strategy is shown in Figure 15(left). Aggregation system
costs are J0 = 124.6 when in uncontrolled case, and J1 = 19.93 in controlled case
(Figure 15(left)).

Fig. 15. Experiment 2.2. Left: Optimal control in SIIS model without virus mutation,
costs functions are convex hi(ui). Switching points are t1 = 0.8 and t2 = 1.6. Right:
Comparison of aggregated costs of SIIS model without virus mutation (Controlled case:
J = 19.93, uncontrolled case: J = 124.6).
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9. SIIR-model over a complex network with impulse control

In the current section, we consider a model of spreading of viruses in the network
of N nodes, based on the modi�cation of classical SIR model from sections 3. and 6.
Following the previous works (Gubar, 2013; Taynitskiy, 2016b), two di�erent forms
of viruses with di�erent strengths spread over the network simultaneously, we denote
them as V1 and V2. It is also assumed that that a structure of population is described
by the scale free network (Vespignani, 2015; Gubar, 2015). Normally, as SIR model
points, all nodes in the population are divided into three groups: Susceptible (S),
Infected (I) and Recovered (R). Susceptible is a group of nodes which are not infected
by any virus, but may be invaded by any form of virus. The Infected nodes are those
that have been attacked by the virus and the Recovered is a group of recovered
nodes. In modi�ed model subgroup of Infected nodes also is brunched into two
subgroups I1 and I2, where nodes in Ii are infected by virus Vi, i = 1, 2. We formulate
the epidemic process as a system of nonlinear di�erential equations, where nS ,
nV1 , nV2 and nR correspond to the number of susceptible, infected and recovered
nodes, respectively. In current model the connections between nodes are described
by the scale-free network, then we will use the following notation: Sk(t) and Rk(t)
are fractions of Susceptible and Recovered nodes with degree k at time moment
t, I1k(t), I

2
k(t) are fractions of Infected nodes with degree k. At each time moment

t ∈ [0, T ] the number of nodes is constant and equal N , and the following condition
Sk(t) + I1k(t) + I2k(t) + Rk(t) = 1 is satis�ed for any k. The process of spreading is
de�ned by the system of ordinary di�erential equations:

dSk

dt
= −δ1kSkI

1
kΘ1 − δ2kSkI

2
kΘ2;

dI1k
dt

= δ1kSkI
1
kΘ1 − σ1

kI
1
k ;

dI2k
dt

= δ2kSkI
2
kΘ2 − σ2

kI
2
k ,

dRk

dt
= σ1

kI
1
k + σ2

kI
2
k ,

(22)

where δik(k) is the infections rate for the �rst type of the virus i if a susceptible
node has a contact with infected node with the degree k, σi

k is recovery rate.
At the initial time moment t = 0, the most number of nodes belong to Susceptible

group and only a small fraction of Infected by viruses V1 or V2. Initial state for
system (22) is 0 < Sk(0) < 1, 0 < I1k(0) < 1, 0 < I2k(0) < 1, Rk(0) = 1 − Sk(0) −
I1k(0) − I2k(0). Analogously with (Fu, 2008; Vespignani, 2015) we de�ne parameter
Θi(t) as

Θi(li) =
∑
k′

δikP (k
′|k)Iik′

k′
, i = 1, 2. (23)

9.1. Impulse control problem

Previously it was shown in (Vespignani, 2015) a small fraction of the infected
nodes might be survived on small segments of the network and can provoke new
waves of epidemics. This cycled process recalls the behavior of the virus of in�uenza
which causes a seasonally periodic epidemic, (Agur, 1993). Nowadays, several res-
piratory viruses, including SARS-COV-2 are able to cause repeated waves of the
disease. Hence the control of the epidemic process can be formulated as an impulse
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control problem in which a series of impulses of antivirus patches are designed to
reduce the periodically incipient zones of infected nodes. We extend the model (22)
to present an impulse control problem for resuming of virus attacks and obtain the
optimal strategies, which prevent the spreading of viruses in discrete time moments.

We suppose that impulses occur at time τ ik,1, . . . , τ
i
k,qi(k)

, where qi(k) describes
the number of launching of impulse controls for nodes with k degrees, index i in-
dicates the type of virus. We also assume that on the time intervals (τ ik,j , τ

i
k,j+1]

system (22) describes the behaviour of virus in the network. We have reformulated
epidemic model to describe the situation with two types of viruses for all time pe-
riods except the sequence of times τ i+k,j , j = 1, . . . , qi(k), i = 1, 2. Additionally, we

set S(τ ik,j) = S(τ i−k,j), I1(τ
i
k,j) = I1(τ

i−
k,j), I2(τ

i
k,j) = I2(τ

i−
k,j), R(τ

i
k,j) = R(τ i−k,j).

The system after activation of impulses at time moment τ i+k,j is:

Sk(τ
i+
k,j) = Sk(τ

i
k,j),

I1k(τ
i+
k,j) = I1k(τ

i
k,j)− ν1k(τ ik,j),

I2k(τ
i+
k,j) = I2k(τ

i
k,j)− ν2k(τ ik,j),

Rk(τ
i+
k,j) = Rk(τ

i
k,j) + ν1k(τ

i
k,j) + ν2k(τ

i
k,j).

(24)

Variables νik = (νik,1, . . . , ν
i
k,qi(k)

), i = 1, 2, correspond to control impulses ap-
plied at the discrete time moments τk,1, . . . , τk,qi(k) and represent the fraction of
recovered nodes. Let be νik,j = cik,jδ(t − τ ik,j), where δ(t − τ ik,j) is Dirac function,
cik,j ∈ [0, uik,j ] is the value of impulse, leads to changes of the dynamical system,

uik,j is the maximum value for control (Agur, 1993).

9.2. Objective Function

The objective function of the combined system (24) is represented by the ag-
gregated costs on the time interval [0, T ] including the costs of control impulses.
The aggregated costs for continuous system (22) are de�ned as follows: at time
moment t ̸= τ ik,j , j = 1, . . . , qi(k), i = 1, 2, we have the costs from infected nodes

f1k (I
1
k(t)) and f

2
k (I

2
k(t)). Functions f

i
k(·) are non-decreasing and twice-di�erentiable,

such that f ik(0) = 0, f ik(I
i
k(t)) > 0 for Iik(t) > 0 with t ∈ (τ ik,j−1, τ

i
k,j ]. For system

(24), we de�ne the treatment costs as functions hik(ν
i
k,j(τ

i+
k,j)), j = 1, . . . , qi(k),

where hik(ν
i
k,j(τ

i+
k,j)) > 0, νik,j(τ

i+
k,j) > 0 for i = 1, 2. Functions g(Rk(t)) are non-

decreasing and capture the bene�t rates from Recovered nodes. The aggregated
system costs are de�ned by the functional:

J =
∑
k∈N

[
∫ T

0
f1k (I

1
k(t)) + f2k (I

2
k(t))− g(Rk(t))dt+

q1(k)∑
j=1

h1k(ν
1
k,j(τ

1
k,j))+

q2(k)∑
j=1

h2k(ν
2
k,j(τ

2
k,j))].

(25)

9.3. The structure of impulse control

According to principle maximum in impulse form (Blaquiere, 1985; Chahim, 2012;
Dykhta, 2009; Taynitskiy, 2015) we write Hamiltonian for dynamic system (22)

H0
k(t) = −f1k (I1k(t))− f2k (I2k(t)) + g(Rk(t)) + (λI1

k
(t)− λSk

(t))δ1kSk(t)I
1
k(t)Θ1(t)+

(λI2
k
(t)− λSk

(t))δ2kSk(t)I
2
k(t)Θ2(t) + (λRk

− λI1
k
)σ1

kI
1
k + (λRk

− λI2
k
)σ2

kI
2
k ;

(26)
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and construct adjoint system as follows:

λ̇Sk
(t) = (λSk

(t)− λI1
k
(t))δ1kI

1
k(t)Θ1(t) + (λSk

(t)− λI2
k
(t))δ2kI

2
k(t)Θ2(t);

λ̇I1
k
(t) =

df1k (I
1
k(t))

dI1k
+ (λSk

(t)− λI1
k
(t))

(
δ1kSk(t)Θ1(t) +

(δ1k)
2Sk(t)I

1
k(t)P (k)

⟨k⟩

)
+

(λI1
k
− λRk

)σ1
k;

λ̇I2
k
(t) =

df2k (I
2
k(t))

dI2k
+ (λSk

(t)− λI2
k
(t))

(
δ2kSk(t)Θ2(t) +

(δ2k)
2Sk(t)I

2
k(t)P (k)

⟨k⟩

)
+

(λI2
k
− λRk

)σ2
k;

λ̇Rk
(t) = −dg(Rk(t)

dRk
,

(27)
with transversality conditions λSk

(T ) = λI1
k
(T ) = λI2

k
(T ) = λRk

(T ) = 0.

Following the maximum principle for impulse control (see Blaquiere, 1985; Sethi,
2006; Chahim, 2012), we formulate necessary optimality conditions as in Theorem
1.

Theorem 1. Let (x∗, N, τ j∗i , ν∗i ), i = 1, 2, be an optimal solution for the impulse
control problem. Then, there exists an adjoint vector function λ(t) = (λS(t), λI1(t),
λI2(t), λR(t)) such that the following conditions hold:

λ̇x(t) = −∂H0

∂x (x∗(t), λ(t), t), (28)

where x(t) = S(t), I1(t), I2(t), R(t).
At the impulse or jump points, it holds that

∂Hc
i

∂νi
(x∗(τ j∗−i ), νi, λ(τ

j∗+
i ), τ j∗i )(νji − ν

j∗
i ) ≥ 0,

(29)

λx(τ
j∗+
i )− λx(τ j∗−i ) =

∂Hc
i

∂x (x∗(τ j∗−i ), νj∗i , λ(τ
j∗+
i ), τ j∗i ),

(30)

H0(x
∗(τ j∗+i ), λ(τ j∗+i ), τ j∗i )−H0(x

∗(τ j∗−i ), λ(τ j∗−i ), τ j∗i )−
−∂Hc

i

∂τj
i

(x∗(τ j∗−i ), νj∗i , λ(τ
j∗+
i ), τ j∗i )

(31)

Equation (31) is strictly more than zero for τ j∗i = 0, equal to zero for τ j∗i ∈
(0, T ), and strictly less than zero for τ j∗i = T .

For all points in time at which there is no jump, i.e. t ̸= τj (j = 1, . . . , ki), it
holds that

∂Hc
j

∂νj
(x∗(t), 0, λ(t), t)νj ≤ 0, (32)

with the transversality condition λ(T ) = 0.

Hamiltonian in impulsive form is

Hc
k(τ

1+
k,j ) = −h1k(ν1k,j(τ

1+
k,j )) + (λRk

(τ1+k,j )− λI1
k
(τ1+k,j ))ν

1
k,j(τ

1+
k,j );

Hc
k(τ

2+
k,j ) = −h2k(ν2k,j(τ

2+
k,j )) + (λRk

(τ2+k,j )− λI2
k
(τ2+k,j ))ν

2
k,j(τ

2+
k,j ).

(33)

Here we assume that for each type of virus V1 and V2 and for each k we have
own set of control impulses ν1k = (ν1k,1, . . . , ν

1
k,q1(k)

) and ν2k = (ν2k,1, . . . , ν
2
k,q2(k)

).
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Adjoin system for system(24) is (i = 1, 2):

λSk
(τ i+k,j) = λSk

(τ ik,j);

λI1
k
(τ i+k,j) = λI1

k
(τ ik,j);

λI2
k
(τ i+k,j) = λI2

k
(τ ik,j);

λRk
(τ i+k,j) = λRk

(τ ik,j).

(34)

Here is the conditions for ∆i for each I
i
k from the Theorem 1:

∆1 = f1k (I
1
k(τ

1
k,j))− f1k (I1k(τ1+k,j ))− g(Rk(τ

1
k,j)) + g(Rk(τ

1+
k,j ))+

c1k,j [
dg(Rk(τ

1+
k,j ))

dRk(τ
1+
k,j )

+
df1k (I

1
k(τ

1+
k,j ))

dI1k(τ
1+
k,j )

] + 2σ1
kc

1
k,j(λRk

(τ1+k,j )− λI1
k
(τ1+k,j ))+

δ1kSk(τ
1
k,j)c

1
k,j(λSk

(τ1k,j)− λI1
k
(τ1k,j))[2Θ1(τ

1+
k,j ) +

δ1kP (k)

⟨k⟩
(1 + I1k(τ

1
k,j)− c1k,j)].

(35)
Here is the conditions for ∆ for each ∆ for each I2k from the Theorem 1:

∆2 = f2k (I
2
k(τ

2
k,j))− f2k (I2k(τ2+k,j ))− g(Rk(τ

2
k,j)) + g(Rk(τ

2+
k,j ))+

c2k,j [
dg(Rk(τ

2+
k,j ))

dRk(τ
2+
k,j )

+
df2k (I

2
k(τ

2+
k,j ))

dI2k(τ
2+
k,j )

] + 2σ2
kc

2
k,j(λRk

(τ2+k,j )− λI2
k
(τ2+k,j ))+

δ2kSk(τ
2
k,j)c

2
k,j(λSk

(τ2k,j)− λI2
k
(τ2k,j))[2Θ2(τ

2+
k,j ) +

δ2kP (k)

⟨k⟩
(1 + I2k(τ

2
k,j)− c2k,j)].

(36)
According to Theorem 1 at time τ ik,j ∈ (0, T ) ∆i should be equal to zero. There-

fore, we deal with two di�erent problems: �rstly, if the intensity of impulses cik,j are

�xed, then from (35) and (36), we can �nd the optimal time τ i∗k,j of using impulses;

secondly, if the sequence of time τ ik,j are �xed, then we obtain the optimal level of

the intensity of impulses ci∗k,j , j = 1, . . . , qi, i = 1, 2.

10. Numerical simulation of SIIR model with impulse control

In the current section, we represent numerical experiments to depict theoretical
results on the impulse controls structure. Here as in Experiment 1.4, we use the
following set of the initial states and values of parameters of the system (22): ini-
tial system states and parameters are Sk(0) = 0.5, I1k(0) = 0.3, I2k(0) = 0.2 and
Rk(0) = 0, spreading rates are δ1k = 0.075k, δ2k = 0.1k, self-recovery rates are
σ1
k = 0.0005k and σ1

k = 0.0003k. We set costs functions for infectious subgroups
as f ik(I

i
k(t)) = Ai

kI
i
k(t) with coe�cients A1

k = 2k, A2
k = 3k and treatment costs

functions as hik(ν
i
k,j(τ

i+
k,j) = Bi

kc
i
k,jI

i
k(τ

i+
k,j), where coe�cients are equal to B

1
k = 3k,

B2
k = 4k, c1k,j = 0.1, c2k,j = 0.08 for i = 1, 2, utility function is g(Rk(t)) = 0.1Rk(t).
Experiment 3.1. We present the initial example of the behavior of the system

and aggregated system costs in special case, when an average number of links be-
tween i-th node and its neighbours is k = 4. Figs. 16 represent the propagation of
two types of virus (left) and corresponding total system costs (right).

Aggregated system costs in this experiment are equal to J = 37.65 (controlled
case). By applying the control impulses at discrete time moments we received that
a number of impulses are equal to p1(4) = 37 and p2(4) = 49. Comparing the
aggregated system costs in impulse and continuous cases, we receive that value of
functional J are less in impulse formulation of the optimal control problem.
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Fig. 16. Experiment 3.1. Left: Evolution of the system. Number of links: k = 4, spreading
rates: δ1k = 0.075k and δ2k = 0.1k.Right: Aggregated system costs are equal to J = 37.65.

Experiment 3.2. In this experiment we use the same parameters for initial
data, but in contrast to Experiment 3.1 an average number of neighbours is equal
to k = 7.

We obtain that the aggregated costs are J = 73.93 (controlled case), and an
amount of impulses are equal to p1(7) = 29 and p2(7) = 44. We may notice that
increasing the number of neighbour links increases the costs of the system. Since
there are less nodes with connectivity k = 7 which is more than average connectivity
⟨k⟩ = 4, we need less impulse treatment to vaccinate the network, thereby if we apply
control to more connected nodes we reduce the costs of treatment.

Fig. 17. Experiment 3.2. Left: Evolution of the system. Number of links: k = 7, spreading
rates: δ1k = 0.075k and δ2k = 0.1k.Right: Aggregated system costs are equal to J = 73.93.

Experiment 3.3. By using the same initial set of data we variate the spreading
rate for virus and consider δ1k = 0.1k and δ2k = 0.2k. Here we receive that the
aggregated costs are J = 122.27 and a number of impulses are p1(4) = 43 and
p2(4) = 55, then increasing the spreading rates are leading to increasing aggregated
costs and number of impulses which are needed to heal the network.
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Fig. 18. Experiment 3.3. Left: Evolution of the system. Number of links: k = 4, spreading
rates: δ1k = 0.1k and δ2k = 0.2k. Right: Aggregated system costs are equal to J = 122.27.

11. Conclusion

This survey considers the optimal control problem in three modi�cations of the
epidemic model. Firstly, we represent the model of two simultaneously spreading
viruses and formulate the continuous control problem, secondly, the network formu-
lation extends the SIIR model. It has been investigated the continuous and impulse
optimal control problems for epidemic models of two coexisting types of viruses
for heterogeneous populations, where control e�orts are exerted at discrete time
points, modelling the periodical scheduling of patching processes. We have obtained
the structure of the optimal impulse controller as well as the form of continuous
controls for a special class of cost functions. Numerical examples have been used
to corroborate the theoretical results. From a comparison of the aggregated system
costs in all sections, we have received that functional J is higher in a continuous
case on a fully connected network of Section 4. This fact can be explained by the
impact of networks structure on the population. If each node is connected to the
neighbor node, then the virus spreads much faster, which leads to an increase in
the total costs. However, this modi�cation of the SIIR model does not require large
computational costs and can be used to evaluate real-life situations. Models with
continuous and impulse control over complex networks (Sections 6. and 9.) give
approximately identical aggregated costs. However, in the impulse control model,
numerical simulations showed that at the beginning of the epidemic process, the
healthcare system might be more occupied. It means that more impulses are nec-
essary to protect the system. From the economic point of view, this implies that it
needs to treat more people at the beginning of the epidemic and provoke a collapse
of the system. While in the continuous case, the control strategies are applied more
uniformly, and it permits avoiding the overload of the healthcare system.

12. Appendix 1.

De�ne the associated Hamiltonian H as follows:
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H = f1(I
1
k(t)) + f2(I

2
k(t))− g(Rk(t)) + h1(u1(t)) + h2(u2(t))+

(λI1
k
(t)− λSk

(t))δ1Sk(t)I
1
k(t)Θ1 + (λI2

k
(t)− λSk

(t))δ2Sk(t)I
2
k(t)Θ2+

(λRk
(t)− λI1

k
(t))σ1I

1
k(t) + (λRk

(t)− λI2
k
(t))σ2I

2
k(t)−

(λI1
k
(t)− λRk

(t))I1k(t)u1(t)− (λI2
k
(t)− λRk

(t))I2k(t)u2(t).

(37)

We construct the associated adjoint system as follows:

λ̇Sk
(t) = −(λI1

k
− λSk

)δ1I
1
kΘ1 − (λI2

k
− λSk

)δ2I
2
kΘ2;

λ̇I1
k
(t) = −f ′1(I1k) + (λSk

− λI1
k
)δ1SkΘ1 − (λRk

− λI1
k
)σ1 + (λI1

k
− λRk

)u1;

λ̇I2
k
(t) = −f ′2(I2k) + (λSk

− λI2
k
)δ2SkΘ2 − (λRk

− λI2
k
)σ2 + (λI2

k
− λRk

)u2;

λ̇Rk
(t) = g′(Rk);

(38)

with the transversality conditions given by

λI1
k
(T ) = 0, λI2

k
(T ) = 0, λSk

(T ) = 0, λRk
(T ) = 0. (39)

Following the Pontryagin's maximum principle (Pontryagin, 1987),
there exist continuous and piecewise continuously di�erentiable co-state func-
tions λi that at every point t ∈ [0, T ] where u1 and u2 is continuous, satisfying (38)
and (39). In addition, we have

(u1, u2) ∈ arg min
u1,u2∈[0,1]

H(λ, (Sk, I
1
k , I

2
k , Rk), (u1, u2)). (40)

De�ne switching functions φi
k as follows:

φ1
k = (λI1

k
− λRk

)I1k , φ2
k = (λI2

k
− λRk

)I2k .

Based on previous research, e.g., (Altman, 2010; Pontryagin, 1987; Gubar, 2013),
in this section, we show that an optimal control u(t) = (u1(t), u2(t)) has following
structure:

Functions hi(·) and the Hamiltonian are concave
Let hi(·) be a concave functions (h′′i (·) < 0), then according to (37), the Hamil-

tonian is a concave function of ui, i = 1, 2. There are two di�erent options for
ui ∈ [0, 1] that minimize the Hamiltonian, i.e., if at the time moment t

hi(0)− φi
k(t) · 0 < hi(1)− φi

k(t) · 1,

or
hi(1) > φi

k(t),

then optimal control is ui = 0; otherwise ui = 1.
For i = 1, 2, the optimal control parameters ui(t) are de�ned as follows:

u∗i (t) =

{
0, for φi

k(t) < hi(1),
1, for φi

k(t) ≥ hi(1).
(41)

Functions φi
k are non-increasing functions, then there can be at most one time

moment t ∈ [0, T ] at which φi
k(t) = h′i(ui(t)). Moreover, if such moment exists, for

example, t1, then φ
i
k(t) < hi(1) on 0 ≤ t < t1 and φ

i
k(t) ≥ hi(1) on t1 ≤ t < T .
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Functions hi(·) and the Hamiltonian are strictly convex
Let hi(·) be a strictly convex functions (h′′i (·) > 0), then Hamiltonian is a convex

function. Consider the following derivative:

∂
∂x (hi(x)− φ

i
kx) |x=xi

= 0, (42)

where xi ∈ [0, 1], u∗i (t) = xi. There are three di�erent types of points at which the
Hamiltonian reaches its minimum. To �nd them, we need to consider the deriva-
tives of the Hamiltonian at ui = 0 and ui = 1. If the derivatives (42) at ui = 0 are
increasing (h′i(0)−φi

k ≥ 0), then the value of the control that minimizes the Hamil-
tonian is less than 0, and according to our restrictions (ui ∈ [0, 1]) optimal control
will be equal to 0. If the derivatives at ui = 1 are non-increasing (h′i(1)−φi

k < 0), it
means that the value of the control that minimizes the Hamiltonian is greater than
1. Hence the optimal control will be 1; otherwise, we can �nd such value u∗i ∈ (0, 1).

Functions φi
k(t), h

′
i(t), u

∗
i (t) are continuous at all t ∈ [0, T ]. In this case hi is

strictly convex and h′i is strictly increasing functions, so h′i(0) < h′i(1). Thus there
exist points t0 and t1 (0 < t0 < t1 < T ) so that conditions (43) are satis�ed, and
according to φi

k(t) are non-decreasing functions. That is:

u∗i (t) =

0, for φi
k(t) ≤ h′i(0);

h′−1(φi
k), for h′i(0) < φi

k(t) ≤ h′i(1);
1, for h′i(1) < φi

k(t).
(43)

13. Appendix 2.

De�ne the associated Hamiltonian H as follows:

H = f1(I
1
k(t)) + f2(I

2
k(t)) + h1(u1(t)) + h2(u2(t))− g(Sk(t))+

λSk
(t)(−l1Sk(t)Θ1(t)− l2Sk(t)Θ2(t) + u1I

1
k(t) + u2I

2
k(t) + I1k(t) + I2k(t))+

λI1
k
(t)(l1S(t)Θ1(t)− I1k(t)− u1I1k(t)) + λI2

k
(l2Sk(t)Θ2(t)− I2k(t)− u2I2k(t)).

The adjoint system is equal to

λ̇Sk
(t) = −g′(S)− λSk

(−l1Θ1I
1
k − l2Θ2I

2
k)− λI1

k
l1Θ1I

1
k − λI2

k
l2Θ2I

2
k ;

λ̇I1
k
(t) = f ′1(Ik)− λSk

(−l1SkΘ1 + u1 + 1)− λI1
k
(l1SkΘ1 − 1− u1);

λ̇I2
k
(t) = f ′2(Ik)− λSk

(l2SkΘ2 + u2 + 1)− λI2
k
(l2SkΘ2 − 1− u2).

(44)

with the transversality condition:

λI1
k
(T ) = 0, λI2

k
(T ) = 0, λSk

(T ) = 0. (45)

According to Pontryagin's maximum principle, there exist continuous and piece-
wise continuously di�erentiable co-state functions λi that at every point t ∈ [0, T ]
where u is continuous, satisfy (44) and (45).

(u1, u2) ∈ arg min
u1,u2∈[0,1]

H(λ, (S, I,R), u1, u2), (46)
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