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Abstract The dynamic travelling salesman problem, where we assume that
all objects can move with constant velocity, is considered. To solve this NP-
hard problem we use a game-theoretic approach and well-known solution
concepts of pursuit games. We identify the realizability areas of salesman
strategies depending on the initial positions of customers and their veloci-
ties. We present di�erent cases of realizability areas of salesman strategies
constructing in Python program with several numbers of customers.
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1. Introduction

There are many di�erent modi�cations of traveling salesman problem (TSP).
The classical traveling salesman problem is to �nd a route of a given number of cities,
visiting each city exactly once and returning to the starting city where the length
of this tour is minimized. The �rst example of the travelling salesman problem was
from Euler in 1759 whose problem was to move a knight to every position on a chess
board exactly once, then in a book written by German salesman B.F. Voigt in 1832
(Michalewicz, 1994). The origins of the TSP in mathematics are not really known
- all we know for certain is that it happened around 1931 (Michalewicz, 1994).

The classical traveling salesman problem has always been attractive to the re-
searcher despite the obvious di�culties of solving it (Lawler et al., 1986; Reinelt,
1994). This problem has had wide application in various �elds. Some instances
of the vehicle routing problem can be modeled as a travelling salesman problem.
Here the problem is to �nd which customer should be served by which vehicle
and the minimum number of vehicles needed to serve each customer. There are
di�erent variations of this problem including �nding the minimum time to serve
all customers. Now, in the modern world when the e�ciency and dynamism of
unmanned aerial vehicles or drones appeared and can be used, new areas of appli-
cation of the traveling salesman problem are opening up. Various modi�cations of
this task are applied to problems in which drones are used. For example, in the
paper de Freitas, Penna, 2020 a variant of the traveling salesman problem (TSP),
called the �ying assistant traveling salesman problem, was presented, related to the
delivery of parcels using drones.

We consider the dynamic travelling salesman problem (DTSP) (Sergeev, 2008;
Tarashnina et al., 2017), allowing all considered objects (the salesman and m cus-
tomers) to move on a plane with constant velocities. We apply a game-theoretical
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approach for solving the DTSP. In fact, we propose to use some methods of pur-
suit game theory for this purpose (Petrosjan and Shirjaev, 1981; Petrosjan, 1983;
Kleimenov, 1993; Tarashnina, 1998; Pankratova, 2007). This means that each agent
is considered as a player that has his own aim and his pro�t is described by a payo�
function. The players may use admissible strategies and interact with each other.
Here we �nd a solution of DTSP as a Nash equilibrium in a non-zero-sum game of
pursuit. In other words, we de�ne strategies of all players that provide the minimal
length of the salesman route (Tarashnina et al., 2017) and construct the realizability
arias for such strategies. We identify the realizability areas of salesman strategies
depending on the initial locations of clients and their velocities. Several special cases
of salesman behavior are investigated. A Python program is made to build realiz-
ability areas of salesman strategies. Such areas are obtained for the cases of one
salesman and di�erent numbers of clients.

2. The game

We have m customers C1, . . . , Cm who are initially located in di�erent cities and
move on a plane with constant velocities, and a salesman S who wants to meet all
of them. The players start their motion at the moment t = 0 at initial positions
z01 , . . . , z

0
m, z

0. At each instant t they may choose directions of their motion. Let
α be the velocity of salesman S, βj be the velocity of customer Cj , j = 1, . . . ,m,
α < βj .

Suppose that the salesman never meets the same customer twice and does not
return to the starting point (he she stays in the last meeting point). Thus, the
salesman tries to �nd the shortest route that passes through the customers' cur-
rent positions once and each customer also wants to meet the salesman as soon as
possible.

In contrast to the classical problem, where customers are located at �xed points
and may not move, here they move with constant velocities.

A strategy of salesman S is denoted by

uS(t, z
t
1, . . . , z

t
m, z

t) = uS .

The salesman uses piecewise open-loop strategies.
A strategy of customer Cj is a function of time, players' positions and a velocity-

vector of the salesman at a current time instant, i.e.

uCj
(t, zt1, . . . , z

t
m, z

t,ut
S) = uCj

,

where zt1, . . . , z
t
m, z

t are current positions of players and ut
S is a vector-velocity of

S at time instant t. In this game we suppose that the customers use the parallel
pursuit strategy (Π-strategy) (Petrosjan, 1965). Denote by US and UCj

the sets of
admissible strategies of the players, j = 1, . . . ,m.

The game is played as follows: at the initial moment of time the salesman informs
customers C1, . . . , Cm about a chosen direction of his motion. After that, S meets
the customers on his route if they cross it. The game is �nished when the salesman
meets the last customer. S aspires to minimize the total meeting time, i.e. to meet all
customers for the minimal time. At the same time each customer wants to minimize
his own meeting time.

The payo� function of customer Cj is

KCj (z
0
1 , . . . , z

0
m, z

0, uC1 , . . . , uCm , uS) = −Tj , (1)
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where Tj is a meeting time of S and customer Cj .
The payo� function of salesman S is

KS(z
0
1 , . . . , z

0
m, z

0, uC1 , . . . , uCm , uS) = −max{T1, . . . , Tm}. (2)

The objective of each player in the game is to maximize his own payo� function.
So, we de�ne this problem in a normal form

Γ (z01 , . . . , z
0
m, z

0) = ⟨N, {Ui}i∈N , {Ki}i∈N ⟩, (3)

where N = {C1, . . . , Cm, S} is the set of players, Ui is the set of admissible strategies
of player i, and Ki is a payo� function of player i de�ned by (1) and (2), i ∈ N .
The constructed game depends on initial positions of the players. Let us �x players'
initial positions and consider the game Γ (z01 , . . . , z

0
m, z

0).

3. Nash equilibria

Since we consider solution concepts from the pursuit game theory we need some
notions from pursuit games that will help to �nd a solution of the DTSP.

De�nition 1. (Petrosjan, 1965) The parallel pursuit strategy (Π-strategy) is a
kind of motion of a customer C regard the motion of salesman S which provides a
segment CtSt connecting current players' positions Ct and St at each time instant
t > 0 to be parallel to the initial segment C0S0 and its length strictly decreases.

Fig. 1.

It is known that if customer Cj uses the parallel pursuit strategy and salesman S
uses any admissible strategy from US , then all possible meeting points of the sales-
man and customer Cj cover the Apollonius disk (Petrosjan, 1983). In particular, if
the salesman moves along a straight line, then a meeting point of S and Cj lies on
the Apollonius circle.

De�nition 2. The Apollonius circle A(z0j , z
0) for initial positions C0

j = z0j and

S0 = z0 of customer Cj and salesman S, respectively, is the set of points M such
that

|S0M |
α

=
|C0

jM |
βj

,

where βj > α > 0 (see Fig. 2).
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Fig. 2. The Apollonius circle for the game Γ (z0j , z
0)

Fig. 3. The Apollonius circles for the game
Γ (z01 , z

0
2 , z

0)
Fig. 4. The Apollonius circles for
the game Γ (z01 , . . . , z

0
m, z0)

In Fig. 2 there are the Apollonius circles for all pairs of S and Cj , j = 1, . . . ,m.
Denote by Aj the Apollonius disk corresponding to the Apollonius circle A(z

0
j , z

0).
The union of all Apollonius disks is denoted by A, i.e. A = A1 ∪ . . . ∪ Am and
∂A = ∂(A1 ∪ . . . ∪ Am) is a boundary of the set A. The boundary ∂A = ∂1A is
called the boundary of the �rst level. If we remove the boundary of the �rst level,
then the remaining Apollonius disks form a new boundary, we call it the boundary
of the second-level and denote by ∂2A, etc.

As we noted earlier, the meeting of Salesman and customer takes place on the
Apollonius circle, then it is obvious that the meeting can occur at the intersection
of two Apolonius circles (see Fig. 3). The goal of a traveling salesman is to mini-
mize the total meeting time with all customers. Customers also seek to minimize
their time of meeting with a traveling salesman. If we look at Fig. 3, it is clear
that the total minimum meeting time of a traveling salesman with all clients is
provided by the strategy of the traveling salesman, which prescribes him to move
to the nearest intersection point of the Apollonius circles, provided that the clients
use the Π-strategy. Analytical formulas for calculating the coordinates of the inter-
section of Apollonius circles are obtained in paper Pankratova et al., 2016. Next,
it is interesting whether the idea of moving to the nearest point of intersection of
Apollonius circles will be true for any number of customers. Unfortunately, this is
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not the case. As a result of the study of this issue, and using methods and ideas
from Pankratova, 2007, Pankratova, 2010 the following theorem was formulated in
the paper Tarashnina et al., 2017.

Theorem 1. In the dynamic traveling salesman problem Γ (z1, z2, z3, z4, z) there
exists a Nash equilibrium. It is constructed as follows:

� The salesman chooses strategy u∗S that prescribes to him one type of behavior
u1S, u

2
S or u3S and gives the minimal meeting time.

� The customers use Π-strategy.

Behavior u1S: Salesman S uses the type of behavior u1S , according to which he
moves along a straight line towards customer Cj , that is, to the nearest point on
the boundary of the union of all Apollonius disks Aj , j = 1, . . . ,m (Fig. 5 (green
line)).

Behavior u2S: Salesman S uses the type of behavior u2S , according to which he
moves along a straight line to the nearest intersection point of the Apollo-
nius circles A(z0j , z

0) and A(z0k, z
0) (j ̸= k) that belongs to the boundary ∂A

(Fig. 6 (blue line)).

Fig. 5. Behavior u1
S Fig. 6. Behavior u2

S

Behavior u3S: Salesman S uses the type of behavior u3S , according to which he
moves along a straight line to the nearest intersection point of the Apollo-
nius circles A(z0j , z

0) and A(z0k, z
0) (j ̸= k) that belongs to the boundary ∂2A

(Fig. 7 (yellow line)) and then changes his direction and moves along a straight
line towards the last customer Cl, l ̸= j ̸= k.

The question arises how to determine by the current positions and velocities
the point on the Apollonius circle to which salesman should move to minimize the
total meeting time with customers. In other word, we should de�ne which type of
behaviour the salesman should use to minimise the total meeting time. To answer
this question in the next section we will de�ne the realizability areas of the traveling
salesman strategy.

4. Realizability arias

Denote by R the set of all possible initial positions of players C1 . . . , Cm.
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Fig. 7. Behavior u1
S , u

2
S , u

3
S for game Γ (z01 , z

0
2 , z

0
3 , z

0)

De�nition 3. The realizability arias R(ujS) (j = 1, 2, 3) of salesman strategy ujS is

a set of initial position of player S for which the type of behaviour ujS , j = 1, 2, 3
guaranties to salesman S the minimal meeting time with all customers, i.e. the
minimal total time.

Having constructed such areas, it is possible to determine which strategy (behavior)
a traveling salesman should adhere to minimize the total meeting time

4.1. Exmalple 1. Salesman and 2 clients

Consider example with one salesman S and two customers C1 and C2, and de�ne
all possible types of behaviour of S depending on initial positions and velocities.

To build realizability area of salesman, we �x the initial positions and velocities
of the salesman S and the customer C1, and the velocity of C2. The initial location
of the customer C2 changes. Green colour corresponds to the �rst type of behavior,
red to the second.

Fix the traveling salesman S at the point [0; 0] with the velocity α = 6, the
customer C1 at the point [1; 0] with the velocity β1 = 8 and �x the velocity of the
client C2, β2 = 7 and construct the realizability areas of salesman using Python
program.

Fig. 8. Reailzability arias of Salesman according two types of behaviour
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That is, given the position of the traveling salesman S and the customer C1 and
�xed velocities, if the client C2 is in the green area, then the traveling salesman must
use the �rst type of behavior ( u1S), to achieve the minimum meeting time with all
customers. If the customer C2 is in the green area, then the minimum meeting time
will be achieved when the traveling salesman uses the second type of behavior (u2S)
(Fig. 8).

4.2. Exmalple 2. Salesman and 3 customers

To build the areas, we will �x the initial positions and velocities of the traveling
salesman S and customers C1, C2, and the velocity of C3. The initial position of
the customer C3 is changing. Green color corresponds to the �rst type of behavior,
red � to the second, blue � to the third. In this case we have two possible situation
depending on where we �x the initial position of the second customer C2

In the �rst case, we �x the position of the player C2 such that in the game
Γ (z1, z2, z) the strategy u

1
S will guarantee the minimal total meeting time. We �x

the traveling salesman S at the point [0; 0] with velocity α = 6, the customer C1

at the point [1; 0] with velocity β1 = 8, the customer C2 at the point [3; 0] with
velocity β2 = 7 and �x the customer's velocity C3 β3 = 9 (Fig. 9).

If we move the client C2, while keeping it in the same area, we will see that the
area will also move, but its elements will not change: we �x the traveling salesman S
at the point [0; 0] with velocity α = 6, the client C1 at the point [1; 0] with velocity
β1 = 8, the client C2 at the point [2; 1] with velocity β2 = 7 and �x the velocity of
the client C3 β3 = 9 (Fig. 10).

Fig. 9. Case 1.1 Fig. 10. Case 1.2

In the second case, consider the position of the player C2 such that u
2
s is strategy

which gives the salesman the minimal total meeting time in the game Γ (z1, z2, z).
We �x the traveling salesman S at the point [0; 0] with the velocity α = 6, the
customer C1 is at the point [1; 0]with the velocity β1 = 8, the customer C2 at the
point [−2; 0] with velocity β2 = 7. We also set the velocity of the client C3 β3 = 9
(Fig. 11).

Thus, at a given position of the traveling salesman and the customers C1, C2

and �xed velocities, if C3 will be in the green area, then the traveling salesman must
use the �rst type of behaviour (u1S), to achieve the minimum meeting time with all
customers. If the initial position of C3 belongs to the red area, then the minimum
meeting time will be achieved when the traveling salesman uses the second type of
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Fig. 11. Case 2

behavior (u2S), and if the initial position of customer C3 will be in the blue region,
the traveling salesman should use the third type of behavior (u3S).

5. Conclusion

In the considered dynamic traveling salesman problem we propose a new ap-
proach to �nding a solution of this task. we introduce realizability areas of sales-
man strategies applying approach from Pankratova and Tarashnina, 2004. Such ar-
eas help us to make a desicion which type of behaviour we have to use to get minimal
total meeting time with all customers. We consider several example of construct-
ing the realizability areas of salesman strategies depending on initial positions and
velocities of the players. In a future, it is interesting to get relations between ini-
tial positions of the players and velocities or classi�cation table, which allow us to
calculate "switch" points between type of behaviours.
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