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Abstract In the paper, we propose a model of opinion dynamics in the
presence of a center of in�uence. The center aims in distributing the opinion
closer to the target one minimizing the costs. We consider the case when the
center takes into account only some �xed number of observations from the
opinion trajectory and taking into account the di�erence between the agent's
opinion and the socially desired opinion in these periods. The dynamics of
the state variable is given by a linear di�erence equation. The player's cost
is a linear quadratic function with respect to the state variables and the
player's strategy. The Euler equation method is used to �nd the center's
optimal strategy. Numerical simulations of the theoretical results are given.

Keywords: opinion dynamics, social network, linear-quadratic games, Euler-
equation approach.

1. Introduction

People exchange information in various ways to form their own opinions. The
transfer of information allows people with di�erent views to change their minds until
the opinions merge. The diversity and complexity of opinion transmission makes the
social network model extremely widely used, which has led to a great interest in its
evolution.

A Markov chain is a model of stochastic process describing a sequence of possi-
ble events in which the probability of occurrence of each event depends only on the
state attained in the previous time. The De Groot (DeGroot, Morris, 1974) model
was the �rst to use Markov process theory to model the dynamics of opinions
in social networks. The model assumes that network members with �xed weights
may in�uence the opinions of the selected members. The next opinion of a mem-
ber is a linear combination of all opinions of the current members. In the paper
(Bure et al., 2017), a modi�ed version of the De Groot model is presented. The
authors propose a dynamic model of opinion formation with two principals or two
centers of in�uence with the given in�uence matrix. They obtain the existence condi-
tions of the consensus and examine several extreme cases. The competitive models
of opinion dynamics are considered in (Sedakov and Zhen, 2019), where the dy-
namic game of opinion formation is linear-quadratic. The authors found equilibria
that represent the degree of in�uence of di�erent information structures. A coop-
erative version of this game is examined in (Rogov and Sedakov, 2020). A dynamic
model of opinion formation with two agents and one or two centers of in�uence is
proposed in (Mazalov and Parilina, 2020) and the optimal or equilibrium intense
of in�uence is found. The Nash equilibrium found in the paper helps to reduce
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the cost of having social network members close to the target opinion. The paper
(Mazalov and Parilina, 2019) proposes a model of opinion dynamics with a star
structure of the society. The Nash equilibrium is found by studying the opinion
dynamics of di�erent centers in the opinion competition game.

In some social networks, the opinions of some in�uential people contribute to
the formation and change of one's opinion. When these in�uencers want to reach
a consensus among the members of the network, they need to use some strategies
such as putting money, spreading baiting remarks, etc. When we need to observe
the dynamics of opinions in social networks, there are certain social costs. So how
can we reduce these costs?

We propose a model of opinion dynamics in the society consisting of the �nite
set of agents with a unique center of in�uence called a player. We assume that
the player has a limited number k of periods at which he can observe the society
opinion and compare it with the desirable one. The player takes into account not
only the squared di�erence between the agent's opinion and the target one, but
also the quadratic costs on the opinion in�uence. The player aims to minimize the
linear-quadratic functional with respect to an average-oriented opinion dynamics.

In our model, the state of the system is de�ned by the vector of opinions of
social network members. The state variable depends on the previous state value
and the intense of in�uence on the agents during the previous period. We apply the
Euler equation approach to �nd the optimal solution of the optimization problem
described above.

The rest of the paper is organized as follows. We describe the Euler equation
method and formulate the optimization problem with a given mean-directed opinion
dynamics in Section 2. In Section 3, we prove the main results for the certain
observation moments case and �nd the optimal strategy of the player and agents'
optimal opinion trajectories. We also provide the results of numerical simulations
in Section 3, and brie�y conclude in Section 4.

2. Model

2.1. The Euler Equation Approach

Let X ⊂ Rn and U ⊂ Rm be the state space and the control set, respectively.
Given an initial state x0 ∈ X, the state of a system evaluates with respect to
dynamics

x(t+ 1) = ft(x(t), u(t)), t = 0, 1, . . . , T − 1. (1)

The optimal control problem is to �nd a control u(t) ∈ U maximizing functional

T∑
t=0

δtrt(x(t), u(t)) (2)

with respect to the state dynamics equations (1) and a given initial condition x(0) =
x0, where rt(x(t), u(t)) is a reward or cost function of a player.

We can reformulate this problem in terms of the state trajectory x(t). Suppose
that we can express u(t) from equation (1) as a function of x(t) and x(t + 1), say
u(t) = q(x(t), x(t + 1)). Therefore, we can rewrite functional (2) in the following
form:

T∑
t=0

δtgt(x(t), x(t+ 1)), (3)



Opinion Control Problem with Average-Oriented Opinion Dynamics 105

where gt(x(t), x(t + 1)) = rt(x(t), q(x(t), x(t + 1))), t = 0, 1, . . . , T − 1. The Euler
equation approach gives the necessary conditions (see e.g. (Gonz�alez-S�anchez and
Hern�andez-Lerma, 2013; Dechert, 1978; Gonz�alez-S�anchez and Hern�andez-Lerma,
2014)) of the optimal trajectory x∗(t) that are1

∂gt−1 (x
∗(t− 1), x∗(t))

∂y
+ δ

∂gt (x
∗(t), x∗(t+ 1))

∂x
= 0, t = 1, . . . , T − 1. (4)

where x is the �rst variable in gt and y is the second variable in gt−1.
We can notice that the problem considered in the paper belongs to the class of

linear-quadratic optimization problems. We will apply the Euler-equation method
to �nd the player's optimal strategy in the dynamic problem with average-oriented
opinion dynamics (see Mazalov and Parilina, 2020).

2.2. Optimization Problem of Opinion Control

We consider a society consisting of n agents. Each agent i has an opinion xi ∈
R, i = 1, . . . , n. The agents communicate with each other and change the opinion
over time, which is assumed to be discrete and �nite. Let opinion of agent i at time t
be xi(t) ∈ R, t = 0, . . . , T. We also assume that there exists a player who in�uences
the opinion of one particular agent, say agent 1, with intensity u(t) ∈ R at time
t = 0, 1, . . . , T − 1. In period T the player does not in�uence the agent's opinion.
The opinion of agent 1 changes depending on his own opinion, the average opinion
of the society and in�uence of the player. The opinion of any agent i = 2, . . . , n
changes over time depending on his own opinion and the average opinion of the
society. The opinion dynamics is de�ned by the following equations:

x1(t+ 1) = x1(t) + a1

(∑n
j=1 xj(t)

n
− x1(t)

)
+ u(t), (5)

xi(t+ 1) = xi(t) + ai

(∑n
j=1 xj(t)

n
− xi(t)

)
, i = 2, . . . , n, (6)

with initial condition
xi(0) = x0i , i = 1, . . . , n. (7)

In equations (5) and (6), constants ai ∈ R+, i = 1, . . . , n show the beliefs of the
agents to the average opinion of the society. The higher the average opinion and
the personal opinion of an agent, the higher the opinion of the agent at next time
period.

In the model proposed in (Mazalov and Parilina, 2020), the authors take into
account all time periods to check if the opinion of the players is di�erent from the
player's target one. Therefore, the cost function in (Mazalov and Parilina, 2020)
was de�ned in the form:

J(u) =

T−1∑
t=0

δt

(
n∑

i=1

(xi(t)− s)2 + cu2(t)

)
+ δT

n∑
i=1

(xi(T )− s)2 , (8)

where δ ∈ (0, 1] is a discount factor and c > 0 is the player's costs per unit of in�u-
ence intense (see Mazalov and Parilina, 2020). In the next sections we modify the

1We assume that the conditions of Theorem 2.1 in
(Gonz�alez-S�anchez and Hern�andez-Lerma, 2013) are satis�ed.
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objective of the player and �nd the player's optimal strategy in a new formulation
of the problem.

3. Case of Some Observation Moments

We assume that the player can monitor the opinion level in the society only
at some time moments along the state trajectory. Let he use k periods 0 ≤ t1 ≤
t2 ≤ · · · ≤ tk ≤ T − 1, where k < T − 1, to observe the situation with the dy-
namics equations. We have two agents 1 and 2 with state variables x1(t) and x2(t)
respectively:

x1 (t+ 1) = x1 (t) +
a1
2

(x2 (t)− x1 (t)) + u (t) , (9)

x2 (t+ 1) = x2 (t) +
a2
2

(x1 (t)− x2 (t)) , (10)

with initial condition
x1 (0) = x01, x2 (0) = x02. (11)

The functional for player 1 to minimize is

J(u) =

T−1∑
t=0

δt
(
cu2(t)

)
+

k∑
j=1

δtj
(
(x1 (tj)− s)2 + (x2 (tj)− s)2

)
+ δT

(
(x1(T )− s)2 + (x2(T )− s)2

)
.

(12)

The next theorem gives the necessary conditions of the player's optimal strategy
found using the Euler equation approach.

Theorem 1. Let {u∗(t) : t = 0, . . . , T − 1} be the optimal strategy minimizing func-
tional (12) subject to initial conditions (11) and state dynamics equations (9) and
(10), and {(x∗1(t), x∗2(t)) : t = 0, . . . , T} be the corresponding state trajectory, then
the optimal strategy u∗(t), t = 0, . . . , T − 1 is

u∗(t) = z∗(t+ 1)−Az∗(t)

and corresponding optimal state trajectory (x∗1(t), x
∗
2(t)) , t = 1, . . . , T satisfy the

system of equations:

Acδz(t+ 1) +Bz(t− 1)− Cz(t)
+Ac

δ z(t− 2) = 0, t = 2, . . . , T − 1,
Dz (t)− Ez (t− 1)−Aδcz (t+ 1) + Ac

δ z (t− 2)
= (a2 − δ) (x2 (t)− s) + x2 (t− 1)− s, t = tj , j = 2, · · · , k,

c (z (t)−Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T,
−
(
c
δ −A

2c
)
z (T − 1) + Ac

δ z (T − 2) +
(
Ac− a2

2

)
z (T )

= a2 (x2 (T )− s) ,
x2 (t+ 1) = x2 (t) +

a2

2 z (t) , t = 1, . . . , T − 1,

(13)

where z∗(t) = x∗1(t)− x∗2(t), A = 1− a1+a2

2 , B = Ac+ c
δ −A

2c, C = A2δc+Ac− c,
D = c−A2δc+ δ +Ac− a2

2 and E = Ac− c
δ +A2c− 1.

Proof. We represent a new variable z (t) as

z (t) = x1 (t)− x2 (t) , t = 0, . . . , T.
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From state equations (9), (10) taking into account expression of z (t), we obtain the
new state equations:

z (t+ 1) = Az (t) + u (t) , (14)

x2 (t+ 1) = x2 (t) +
a2
2
z (t) , (15)

with initial condition
z (0) = x01 − x02, x2 (0) = x02,

where A = 1− a1+a2

2 .
We �nd an expression of u (t) from (14) and obtain

u (t) = z (t+ 1)−Az (t) , (16)

with
u (0) = z (1)−Az (0) .

Substitute these expressions into
∑T

t=0 δ
tgt(x(t), x(t+1)), we can rewrite the func-

tional in the following form:

J (z, x2) =c (z (1)−Az (0))2 +
T−1∑
t=0

δt
[
c (z (t+ 1)−Az (t))2

]
+

k∑
j=1

δtj
[
(z (tj) + x2 (tj)− s)2 + (x2 (tj)− s)2

]
+ δT

[
(z (T ) + x2 (T )− s)2 + (x2 (T )− s)2

]
.

To minimize J (z, x2) under condition given by equations (15) and (16), we form
the Lagrange function

L (z, x2, k) = J (z, x2) +

T−1∑
t=1

kt

(
x2 (t+ 1)− x2 (t)−

a2
2
z (t)

)
.

The �rst-order conditions are ∂L(z,x2,k)
∂z(t) = 0, t = 1, . . . , T and ∂L(z,x2,k)

∂x2(t)
= 0, t =

1, . . . , T.
First, we �nd the derivatives and get

∂J (z, x2)

∂z (t)
=δt−12c (z (t)−Az (t− 1))− δt2Ac (z (t+ 1)−Az (t)) ,

t = 1, . . . , T − 1, t ̸= tj ,

∂J (z, x2)

∂z (t)
= δt−12c (z (t)−Az (t− 1))− δt2Ac (z (t+ 1)−Az (t))

+ δt2 (z (t) + x2 (t)− s) , t = tj , j = 1, . . . , k,

∂J (z, x2)

∂x2 (t)
= 0, t = 1, . . . , T − 1, t ̸= tj ,

∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t = tj , j = 1, . . . , k,
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Second, we write the systems of the �rst-order conditions that are


c (z (t)−Az (t− 1))−Aδc (z (t+ 1)−Az (t)) = a2

4 ktδ
−t,

t = 1, . . . , T − 1, t ̸= tj ,
c (z (t)−Az (t− 1))−Aδc (z (t+ 1)−Az (t))
+δ (z (t) + x2 (t)− s) = a2

4 ktδ
−t, t = tj , j = 1, · · · , k,

c (z (t)−Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T,

(17)

kt−1 + kt = 0, t = 1, . . . , T − 1, t ̸= tj ,
δt [2z (t) + 4 (x2 (t)− s)]− kt + kt−1 = 0, t = tj , j = 2, . . . , k,
δt [2z (t) + 4 (x2 (t)− s)] + kt−1 = 0, t = T,

(18)

with initial conditions z (0) = x01 − x02, x2 (0) = x02.
Excluding kt from systems (17) and (18), �nally, we obtain the system of equa-

tions


Acδz(t+ 1) +Bz(t− 1)− Cz(t) + Ac

δ z(t− 2) = 0, t = 2, . . . , T − 1,
Dz (t)− Ez (t− 1)−Aδcz (t+ 1) + Ac

δ z (t− 2)
= (a2 − δ) (x2 (t)− s) + x2 (t− 1)− s, t = tj , j = 2, . . . , k,

c (z (t)−Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T,
−
(
c
δ −A

2c
)
z (T − 1) + Ac

δ z (T − 2) +
(
Ac− a2

2

)
z (T ) = a2 (x2 (T )− s) ,

where B = Ac + c
δ − A

2c, C = A2δc + Ac − c, D = c − A2δc + δ + Ac − a2

2 , and
E = Ac− c

δ +A2c− 1.
The theorem is proved.

Example 1. Let the society is represented by two agents, and a1 = 0.5, a2 =
0.4, δ = 1, c = 0.2. The initial opinions of the agents are x1(0) = 0.8, x2(0) = 0.3.
For time horizon T = 10, the player only observes the odd periods and his target
opinion is s = 0.6. Using Theorem 1, the optimal state and control trajectories are
presented in Table 1. The optimal value for functional (12) is 0.89.

Table 1. Optimal state and control trajectories.

t t = 0 t1 = 1 t2 = 3 t3 = 5 t4 = 7 t = 9

x1(t) 0.8 0.9255 0.2154 0.1841 1.1001 0.8726
x2(t) 0.3 0.4 0.5515 0.5312 0.336 0.5823
z(t) 0.5 0.5255 -0.3361 -0.3471 0.7641 0.2903
u(t) 0.2505 -0.056925 0.419455 -0.437895 0.046845 -0.153865

For the same parameters and horizon T = 10, we introduce optimal state (for
both agents 1 and 2) and strategy trajectories in Figures 1 and 2 respectively.
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Fig. 1. Optimal state trajectories (blue � x1(t), red � x2(t)).

Fig. 2. Optimal strategy trajectory u(t).

Example 2. Let a1 = 0.5, a2 = 0.4, δ = 1, c = 0.2 and initial opinions be
x1(0) = 0.8, x2(0) = 0.3. For time horizon T = 10, the player observes the society
opinion in time periods 2, 3, 5, 6, 9. The target opinion is s = 0.6. We �nd the
optimal state and control trajectories presented in Table 2. The optimal value of
functional (12) is 0.2.

Table 2. Optimal state and control trajectories.

t t = 0 t1 = 2 t2 = 3 t3 = 5 t4 = 6 t = 9

x1(t) 0.8 0.5245 0.4509 0.4304 0.3862 0.6652
x2(t) 0.3 0.4429 0.4592 0.4639 0.4572 0.4662
z(t) 0.5 0.0816 -0.0083 -0.0335 -0.071 0.199
u(t) -0.0605 -0.05318 0.036165 -0.052575 0.16565 -0.01295

For the same parameters and time horizon T = 10 we introduce optimal state
and strategy trajectories in Figure 3 and 4 respectively.
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Fig. 3. Optimal state trajectories (blue � x1(t), red � x2(t)).

Fig. 4. Optimal strategy trajectory u(t).

Example 3. Let a1 = 0.5, a2 = 0.4, δ = 1, c = 0.2 and initial opinions be x1(0) =
0.8, x2(0) = 0.3. For time horizon T = 10, the player observes opinions on the society
in periods 4, 5 and 6, 9. His target opinion is s = 0.6. The optimal trajectory and
optimal control are presented in Table 3. The optimal value of functional (12) is
0.02.

Table 3. Optimal state and control trajectories.

t t = 0 t1 = 4 t2 = 5 t3 = 6 t4 = 9

x1(t) 0.8 0.6613 0.6355 0.6243 0.5959
x2(t) 0.3 0.5746 0.5919 0.6006 0.6001
z(t) 0.5 0.0867 0.0436 0.0237 -0.0042
u(t) -0.2269 -0.004085 -0.00028 -0.031535 0.00251

For the same parameters and horizon T = 10, we introduce state and strategy
trajectories in Figures 5 and 6.
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Fig. 5. Optimal state trajectories (blue � x1(t), red � x2(t)).

Fig. 6. Optimal strategy trajectory u(t).

We compare the results of the numerical simulations from Examples 1�3. In
Examples 1 and 2 the number of periods when the player observes the opinion of the
society is the same, but in Example 1 the odd periods are chosen, while in Example
2 � the arbitrarily speci�ed periods. The calculations show that the optimal value of
the functional in Example 2 with prescribed moments of observation is less than in
Example 1 with the odd moments of observations. The optimal control trajectories
cannot be compared taking into account the moments of observations. The state
trajectories seem to be more "stable" in Example 2. Example 3 demonstrates the
state trajectory stabilization in the last periods of time interval. The value of the
functional is signi�cantly smaller in comparison with the ones in Examples 1 and 2.
It can partially be explained by the smaller number of observations in comparison
with Examples 1 and 2.

4. Conclusions

We propose a model of opinion dynamics in a society consisting of the �nite
number of agents with the presence of a center of in�uence called player. We consider
the situation when the player cannot observe and compare the society opinion and
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his target one, but there is a given set of periods when the observations are made.
The player observes the agents' opinions in arbitrary periods and takes them into
account calculating the di�erence between the average agents' opinions and the
socially desired one. We present the opinions of all members of the society as an
arithmetic average of the opinions of the agents. We �nd the necessary conditions
for the player's optimal strategy which is the intense of in�uence on a target agent.
The Euler equation approach is used to de�ne the optimal strategy. The numerical
simulations verify theoretical results.
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