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Abstract The paper investigates game-theoretical properties of a model of
production dynamics on markets with wrong expectations of most producers
about the existence of a market. It might be a market of electrocars, green
energy space �ights, paper books, theaters, oil energy, etc. The foundation
of a game-theoretical model is a special method for the generating of an
epistemic model from observations. The method is based on a generalization
of a classic model from the theory of mind and an idea of an observation
model is very similar to the model of moving average. We focused on periodic
solutions and introduced a control model for them. The control problem in
the model is an optimization problem for parameters of induced parametric
equilibrium in the game. The in�uence of the initial conditions on the overall
dynamics was modeled for some examples.

Keywords: epistemic models, theory of mind, Cournot competition, evolu-
tion games.

1. Introduction

We consider a dynamic model of market production with predictions and mem-
ory. The model might be applied to various settings. Among other examples, this
model describes the periodic market oscillations when the product expected life-
time is given, and the market believes that this market will be eliminated at a �xed
horizon. It does not mean that the actual lifetime of products or market lifetime is
given. We focus on actions of the market that depend on the beliefs of actors of this
market. There is a model where the market can use current data to update beliefs,
but our model does not use these types of updates. Examples of products where the
horizon for planning is constant but the market rest lifetime exceed this horizon are
Fusion power, non-green energy supplies, not-Bitcoin money.

Our approach might be an example of evolution games where we have several
players with limited scope and horizon, but they have the same types and always
choose the same strategies. It can also be used if it is possible to aggregate all players
into one, which can be called market also. Thus, we have a game of several players
which are market at di�erent moments and with the individual utility. It corresponds
to the market in developing countries where their interest guides producers because
of the uncertain future of the market and unpredictable owners of the production
companies. So the market tries to choose a production value, considering that some
products are already produced, and customers might want to buy products, not as
market price as an e�ect can include future productions as shares have prices that
depend on beliefs of product buyers and sellers.

We construct an epistemic model throughout the following section to show
motivations and formal language to carefully de�ne what agents believe in and
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what agents think about what other agents believe and so on (Aumann, 1999;
Novikov and Chkhartishvili, 2014). We generalized a model in another paper, but
we would like to add examples and explain in more detail. This model will also
catch some e�ects that we did not consider earlier.

Epistemic construction is indeed an informational structure (Fedyanin, 2018) of
the game, and since we do not use logic to prove theorems but for incorporating
results into a larger framework, use standard notation for explaining the model
and some results. There are dynamic epistemic logic, epistemic logic, Bayes-Nash
equilibriums and other tools to handle asymmetric knowledge.

2. Epistemic model

An epistemic model that is used in the paper generalizes the epistemic model
for Anna and Sally (Byom and Mutlu, 2013; Wimmer and Perner, 1983). There are
other investigations in this domain, see (Huck and M�uller, 2000). Ann and Sally
experiment shows that people tend to consider non-observable as non-happening
(Wimmer and Perner, 1983). Let some actions happen in a room. People who are
in the room know who is in the room, and actions have happened. Let there are
pairs (action, time), and each agent has a subset of time Presi, which an agent i
is present in the room. Let all happened actions are S. The generalization is the
following. Let there are agents, there is a room, and there is a list of observations
of events, actions. We consider that every observation perfectly identi�es the action
and is common knowledge for all players in a room. An important example of such
observation is an observation that an agent is present in the room, which is common
knowledge. Observation might form a controversial system because they are partial
since not all agents are always in the room and might not observe some actions. We
can check if every agent's observation is controversial or not, but we do not describe
agents' behaviour.

2.1. Example

The following table illustrates the observation concept.

Table 1. Agent observations in the example

Observed operation Anna Sally John Denis Dave

empty all boxes In In In Out Out

put red ball in box 1 In Out In In In

move red ball from box 1 to box 2 In Out In In In

put blue ball in box 2 In In In In In

move red ball from box 2 to box 1 In In Out In Out

move blue ball from box 2 to box 3 In In Out Out Out

Ann observations

1. empty all boxes
2. put red ball in box 1
3. move red ball from box 1 to box 2
4. put blue ball in box 2
5. move red ball from box 2 to box 1
6. move blue ball from box 2 to box 3
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Sally observations

1. empty all boxes
2. put blue ball in box 2
3. move red ball from box 2 to box 1
4. move blue ball from box 2 to box 3

Denis observations from the Sally point of view

1. put blue ball in box 2
2. move red ball from box 2 to box 1

Dave observations from John point of view from Denis point of view from Sally
point of view

1. put the blue ball in box 2

So the epistemic results are

� blue ball in box 3, red ball in box 1, no other balls in boxes for Ann
� inconsistency is for Sally. Sally did not know when the red ball was put in box
2, but the blue ball in box three and the red ball is in box one now

� red ball is in box 1, blue ball in box 2, no other information about the content
of boxes for the image of Denis

� blue ball in box 2, no other information about the content of boxes for the image
of Dave

2.2. General epistemic notation

Let denote Biαk if an agent i believes that observation αk took place, BiBjαk

if an agent i believes that an agent j believes that an observation αk took place.
It might be described in terms of standard modal logic with modalities for every
agent and might be temporal modalities,

φ := α | ¬φ | (φ ∧ ψ) | Biφ (1)

Here we use φ and ϕ to denote a formula that describe observation and epistemic
conclusions of the agents. The form of formula description should be read a formula
is either an observation, or a negation of another formula, or boolean combination
of two other formulas, or a belief of an agent about another formula.

It was suggested in the paper that if Si is the set of actions which have happened
when an agent i was in the room then

Bi1 ...Bimαi ↔ (αi ∈ ∩k∈{i1,...,im}Sk) (2)

The important consequence is that for any �nite set i1, ...ik if k ≥ n then there is a
m ≤ n such that there is a �nite set j1, ..., jm that

Bi1 ...Bikpi = Bj1 ...Bjmαi (3)

It works even if we have an formulas with operator Cαi of common believe

Cαi = αi ∩Bi1αi ∩ ... ∩Bi1 ...Bikαi ∩ ... (4)
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2.3. Diagrams for an epistemic model of game

Diagrams in this subsection show scopes which de�ne epistemic models. We
consider three critical cases: the periodic solution, the dynamic near the start of the
game and the dynamic near-real end of the game. We have calculated some data as
an example for the second and the third cases. Unfortunately, we cannot show the
solution in analytical form because of the very sophisticated output. We comment
on why periodic solutions are essential and mention some problems to compline
solutions for all three cases into a complete solution.

...← k ← (k + 1)← (k + 2)︸ ︷︷ ︸
memory

← (k + 3)︸ ︷︷ ︸
agent

← (k + 4)← (k + 5)︸ ︷︷ ︸
horizon

← ...

Fig. 1. Structure of scope of an agent k+3

...←

Bk+3︷ ︸︸ ︷
(k + 1)←

Bk+3Bk+4︷ ︸︸ ︷
(k + 2)←

Bk+3Bk+5=Bk+3Bk+4Bk+5︷ ︸︸ ︷
(k + 3)← (k + 4)← (k + 5)← ...

Fig. 2. A scope Bk+3 of agent k+ 3 and phantom agents in his mind in the middle of the
game, if memory h = 2 and prediction p = 2. The agent is aware of two agents before him
and two agents after. Bk+3Bk+4 shows what is in a scope of agent k+4 from a perspective
of agent k + 3.

...←

Bn−2︷ ︸︸ ︷
(n− 4)←

Bn−2Bn−1︷ ︸︸ ︷
(n− 3)←

Bn−2Bn−1Bn︷ ︸︸ ︷
(n− 2)← (n− 1)← n

Fig. 3. A scope Bn−2 of agent n− 2 and phantom agents in his mind near the end of the
game, if memory h = 2 and prediction p ≥ 2. The agent is aware of two agents before him
and more than one agent after. Bn−2Bn−1 shows what is in a scope of agent n − 2 from
a perspective of agent n − 3. Unlike middle game the diagram is valid not only for p = 2
but for any p ≥ 2.

3. Games

Let n agents choose their strategies in a given order. Every agent observes strate-
gies of h previous agents and believes that a game will stop after p next agents chose
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...←

Bk+3︷ ︸︸ ︷
Bk+3Bk+2︷ ︸︸ ︷

Bk+3Bk+2Bk+1︷ ︸︸ ︷
(k + 1)← (k + 2)← (k + 3)← (k + 4)← (k + 5)← ...

Fig. 4. A scope of agent k + 3 and phantom agents in his mind in middle of the game,
if memory h = 2 and prediction p = 2. The agent is aware of two agents before him and
two agents after. Bk+3Bk+2 shows what is in a scope of agent k + 2 from a perspective of
agent k + 3.

B3︷ ︸︸ ︷
B3B2︷ ︸︸ ︷

B3B2B1︷ ︸︸ ︷
0← 1← 2← 3← 4← ...

Fig. 5. A scope B4 of agent 4 and phantom agents in his mind at the begining of the game,
if memory h ≥ 3 and prediction p = 1. The agent is aware of two agents before him and
more than one agent after. B4B3 shows what is in a scope of agent 3 from a perspective
of agent 4. Unlike middle game the diagram is valid not only for h = 3 but for any p ≥ 3.

their strategies. Statelbers's game (Li and Sethi, 2017) is such game, when n = 2,
p = 1, h = 1 .

3.1. Description

The Cournot competition (Allaz and Vila, 1993) produces a system of linear
equation. The solution depends on observing an agent's strategies, and the depen-
dence is a linear function. Using the linear recursive methods, we can construct the
analytical solution that is polynomial of power functions.

We suggest modi�cations: assign two parameters to each player - memory and
planning horizon or prediction p, built corresponding epistemic models for players
and calculate equilibria.

The algorithm of decision for an agent is to look at the last known agent and
predict its choice by the best response. This choice will depend on the strategy of
the previous players. Thus previous players can in�uence. We use agents and players
as synonyms.

The activity of agents is synchronized with a step generator. The game can be
interpreted if the action's duration is h, the duration of the presence of an agent
in the room is p, and a new agent comes into the room every step. It can also be
interpreted as a cultural shift during the change of generations.

Let us consider a game with a given set of players fundamental positive strate-
gies. A player's utility function depends only on the player's strategy and the sum
of strategies of all players.

An example of a game with utility function and strategies is Cournot competi-
tion and one of the Tullock rent-seeking game versions. It is a well-known class of
games. Furthermore, we modify the game of this class and focus on the modi�ed
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game. We suggest three modi�cations. Following the Stackelberg competition model
idea, we introduce ordering in deciding between players. We consider ordering as a
parameter and will investigate the role of this parameter on players' decision and
their utility functions (Rapoport, 1997; Abele, et al., 2004; Huck and M�uller, 2000;
Spiliotopoulou et al., 2019).

The second and third modi�cation is an assignment of two types to each player.
A player has memory and planning horizons. Memory is how many preceding players
decisions the player can observe or remember. If a player makes her decision late
enough and her memory is small enough, then the �rst player's strategy is to be
neglected by the player. For the sake of simplicity, we assume that the player will
behave as if the �rst player has chosen a zero strategy. The planning horizon is how
far the player looks at the future and when the game will stop from her perspective.

There are opportunities to handle di�culties with players belief about other
players planning horizon, similar to k-level epistemic models (Novikov and Chkhar-
tishvili, 2014). However, we will avoid these di�culties in the leading case. We use
the assumption that a player �xes her belief about when the game stop and when it
has been started and consider it is accurate and shared knowledge (Aumann, 1999;
Fedyanin, 2018; Novikov and Chkhartishvili, 2014). We found equilibrium for dif-
ferent general cases of the modi�ed game and investigated these modes.

We can use the linear recursive method to �nd the solution if we have h history,
equal r type, p - prediction.

Then the general method is to predict the best action for the agent j + p. His
action depends on the actions of all previous. The previous is a function of its
previous and so on. Then we have the best response.

3.2. Model of the game

There is a set N = 1, ...,m of agents, each agent i has type (p, h). The actual
utility function for the agent i is fi and a utility function F =

∑
j∈N xj for the

Principal. We consider a game G = ⟨N,X, f, I⟩,, where X = {Xi = {x geq0}} is
a set of possible strategies for agents. Though we use games will keep reference to
them as agents, not players. I is an information structure of the game which has
been described above in the epistemic section.

Though the approach is very general we will focus here on the Cournot compe-
tition to use sine results which we derived before.

fi = xi

A−∑
j∈N

xj

− x2i
ri
. (5)

There is an interpretation of parameters and variables for Cournout competition.

� A is market volume,

� xi is production of the agent i,

�
(
A−

∑
j∈N xj

)
is a price for the products on the market,

� xi

(
A−

∑
j∈N xj

)
is a multiplication of production and price and, thus, it is a

pro�t

�
x2
i

ri
is a cost function

� ri is a type of the agent. The larger type the more e�cient is an agent.
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And agent i + 1 chooses this strategy once right after an agent i. An agent 0
chooses his strategy �rst. However, an agent i has another belief about his utility
function. He believes that it is

fi = xi

A− ∑
j∈{min{0,i−h},...,i+p}

xj

− x2i
ri
. (6)

At the same time, he believes that other players play the corresponding other game.
Let us denote Si = {min{0, i − h}, ..., i + p}. For any sequence of agents from N ,
say j1, ..., jm, the agent j1 believes that an agent j2 believes ... the agent jm has a
utility function

fjm = xjm

A− ∑
k∈∩b∈j1,...jmSb

xk

− x2jm
rjm

. (7)

The di�culty is to handle all belief carefully to �nd an equilibrium.

3.3. Method of equilibria calculation

A calculation of agent i should be started from the last agent in his scope, an
agent i+p. This agent i+p makes his decision based on his observable history from
the point of agent i view. The best response expression describes it.

xi+p = BR

A− i+p−1∑
k=i+p−h

xk

 (8)

Then, we should calculate response of the next agent that is agent i+ p− 1. We
have for this agent the following expression

xi+p−1 = BR

A− i+p−2∑
k=i+p−h−1

xk − xi+p

 (9)

and then replace the decision of the agent i+ p by its expression from previous
calculations

xi+p−1 = BR

A− i+p−2∑
k=i+p−h−1

xk −BR

A− i+p−1∑
k=i+p−h

xk

 (10)

4. Periodic equilibrium

We are interested in periodic quasi-solutions because of three reasons. The �rst
one is that computational models give us a periodic or almost periodic solution. The
second reason is that periods are natural for economic dynamic. Moreover, the third
reason is that the solutions are much more sophisticated than the general case.

The problem of combining is in the existence of a solution for periodic case only
applicable far enough from the beginning and end of the 1. So it might be that
this periodic solution cannot be consistent with the other two cases. It might be a
domain of future investigations. However, in any case, we can consider this research
as an investigation of periodic solutions if they exist and when they arise due to two
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external out of model interventions. Since economic cycles are typical, we suggest
this argument as reasonable. optimal

The following expressions are solutions for two periodic cases, with and without
predictions. These expressions shows the utility of the Principal if every agent thinks
that he is a last producer on the market

F0 =
kTsA

(m+ 1 + kTs)k
(11)

and the following is the utility of the Principal if every agent thinks that next agent
is a last producer on the market

F1 =
(1− s)AT

((k +m)(1− s)T − s)
, (12)

where T is a period, and s is a constant that depends on type r of the agents.

4.1. Prediction zero

Derivatives and change of the total market production by parameters. These
derivates leads to explicit expression for the result of optimal control if the resource
is very small, or even in�nitely small as relaxation and approximation.

∑
j

x∗j =

∑
i

ri
2(ri + 1)

A

m+ 1 + k
∑
i

ri
2(ri + 1)

=

1− m+ 1

m+ 1 + k
∑
i

ri
2(ri + 1)

 A

k
(13)

∑
j

x∗j =

1− m+ 1

m+ 1 +
kTr

2(r + 1)

 A

k
(14)

Let

s =
r

2(r + 1)
(15)

∑
j

x∗j =

(
1− m+ 1

m+ 1 + kTs

)
A

k
=

kTs

m+ 1 + kTs

A

k
(16)

Let we are given small resource which is enough to change only m, T, k, or s.
We can predict how utility will change if we increase only one these parameters and
only by 1.

∆Fm
0 =

−
(
A(−1 + s)2T 2

)
((s− (1 + k +m)T + (1 + k +m)sT )

× (17)

1

(−(k +m)T + s(1 + kT +mT )))
(18)

∆FT
0 =

A(1 +m)s

(1 +m+ ksT )(1 +m+ ks(1 + T ))
(19)
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∆F k
0 = − As2T 2

(1 +m+ ksT )(1 +m+ (1 + k)sT )
(20)

∆F s
0 =

A(1 +m)T

(1 +m+ ksT )(1 +m+ k(1 + s)T )
(21)

∆F s
0 =

A(1 +m)T

(1 +m+ ksT )(1 +m+ k(1 + s)T )
(22)

∆F0 = max
(
∆Fm

0 , ∆F
k
0 , ∆F

T
0 , ∆F

s
0

)
R (23)

Let we are given small resource again which is enough to change only m, T, k,
or s. We can predict how utility will change if we increase only one these parame-
ters. It is applicable for large value of parameters, so we can approximate them as
continuous parameters.

∂F0

∂m
= − AsT

(1 +m+ ksT )2
(24)

∂F0

∂k
= − As2T 2

(1 +m+ ksT )2
(25)

∂F0

∂T
= − Aks2T

(1 +m+ ksT )2
+

As

1 +m+ ksT
(26)

∂F0

∂s
= − AksT 2

(1 +m+ ksT )2
+

AT

1 +m+ ksT
(27)

DF0 = max

(
∂F0

∂m
,
∂F0

∂k
,
∂F0

∂T
,
∂F0

∂s

)
R (28)

4.2. Prediction one

i+T∑
j=i

xj =

1− r

2(r + 1)

(k +m)

(
1− r

2(r + 1)

)
T − r

2(r + 1)

AT. (29)

i+T∑
j=i

xj =
1− s

(k +m) (1− s)T − s
AT. (30)

Let we are given small resource which is enough to change only m, T, k, or s.
We can predict how utility will change if we increase only one these parameters and
only by 1.

∆Fm
1 = −

(
A(−1 + s)2T 2

)
((s− (1 + k +m)T + (1 + k +m)sT ))

× (31)

1

(−(k +m)T + s(1 + kT +mT )))
(32)



100 Denis Fedyanin

∆FT
1 =

A(−1 + s)s

((s+ k(−1 + s)(1 + T ) +m(−1 + s)(1 + T )))
× (33)

1

(−(k +m)T + s(1 + kT +mT )))
(34)

∆F k
1 = − A(−1 + s)2T 2

((s− (1 + k +m)T + (1 + k +m)sT ))
× (35)

1

(−(k +m)T + s(1 + kT +mT )))
(36)

∆F s
1 =

AT

(1 + s+ ksT +msT )(−(k +m)T + s(1 + kT +mT ))
(37)

∆F1 = max
(
∆Fm

1 , ∆F
k
1 , ∆F

T
1 , ∆F

s
1

)
R (38)

Let we are given small resource again which is enough to change only m, T, k,
or s. We can predict how utility will change if we increase only one these parame-
ters. It is applicable for large value of parameters, so we can approximate them as
continuous parameters.

∂F1

∂m
= − A(1− s)2T 2

(−s+ (k +m)(1− s)T )2
(39)

∂F1

∂k
= − A(1− s)2T 2

(−s+ (k +m)(1− s)T )2
(40)

∂F1

∂T
= − A(k +m)(1− s)2T

(−s+ (k +m)(1− s)T )2
+

A(1− s)
−s+ (k +m)(1− s)T

(41)

∂F1

∂s
= −A(1− s)T (−1− (k +m)T )

(−s+ (k +m)(1− s)T )2
− AT

−s+ (k +m)(1− s)T
(42)

DF1 = max

(
∂F1

∂m
,
∂F1

∂k
,
∂F1

∂T
,
∂F1

∂s

)
R (43)

5. Computational modelling

This section provides numerical example for the given h � memory and horizon
of prediction p. First h values are given and others are calculated based on exact
formula of non periodic equilibrium. We have developed a software on Wolfram
Research notebook to setup a system of equations and then solve them. Though
they give an analytical solution, this solution is sophisticated thus we provide here
only numerical results for di�erent players types.

We have tried to investigate oscillations. The �rst agent make a nonzero move,
then h − 1 agents make zero moves. We investigated if we see oscillation as we
had to p = 0 and p = 1 in our previous investigations, bifurcation, or there will be
smooth plots. The �gure shows that the small peaks in the beginning and that plats
become more and more smooth with time. This e�ect does not depend on the type
of agents r. Each line in the �gure shows dynamics for the speci�c value of type r.



Equilibrium in Generalized Stackelberg Game with Arbitrary Memory 101

Fig. 6. Computational modelling of dynamics. Horizontal axis is time which is also an
index of an agent. The vertical axis is production of agents with given index. Parameter
h is number of previous actions which are taken by an agent, and p is planning horizon.
Parameter p shows how far is the last move in this game. A sum p + h shows how many
agents an agent i see as his opponent if i is far enough from the beginning.

Another property is that the more an agent pay attention to prediction rather than
history, the faster the production growth. We do not know details of this process in
general, but it can be formulated like "if people pay more attention to the future
and less attention to the history, their production increases." We do not think the
principle might be applied to any situation, but we have a hypothesis that works
for our model.

6. Discussion

This paper suggested and investigated a model of generation change for Cournot
competition with limited predictions and memory. We hope that this model might
be helpful to model nuclear energy markets, paper-books markets, oil and gas mar-
kets, bitcoins, goods with an extended lifecycle. There are two main reasons for
applications. The �rst reason is predictions. Some market lives longer than they are
expected. People thought that oil and gas had vanished from energy markets, and
VR and electronic books have eliminated paper books, but these markets still exist.
Other people believe that bitcoins is a temporal thing, but this kind of money is still
developing. The second reason is errors about the in�uence of the produced goods
or services. People might think that produced electric cars or paper books will not
be of any value soon, and there is no need to reduce market volume by produc-
ing volumes of these goods in the predictions. However, surprisingly indeed, people
might use it like some people still use Windows 95 or Fortran. The key reason for
these e�ects is epistemic e�ects, so our model also developed the epistemic model.
We make some even more general results in epistemic modelling by generalizing a
theory of mind model. This generalized model might be helpful for this model of
market evolution and many models of partial awareness models or human-robot
interactions. We hope that this model will be in computer science for epistemic
modelling.
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