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Abstract In this work, we consider the multi-objective optimization prob-
lem based on the circle packing problem, particularly, extended Malfatti's
problem (Enkhbat, 2020) with k disks. Malfatti's problem was examined
for the �rst time from a view point of global optimization theory and algo-
rithm in (Enkhbat, 2016). Also, a game theory approach has been applied
to Malfatti's problem in (Enkhbat and Battur, 2021). In this paper, we ap-
ply the the multi-objective optimization approach to the problem. Using the
weighted sum method, we reduce this problem to optimization problem with
nonconvex constraints. For solving numerically the weighted sum optimiza-
tion problem, we apply KKT conditions and �nd Pareto stationary points.
Also, we estimate upper bounds of the global value of the objective function
by Lagrange duality. Numerical results are provided.

Keywords: circle packing problem, triangle set, k disks, multi-objective
optimization problem, upper bound.

1. Introduction

In recent years, circle packing problem have attracted many researchers because
of its applications such as circular cutting problems, communication networks, facil-
ity location and dashboard layout. For instance, we refer to (Nguyen and Strodiot,
1992) for the practical application of the design centering problem in the diamond
industry, to (Vidigal and Director, 1982) for the quality control problem, to (Fraser
and George, 1994) for container loading problem for pulp industries which reduces
to the circle packing problem, to (Dowsland, 1991) for the problem of the cylindrical
units into a rectangular container.
A well-known Italian mathematician Malfatti (Malfatti, 1803) proposed the prob-
lem of how to pack three non-overlapping disks of maximum total area in a given
triangle. It is shown (Enkhbat, 2020) that this problem is a particular case of the
circle packing problem. Now it is well known that Malfatti's solution is not the
optimal one. A number of works attempted to solve Malfatti's problem (Enkhbat,
2016; Enkhbat and Barkova, 2019; Enkhbat, 2020; Enkhbat and Battur, 2021; An-
dreatta et al., 2011; Zalgaller and Los, 1994; Los, 1988; Lob and Richmond, 1930;
Malfatti, 1803). Algebraic as well as geometric approaches have been applied to
�nd the optimal solutions to the problem. Zalgaller and Los (1994) showed that the
greedy arrangement is the most optimal one for the problem solution. They applied
the so-called rigid systems and found the best solution to the problem which was
formulated on the basis of trigonometric equations and inequalities. In (Enkhbat,
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2016), Malfatti's problem was considered as a global optimization problem. Gener-
alized Nash equilibrium problem based on Malfatti's problem has been formulated
in (Enkhbat and Battur, 2021). In this paper, we examine the extended Malfatti's
problem (Enkhbat, 2020) with k disks from a viewpoint of multi-objective optimiza-
tion problem. The paper is organized as follows. In section 2, we recall the circle
packing problem as the convex maximization problem. In section 3, �rst, we formu-
late multi-objective optimization problem using the extended Malfatti's problem. In
section 4, we consider the KKT conditions and Lagrange dual problem. In section
5, we provide with numerical results.

2. Formulation of Sphere Packing Problem

Enkhbat (2016; 2020) formulated statements of the problem and optimality con-
ditions for sphere packing as well as Malfatti's problem (Malfatti, 1803). Now we
recall the sphere packing problem formulation with k disks brie�y. Let D be a
polyhedral set given by the following linear inequalities.

D = {x ∈ Rn|⟨ai, x⟩ ≤ bi, i = 1,m}, ai ∈ Rn, bi ∈ R.

Assume that D is compact and intD ̸= ∅. Then the sphere packing problem has
the form (Enkhbat, 2020)

max
(u,r)

V =
πn/2

Γ (n2 + 1)

k∑
i=1

rni , (1)

subject to:

⟨ai, uj⟩+ rj∥ai∥ − bi ≤ 0, i = 1,m, j = 1, k, (2)

(ri + rj)
2 − ∥ui − uj∥2 ≤ 0, i, j = 1, k, i < j, (3)

−rj ≤ 0, j = 1, ..., k (4)

where Γ (·) is the gamma function. The function V , which is convex as a sum of
convex functions rni de�ned on the positive orthant of R, denotes the total volume of
all spheres inscribed in D. ui are centers of disks, i = 1, ..., k. Conditions (2) describe
that all spheres are in D while conditions (3) secure non-overlapping case of balls.
Denote by SP (n,m, k) problem (1)-(4), where n,m and k are its parameters. It is
clear that SP (2, 3, 3) is Malfatti's problem.

If we set rj = r, j = 1, 2, ..., k, then problem (1)-(4) reduces to the classical
packing problem of inscribing k equal spheres into D with maximum volume:

max
(u,r)

V =
πn/2

Γ (n2 + 1)
krn (5)

subject to:

⟨ai, uj⟩+ r∥ai∥ ≤ bi, i = 1,m, j = 1, k, (6)

∥ui − uj∥2 ≥ 4r2, i, j = 1, k, i < j, (7)

−r ≤ 0. (8)
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3. Multi-objective optimization formulation of Malfatti's problem

We consider the problem SP (n,m, k) which is the extension of Malfatti's prob-
lem with k disks. Let us now consider this problem from a point of view of game
theory. Suppose k players are involved in the game. Assume that k players who
correspond to each disk have to maximize their area simultaneously. One can de-

note by y := (u, r) ∈ Rn+1. In this case, we introduce l :=
k(k − 1)

2
and g(y) =

(g1(y), ..., gm·k(y))
T , h(y) = (h1(y), ..., hl(y))

T and s(y) = (s1(y), ..., sk(y))
T as the

left side vector-functions of the constraints (2), (3) and (4) respectively. In other
words, 

g1(y) = ⟨ai, ui⟩+ rj∥ai∥ − bi,
· · · · · ·

gm·k(y) = ⟨am, uk⟩+ rk∥am∥ − bm,
h1(y) = (r1 + r2)

2 − ∥u1 − u2∥,
· · · · · ·

hl(y) = (rk−1 + rk)
2 − ∥uk−1 − uk∥,

sj(y) = −rj , j = 1, ..., k.

Denote by S the feasible set of problem (1)-(4)

S = {y ∈ Rn+1| g(y) ≤
Rm·k

0, h(y)≤
Rl

0, s(y) ≤
Rk

0}.

Let us consider multi-objective optimization problem 23 based on Malfatti's
problem in the following: 

max
y∈S

f1(y) = πr21,

· · · · · ·
max
y∈S

fk(y) = πr2k.
(9)

Denote the problem (9) by MOSP (n,m, k).

De�nition 1. ȳ ∈ S is called a Pareto optimal point of MOSP (n,m, k) if there is
no y ∈ S with

fi(y) ≥ fi(ȳ) for all i ∈ {1, ..., k}

and f(y) ̸= f(ȳ), f = (f1, ..., fk).

The Pareto optimal concept is the main optimality notion used in multi-objective
optimization. The main approach for determination of Pareto optimal point is the
weighted sum approach. Therefore, one can introduce appropriate weights α1 >

0, ..., αk > 0,
k∑

i=1

αi = 1, so we can formulate the corresponding scalarized optimiza-

tion problem for problem (9):

max
y∈S

F (y) =

k∑
i=1

αifi(y) (10)

Problem (10) can be also considered as the convex maximization problem over
nonconvex constraint set. A relationship between Pareto optimal point and solution
of the scalarized problem is given by the following well-known result (Ehrgott, 2005).
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Proposition 1. A solution y⋆ to problem (10) is a Pareto optimal point of problem
MOSP (n,m, k).
Proof. Let y⋆ be a solution to problem (10) but is not a Pareto optimal point of
problem (9). This means that there exist a point ỹ ∈ S such that
fi(ỹ) ≥ fi(y⋆) for all i ∈ {1, ..., k} with fk(ỹ) > fk(y

⋆), ∃j ∈ {1, ..., k}.

F (y⋆) =

k∑
i=1

αifi(y
⋆) ≤

k∑
i=1

αifi(ỹ) <

k∑
i ̸=j

αifi(ỹ) + fj(ỹ) = F (ỹ) (11)

This contradicts that y⋆ is a solution to problem (10). □

4. KKT condition and Lagrange dual problem

In this section we consider the KKT conditions and formulate well-known La-
grange dual problem (Bertsekas, 2016) for problem (10). One purpose of Lagrange
duality is to �nd an upper bound for optimization problem. Formally, the La-
grangian function associated with the optimization problem (10) is de�ned as

L(y, λ, µ, β) = F (y)−
(m·k∑

i=1

λigi(y) +

l∑
i=1

µihi(y) +

k∑
i=1

βisi(y)
)
.

The dual variables λ ∈ Rm·k
+ , µ ∈ Rl

+ and β ∈ Rk
+ are also referred to as the

Lagrange multipliers associated with the inequality constraints. Now we write the
KKT conditions for the problem (10) as the following:

∇F (y∗)−
(m·k∑

i=1

λ∗i∇gi(y∗) +
l∑

i=1

µ∗
i∇hi(y∗) +

k∑
i=1

β∗
i∇si(y∗)

)
= 0,

λ∗i gi(y
∗) = 0, λ∗i ≥ 0, gi(y

∗) ≤ 0, i = 1, ...,m · k,
µ∗
i hi(y

∗) = 0, µ∗
i ≥ 0, hi(y

∗) ≤ 0, i = 1, ..., l,
β∗
i si(y

∗) = 0, β∗
i ≥ 0, si(y

∗) ≤ 0, i = 1, ..., k.

(12)

Denote by p∗ the optimal value of the primal problem (10) which exists due to
compactness of set S:

p∗ = max
y∈S

(F (y)).

De�ne the Lagrange dual function Φ : Rm·k×Rl×Rk → R over the dual variables
as

Φ(λ, µ, β) = sup
y∈Rn+1

L(y, λ, µ, β),

and the associated dual optimization problem over the dual variables as

inf Φ(λ, µ, β)

subject to: λ ≥
Rm·k

0, µ≥
Rl

0, β ≥
Rk

0. (DL)

It is well known that this dual problem is always a convex optimization problem,
even if the primal problem is not convex (note that the dual function is a pointwise
supremum of a�ne functions of (λ, µ, β), and therefore concave). Let CS denote the
constraint set of this dual problem. Any point (λ, µ, β) ∈ CS is said to be a dual
feasible. Denote by d∗ the optimal value of the dual problem:

d∗ = inf
(λ,µ,β)∈CS

Φ(λ, µ, β).
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Proposition 2. Let y and (λ, µ, β) be feasible in (10) and (DL), respectively. For
given α1, ..., αk ≥ 0,

p(y) ≤ d(λ, µ, β).

If p∗(y) = d∗(λ, µ, β), then the pair (y, (λ, µ, β)) is optimal in its respective problem.
Proof. Proof follows from the duality theory (Bertsekas, 2016).

Thus the optimal value of the dual problem gives an upper bound for the optimal
value of the primal problem. Denote by

ρ(λ, µ, β, y) = d(λ, µ, β)− p(y) (13)

the di�erence of d(λ, µ, β) and p(y) functions. Obviously, for (λ, µ, β) ∈ CS , y ∈ S,
we have ρ(λ, µ, β, y) ≥ 0.

5. Computational Results

In this section, we consider the problem SP (2, 3, 3) in two cases. The scalarized
problem (10) is a nonconvex optimization problem which is NP hard problem as
the convex maximization problem. Nonconvex optimization problem have multi-
ple local optimal points. Hence, it may be reasonable to try to �nd a stationary
solution. Here, a stationary point means a point that satis�es the �rst-order opti-
mality condition (KKT condition). We use Matlab's lsqnonlin() function for solving
the KKT condition (12). The numerical results were implemented on an Intel(R)
Core(TM) i7, CPU 3.20GHz processor workstation under Matlab R2017b. We run
the algorithm in Matlab: 'trust-region-re�ective' and 'exit�ag=1'. We considered
the following steps in the computational method.

1. For each �xed di�erent weights, we solve the KKT condition of the problem
(10) and �nd any stationary point y∗.

2. For �xed y∗, we �nd a solution of the problem (DL) which is linear programming
problem.

3. If (y∗, λ∗, µ∗, β∗) is satis�es the following condition:

|ρ(λ∗, µ∗, β∗, y∗)| ≤ ϵ, ϵ = 10−5

then, go to next step.
4. Compare total areas for each di�erent weights. We choose a Pareto stationary

point which corresponds to the maximum total area. Go to step 1. Update
weights again.

Example 1 For a test purpose, the triangle with vertices A(2, 2), B(4, 19) and
C(24, 8) has been considered. The triangle set is given by the following system of
linear inequalities:

−17y1 + 2y2 ≤ −30,

11y1 + 20y2 ≤ 424,

6y1 − 22y2 ≤ −32.

For problem MOSP (2, 3, 3), the scalarized problem (10) is formulated as:

maxπ(α1y
2
3 + α2y

2
6 + α3y

2
9)
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g1(y) = −17y1 + 2y2 + 17.1172y3 + 30 ≤ 0,

g2(y) = 11y1 + 20y2 + 22.8254y3 − 424 ≤ 0,

g3(y) = 6y1 − 22y2 + 22.8035y3 + 32 ≤ 0,

g4(y) = −17y4 + 2y5 + 17.1172y6 + 30 ≤ 0,

g5(y) = 11y4 + 20y5 + 22.8254y6 − 424 ≤ 0,

g6(y) = y4 − 22y5 + 22.8035y6 + 32 ≤ 0,

g7(y) = −17y7 + 2y8 + 17.1172y9 + 30 ≤ 0,

g8(y) = 11y7 + 20y8 + 22.8254y9 − 424 ≤ 0,

g9(y) = 6y7 − 22y8 + 22.8035y9 + 32 ≤ 0,

h1(y) = (y3 + y6)
2 − (y4 − y1)2 − (y5 − y2)2 ≤ 0,

h2(y) = (y3 + y9)
2 − (y7 − y1)2 − (y8 − y2)2 ≤ 0,

h3(y) = (y6 + y9)
2 − (y7 − y4)2 − (y8 − y5)2 ≤ 0,

s1(y) = −y3 ≤ 0, s2(y) = −y6 ≤ 0, s3(y) = −y9 ≤ 0.

The results are given as the following:

1. For α1 = 0.3, α2 = 0.3, α3 = 0.4,
y∗1 = (13.1056, 9.2948, 4.1157, 6.8259, 13.5107, 3.4479, 6.0172, 6.6659, 3.4445),
(λ∗, µ∗, β∗) = (0, 0.03, 0.03, 0, 0, 0, 0, 0, 0.03, 0, 0.03, 0, 0, 0, 0),
Total area S1 = 127.8364.

2. For α1 = 0.4, α2 = 0.3, α3 = 0.3,
y∗2 = (8.7285, 9.8150, 5.7693, 3.9008, 4.2078, 1.6299, 17.0607, 8.8247, 2.6215),
(λ∗, µ∗, β∗) = (0, 0.012, 0.012, 0.012, 0, 0, 0, 0, 0.012, 0.012, 0, 0, 0, 0, 0),
Total area S2 = 134.5031.

3. For α1 = 0.5, α2 = 0.1, α3 = 0.4,
y∗3 = (5.3397, 16.3977, 1.6345, 4.1585, 14.3885, 0.6962, 8.7285, 9.8150, 5.7693),
(λ∗, µ∗, β∗) = (0, 0, 0, 0, 0, 0, 0, 0.022, 0.022, 0.022, 0.022, 0.022, 0, 0, 0),
Total area S3 = 114.4831.

From the numerical results, Case 2 gives the best stationary Pareto point corre-
sponding to the maximum area.

Example 2 Now consider the triangle with vertices A(0, 0), B(3, 4) and C(8, 6).
Then problem (10) is formulated in the following:

max f = π(α1y
2
3 + α2y

2
6 + α3y

2
9),

g1(y) = −4y1 + 3y2 + 5y3 ≤ 0,

g2(y) = 6y1 − 8y2 + 10y3 ≤ 0,

g3(y) = −2y1 + 5y2 +
√
29y3 − 14 ≤ 0,

g4(y) = −4y4 + 3y5 + 5y6 ≤ 0,

g5(y) = 6y4 − 8y5 + 10y6 ≤ 0,
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Fig. 1. Case 2, α1 = 0.4, α2 = 0.3, α3 = 0.3

g6(y) = −2y4 + 5y5 +
√
29y6 − 14 ≤ 0,

g7(y) = −4y7 + 3y8 + 5y9 ≤ 0,

g8(y) = 6y7 − 8y8 + 10y9 ≤ 0,

g9(y) = −2y7 + 5y8 +
√
29y9 − 14 ≤ 0,

h1(y) = (y3 + y6)
2 − (y4 − y1)2 − (y5 − y2)2 ≤ 0,

h2(y) = (y3 + y9)
2 − (y7 − y1)2 − (y8 − y2)2 ≤ 0,

h3(y) = (y6 + y9)
2 − (y7 − y4)2 − (y8 − y5)2 ≤ 0,

s1(y) = −y3 ≤ 0, s2(y) = −y6 ≤ 0, s3(y) = −y9 ≤ 0.

Computational results for the above example are given as the following.

1. For α1 = 0.5, α2 = 0.1, α3 = 0.4,
y∗1 = (3.4339, 3.4339, 0.6868, 2.5830, 2.5830, 0.5166, 4.4925, 4.0288, 0.5276),
(λ∗, µ∗, β∗) = (0, 0, 0, 0.00012, 0, 0, 0, 0, 0, 0.00012, 0.00012, 0, 0, 0, 0),
Total area S1 = 3.1948.

2. For α1 = 0.5, α2 = 0.3, α3 = 0.2,
y∗2 = (4.7580, 4.1776, 0.4595, 2.4100, 2.4096, 0.4298, 3.3006, 3.2845, 0.5857),
(λ∗, µ∗, β∗) = (0, 0, 0, 0.0002, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Total area S2 = 2.3214.
Case 1 corresponds to the best stationary Pareto point.

6. Conclusion

In this paper, we have examined a multi-objective optimization problem based
on the sphere packing problem as well as Malfatti's problem. The problem was
reduced to a scalarized optimization problem with nonconvex constraints. Numerical
experiments allow us to �nd some stationary Pareto solutions for given weights.
We obtain the best stationary Pareto point comparing the total areas for di�erent
weights of the scalarized problem. Numerical results are given.
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Fig. 2. Case 1, α1 = 0.5, α2 = 0.1, α3 = 0.4
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