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Abstract For a classical di�erential game of pollution control, we consider
how the possession of speci�c information would impact the payo� of some
players compared to cases in which the knowledge of information is incom-
plete. To measure the resulting discrepancy, we use the notion of value of
information (VoI). Speci�cally, we study two scenarios, one in which the role
of knowledge about the terminal cost is studied, and the other one, in which
we analyze the in�uence of knowledge about the exact value of the upper
bound on control. For each case, we obtain explicit analytical expressions for
the payo� functions. These functions are used to quantify the exact value of
information.

Keywords: di�erential game, pollution problems, value of information, op-
timal control and trajectory.

1. Introduction

In the paper two new models of the pollution emissions control is considered
and the new characteristic such that the value of information is suggested.

First of all, we have to admit that the announcement of policy to the business
does have the character of pre-informing which means that the government usually
won't take an action abruptly in order to keep a healthy and stable development
of the business. However, we should not rule out the possibility of the occurrence
of such scenario. Especially, under the current harsh competitive environment, the
company or person would always go for the maximal pro�t without seriously consid-
ering side e�ects they may cause to the society or nature. For example, for the paper
mill, since the amount of orders directly works on their pro�t, it's quite di�cult for
them to put the wastewater treatment on the �rst priority and meanwhile, they
are still taking the original strategy to emit enormous pollution, which also shows
lots of production is underway. In this case, the appropriate interference of penalty
policy at the end of a period without previously informing could give them a strong
alarm and largely guarantee the normal operation of production. The interesting
thing is if the company somehow is aware of such penalty at the beginning of the
production period, so instead of emitting unlimited pollution, they are making ef-
fort to reduce it and keeping the good function of business at the same time. Then
what is the di�erence of their total payo� during a �xed time?
Besides, the authority could �exibly adjust the threshold of emission rate according
to the real situation to amplify the e�ectiveness. The obvious case is that the emis-
sion control alters a lot due to the change of season. And what if the company learns
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the change of upper bound of emission rate beforehand, how will the company react
in contract to the unknown case? This paper is specially dealing with these two
cases in terms of the separate modelling.

2. Value of information for uncertainty of terminal cost

The model of control over the volumes of pollutant emission is being considered
(Dockner et al., 2000). The total payo� is obtained with a terminal cost correspond-
ing to a �ne for pollution at the last moment of the product period. Under this
circumstance, we study the value of information, which shows how the awareness of
terminal cost would a�ect the payo� of the business owner.
As (Tur and Gromova, 2018) shows one cooperative solution in a di�erential emis-
sion control game, (Gromov and Gromova, 2017) describes the conditions for de-
cision of optimal control and (Gromova, 2016) de�nes the cooperative solution in
di�erential games of three players, we formulate our model and computation as fol-
lowing.
Suppose there are 3 players in our case. It is assumed that the production volumes
are directly proportional to the volume of environmental pollution. The strategy of
player i can be viewed as the decision of the pollution rate per unit time, ui ∈ [0, bi].
The dynamic is de�ned by the equation:

ẋ(t) =

3∑
i=1

ui(t), x(t0) = x0, t ∈ [t0, T ]. (1)

Suppose the penalty at the terminal moment is also straight proportional to the
level of pollution X(T ). Then the payo� of player i is a mixed Bolza function:

Ki(x0, T − t0, u) =
∫ T

t0

((bi −
1

2
ui(t))ui(t)− dix)dt−Dix(T ), (2)

where u = {u1, u2, u3}, bi ≥ 0 is the ratio of total bene�t of player i from the
production; di ≥ 0 is the expense of elimination of a unit of total pollution for
player i; Di ≥ 0 is the amount of the penalty per unit of pollution. We will assume
that t0 = 0 in the following calculation. And the players initially agree on the use
of optimal controls which will maximize the total gain,

3∑
i=1

Ki(x0, T, u)→ max
u
, (3)

For simplicity, let us de�ne several abbreviations,

b123 = b1 + b2 + b3, d123 = d1 + d2 + d3

D123 = D1 +D2 +D3, Dij = Di +Dj .

The maximization problem can be solved according to (Gamkrelidez, 1999), (Pon-
tryagin, 1987).
The Hamiltonian function is:

H(x, u, ψ) =

3∑
i=1

[((bi −
1

2
ui)ui)−Dix(T )] + ψ(u1 + u2 + u3). (4)
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The optimal control has to maximize the Hamiltonian function by complying with
necessary condition:

∂H

∂ui
= bi − ui + ψ = 0,

u∗i = bi + ψ.

Since the second derivative of H at u = u∗i is negative, we con�rm that the optimal
control u∗i does maximize the Hamiltonian function,

∂2H

∂u2i
= −1 < 0.

The adjoint equations:
∂ψ

∂t
= −∂H

∂x
= d123. (5)

Hence,

ψ(t) = d123t+ C,

ψ(T ) =
∂H

∂x(t)
|t=T = −D123 = d123T + C,

ψ(t) = (t− T )d123 −D123.

The optimal control is:

u∗i = bi − (T − t)d123 −D123, i = 1, 2, 3. (6)

The optimal trajectory is:

x∗(t) = (b123 −D123)t− d123Tt+
1

2
t2d123 + x0. (7)

Let us introduce additional constraints on the parameters of the model, which guar-
antee that the result for some other auxiliary control optimization problems are
admissible and belongs to the compact set [0, bi]:

Di ∈ [0,min(b1 −D123, b2 −D123, b3 −D123)];

di ∈ [0,
min(b1, b2, b3)−D123

T
− d123], i = 1, 2, 3.

Since the calculation of optimal control and optimal trajectory for each player shares
the same character, for the following two cases, we are trying to generalize the
problem and only concentrate on the performance of one player, s.t. player 1.

2.1. Terminal cost is known

It is well-known (Basar and Olsder, 1998) that for linear-quadratic di�erential
game (1), (2) Nash equilibrium exists and is unique. Now we can similarly calculate
the Nash equilibrium using the Pontryagin maximum principle (Pontryagin, 1987).
Then the Nash equilibrium have the form:

uNE
i (t) = bi − (T − t)di −Di, i = 1, 2, 3.
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Now we calculate the value of the payo� of the business owner in the Nash equilib-
rium, substituting the obtained control into formula (2):

KNE
1 = K1(x0, T, u

NE)

= −x0(Td1 +D1) +D1T (D123 − b123 + Td123) +
T (b21 −D2

1)

2

+
T 2(d1D23 − d1b123 −D1d123)

2
+
T 3(d21 + 2d1d2 + 2d1d3)

6
.

(8)

For the rest of the players i = 2, 3, the value of the payo�s in the Nash equilibrium
can be acquired by cyclic permutation of the indices in (1).

2.2. Terminal cost is unknown

Suppose the player does not know that at the last moment of the game he will
be assigned a terminal penalty Dix(T ). We suppose Di = 0, although in fact it's
not. Then the payo� function for the player,

K̄1(x0, T, u) =

∫ T

t0

((b1 −
1

2
u1(t))u1(t)− d1x)dt. (9)

Correspondingly, the player will use the controls below as to Nash equilibrium:

u∗NE
1 (t) = b1 − (T − t)d1. (10)

And the corresponding trajectory follows:

x∗NE(t) = b123t− d123Tt+
1

2
t2d123 + x0. (11)

While the player is not aware of terminal cost, it actually exists. Thus the player
is still obligatory to pay penalty and the calculation of player's payo� has to follow
(2) as well:

K∗NE
1 = −D1x0 − T (D1b123 + d1x0 −

b21
2
)

+
T 2(D1d123 − d1b123)

2
+
T 3d1(d123 + d23)

2
.

(12)

Before calculating value of information, we would like to compare the control and
trajectory corresponding to the Nash equilibrium for the previous cases. We assume
that b1 = 300, b2 = 305, b3 = 303, T = 20, d1 = 2, d2 = 3, d3 = 4, D1 = 3, D2 =
6, D3 = 5, x0 = 5 (Note that these parameters have to satisfy the conditions above).
With current setting, we notice that there is no signi�cant variance between them.
As illustrated below, the curve of controls and trajectory in �rst case are quite
adjacent to another. We will quantify such di�erence later.

2.3. Evaluation of value of information � VI

In order to evaluate the characteristic value of information (VI) �rst suggested
by (Rai�a and Schlaifer, 1961) for problem with incomplete information, we propose
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Fig. 1. Control of the �rst player in Nash
equilibria for two cases

Fig. 2. Trajectory for Nash equilibria for
two cases

the following characteristic 1
NVI

,

1

NVI1
=

KNE
1

KNE
1 −K∗NE

1

=
−2x0(Td1 +D1)

T (D1(D123 +D23) + Td1D23)
+

2D1(D123 − b123)
D1(D123 +D23) + Td1D23

+
b21 −D2

1

D1(D123 +D23) + Td1D23
+
T (d1D23 − d1b123 +D1d123)

D1(D123 +D23) + Td1D23

+
T 2(d21 + 2d1d2 + 2d1d3)

3(D1(D123 +D23) + Td1D23)
.

(13)

Substituting to (13) the parameter with actual value above, we obtain that NVI1 =
0.94%. Now it's fair to say that under the initial setting, value of information is
quite small if we compare with the total amount. But if we say that the payo�
is counted by billion, then 0.94% still makes a lot di�erence. Hence it has to be
decided by the real situation.

The described method of calculation of NVI in the form (13) can be extended
for the cooperative case of the game:

NVI C
i =

ξi − ξ∗i
ξi

× 100%, (14)

where {ξi}ni=1 is the cooperative solution (Shapley value, τ�value etc.) of the game
computed under conditions of the complete information and {ξ∗i }ni=1 is the cooper-
ative solution calculated with a lack of information.

3. Value of information for uncertainty of possible adjustment of
upper boundary of control

In classical di�erential game theory (Petrosjan, 1985), tasks are commonly con-
sidered without changing the structure. In (Gromova and Petrosian, 2016) di�er-
ential game of pollution control embodies the dynamic update of information.
(Gromov and Gromova, 2017) explores a hybrid di�erential game of pollution con-
trol with regime switching. While in our case, we are analyzing the model of indus-
trial production, in which at some point the upper limit of the permissible level of
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contamination which caused by production is possible to change. Under this con-
dition, we are studying the maintaining optimal controls and optimal trajectories.
Based on that, value of information is obtained.
We simplify the model above and consider the process of pollution with only one
player. We assume that pollution is proportional to the volume of production and
the rate of emissions u in the atmosphere is most likely restrained by the govern-
ment or other parties. The strategy for player is to select optimal control for the
purpose of maximal payo�. The model we consider can be generalized for the case
of non-cooperative or cooperative di�erential game.

The dynamic is de�ned by the equation:

ẋ = u, u ∈ [0, b], x(0) = x0. (15)

The maximization of business owner's payo� is obtained:

J(x0, T, u) =

∫ T

0

((b− 1

2
u)u− dx)dt→ max

u
. (16)

Suppose that at time moment τs ∈ [0, T ], the upper boundary of control changes to
b̄, i.e. for t ∈ [τs, T ] the control satis�es the constraint u(t) ∈ [0, b̄].
The Hamiltonian is:

H(x, u, ψ) = (b− u

2
)u− dx+ ψu, (17)

The optimal control:
∂H

∂ui
= b− u+ ψ = 0,

u∗ = b+ ψ.

Because the second derivative of H at u = u∗i is −1 < 0, so we con�rm that we get
the maximal Hamiltonian function at optimal control u∗.
The adjoint equations:

∂ψ

∂t
= −∂H

∂x
= d. (18)

And The endpoint x(T ) is free,

ψ(t) = dt+ C,

ψ(T ) = 0 = dT + C, C = −dT,

ψ(t) = d(t− T ).

The optimal control is:

u∗ = b+ d(t− T ). (19)

Since the sign of control has to be non-negative and when u∗ = b + d(t − T ) = 0,
we have t = T − b

d . Then the optimal control u∗ should be reorganized as:

u∗(t) =

{
0, t ∈ [0, T − b

d ],
b+ d(t− T ), t ∈ [T − b

d , T ].
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3.1. For the case with a change in upper limit

Since the optimal control does not exceed b for any t ∈ [0, T ], an increase in
the upper limit of the emission level b→ b̄ will not lead to the change the optimal
control. However, if the updated upper boundary of control is less than b, i.e. b̄ < b,
then the control will take the form:

u∗(t) =

{
b+ d(t− T ), t ∈ [T − b

d , θ],
b̄, t ∈ [θ, T ],

where b + d(θ − T ) = b̄, θ = T + b̄−b
d ≥ τs and obviously u∗(t) = 0, t ∈ [0, T − b

d ].
Besides, let b+d(τs−T ) > 0, so the optimal control won't reach the lower boundary.

3.2. The adjustment of upper boundary is unknown

The business owner has no idea of the change of upper limit of control, then he

will su�er the loss in size P
∫ T

θ
(b+d(t−T )− b̄)dt in which P is a penalty coe�cient.

Then the new payo� is formulated:

J(x0, T, u) =

∫ T

0

((b− 1

2
u)u− dx)dt− P

∫ T

θ

(b+ d(t− T )− b̄)dt→ max, (20)

Thing has to be clear that the owner will not take the loss unless he reaches the
point where the condition is changed. Since the owner is not aware of change, we
assume he will follow the routine. Therefore the optimal control will be identical to
the previous:

u∗1(t) =

{
0, t ∈ [0, T − b

d ].
b+ d(t− T ), t ∈ [T − b

d , T ].

The expression for the optimal trajectory can be acquired by calculating the integral
of ẋ as shown in (15),

x∗1(t) =

{
x0, t ∈ [0, T − b

d ].
(b− dT )t+ d

2 t
2 + C1, t ∈ [T − b

d , T ],

where C1 = x0 − bT + b2

2d + dT 2

2 .
Then the total payo�:

J∗
1 =

∫ T− b
d

0

((b− 0)0− dx0)dt− P
∫ T

θ

((b+ d(t− T )− b̄)dt

+

∫ T

T− b
d

((b− 1

2
(b+ d(t− T )))(b+ d(t− T ))− d((b− dT )t+ d

2
t2 + C1))dt

= −dx0(T −
b

d
)− d2

3
(T 3 − (T − b

d
)3) + (d2T − bd

2
)(T 2 − (T − b

d
)2)+

+ (
b2

2
− d2T 2

2
− dC1)

b

d
− P (b− b̄)2

2d
.

3.3. The adjustment of upper boundary is known b → b̄.

To calculate the optimal control, it is necessary to consider optimal control
problem separately on two intervals, starting from the second. On the interval [τs, T ],
we de�ne the optimal value function J2′

J2′(x, u) =

∫ T

τs

((b− 1

2
u)u− dx)dt, (21)
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where u(t) is de�ned like previous u∗1(t) under several intervals and x(t) satis�es
the condition in (15) with x(τs) = xs.
We obtain the value of the owner's payo� on the second interval J∗

2′ , which for a �xed
τs will depend only on xs. Now we consider the �rst interval [0, τs]. At the moment
of time τs, the end of the trajectory will not be �xed, but since it is necessary to
take into account the game in the second interval. We will consider the total payo�
in mixed form (integral + terminal at the time of change τs):

J(x0, T, u) =

∫ τs

0

((b− 1

2
u)u− dx)dt+ J∗

2′(xs)→ max . (22)

In this case for J∗
2 :

J∗
2′ =

∫ T+ b̄−b
d

τs

((b− 1

2
(b+ d(t− T )))(b+ d(t− T ))− dx)dt+

+

∫ T

T+ b̄−b
d

((b− 1

2
b̄)b̄− dx)dt

=

∫ T+ b̄−b
d

τs

(−dx)dt+
∫ T

T+ b̄−b
d

(−dx)dt = −dx(T − τs).

In order to write down the conjugate equations and conditions of transversality, we
calculate a partial derivative of terminal winnings J∗

2′(xs) on xs:

∂J∗
2′

∂xs
= −d(T − τs), (23)

In this case, we get the value of ψ at the end of the �rst interval τs: ψ(τs) =
−d(T − τs).
In this case, the composite control equation will be written as follows:

u∗2(t) =

0, t ∈ [0, θ − b̄
d ].

b+ d(t− T ), t ∈ [θ − b̄
d , θ],

b̄, t ∈ [θ, T ],

where θ = T + b̄−b
d .

Correspondingly, the optimal trajectory:

x∗2(t) =

x0, t ∈ [0, θ − b̄
d ].

(b− dT )t+ d
2 t

2 + C1, t ∈ [θ − b̄
d , θ],

b̄t+ C2, t ∈ [θ, T ].

where C1 = x0 − bT + b2

2d + dT 2

2 and C2 = C1 + (b− dT )θ + d
2θ

2 − b̄θ.
Then under this condition, the total payo�:

J∗
2 =

∫ T− b
d

0

((b− 0)0− dx0)dt+
∫ T

θ

((b− 1

2
b̄)b̄− d(b̄t+ C2))dt

+

∫ θ

T− b
d

((b− 1

2
(b+ d(t− T )))(b+ d(t− T ))− d((b− dT )t+ d

2
t2 + C1))dt

= −dx0(T −
b

d
)− d2

3
(θ3 − (T − b

d
)3) + (d2T − bd

2
)(θ2 − (T − b

d
)2)+

+ (
b2

2
− d2T 2

2
− dC1)(θ − T +

b

d
) + (bb̄− b̄2

2
− dC2)(T − θ)−

db̄

2
(T 2 − θ2).
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Suppose T = 30, b = 20, d = 1, x0 = 10, b̄ = 10, P = 10, τs = 15 for both cases. As
shown in the �gures below, we have to admit that the uncertainty of upper boundary
indeed leads to the various performance of their optimal controls and trajectories.
And it's quite obvious that being aware of change of upper limit is better. However,
we are not able to quantify the actual worth of value of information currently. We
will discuss it in the following subsection.

Fig. 3. Optimal control for two cases Fig. 4. Optimal trajectory for two cases

3.4. Evaluation of value of information � VI

For evaluating the characteristic value of information, we propose the new char-
acteristic which is denoted as NVI:

NVI =
J∗
2 − J∗

1

J∗
2

× 100%

= (
d2((T − b

d )
3 − (T + b̄−b

d )3)

3
−
d2((T − b

d )
3 − T 3)

3
+

+ ((T − b

d
)2 − (T +

b̄− b
d

)2)(
bd

2
− Td2)− ((T − b

d
)2 − T 2)(

bd

2
− Td2)−

− b̄

d
(d(

dT 2

2
− Tb+ db2

2
+ x0)−

b2

2
+
T 2d2

2
) +

b̄d((T + b̄−b
d )2 − T 2)

2
+

+
P (b̄− b)2

2d
+
b̄− b
d

(d(x0 − Tb+ d
(T + b̄−b

d )2

2
+ (T +

b̄− b
d

)(b− Td)+

+
T 2d

2
+
b2d

2
− b̄(T +

b̄− b
d

))− b̄b+ b̄2

2
) +

b

d
(d(

dT 2

2
− Tb+ db2

2
+ x0)−

d2

2
)+

+
T 2d2

2
))/(

d2((T − b
d )

3 − (T + b̄−b
d )3)

3
+ ((T − b

d
)2 − (T +

b̄− b
d

)2)(
bd

2
− Td

2
))

− b̄

d
(d(

dT 2

2
− Tb+ bd2

2
x0)−

b2

2
+
T 2d2

2
) +

b̄d

2
((T +

b̄− b
d

)2 − T 2)+

+
b̄− b
b

(d(x0 − Tb+
d

2
(T +

b̄− b
2

)2 + (T +
b̄− b
d

)(b− Td) + T 2d

2
+
b2d

2
−

− b̄(T +
b̄− b
d

))− b̄b+ b̄2

2
− dx0(T −

b

d
))× 100%.



58 Angelina Chebotareva, Su Shimai, Sophia Tretyakova, Ekaterina Gromova

Assume that the value of parameter is same to the previous setting, in this case,
we get NVI = 38.46% which indicates that under current circumstance, value of
information is pretty crucial. The unawareness of adjustment of upper limit may
dramatically in�uence the business by reducing close to 40% of theoretical pro�t
when the information is known.

Conclusion

In the paper two new models of the pollution emissions control with a lack of
information was considered and the new characteristic such that the normalized
value of information was proposed.
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