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Abstract In the paper non-zero sum games on networks with pairwise in-
teractions are investigated. The �rst stage is network formation stage, where
players chose their preferable set of neighbours. In all following stages simul-
taneous non-zero sum game appears between connected players in network.
As cooperative solutions the Shapley value and τ -value are considered. Due
to a construction of characteristic function both formulas are simpli�ed. It
is proved, that the coe�cient λ in τ -value is independent from network form
and number of players or neighbours and is equal to 1

2
. Also it is proved that

in this type of games on complete network the Shapley value and τ -value
are coincide.

Keywords: cooperative games, network games, dynamic games, the Shapley
value, τ -value.

1. Introduction

The theory of cooperative network games is an important part of modern game
theory that will be used to construct solutions in games on networks. This theory
includes the cooperative trajectory, the strategies that generate it, the payo� along
the cooperative trajectory, as well as the distribution of payo� between the players
and the analysis of the dynamic stability of solutions (Petrosyan, Danilov, 1979).

The network illustrates the interaction between players and the possibility of
cooperation. The main attention is given to cooperative behavior of player that is
behavior in which the joint payo� of players will be maximal.

The principle of pairwise interaction used in this article was �rst introduced in
(Dyer, Mohanaraj, 2011) with the aim of �nding a Nash equilibrium in nonzero-
sum game. This principle implies splitting the game into a family of simultaneous
games between pairs of players � the vertices of the same edge in the network.
In (Bulgakova, Petrosyan, 2015) the �rst time the principle of pairwise interaction
was applied to cooperative two-stage games. The paper (Bulgakova, Petrosyan,
2019(a)) is devoted to �nding the basic solutions of two-stage cooperative games
with pairwise interaction and also the supermodularity of the characteristic function
is proved. This property signi�cantly increases the value of such a solution as the
Shapley value, since in the case of a convex game it always belongs to the core. In this
regard, in games based on pairwise interaction, this solution is of particular interest,
also because of possibility to simplify the corresponding calculations. Considering
the construction of the characteristic function, another solution proposed in (Tijs,
1987), namely, τ -value.

In this paper, a special type of multi-stage cooperative games on the network
is considered, which is distinguished by the way of constructing the characteristic
function. Like in (Bulgakova, Petrosyan, 2019(b)), �rst the cooperative trajectory
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is found, and then the characteristic function is calculated taking into account the
cooperative strategies of players. As a solution, the Shapley value and τ -value are
considered, for the latter, the coe�cient λ is calculated, which is the same for any
number of players and for any network design in a given game. It is also shown
that in this game the Shapley value and τ -value coincide. The illustrative example
is presented.

2. The model

Let an abstract �nite space Z be given, called the state space. On the �rst stage
in state (position) z0 ∈ Z, players form the network g(z0), where the vertices are
players, and edges are connections between them. In every following state zk ∈ Z
players can change the network by cancelling connections, and after playing n-person
non-zero sum game Γ (zk) on network g(zk).

De�ne the rule of network formation g(z0) on the �rst stage similar to [8]: in the
initial state z0 every player i ∈ N choose his behavior bi(z0) = (bi1(z0), . . . , bin(z0))
� n-dimensional connection vector with components taking values 0 or 1. Introduce
following notations: Mi ⊆ N \ i � those players, whom player i ∈ N is o�ering
connection. The value ai ∈ {0, . . . , n−1} is maximal number of player i connections
on every stage. If Mi = N \ {i}, player i can o�er a connection to all players, and
if ai = n− 1, player i can support any number of possible connections. Thus, each
player is restricted by the number of connections ai, which he has to o�er, and set
Mi of players, available for creating connections. In other words, on the �rst stage
control yi(z0) is vector of connection o�ers bi(z0).

Player i chose subset of players Qi ⊂Mi, which he want to see as his neighbors.
Then components of the vector bi(z0) are de�ned in following way:

bij(z0) =

{
1, if j ∈ Qi,
0, if j /∈ Qi or i = j,

(1)

under additional condition ∑
j∈N

bij(z0) ≤ ai. (2)

Condition (2) means, that the number of possible connections is limited for each
player. Note, that |Qi| ≤ ai. The connection can be realized only with a player from
the subset Qi.

The connection ij is realized if and only if bij(z0) = bji(z0) = 1, i. e. i ∈ Qj , j ∈
Qi. Formed connections ij create edges of the network g(z0), where players are
vertices, i. e., if bij = bji = 1, then in the network g an edge with end vertices i and
j appears.

Denote by Ni(g(z0)) neighbors of player i in the network g(z0), i. e. Ni(g(z0)) =
{j ∈ N \ {i} : ij ∈ g(z0)}.

After network g(z0) formation players pass to state z1(g(z0)), which depend on
network g(z0). In state z1(g(z0)) players are given the opportunity to remove some
of previously established connections, thus rebuilding the network g(z0) in g(z1)
and forming new sets of neighbors Ni(g(z1)). On the network g(z1) players play the
game Γ (z1), which is a simultaneous non-zero sum game between neighbors on the
network.

On the second stage, in the state z1 player i, i = 1, n, chooses control yi(z1) =
(bi(z1), xi(z1)) from �nite set Yi, which, unlike the �rst stage, contains an additional
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component xi(z1)� behavior in game Γ (z1). And bi(z1) is a vector with components
0 or 1, obtained by the following rule:

bij(z1) =

{
1, save link ij,
0, delete link ij,

(3)

i. e. the player in the second stage has the ability to delete existing links, however
he does not have the ability to create new. xi(z1) is behavior of player i in game
Γ (z1) and it is chosen from �nite set Xi(z1), de�ned in state z1.

Let y(z1) = (y1(z1), . . . , yn(z1)) be a strategy pro�le in game Γ (z1). Payo� of
player i in game Γ (z1) equals to:

Hi(z1) =
∑

j∈Ni(g(z1))

hi(yi(z1), yj(z1)),

where g(z1) is network, resulting from the strategy pro�le y(z1), which provides the
ability to remove some edges from the network g(z0), the functions
hi(xi(z1), xj(z1)) ≥ 0 are given for all i ∈ N and for all pairs ij, i. e. for all
edges of network g(z1) and all possible states z ∈ Z.

Suppose that in state zk−1 ∈ Z in game Γ (zk−1) players i ∈ N chose controls
(y1(zk−1), . . . , yn(zk−1)). As a result of the choice of these controls, the transition in
a state zk takes place, where the game Γ (zk) happens, with payo�s hi(xj(zk), xi(zk)).
That is, the state at the next stage of the game depends on the state at the cur-
rent stage and on the controls selected at this stage. We can de�ne the mapping
T : Z× Y1 × Y2 × . . .× Yn → Z by the formula

zk = T (zk−1; y1(zk−1), y2(zk−1), . . . , yn(zk−1)), k = 1, ℓ (4)

The mapping T uniquely identi�es the state zk, which follows the state zk−1, pro-
vided that the controls have been selected
y1(zk−1), y2(zk−1), . . . , yn(zk−1) at state zk−1.

Consider multistage gameG(z), which happens as follows. The gameG(z0) starts
in state z0. In state z0 the network g(z0) is being formed, after the players pass to the
state z1. In state zk−1, k = 1, ℓ− 1 players choose controls
y1(zk−1), y2(zk−1), . . . , yn(zk−1), play game Γ (zk−1) and pass to the state
zk = T (zk−1; y1(zk−1), y2(zk−1), . . . , yn(zk−1)). Game ends on stage ℓ+1 in state zℓ.
Thus, as a result of control choices at each stage of the game, the path
z0, z1, . . . , zk, . . . , zℓ is realised.

State z is called admissible, if there is a sequence of controls and a sequence of
states generated by these controls z0, z1, . . . zk, k ≤ ℓ, such that zk = z.

The concept of a strategy in the resulting multistage game is introduced in a
natural way: yi(·), i ∈ N , � as a rule, which to each admissible state z of game
matches components bi(z), xi(z) controls in this state, i. e. selection of links to
remove and selection of behavior xi(z) in game Γ (z). From the above description
it follows that any strategy pro�le y(·) = {y1(·), . . . , yn(·)} uniquely determines the
path in the game, and, consequently, the payo� of each player as the sum of his
payo�s in games realized along the path:

Hi(y(·)) =
ℓ∑

k=1

∑
j∈Ni(g(z))

hi(yi(zk), yj(zk)).
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Note that the set of all possible paths in the multistage game G(z) is �nite, and
thus the set of all admissible states in the game is �nite. We denote this set by
Z ⊂ Z.

Suppose players choose controls ȳi(z), i ∈ N , which maximize their joint payo�
in the game G(z), i. e.

ℓ∑
k=1

∑
i∈N

Hi(ȳ1(zk), . . . , ȳn(zk)) = max
y

ℓ∑
k=1

∑
i∈N

Hi(y1(zk), . . . , yn(zk)). (5)

Strategy pro�le ȳ = (ȳ1, . . . , ȳn) will be called the cooperative behavior in
the game G(z), and trajectory (z̄0, z̄1, . . . , z̄ℓ) which corresponds to the controls
ȳi(z), i ∈ N , � we will call cooperative trajectory (z0 = z̄0).

Consider single stage game Γ (z) in arbitrary state z ∈ Z in a cooperative form
and de�ne its characteristic function v(S; z), S ⊂ N , for every subset (coalition)
S ⊂ N according to the rule:

v(∅; z) = 0, (6)

v({i}; z) = 0, (7)

v({ij}; z) =
{
hi(x̄i(z); x̄j(z)) + hj(x̄j(z); x̄i(z)), if j ∈ Ni(g(z)),

0, in other case,
(8)

v(S; z) =
∑
i∈S

∑
j∈Ni(g(z))∩S

hi(x̄i(z); x̄j(z)), (9)

v(N ; z) =
∑
i∈N

∑
j∈Ni(g(z))

hi(x̄i(z); x̄j(z)), (10)

where x̄i(z), x̄j(z) are obtained according (5).

Earlier it was proved, that the characteristic function v(S; z) is supermodular
and corresponding game is convex (see Bulgakova, Petrosyan, 2019(a)).

Here, unlike the previous approaches, in which the characteristic function was
constructed as the maximin (lower) value of the game between the coalition S and
additional coalition N \ S, the process of construction of this function is carried
out as follows. To calculate the value of the characteristic function, it is neces-
sary to determine the cooperative behavior in the game G(z0) and then calculate
v(S; zk), k = 1, ℓ, under the assumption that players choose cooperative behavior
as a control component.

Find the characteristic function V (S; zk) of multistage game G(zk), started in
position zk, as the sum of the payo�s of the coalitions S along the cooperative
trajectory (ȳ(z0), ȳ(z1), . . . , ȳ(zl)) in ℓ− k + 1 stages, starting from k:

V (S; zk) =

ℓ∑
r=k

v(S; zr) =

ℓ∑
r=k

∑
i∈S

∑
j∈Ni(g(zr))∩S

hi(x̄i(zr), x̄j(zr)),

V (S; zℓ) = v(S; zℓ).
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3. The τ -value

Consider as a solution for game G(z0) the τ -value (Tijs, 1987). Start with a
special case � single stage game Γ (z1) which appears after network formation stage.

Proposition 1. In the game Γ (z1), τ -value equals to:

τj(N, v, z1) =
1

2
(v(N, z1)− v(N \ {j}), z1) =

=
1

2

∑
i∈Nj(g(z1))

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))).

Proof. We use values of characteristic function for a single player and maximal
coalition N (6), (10):

Components of τ -value for convex game can be calculate by the formula:

τj(N, v) = λ(v(N)− v(N \ {j})) + (1− λ)v({j})

where coe�cients λ is de�ned from equation∑
j∈N

(λ((v(N)− v(N \ {j})) + (1− λ)v({j})) = v(N)

Since v({j}) = 0 (see (7)), the term (1− λ)v({i}) also is equal to zero.
Therefore, for two-stage game with pairwise interactions we have following for-

mula for calculating τ -value:

τi(N, v, z1) = λ(v(N, z1)− v(N \ {i}), z1) (11)

where coe�cients λ is de�ned from∑
j∈N

λ(v((N, z1)− v(N \ {j}), z1) = v(N, z1) (12)

Calculate the values of the di�erence v(N, z1)− v(N \ {j}, z1). If player j does
not belong to coalition N , N has no reason to support connections with j. Thus N
loses payo� on these connections. So the considered di�erence will be equal:

v(N, z1)− v(N \ {j}, z1) =
∑

i∈Nj(g(z1))

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))).

Now go back to the equation (12), and substitute into it the values of the char-
acteristic function.∑

j∈N

λ(
∑

i∈Nj(g(z1))

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1)))) =

=
∑
j∈N

∑
i∈Nj(g(z1))

hi(x̄i(z1); x̄j(z1)) (13)
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We get

λ
∑
j∈N

(
∑

i∈Nj(g(z1))

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1)))) =

=
∑
j∈N

∑
i∈Nj(g(z1))

hi(x̄i(z1); x̄j(z1)) (14)

Due to double summation on the left side of equality
(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1)), and since the summation is carried out over
i and j, we get:

λ · 2v(N, z1) = v(N, z1) (15)

Cancelling the same multipliers on the right and left sides of the equation, we
get:

λ =
1

2
(16)

Thus, in cooperative network game Γ (z1) with pairwise interactions, , coe�cient
λ in τ -value is equal to 1

2 , and does not depend on the number of players, or on the
number of connections between them, or on the structure of the network. And we
get that

τj(N, v, z1) =
1

2

∑
i∈Nj(g(z1))

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))). (17)

Proposition is proved.
We can apply this formula for arbitrary stage k, because of components of the

τ value depend only from the payo�s on this stage.
Now we can �nd the τ -value for multistage game G(zk), starting from arbitrary

position zk

τ ′j(N, v, z0) =
1

2

ℓ∑
r=k

∑
i∈Nj(g(zk))

(hi(x̄i(zk), x̄j(zk)) + hj(x̄i(zk), x̄j(zk))). (18)

4. The Shapley value

Now consider another solution, the Shapley value, and compare it with previous
on the special network � complete network.

Proposition 2. In multistage network game G(z0) with pairwise interactions on
the complete network τ -value and the Shapley value coincide.

Proof. Earlier, we obtained a simpli�ed formula for the components of the
Shapley value for a two-stage cooperative game with pairwise interaction on com-
plete network:

φi[v] =
1

2

∑
j∈N

mij ,

where mij is maximal joint payo� for pair ij which create an edge in network.
Now consider how we can simplify formula for calculating components of the

Shapley value in considered game. As previous, we start from single stage game
Γ (z0) and then generalize the result to multistage game.
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For components of the Shapley value we will use following formula (Shapley,
1953):

φj [v] =
∑

T |j∈T⊂N

(t− 1)!(n− t)!
n!

[v(T )− v(T \ j)] (19)

Calculate the di�erence in values of characteristic functions, v(T ) − v(T \ i),
when T = N . For arbitrary coalition T we will have:

v(T, z1)− v(T \ {j}, z1) =
∑

i∈Nj(g(z1))∩T

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))).

Note, that in (19), in the term with a �xed value (t), the sum (hi(x̄i(z1), x̄j(z1))+
hj(x̄i(z1), x̄j(z1))) will occur exactly C

t−2
n−2 times.

As a result we have:

φj [v] =

=
∑

T |j∈T⊂N

(t− 1)!(n− t)!
n!

· Ct−2
n−2 ·

∑
i∈Nj(g(z1))∩T

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))).

(20)
And, simplifying, we get:

φj [v] =
∑

i∈Nj(g(z1))∩T

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))) ·
n∑

t=2

t− 1

n · (n− 1)
(21)

φj [v] =
∑

i∈Nj(g(z1))∩T

(hi(x̄i(z1), x̄j(z1))+hj(x̄i(z1), x̄j(z1)))·(
1

n · (n− 1)
+
1

n
)· (n− 1)

2

(22)
Finally we have:

φj [v] =
1

2
·

∑
i∈Nj(g(z1))∩T

(hi(x̄i(z1), x̄j(z1)) + hj(x̄i(z1), x̄j(z1))) (23)

Thus τ -value coincides with the Shapley value in game Γ (z1) on complete net-
work. In multistage game G(z0) we have following formula for components of the
Shapley value:

φj [v] =
1

2
·

ℓ∑
r=k

∑
i∈Nj(g(z0))∩T

(hi(x̄i(z0), x̄j(z0)) + hj(x̄i(z0), x̄j(z0))) (24)

which also coincides with τ -value on complete network.

5. Example

Consider the case, where N = 3, ℓ = 3, i. e. the game consists of four stages
and starts in the state z0. In this state set Mi of players, whom player i can o�er a
connection, is given

M1 = {2, 3}, M2 = {1, 3}, M3 = {1, 2},
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as well as restrictions on the number of connections that each player can support:

a1 = 1, a2 = 1, a3 = 2.

In state z0 players choose behaviors bi(z0) � formed a network g(z0) and then
pass to the state z1. In every state zk, k ≥ 1 players choose controls yi(zk) =
(bi(zk), xi(zk)), where bi(zk) � vector regulating player connections (with compo-
nents 1 or 0), and xi(zk) is de�ned as

x1(zk) = x1(z) ∈ X1 = {x11(z), x21(z)},

x2(zk) = x2(z) ∈ X2 = {x12(z), x22(z)}, x3(zk) = x3(z) ∈ X3{x13(z), x23(z)}

Thus every player i has a given set of control components Xi in all states zk.
For admissible states zk, k ≥ 1, and all possible strategies payo�s are given

hi(xi(zr), xj(zr)) in following way: hi(xi(zr), xj(zr)) and h
′
i(xi(zr), xj(zr)).

In state z1 the game happens with payo�s h(xi(z1), xj(z1)). In state z1 every
player i ∈ N chose his control component xi(z1), and if all xi(z1) = x1i (z1), i ∈ N ,
then players pass to a state z2, in which the game is played with the same payo�s
hi(xi(z2), xj(z2)). If at least one of the components xi(z1) = x2i (z1), i ∈ N , then
in state z2 players play a game with payo�s h′i(xi(z2), xj(z2)). In a similar way,
the transition to the state z3: if all xi(z1) = x1i (z1), i ∈ N , then the players in
z3 use payo�s hi(xi(z3), xj(z3)), again if at least one of the components xi(z1) =
x2i (z1), i ∈ N , � payo�s are h′i(xi(z3), xj(z3)).
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In state z0 players choose their behaviors in order to maximize the total payo�
of all players:

b1(z0) = (0, 0, 1), b2(z0) = (0, 0, 1), b3(z0) = (1, 1, 0)

As a result, a network (see �g. 1) is formed.
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Fig. 1. Network on the �rst stage of game.

To maximize the joint payo�, it is bene�cial for the players to keep connections
with all neighbors throughout the game, i. e. bi(z0) = bi(z1) = bi(z2) = bi(z3), for
all i ∈ N . Components of the player controls ȳi(z)

x̄1(z1) = x21, x̄2(z1) = x12, x̄3(z1) = x13,

x̄1(z2) = x11, x̄2(z2) = x22, x̄3(z2) = x13,

x̄1(z3) = x11, x̄2(z3) = x22, x̄3(z3) = x13.

Calculate the values of characteristic function v(S; z) in all states along cooper-
ative trajectory, except z0, because the �rst stage is only network formation stage
and players do not receive payo�s:

S {1} {2} {3} {12} {13} {23} {123}
v(S; z̄1) 0 0 0 6 6 10 16
v(S; z̄2) 0 0 0 14 12 20 32
v(S; z̄3) 0 0 0 14 12 20 32

Table 1. The values of characteristic function v(S; z).

In state z1 players choose their controls and, depended on this, move to a new
state. In each state, the players have only two alternatives: either, as a result of
the choice of controls, they will play the game Γ (zk) with payo�s hi(x̄i(zk), x̄j(zk))
in the next state, or pass in state, where the game will take place with payo�s
h′i(x̄i(zk), x̄j(zk)).

Fig. 2. Tree of all possible states of game.

Numbers 1 and 2 above arrows (�g. 12) show, what payo�s will be used by
players in the next state: 1 means hi(x̄i(zk), x̄j(zk)), 2 means h

′
i(x̄i(zk), x̄j(zk)).
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Optimal trajectory in game G(z0): z̄ = (z0, z
1
1 , z

2
2 , z

4
3) = (z̄0, z̄1, z̄2, z̄3). Calculate

the values of characteristic function in multistage game G(z0):

S {1} {2} {3} {12} {13} {23} {123}
V (S; z̄3) 0 0 0 14 12 20 32
V (S; z̄2) 0 0 0 28 24 40 64
V (S; z̄1) 0 0 0 34 30 50 80

Table 2. The values of characteristic function in multistage game G(z0).

Calculate τ -value and the Shapley value in every stage

τ1(N, v, z1) =
1

2

(
h1(x̄

2
1, x̄

1
2)+h2(x̄

1
2, x̄

2
1)+h1(x̄

2
1, x̄

1
3)+h3(x̄

1
3, x̄

2
1)
)
=

1

2
(0+0+3+3) = 3

τ2(N, v, z1) =
1

2

(
h2(x̄

1
2, x̄

2
1)+h1(x̄

2
1, x̄

1
2)+h2(x̄

1
2, x̄

1
3)+h3(x̄

1
3, x̄

1
2)
)
=

1

2
(0+0+5+5) = 5

τ3(N, v, z1) =
1

2

(
h3(x̄

1
3, x̄

2
1)+h1(x̄

2
1, x̄

1
3)+h3(x̄

1
3, x̄

1
2)+h2(x̄

1
2, x̄

1
3)
)
=

1

2
(3+3+5+5) = 8

τ1(N, v, z2) =
1

2

(
h′1(x̄

1
1, x̄

2
2)+h

′
2(x̄

2
2, x̄

1
1)+h

′
1(x̄

1
1, x̄

1
3)+h

′
3(x̄

1
3, x̄

1
1)
)
=

1

2
(0+0+6+6) = 6

τ2(N, v, z2) =
1

2

(
h′2(x̄

2
2, x̄

1
1) + h′1(x̄

1
1, x̄

2
2) + h′2(x̄

2
2, x̄

1
3) + h′3(x̄

1
3, x̄

2
2)
)
=

=
1

2
(0 + 0 + 10 + 10) = 10

τ3(N, v, z2) =
1

2

(
h′3(x̄

1
3, x̄

1
1) + h′1(x̄

1
1, x̄

1
3) + h′3(x̄

1
3, x̄

2
2) + h′2(x̄

2
2, x̄

1
3)
)
=

=
1

2
(6 + 6 + 10 + 10) = 16

Components for τi(N, v, z3) are equal to τi(N, v, z2) because the payo�s are the
same on these stages. In multistage game G(z0)

τ ′1(N, v, z0) = 3 + 6 + 6 = 15
τ ′2(N, v, z0) = 5 + 10 + 10 = 25
τ ′3(N, v, z0) = 8 + 16 + 16 = 40

And the Shapley value coincide with τ -value.

6. Conclusion

We considered a special type of multi-stage cooperative games on the network
which is distinguished by the way of constructing the characteristic function. The
main point here is, �nding the cooperative trajectory �rstly, and then the char-
acteristic function is calculated taking into account the cooperative strategies of
players. As a solution, the Shapley value and τ -value are considered, for the latter,
the coe�cient λ is calculated, which is the same for any number of players and for
any network design in a given game. It is also shown that in this game the Shapley
value and τ -value coincide.
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